summaryrefslogtreecommitdiff
path: root/src/intel/vulkan/genX_pipeline.c
blob: f667c8bacbdc25c22f62dceb9ca5ea3fa432e73c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "anv_private.h"

#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "genxml/genX_rt_pack.h"

#include "common/intel_genX_state_brw.h"
#include "common/intel_l3_config.h"
#include "common/intel_sample_positions.h"
#include "nir/nir_xfb_info.h"
#include "vk_util.h"
#include "vk_format.h"
#include "vk_log.h"
#include "vk_render_pass.h"

static inline struct anv_batch *
anv_gfx_pipeline_add(struct anv_graphics_pipeline *pipeline,
                     struct anv_gfx_state_ptr *ptr,
                     uint32_t n_dwords)
{
   struct anv_batch *batch = &pipeline->base.base.batch;

   assert(ptr->len == 0 ||
          (batch->next - batch->start) / 4 == (ptr->offset + ptr->len));
   if (ptr->len == 0)
      ptr->offset = (batch->next - batch->start) / 4;
   ptr->len += n_dwords;

   return batch;
}

#define anv_pipeline_emit(pipeline, state, cmd, name)                   \
   for (struct cmd name = { __anv_cmd_header(cmd) },                    \
           *_dst = anv_batch_emit_dwords(                               \
              anv_gfx_pipeline_add(pipeline,                            \
                                   &(pipeline)->state,                  \
                                   __anv_cmd_length(cmd)),              \
              __anv_cmd_length(cmd));                                   \
        __builtin_expect(_dst != NULL, 1);                              \
        ({ __anv_cmd_pack(cmd)(&(pipeline)->base.base.batch,            \
                               _dst, &name);                            \
           VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
           _dst = NULL;                                                 \
        }))

#define anv_pipeline_emitn(pipeline, state, n, cmd, ...) ({             \
   void *__dst = anv_batch_emit_dwords(                                 \
      anv_gfx_pipeline_add(pipeline, &(pipeline)->state, n), n);        \
   if (__dst) {                                                         \
      struct cmd __template = {                                         \
         __anv_cmd_header(cmd),                                         \
         .DWordLength = n - __anv_cmd_length_bias(cmd),                 \
         __VA_ARGS__                                                    \
      };                                                                \
      __anv_cmd_pack(cmd)(&pipeline->base.base.batch,                   \
                          __dst, &__template);                          \
   }                                                                    \
   __dst;                                                               \
   })


static uint32_t
vertex_element_comp_control(enum isl_format format, unsigned comp)
{
   uint8_t bits;
   switch (comp) {
   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
   default: unreachable("Invalid component");
   }

   /*
    * Take in account hardware restrictions when dealing with 64-bit floats.
    *
    * From Broadwell spec, command reference structures, page 586:
    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
    *   64-bit components are stored * in the URB without any conversion. In
    *   this case, vertex elements must be written as 128 or 256 bits, with
    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
    *   256-bit vertex element."
    */
   if (bits) {
      return VFCOMP_STORE_SRC;
   } else if (comp >= 2 &&
              !isl_format_layouts[format].channels.b.bits &&
              isl_format_layouts[format].channels.r.type == ISL_RAW) {
      /* When emitting 64-bit attributes, we need to write either 128 or 256
       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
       * VFCOMP_STORE_0 to pad the written chunk */
      return VFCOMP_NOSTORE;
   } else if (comp < 3 ||
              isl_format_layouts[format].channels.r.type == ISL_RAW) {
      /* Note we need to pad with value 0, not 1, due hardware restrictions
       * (see comment above) */
      return VFCOMP_STORE_0;
   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
            isl_format_layouts[format].channels.r.type == ISL_SINT) {
      assert(comp == 3);
      return VFCOMP_STORE_1_INT;
   } else {
      assert(comp == 3);
      return VFCOMP_STORE_1_FP;
   }
}

void
genX(emit_vertex_input)(struct anv_batch *batch,
                        uint32_t *vertex_element_dws,
                        struct anv_graphics_pipeline *pipeline,
                        const struct vk_vertex_input_state *vi,
                        bool emit_in_pipeline)
{
   const struct anv_device *device = pipeline->base.base.device;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   const uint64_t inputs_read = vs_prog_data->inputs_read;
   const uint64_t double_inputs_read =
      vs_prog_data->double_inputs_read & inputs_read;
   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;

   for (uint32_t i = 0; i < pipeline->vs_input_elements; i++) {
      /* The SKL docs for VERTEX_ELEMENT_STATE say:
       *
       *    "All elements must be valid from Element[0] to the last valid
       *    element. (I.e. if Element[2] is valid then Element[1] and
       *    Element[0] must also be valid)."
       *
       * The SKL docs for 3D_Vertex_Component_Control say:
       *
       *    "Don't store this component. (Not valid for Component 0, but can
       *    be used for Component 1-3)."
       *
       * So we can't just leave a vertex element blank and hope for the best.
       * We have to tell the VF hardware to put something in it; so we just
       * store a bunch of zero.
       *
       * TODO: Compact vertex elements so we never end up with holes.
       */
      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .Valid = true,
         .Component0Control = VFCOMP_STORE_0,
         .Component1Control = VFCOMP_STORE_0,
         .Component2Control = VFCOMP_STORE_0,
         .Component3Control = VFCOMP_STORE_0,
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
                                      &vertex_element_dws[i * 2],
                                      &element);
   }

   u_foreach_bit(a, vi->attributes_valid) {
      enum isl_format format = anv_get_isl_format(device->info,
                                                  vi->attributes[a].format,
                                                  VK_IMAGE_ASPECT_COLOR_BIT,
                                                  VK_IMAGE_TILING_LINEAR);
      assume(format < ISL_NUM_FORMATS);

      uint32_t binding = vi->attributes[a].binding;
      assert(binding < MAX_VBS);

      if ((elements & (1 << a)) == 0)
         continue; /* Binding unused */

      uint32_t slot =
         __builtin_popcount(elements & ((1 << a) - 1)) -
         DIV_ROUND_UP(__builtin_popcount(elements_double &
                                        ((1 << a) -1)), 2);

      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .VertexBufferIndex = vi->attributes[a].binding,
         .Valid = true,
         .SourceElementFormat = format,
         .EdgeFlagEnable = false,
         .SourceElementOffset = vi->attributes[a].offset,
         .Component0Control = vertex_element_comp_control(format, 0),
         .Component1Control = vertex_element_comp_control(format, 1),
         .Component2Control = vertex_element_comp_control(format, 2),
         .Component3Control = vertex_element_comp_control(format, 3),
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
                                      &vertex_element_dws[slot * 2],
                                      &element);

      /* On Broadwell and later, we have a separate VF_INSTANCING packet
       * that controls instancing.  On Haswell and prior, that's part of
       * VERTEX_BUFFER_STATE which we emit later.
       */
      if (emit_in_pipeline) {
         anv_pipeline_emit(pipeline, final.vf_instancing, GENX(3DSTATE_VF_INSTANCING), vfi) {
            bool per_instance = vi->bindings[binding].input_rate ==
               VK_VERTEX_INPUT_RATE_INSTANCE;
            uint32_t divisor = vi->bindings[binding].divisor *
               pipeline->instance_multiplier;

            vfi.InstancingEnable = per_instance;
            vfi.VertexElementIndex = slot;
            vfi.InstanceDataStepRate = per_instance ? divisor : 1;
         }
      } else {
         anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
            bool per_instance = vi->bindings[binding].input_rate ==
               VK_VERTEX_INPUT_RATE_INSTANCE;
            uint32_t divisor = vi->bindings[binding].divisor *
               pipeline->instance_multiplier;

            vfi.InstancingEnable = per_instance;
            vfi.VertexElementIndex = slot;
            vfi.InstanceDataStepRate = per_instance ? divisor : 1;
         }
      }
   }
}

static void
emit_vertex_input(struct anv_graphics_pipeline *pipeline,
                  const struct vk_graphics_pipeline_state *state,
                  const struct vk_vertex_input_state *vi)
{
   /* Only pack the VERTEX_ELEMENT_STATE if not dynamic so we can just memcpy
    * everything in gfx8_cmd_buffer.c
    */
   if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI)) {
      genX(emit_vertex_input)(NULL,
                              pipeline->vertex_input_data,
                              pipeline, vi, true /* emit_in_pipeline */);
   }

   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   const bool needs_svgs_elem = pipeline->svgs_count > 1 ||
                                !vs_prog_data->uses_drawid;
   const uint32_t id_slot = pipeline->vs_input_elements;
   const uint32_t drawid_slot = id_slot + needs_svgs_elem;
   if (pipeline->svgs_count > 0) {
      assert(pipeline->vertex_input_elems >= pipeline->svgs_count);
      uint32_t slot_offset =
         pipeline->vertex_input_elems - pipeline->svgs_count;

      if (needs_svgs_elem) {
#if GFX_VER < 11
         /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
          *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
          *    Control field is set to something other than VFCOMP_STORE_SRC,
          *    no higher-numbered Component Control fields may be set to
          *    VFCOMP_STORE_SRC"
          *
          * This means, that if we have BaseInstance, we need BaseVertex as
          * well.  Just do all or nothing.
          */
         uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
                               vs_prog_data->uses_baseinstance) ?
                              VFCOMP_STORE_SRC : VFCOMP_STORE_0;
#endif

         struct GENX(VERTEX_ELEMENT_STATE) element = {
            .VertexBufferIndex = ANV_SVGS_VB_INDEX,
            .Valid = true,
            .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
#if GFX_VER >= 11
            /* On gen11, these are taken care of by extra parameter slots */
            .Component0Control = VFCOMP_STORE_0,
            .Component1Control = VFCOMP_STORE_0,
#else
            .Component0Control = base_ctrl,
            .Component1Control = base_ctrl,
#endif
            .Component2Control = VFCOMP_STORE_0,
            .Component3Control = VFCOMP_STORE_0,
         };
         GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
                                         &pipeline->vertex_input_data[slot_offset * 2],
                                         &element);
         slot_offset++;

         anv_pipeline_emit(pipeline, final.vf_sgvs_instancing,
                           GENX(3DSTATE_VF_INSTANCING), vfi) {
            vfi.VertexElementIndex = id_slot;
         }
      }

      if (vs_prog_data->uses_drawid) {
         struct GENX(VERTEX_ELEMENT_STATE) element = {
            .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
            .Valid = true,
            .SourceElementFormat = ISL_FORMAT_R32_UINT,
#if GFX_VER >= 11
            /* On gen11, this is taken care of by extra parameter slots */
            .Component0Control = VFCOMP_STORE_0,
#else
            .Component0Control = VFCOMP_STORE_SRC,
#endif
            .Component1Control = VFCOMP_STORE_0,
            .Component2Control = VFCOMP_STORE_0,
            .Component3Control = VFCOMP_STORE_0,
         };
         GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
                                         &pipeline->vertex_input_data[slot_offset * 2],
                                         &element);
         slot_offset++;

         anv_pipeline_emit(pipeline, final.vf_sgvs_instancing,
                           GENX(3DSTATE_VF_INSTANCING), vfi) {
            vfi.VertexElementIndex = drawid_slot;
         }
      }
   }

   anv_pipeline_emit(pipeline, final.vf_sgvs, GENX(3DSTATE_VF_SGVS), sgvs) {
      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
      sgvs.VertexIDComponentNumber     = 2;
      sgvs.VertexIDElementOffset       = id_slot;
      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
      sgvs.InstanceIDComponentNumber   = 3;
      sgvs.InstanceIDElementOffset     = id_slot;
   }

#if GFX_VER >= 11
   anv_pipeline_emit(pipeline, final.vf_sgvs_2, GENX(3DSTATE_VF_SGVS_2), sgvs) {
      /* gl_BaseVertex */
      sgvs.XP0Enable                   = vs_prog_data->uses_firstvertex;
      sgvs.XP0SourceSelect             = XP0_PARAMETER;
      sgvs.XP0ComponentNumber          = 0;
      sgvs.XP0ElementOffset            = id_slot;

      /* gl_BaseInstance */
      sgvs.XP1Enable                   = vs_prog_data->uses_baseinstance;
      sgvs.XP1SourceSelect             = StartingInstanceLocation;
      sgvs.XP1ComponentNumber          = 1;
      sgvs.XP1ElementOffset            = id_slot;

      /* gl_DrawID */
      sgvs.XP2Enable                   = vs_prog_data->uses_drawid;
      sgvs.XP2ComponentNumber          = 0;
      sgvs.XP2ElementOffset            = drawid_slot;
   }
#endif
}

void
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
                     const struct intel_l3_config *l3_config,
                     VkShaderStageFlags active_stages,
                     const struct intel_urb_config *urb_cfg_in,
                     struct intel_urb_config *urb_cfg_out,
                     enum intel_urb_deref_block_size *deref_block_size)
{
   const struct intel_device_info *devinfo = device->info;

   bool constrained;
   intel_get_urb_config(devinfo, l3_config,
                        active_stages &
                           VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
                        active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
                        urb_cfg_out, deref_block_size,
                        &constrained);

#if INTEL_NEEDS_WA_16014912113
      if (intel_urb_setup_changed(urb_cfg_in, urb_cfg_out,
          MESA_SHADER_TESS_EVAL) && urb_cfg_in->size[0] != 0) {
         for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
            anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
               urb._3DCommandSubOpcode      += i;
               urb.VSURBStartingAddress      = urb_cfg_in->start[i];
               urb.VSURBEntryAllocationSize  = urb_cfg_in->size[i] - 1;
               urb.VSNumberofURBEntries      = i == 0 ? 256 : 0;
            }
         }
         genx_batch_emit_pipe_control(batch, device->info, _3D,
                                      ANV_PIPE_HDC_PIPELINE_FLUSH_BIT);
      }
#endif

   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
         urb._3DCommandSubOpcode      += i;
         urb.VSURBStartingAddress      = urb_cfg_out->start[i];
         urb.VSURBEntryAllocationSize  = urb_cfg_out->size[i] - 1;
         urb.VSNumberofURBEntries      = urb_cfg_out->entries[i];
      }
   }
#if GFX_VERx10 >= 125
   if (device->vk.enabled_extensions.EXT_mesh_shader) {
      anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_MESH), zero);
      anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_TASK), zero);
   }
#endif
}

#if GFX_VERx10 >= 125
static void
emit_urb_setup_mesh(struct anv_graphics_pipeline *pipeline,
                    enum intel_urb_deref_block_size *deref_block_size)
{
   const struct intel_device_info *devinfo = pipeline->base.base.device->info;

   const struct brw_task_prog_data *task_prog_data =
      anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK) ?
      get_task_prog_data(pipeline) : NULL;
   const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);

   const struct intel_mesh_urb_allocation alloc =
      intel_get_mesh_urb_config(devinfo, pipeline->base.base.l3_config,
                                task_prog_data ? task_prog_data->map.size_dw : 0,
                                mesh_prog_data->map.size_dw);

   /* Zero out the primitive pipeline URB allocations. */
   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
      anv_pipeline_emit(pipeline, final.urb, GENX(3DSTATE_URB_VS), urb) {
         urb._3DCommandSubOpcode += i;
      }
   }

   anv_pipeline_emit(pipeline, final.urb, GENX(3DSTATE_URB_ALLOC_TASK), urb) {
      if (task_prog_data) {
         urb.TASKURBEntryAllocationSize   = alloc.task_entry_size_64b - 1;
         urb.TASKNumberofURBEntriesSlice0 = alloc.task_entries;
         urb.TASKNumberofURBEntriesSliceN = alloc.task_entries;
         urb.TASKURBStartingAddressSlice0 = alloc.task_starting_address_8kb;
         urb.TASKURBStartingAddressSliceN = alloc.task_starting_address_8kb;
      }
   }

   anv_pipeline_emit(pipeline, final.urb, GENX(3DSTATE_URB_ALLOC_MESH), urb) {
      urb.MESHURBEntryAllocationSize   = alloc.mesh_entry_size_64b - 1;
      urb.MESHNumberofURBEntriesSlice0 = alloc.mesh_entries;
      urb.MESHNumberofURBEntriesSliceN = alloc.mesh_entries;
      urb.MESHURBStartingAddressSlice0 = alloc.mesh_starting_address_8kb;
      urb.MESHURBStartingAddressSliceN = alloc.mesh_starting_address_8kb;
   }

   *deref_block_size = alloc.deref_block_size;
}
#endif

static void
emit_urb_setup(struct anv_graphics_pipeline *pipeline,
               enum intel_urb_deref_block_size *deref_block_size)
{
#if GFX_VERx10 >= 125
   if (anv_pipeline_is_mesh(pipeline)) {
      emit_urb_setup_mesh(pipeline, deref_block_size);
      return;
   }
#endif
   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
      const struct brw_vue_prog_data *prog_data =
         !anv_pipeline_has_stage(pipeline, i) ? NULL :
         (const struct brw_vue_prog_data *) pipeline->base.shaders[i]->prog_data;

      pipeline->urb_cfg.size[i] = prog_data ? prog_data->urb_entry_size : 1;
   }

   struct anv_device *device = pipeline->base.base.device;
   const struct intel_device_info *devinfo = device->info;


   bool constrained;
   intel_get_urb_config(devinfo,
                        pipeline->base.base.l3_config,
                        pipeline->base.base.active_stages &
                           VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
                        pipeline->base.base.active_stages &
                           VK_SHADER_STAGE_GEOMETRY_BIT,
                        &pipeline->urb_cfg, deref_block_size,
                        &constrained);

   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
      anv_pipeline_emit(pipeline, final.urb, GENX(3DSTATE_URB_VS), urb) {
         urb._3DCommandSubOpcode      += i;
         urb.VSURBStartingAddress      = pipeline->urb_cfg.start[i];
         urb.VSURBEntryAllocationSize  = pipeline->urb_cfg.size[i] - 1;
         urb.VSNumberofURBEntries      = pipeline->urb_cfg.entries[i];
      }
   }

#if GFX_VERx10 >= 125
   if (device->vk.enabled_extensions.EXT_mesh_shader) {
      anv_pipeline_emit(pipeline, final.urb, GENX(3DSTATE_URB_ALLOC_TASK), zero);
      anv_pipeline_emit(pipeline, final.urb, GENX(3DSTATE_URB_ALLOC_MESH), zero);
   }
#endif

}

static bool
sbe_primitive_id_override(struct anv_graphics_pipeline *pipeline)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   if (!wm_prog_data)
      return false;

   const struct intel_vue_map *fs_input_map =
      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;

   return (wm_prog_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
          fs_input_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1;
}

static void
emit_3dstate_sbe(struct anv_graphics_pipeline *pipeline)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      anv_pipeline_emit(pipeline, final.sbe, GENX(3DSTATE_SBE), sbe);
      anv_pipeline_emit(pipeline, final.sbe_swiz, GENX(3DSTATE_SBE_SWIZ), sbe);
#if GFX_VERx10 >= 125
      if (anv_pipeline_is_mesh(pipeline))
         anv_pipeline_emit(pipeline, final.sbe_mesh, GENX(3DSTATE_SBE_MESH), sbe);
#endif
      return;
   }

   anv_pipeline_emit(pipeline, final.sbe, GENX(3DSTATE_SBE), sbe) {
   anv_pipeline_emit(pipeline, final.sbe_swiz, GENX(3DSTATE_SBE_SWIZ), swiz) {

      /* TODO(mesh): Figure out cases where we need attribute swizzling.  See also
       * calculate_urb_setup() and related functions.
       */
      sbe.AttributeSwizzleEnable = anv_pipeline_is_primitive(pipeline);
      sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
      sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
      sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;

      for (unsigned i = 0; i < 32; i++)
         sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;

      if (anv_pipeline_is_primitive(pipeline)) {
         const struct intel_vue_map *fs_input_map =
            &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;

         int first_slot =
            brw_compute_first_urb_slot_required(wm_prog_data->inputs,
                                                fs_input_map);
         assert(first_slot % 2 == 0);
         unsigned urb_entry_read_offset = first_slot / 2;
         int max_source_attr = 0;
         for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
            uint8_t attr = wm_prog_data->urb_setup_attribs[idx];
            int input_index = wm_prog_data->urb_setup[attr];

            assert(0 <= input_index);

            /* gl_Viewport, gl_Layer and FragmentShadingRateKHR are stored in the
             * VUE header
             */
            if (attr == VARYING_SLOT_VIEWPORT ||
                attr == VARYING_SLOT_LAYER ||
                attr == VARYING_SLOT_PRIMITIVE_SHADING_RATE) {
               continue;
            }

            if (attr == VARYING_SLOT_PNTC) {
               sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
               continue;
            }

            const int slot = fs_input_map->varying_to_slot[attr];

            if (slot == -1) {
               /* This attribute does not exist in the VUE--that means that
                * the vertex shader did not write to it. It could be that it's
                * a regular varying read by the fragment shader but not
                * written by the vertex shader or it's gl_PrimitiveID. In the
                * first case the value is undefined, in the second it needs to
                * be gl_PrimitiveID.
                */
               swiz.Attribute[input_index].ConstantSource = PRIM_ID;
               swiz.Attribute[input_index].ComponentOverrideX = true;
               swiz.Attribute[input_index].ComponentOverrideY = true;
               swiz.Attribute[input_index].ComponentOverrideZ = true;
               swiz.Attribute[input_index].ComponentOverrideW = true;
               continue;
            }

            /* We have to subtract two slots to account for the URB entry
             * output read offset in the VS and GS stages.
             */
            const int source_attr = slot - 2 * urb_entry_read_offset;
            assert(source_attr >= 0 && source_attr < 32);
            max_source_attr = MAX2(max_source_attr, source_attr);
            /* The hardware can only do overrides on 16 overrides at a time,
             * and the other up to 16 have to be lined up so that the input
             * index = the output index. We'll need to do some tweaking to
             * make sure that's the case.
             */
            if (input_index < 16)
               swiz.Attribute[input_index].SourceAttribute = source_attr;
            else
               assert(source_attr == input_index);
         }

         sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
         sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
         sbe.ForceVertexURBEntryReadOffset = true;
         sbe.ForceVertexURBEntryReadLength = true;

         /* Ask the hardware to supply PrimitiveID if the fragment shader
          * reads it but a previous stage didn't write one.
          */
         if (sbe_primitive_id_override(pipeline)) {
            sbe.PrimitiveIDOverrideAttributeSelect =
               wm_prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID];
            sbe.PrimitiveIDOverrideComponentX = true;
            sbe.PrimitiveIDOverrideComponentY = true;
            sbe.PrimitiveIDOverrideComponentZ = true;
            sbe.PrimitiveIDOverrideComponentW = true;
         }
      } else {
         assert(anv_pipeline_is_mesh(pipeline));
#if GFX_VERx10 >= 125
         const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
         anv_pipeline_emit(pipeline, final.sbe_mesh,
                           GENX(3DSTATE_SBE_MESH), sbe_mesh) {
            const struct brw_mue_map *mue = &mesh_prog_data->map;

            assert(mue->per_vertex_header_size_dw % 8 == 0);
            sbe_mesh.PerVertexURBEntryOutputReadOffset = mue->per_vertex_header_size_dw / 8;
            sbe_mesh.PerVertexURBEntryOutputReadLength = DIV_ROUND_UP(mue->per_vertex_data_size_dw, 8);

            /* Clip distance array is passed in the per-vertex header so that
             * it can be consumed by the HW. If user wants to read it in the
             * FS, adjust the offset and length to cover it. Conveniently it
             * is at the end of the per-vertex header, right before per-vertex
             * attributes.
             *
             * Note that FS attribute reading must be aware that the clip
             * distances have fixed position.
             */
            if (mue->per_vertex_header_size_dw > 8 &&
                (wm_prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] >= 0 ||
                 wm_prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] >= 0)) {
               sbe_mesh.PerVertexURBEntryOutputReadOffset -= 1;
               sbe_mesh.PerVertexURBEntryOutputReadLength += 1;
            }

            if (mue->user_data_in_vertex_header) {
               sbe_mesh.PerVertexURBEntryOutputReadOffset -= 1;
               sbe_mesh.PerVertexURBEntryOutputReadLength += 1;
            }

            assert(mue->per_primitive_header_size_dw % 8 == 0);
            sbe_mesh.PerPrimitiveURBEntryOutputReadOffset =
               mue->per_primitive_header_size_dw / 8;
            sbe_mesh.PerPrimitiveURBEntryOutputReadLength =
               DIV_ROUND_UP(mue->per_primitive_data_size_dw, 8);

            /* Just like with clip distances, if Primitive Shading Rate,
             * Viewport Index or Layer is read back in the FS, adjust the
             * offset and length to cover the Primitive Header, where PSR,
             * Viewport Index & Layer are stored.
             */
            if (wm_prog_data->urb_setup[VARYING_SLOT_VIEWPORT] >= 0 ||
                wm_prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] >= 0 ||
                wm_prog_data->urb_setup[VARYING_SLOT_LAYER] >= 0 ||
                mue->user_data_in_primitive_header) {
               assert(sbe_mesh.PerPrimitiveURBEntryOutputReadOffset > 0);
               sbe_mesh.PerPrimitiveURBEntryOutputReadOffset -= 1;
               sbe_mesh.PerPrimitiveURBEntryOutputReadLength += 1;
            }
         }
#endif
      }
   }
   }
}

/** Returns the final polygon mode for rasterization
 *
 * This function takes into account polygon mode, primitive topology and the
 * different shader stages which might generate their own type of primitives.
 */
VkPolygonMode
genX(raster_polygon_mode)(const struct anv_graphics_pipeline *pipeline,
                          VkPolygonMode polygon_mode,
                          VkPrimitiveTopology primitive_topology)
{
   if (anv_pipeline_is_mesh(pipeline)) {
      switch (get_mesh_prog_data(pipeline)->primitive_type) {
      case MESA_PRIM_POINTS:
         return VK_POLYGON_MODE_POINT;
      case MESA_PRIM_LINES:
         return VK_POLYGON_MODE_LINE;
      case MESA_PRIM_TRIANGLES:
         return polygon_mode;
      default:
         unreachable("invalid primitive type for mesh");
      }
   } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
      switch (get_gs_prog_data(pipeline)->output_topology) {
      case _3DPRIM_POINTLIST:
         return VK_POLYGON_MODE_POINT;

      case _3DPRIM_LINELIST:
      case _3DPRIM_LINESTRIP:
      case _3DPRIM_LINELOOP:
         return VK_POLYGON_MODE_LINE;

      case _3DPRIM_TRILIST:
      case _3DPRIM_TRIFAN:
      case _3DPRIM_TRISTRIP:
      case _3DPRIM_RECTLIST:
      case _3DPRIM_QUADLIST:
      case _3DPRIM_QUADSTRIP:
      case _3DPRIM_POLYGON:
         return polygon_mode;
      }
      unreachable("Unsupported GS output topology");
   } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
      switch (get_tes_prog_data(pipeline)->output_topology) {
      case INTEL_TESS_OUTPUT_TOPOLOGY_POINT:
         return VK_POLYGON_MODE_POINT;

      case INTEL_TESS_OUTPUT_TOPOLOGY_LINE:
         return VK_POLYGON_MODE_LINE;

      case INTEL_TESS_OUTPUT_TOPOLOGY_TRI_CW:
      case INTEL_TESS_OUTPUT_TOPOLOGY_TRI_CCW:
         return polygon_mode;
      }
      unreachable("Unsupported TCS output topology");
   } else {
      switch (primitive_topology) {
      case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
         return VK_POLYGON_MODE_POINT;

      case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
      case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
      case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
      case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
         return VK_POLYGON_MODE_LINE;

      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
         return polygon_mode;

      default:
         unreachable("Unsupported primitive topology");
      }
   }
}

const uint32_t genX(vk_to_intel_cullmode)[] = {
   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
};

const uint32_t genX(vk_to_intel_fillmode)[] = {
   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
};

const uint32_t genX(vk_to_intel_front_face)[] = {
   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
   [VK_FRONT_FACE_CLOCKWISE]                 = 0
};

static void
emit_rs_state(struct anv_graphics_pipeline *pipeline,
              const struct vk_input_assembly_state *ia,
              const struct vk_rasterization_state *rs,
              const struct vk_multisample_state *ms,
              const struct vk_render_pass_state *rp,
              enum intel_urb_deref_block_size urb_deref_block_size)
{
   anv_pipeline_emit(pipeline, partial.sf, GENX(3DSTATE_SF), sf) {
      sf.ViewportTransformEnable = true;
      sf.StatisticsEnable = true;
      sf.VertexSubPixelPrecisionSelect = _8Bit;
      sf.AALineDistanceMode = true;

#if GFX_VER >= 12
      sf.DerefBlockSize = urb_deref_block_size;
#endif

      bool point_from_shader;
      if (anv_pipeline_is_primitive(pipeline)) {
         const struct brw_vue_prog_data *last_vue_prog_data =
            anv_pipeline_get_last_vue_prog_data(pipeline);
         point_from_shader = last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ;
      } else {
         assert(anv_pipeline_is_mesh(pipeline));
         const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
         point_from_shader = mesh_prog_data->map.start_dw[VARYING_SLOT_PSIZ] >= 0;
      }

      if (point_from_shader) {
         sf.PointWidthSource = Vertex;
      } else {
         sf.PointWidthSource = State;
         sf.PointWidth = 1.0;
      }
   }

   anv_pipeline_emit(pipeline, partial.raster, GENX(3DSTATE_RASTER), raster) {
      /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
       * "Multisample Modes State".
       */
      /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
       * computations.  If we ever set this bit to a different value, they will
       * need to be updated accordingly.
       */
      raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
      raster.ForceMultisampling = false;

      raster.ScissorRectangleEnable = true;
   }
}

static void
emit_ms_state(struct anv_graphics_pipeline *pipeline,
              const struct vk_multisample_state *ms)
{
   anv_pipeline_emit(pipeline, partial.ms, GENX(3DSTATE_MULTISAMPLE), ms) {
      ms.PixelLocation              = CENTER;

      /* The PRM says that this bit is valid only for DX9:
       *
       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
       *    should not have any effect by setting or not setting this bit.
       */
      ms.PixelPositionOffsetEnable  = false;
   }
}

const uint32_t genX(vk_to_intel_logic_op)[] = {
   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
};

const uint32_t genX(vk_to_intel_compare_op)[] = {
   [VK_COMPARE_OP_NEVER]                        = PREFILTEROP_NEVER,
   [VK_COMPARE_OP_LESS]                         = PREFILTEROP_LESS,
   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROP_EQUAL,
   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROP_LEQUAL,
   [VK_COMPARE_OP_GREATER]                      = PREFILTEROP_GREATER,
   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROP_NOTEQUAL,
   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROP_GEQUAL,
   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROP_ALWAYS,
};

const uint32_t genX(vk_to_intel_stencil_op)[] = {
   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
};

const uint32_t genX(vk_to_intel_primitive_type)[] = {
   [VK_PRIMITIVE_TOPOLOGY_POINT_LIST]                    = _3DPRIM_POINTLIST,
   [VK_PRIMITIVE_TOPOLOGY_LINE_LIST]                     = _3DPRIM_LINELIST,
   [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP]                    = _3DPRIM_LINESTRIP,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST]                 = _3DPRIM_TRILIST,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP]                = _3DPRIM_TRISTRIP,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN]                  = _3DPRIM_TRIFAN,
   [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY]      = _3DPRIM_LINELIST_ADJ,
   [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY]     = _3DPRIM_LINESTRIP_ADJ,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY]  = _3DPRIM_TRILIST_ADJ,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};

static void
emit_3dstate_clip(struct anv_graphics_pipeline *pipeline,
                  const struct vk_input_assembly_state *ia,
                  const struct vk_viewport_state *vp,
                  const struct vk_rasterization_state *rs)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   (void) wm_prog_data;

   anv_pipeline_emit(pipeline, partial.clip, GENX(3DSTATE_CLIP), clip) {
      clip.ClipEnable               = true;
      clip.StatisticsEnable         = true;
      clip.EarlyCullEnable          = true;
      clip.GuardbandClipTestEnable  = true;

      clip.VertexSubPixelPrecisionSelect = _8Bit;
      clip.ClipMode = CLIPMODE_NORMAL;

      clip.MinimumPointWidth = 0.125;
      clip.MaximumPointWidth = 255.875;

      /* TODO(mesh): Multiview. */
      if (anv_pipeline_is_primitive(pipeline)) {
         const struct brw_vue_prog_data *last =
            anv_pipeline_get_last_vue_prog_data(pipeline);

         /* From the Vulkan 1.0.45 spec:
          *
          *    "If the last active vertex processing stage shader entry
          *    point's interface does not include a variable decorated with
          *    ViewportIndex, then the first viewport is used."
          */
         if (vp && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
            clip.MaximumVPIndex = vp->viewport_count > 0 ?
               vp->viewport_count - 1 : 0;
         } else {
            clip.MaximumVPIndex = 0;
         }

         /* From the Vulkan 1.0.45 spec:
          *
          *    "If the last active vertex processing stage shader entry point's
          *    interface does not include a variable decorated with Layer, then
          *    the first layer is used."
          */
         clip.ForceZeroRTAIndexEnable =
            !(last->vue_map.slots_valid & VARYING_BIT_LAYER);

      } else if (anv_pipeline_is_mesh(pipeline)) {
         const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
         if (vp && vp->viewport_count > 0 &&
             mesh_prog_data->map.start_dw[VARYING_SLOT_VIEWPORT] >= 0) {
            clip.MaximumVPIndex = vp->viewport_count - 1;
         } else {
            clip.MaximumVPIndex = 0;
         }

         clip.ForceZeroRTAIndexEnable =
            mesh_prog_data->map.start_dw[VARYING_SLOT_LAYER] < 0;
      }

      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
         wm_prog_data->uses_nonperspective_interp_modes : 0;
   }

#if GFX_VERx10 >= 125
   if (anv_pipeline_is_mesh(pipeline)) {
      const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
      anv_pipeline_emit(pipeline, final.clip_mesh,
                        GENX(3DSTATE_CLIP_MESH), clip_mesh) {
         clip_mesh.PrimitiveHeaderEnable = mesh_prog_data->map.per_primitive_header_size_dw > 0;
         clip_mesh.UserClipDistanceClipTestEnableBitmask = mesh_prog_data->clip_distance_mask;
         clip_mesh.UserClipDistanceCullTestEnableBitmask = mesh_prog_data->cull_distance_mask;
      }
   }
#endif
}

static void
emit_3dstate_streamout(struct anv_graphics_pipeline *pipeline,
                       const struct vk_rasterization_state *rs)
{
   const struct brw_vue_prog_data *prog_data =
      anv_pipeline_get_last_vue_prog_data(pipeline);
   const struct intel_vue_map *vue_map = &prog_data->vue_map;

   nir_xfb_info *xfb_info;
   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
      xfb_info = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->xfb_info;
   else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
      xfb_info = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
   else
      xfb_info = pipeline->base.shaders[MESA_SHADER_VERTEX]->xfb_info;

   if (xfb_info) {
      struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
      int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
      int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};

      memset(so_decl, 0, sizeof(so_decl));

      for (unsigned i = 0; i < xfb_info->output_count; i++) {
         const nir_xfb_output_info *output = &xfb_info->outputs[i];
         unsigned buffer = output->buffer;
         unsigned stream = xfb_info->buffer_to_stream[buffer];

         /* Our hardware is unusual in that it requires us to program SO_DECLs
          * for fake "hole" components, rather than simply taking the offset
          * for each real varying.  Each hole can have size 1, 2, 3, or 4; we
          * program as many size = 4 holes as we can, then a final hole to
          * accommodate the final 1, 2, or 3 remaining.
          */
         int hole_dwords = (output->offset - next_offset[buffer]) / 4;
         while (hole_dwords > 0) {
            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
               .HoleFlag = 1,
               .OutputBufferSlot = buffer,
               .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
            };
            hole_dwords -= 4;
         }

         int varying = output->location;
         uint8_t component_mask = output->component_mask;
         /* VARYING_SLOT_PSIZ contains four scalar fields packed together:
          * - VARYING_SLOT_PRIMITIVE_SHADING_RATE in VARYING_SLOT_PSIZ.x
          * - VARYING_SLOT_LAYER                  in VARYING_SLOT_PSIZ.y
          * - VARYING_SLOT_VIEWPORT               in VARYING_SLOT_PSIZ.z
          * - VARYING_SLOT_PSIZ                   in VARYING_SLOT_PSIZ.w
          */
         if (varying == VARYING_SLOT_PRIMITIVE_SHADING_RATE) {
            varying = VARYING_SLOT_PSIZ;
            component_mask = 1 << 0; // SO_DECL_COMPMASK_X
         } else if (varying == VARYING_SLOT_LAYER) {
            varying = VARYING_SLOT_PSIZ;
            component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
         } else if (varying == VARYING_SLOT_VIEWPORT) {
            varying = VARYING_SLOT_PSIZ;
            component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
         } else if (varying == VARYING_SLOT_PSIZ) {
            component_mask = 1 << 3; // SO_DECL_COMPMASK_W
         }

         next_offset[buffer] = output->offset +
                               __builtin_popcount(component_mask) * 4;

         const int slot = vue_map->varying_to_slot[varying];
         if (slot < 0) {
            /* This can happen if the shader never writes to the varying.
             * Insert a hole instead of actual varying data.
             */
            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
               .HoleFlag = true,
               .OutputBufferSlot = buffer,
               .ComponentMask = component_mask,
            };
         } else {
            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
               .OutputBufferSlot = buffer,
               .RegisterIndex = slot,
               .ComponentMask = component_mask,
            };
         }
      }

      int max_decls = 0;
      for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
         max_decls = MAX2(max_decls, decls[s]);

      uint8_t sbs[MAX_XFB_STREAMS] = { };
      for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
         if (xfb_info->buffers_written & (1 << b))
            sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
      }

      uint32_t *dw = anv_pipeline_emitn(pipeline, final.so_decl_list,
                                        3 + 2 * max_decls,
                                        GENX(3DSTATE_SO_DECL_LIST),
                                        .StreamtoBufferSelects0 = sbs[0],
                                        .StreamtoBufferSelects1 = sbs[1],
                                        .StreamtoBufferSelects2 = sbs[2],
                                        .StreamtoBufferSelects3 = sbs[3],
                                        .NumEntries0 = decls[0],
                                        .NumEntries1 = decls[1],
                                        .NumEntries2 = decls[2],
                                        .NumEntries3 = decls[3]);

      for (int i = 0; i < max_decls; i++) {
         GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
            &(struct GENX(SO_DECL_ENTRY)) {
               .Stream0Decl = so_decl[0][i],
               .Stream1Decl = so_decl[1][i],
               .Stream2Decl = so_decl[2][i],
               .Stream3Decl = so_decl[3][i],
            });
      }
   }

   anv_pipeline_emit(pipeline, partial.so, GENX(3DSTATE_STREAMOUT), so) {
      if (xfb_info) {
         pipeline->uses_xfb = true;

         so.SOFunctionEnable = true;
         so.SOStatisticsEnable = true;

         so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
         so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
         so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
         so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;

         int urb_entry_read_offset = 0;
         int urb_entry_read_length =
            (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;

         /* We always read the whole vertex. This could be reduced at some
          * point by reading less and offsetting the register index in the
          * SO_DECLs.
          */
         so.Stream0VertexReadOffset = urb_entry_read_offset;
         so.Stream0VertexReadLength = urb_entry_read_length - 1;
         so.Stream1VertexReadOffset = urb_entry_read_offset;
         so.Stream1VertexReadLength = urb_entry_read_length - 1;
         so.Stream2VertexReadOffset = urb_entry_read_offset;
         so.Stream2VertexReadLength = urb_entry_read_length - 1;
         so.Stream3VertexReadOffset = urb_entry_read_offset;
         so.Stream3VertexReadLength = urb_entry_read_length - 1;
      }
   }
}

static uint32_t
get_sampler_count(const struct anv_shader_bin *bin)
{
   uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);

   /* We can potentially have way more than 32 samplers and that's ok.
    * However, the 3DSTATE_XS packets only have 3 bits to specify how
    * many to pre-fetch and all values above 4 are marked reserved.
    */
   return MIN2(count_by_4, 4);
}

static UNUSED struct anv_address
get_scratch_address(struct anv_pipeline *pipeline,
                    gl_shader_stage stage,
                    const struct anv_shader_bin *bin)
{
   return (struct anv_address) {
      .bo = anv_scratch_pool_alloc(pipeline->device,
                                   &pipeline->device->scratch_pool,
                                   stage, bin->prog_data->total_scratch),
      .offset = 0,
   };
}

static UNUSED uint32_t
get_scratch_space(const struct anv_shader_bin *bin)
{
   return ffs(bin->prog_data->total_scratch / 2048);
}

static UNUSED uint32_t
get_scratch_surf(struct anv_pipeline *pipeline,
                 gl_shader_stage stage,
                 const struct anv_shader_bin *bin)
{
   if (bin->prog_data->total_scratch == 0)
      return 0;

   struct anv_bo *bo =
      anv_scratch_pool_alloc(pipeline->device,
                             &pipeline->device->scratch_pool,
                             stage, bin->prog_data->total_scratch);
   anv_reloc_list_add_bo(pipeline->batch.relocs, bo);
   return anv_scratch_pool_get_surf(pipeline->device,
                                    &pipeline->device->scratch_pool,
                                    bin->prog_data->total_scratch) >> 4;
}

static void
emit_3dstate_vs(struct anv_graphics_pipeline *pipeline)
{
   const struct intel_device_info *devinfo = pipeline->base.base.device->info;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   const struct anv_shader_bin *vs_bin =
      pipeline->base.shaders[MESA_SHADER_VERTEX];

   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));

   anv_pipeline_emit(pipeline, final.vs, GENX(3DSTATE_VS), vs) {
      vs.Enable               = true;
      vs.StatisticsEnable     = true;
      vs.KernelStartPointer   = vs_bin->kernel.offset;
#if GFX_VER < 20
      vs.SIMD8DispatchEnable  =
         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
#endif

      assert(!vs_prog_data->base.base.use_alt_mode);
#if GFX_VER < 11
      vs.SingleVertexDispatch       = false;
#endif
      vs.VectorMaskEnable           = false;
      /* Wa_1606682166:
       * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
       * Disable the Sampler state prefetch functionality in the SARB by
       * programming 0xB000[30] to '1'.
       */
      vs.SamplerCount               = GFX_VER == 11 ? 0 : get_sampler_count(vs_bin);
      vs.BindingTableEntryCount     = vs_bin->bind_map.surface_count;
      vs.FloatingPointMode          = IEEE754;
      vs.IllegalOpcodeExceptionEnable = false;
      vs.SoftwareExceptionEnable    = false;
      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;

      if (GFX_VER == 9 && devinfo->gt == 4 &&
          anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
         /* On Sky Lake GT4, we have experienced some hangs related to the VS
          * cache and tessellation.  It is unknown exactly what is happening
          * but the Haswell docs for the "VS Reference Count Full Force Miss
          * Enable" field of the "Thread Mode" register refer to a HSW bug in
          * which the VUE handle reference count would overflow resulting in
          * internal reference counting bugs.  My (Faith's) best guess is that
          * this bug cropped back up on SKL GT4 when we suddenly had more
          * threads in play than any previous gfx9 hardware.
          *
          * What we do know for sure is that setting this bit when
          * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
          * City when playing with DXVK (https://bugs.freedesktop.org/107280).
          * Disabling the vertex cache with tessellation shaders should only
          * have a minor performance impact as the tessellation shaders are
          * likely generating and processing far more geometry than the vertex
          * stage.
          */
         vs.VertexCacheDisable = true;
      }

      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
      vs.VertexURBEntryReadOffset      = 0;
      vs.DispatchGRFStartRegisterForURBData =
         vs_prog_data->base.base.dispatch_grf_start_reg;

      vs.UserClipDistanceClipTestEnableBitmask =
         vs_prog_data->base.clip_distance_mask;
      vs.UserClipDistanceCullTestEnableBitmask =
         vs_prog_data->base.cull_distance_mask;

#if GFX_VERx10 >= 125
      vs.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_VERTEX, vs_bin);
#else
      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
      vs.ScratchSpaceBasePointer =
         get_scratch_address(&pipeline->base.base, MESA_SHADER_VERTEX, vs_bin);
#endif
   }
}

static void
emit_3dstate_hs_ds(struct anv_graphics_pipeline *pipeline,
                   const struct vk_tessellation_state *ts)
{
   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
      anv_pipeline_emit(pipeline, final.hs, GENX(3DSTATE_HS), hs);
      anv_pipeline_emit(pipeline, final.ds, GENX(3DSTATE_DS), ds);
      return;
   }

   const struct intel_device_info *devinfo = pipeline->base.base.device->info;
   const struct anv_shader_bin *tcs_bin =
      pipeline->base.shaders[MESA_SHADER_TESS_CTRL];
   const struct anv_shader_bin *tes_bin =
      pipeline->base.shaders[MESA_SHADER_TESS_EVAL];

   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);

   anv_pipeline_emit(pipeline, final.hs, GENX(3DSTATE_HS), hs) {
      hs.Enable = true;
      hs.StatisticsEnable = true;
      hs.KernelStartPointer = tcs_bin->kernel.offset;
      /* Wa_1606682166 */
      hs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tcs_bin);
      hs.BindingTableEntryCount = tcs_bin->bind_map.surface_count;

#if GFX_VER >= 12
      /* Wa_1604578095:
       *
       *    Hang occurs when the number of max threads is less than 2 times
       *    the number of instance count. The number of max threads must be
       *    more than 2 times the number of instance count.
       */
      assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
#endif

      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
      hs.IncludeVertexHandles = true;
      hs.InstanceCount = tcs_prog_data->instances - 1;

      hs.VertexURBEntryReadLength = 0;
      hs.VertexURBEntryReadOffset = 0;
      hs.DispatchGRFStartRegisterForURBData =
         tcs_prog_data->base.base.dispatch_grf_start_reg & 0x1f;
#if GFX_VER >= 12
      hs.DispatchGRFStartRegisterForURBData5 =
         tcs_prog_data->base.base.dispatch_grf_start_reg >> 5;
#endif

#if GFX_VERx10 >= 125
      hs.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_TESS_CTRL, tcs_bin);
#else
      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
      hs.ScratchSpaceBasePointer =
         get_scratch_address(&pipeline->base.base, MESA_SHADER_TESS_CTRL, tcs_bin);
#endif

#if GFX_VER == 12
      /*  Patch Count threshold specifies the maximum number of patches that
       *  will be accumulated before a thread dispatch is forced.
       */
      hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
#endif

#if GFX_VER < 20
      hs.DispatchMode = tcs_prog_data->base.dispatch_mode;
#endif
      hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
   };

   anv_pipeline_emit(pipeline, final.ds, GENX(3DSTATE_DS), ds) {
      ds.Enable = true;
      ds.StatisticsEnable = true;
      ds.KernelStartPointer = tes_bin->kernel.offset;
      /* Wa_1606682166 */
      ds.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tes_bin);
      ds.BindingTableEntryCount = tes_bin->bind_map.surface_count;
      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;

      ds.ComputeWCoordinateEnable =
         tes_prog_data->domain == INTEL_TESS_DOMAIN_TRI;

      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
      ds.PatchURBEntryReadOffset = 0;
      ds.DispatchGRFStartRegisterForURBData =
         tes_prog_data->base.base.dispatch_grf_start_reg;

#if GFX_VER < 11
      ds.DispatchMode =
         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
         DISPATCH_MODE_SIMD8_SINGLE_PATCH :
         DISPATCH_MODE_SIMD4X2;
#else
      assert(tes_prog_data->base.dispatch_mode == INTEL_DISPATCH_MODE_SIMD8);
      ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
#endif

      ds.UserClipDistanceClipTestEnableBitmask =
         tes_prog_data->base.clip_distance_mask;
      ds.UserClipDistanceCullTestEnableBitmask =
         tes_prog_data->base.cull_distance_mask;

#if GFX_VER >= 12
      ds.PrimitiveIDNotRequired = !tes_prog_data->include_primitive_id;
#endif
#if GFX_VERx10 >= 125
      ds.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_TESS_EVAL, tes_bin);
#else
      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
      ds.ScratchSpaceBasePointer =
         get_scratch_address(&pipeline->base.base, MESA_SHADER_TESS_EVAL, tes_bin);
#endif
   }
}

static UNUSED bool
geom_or_tess_prim_id_used(struct anv_graphics_pipeline *pipeline)
{
   const struct brw_tcs_prog_data *tcs_prog_data =
      anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) ?
      get_tcs_prog_data(pipeline) : NULL;
   const struct brw_tes_prog_data *tes_prog_data =
      anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL) ?
      get_tes_prog_data(pipeline) : NULL;
   const struct brw_gs_prog_data *gs_prog_data =
      anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) ?
      get_gs_prog_data(pipeline) : NULL;

   return (tcs_prog_data && tcs_prog_data->include_primitive_id) ||
          (tes_prog_data && tes_prog_data->include_primitive_id) ||
          (gs_prog_data && gs_prog_data->include_primitive_id);
}

static void
emit_3dstate_te(struct anv_graphics_pipeline *pipeline)
{
   anv_pipeline_emit(pipeline, partial.te, GENX(3DSTATE_TE), te) {
      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
         const struct brw_tes_prog_data *tes_prog_data =
            get_tes_prog_data(pipeline);

         te.Partitioning = tes_prog_data->partitioning;
         te.TEDomain = tes_prog_data->domain;
         te.TEEnable = true;
         te.MaximumTessellationFactorOdd = 63.0;
         te.MaximumTessellationFactorNotOdd = 64.0;
#if GFX_VERx10 >= 125
         const struct anv_device *device = pipeline->base.base.device;
         if (intel_needs_workaround(device->info, 22012699309))
            te.TessellationDistributionMode = TEDMODE_RR_STRICT;
         else
            te.TessellationDistributionMode = TEDMODE_RR_FREE;

         if (intel_needs_workaround(device->info, 14015055625)) {
            /* Wa_14015055625:
             *
             * Disable Tessellation Distribution when primitive Id is enabled.
             */
            if (sbe_primitive_id_override(pipeline) ||
                geom_or_tess_prim_id_used(pipeline))
               te.TessellationDistributionMode = TEDMODE_OFF;
         }

#if GFX_VER >= 20
         te.TessellationDistributionLevel = TEDLEVEL_REGION;
#else
         te.TessellationDistributionLevel = TEDLEVEL_PATCH;
#endif
         /* 64_TRIANGLES */
         te.SmallPatchThreshold = 3;
         /* 1K_TRIANGLES */
         te.TargetBlockSize = 8;
         /* 1K_TRIANGLES */
         te.LocalBOPAccumulatorThreshold = 1;
#endif
      }
   }
}

static void
emit_3dstate_gs(struct anv_graphics_pipeline *pipeline)
{
   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
      anv_pipeline_emit(pipeline, partial.gs, GENX(3DSTATE_GS), gs);
      return;
   }

   const struct intel_device_info *devinfo = pipeline->base.base.device->info;
   const struct anv_shader_bin *gs_bin =
      pipeline->base.shaders[MESA_SHADER_GEOMETRY];
   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);

   anv_pipeline_emit(pipeline, partial.gs, GENX(3DSTATE_GS), gs) {
      gs.Enable                  = true;
      gs.StatisticsEnable        = true;
      gs.KernelStartPointer      = gs_bin->kernel.offset;
#if GFX_VER < 20
      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
#endif

      gs.SingleProgramFlow       = false;
      gs.VectorMaskEnable        = false;
      /* Wa_1606682166 */
      gs.SamplerCount            = GFX_VER == 11 ? 0 : get_sampler_count(gs_bin);
      gs.BindingTableEntryCount  = gs_bin->bind_map.surface_count;
      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;

      gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;

      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
      gs.OutputTopology          = gs_prog_data->output_topology;
      gs.ControlDataFormat       = gs_prog_data->control_data_format;
      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;

      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
         gs_prog_data->static_vertex_count : 0;

      gs.VertexURBEntryReadOffset = 0;
      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
      gs.DispatchGRFStartRegisterForURBData =
         gs_prog_data->base.base.dispatch_grf_start_reg;

      gs.UserClipDistanceClipTestEnableBitmask =
         gs_prog_data->base.clip_distance_mask;
      gs.UserClipDistanceCullTestEnableBitmask =
         gs_prog_data->base.cull_distance_mask;

#if GFX_VERx10 >= 125
      gs.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_GEOMETRY, gs_bin);
#else
      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
      gs.ScratchSpaceBasePointer =
         get_scratch_address(&pipeline->base.base, MESA_SHADER_GEOMETRY, gs_bin);
#endif
   }
}

static void
emit_3dstate_wm(struct anv_graphics_pipeline *pipeline,
                const struct vk_input_assembly_state *ia,
                const struct vk_rasterization_state *rs,
                const struct vk_multisample_state *ms,
                const struct vk_color_blend_state *cb,
                const struct vk_render_pass_state *rp)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   anv_pipeline_emit(pipeline, partial.wm, GENX(3DSTATE_WM), wm) {
      wm.StatisticsEnable                    = true;
      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
      wm.LineAntialiasingRegionWidth         = _10pixels;
      wm.PointRasterizationRule              = RASTRULE_UPPER_LEFT;

      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
         if (wm_prog_data->early_fragment_tests) {
            wm.EarlyDepthStencilControl         = EDSC_PREPS;
         } else if (wm_prog_data->has_side_effects) {
            wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
         } else {
            wm.EarlyDepthStencilControl         = EDSC_NORMAL;
         }

         /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
          * doesn't take into account KillPixels when no depth or stencil
          * writes are enabled. In order for occlusion queries to work
          * correctly with no attachments, we need to force-enable PS thread
          * dispatch.
          *
          * The BDW docs are pretty clear that that this bit isn't validated
          * and probably shouldn't be used in production:
          *
          *    "This must always be set to Normal. This field should not be
          *     tested for functional validation."
          *
          * Unfortunately, however, the other mechanism we have for doing this
          * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
          * Given two bad options, we choose the one which works.
          */
         pipeline->force_fragment_thread_dispatch =
            wm_prog_data->has_side_effects ||
            wm_prog_data->uses_kill;
      }
   }
}

static void
emit_3dstate_ps(struct anv_graphics_pipeline *pipeline,
                const struct vk_multisample_state *ms,
                const struct vk_color_blend_state *cb)
{
   UNUSED const struct intel_device_info *devinfo =
      pipeline->base.base.device->info;
   const struct anv_shader_bin *fs_bin =
      pipeline->base.shaders[MESA_SHADER_FRAGMENT];

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      anv_pipeline_emit(pipeline, partial.ps, GENX(3DSTATE_PS), ps);
      return;
   }

   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   anv_pipeline_emit(pipeline, partial.ps, GENX(3DSTATE_PS), ps) {
#if GFX_VER == 12
      assert(wm_prog_data->dispatch_multi == 0 ||
             (wm_prog_data->dispatch_multi == 16 && wm_prog_data->max_polygons == 2));
      ps.DualSIMD8DispatchEnable = wm_prog_data->dispatch_multi;
      /* XXX - No major improvement observed from enabling
       *       overlapping subspans, but it could be helpful
       *       in theory when the requirements listed on the
       *       BSpec page for 3DSTATE_PS_BODY are met.
       */
      ps.OverlappingSubspansEnable = false;
#endif

      ps.SingleProgramFlow          = false;
      ps.VectorMaskEnable           = wm_prog_data->uses_vmask;
      /* Wa_1606682166 */
      ps.SamplerCount               = GFX_VER == 11 ? 0 : get_sampler_count(fs_bin);
      ps.BindingTableEntryCount     = fs_bin->bind_map.surface_count;
#if GFX_VER < 20
      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0 ||
                                      wm_prog_data->base.ubo_ranges[0].length;
#endif

      ps.MaximumNumberofThreadsPerPSD = devinfo->max_threads_per_psd - 1;

#if GFX_VERx10 >= 125
      ps.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_FRAGMENT, fs_bin);
#else
      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
      ps.ScratchSpaceBasePointer =
         get_scratch_address(&pipeline->base.base, MESA_SHADER_FRAGMENT, fs_bin);
#endif
   }
}

static void
emit_3dstate_ps_extra(struct anv_graphics_pipeline *pipeline,
                      const struct vk_rasterization_state *rs,
                      const struct vk_graphics_pipeline_state *state)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      anv_pipeline_emit(pipeline, partial.ps_extra, GENX(3DSTATE_PS_EXTRA), ps);
      return;
   }

   anv_pipeline_emit(pipeline, partial.ps_extra, GENX(3DSTATE_PS_EXTRA), ps) {
      ps.PixelShaderValid              = true;
#if GFX_VER < 20
      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
#endif
      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;

      ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
#if GFX_VER >= 20
      assert(!wm_prog_data->pulls_bary);
#else
      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
#endif

      ps.InputCoverageMaskState = ICMS_NONE;
      assert(!wm_prog_data->inner_coverage); /* Not available in SPIR-V */
      if (!wm_prog_data->uses_sample_mask)
         ps.InputCoverageMaskState = ICMS_NONE;
      else if (brw_wm_prog_data_is_coarse(wm_prog_data, 0))
         ps.InputCoverageMaskState  = ICMS_NORMAL;
      else if (wm_prog_data->post_depth_coverage)
         ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
      else
         ps.InputCoverageMaskState = ICMS_NORMAL;

#if GFX_VER >= 11
      ps.PixelShaderRequiresSourceDepthandorWPlaneCoefficients =
         wm_prog_data->uses_depth_w_coefficients;
#endif
   }
}

static void
emit_3dstate_vf_statistics(struct anv_graphics_pipeline *pipeline)
{
   anv_pipeline_emit(pipeline, final.vf_statistics,
                     GENX(3DSTATE_VF_STATISTICS), vfs) {
      vfs.StatisticsEnable = true;
   }
}

static void
compute_kill_pixel(struct anv_graphics_pipeline *pipeline,
                   const struct vk_multisample_state *ms,
                   const struct vk_graphics_pipeline_state *state)
{
   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      pipeline->kill_pixel = false;
      return;
   }

   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);

   /* This computes the KillPixel portion of the computation for whether or
    * not we want to enable the PMA fix on gfx8 or gfx9.  It's given by this
    * chunk of the giant formula:
    *
    *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
    *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
    *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
    *     3DSTATE_PS_BLEND::AlphaTestEnable ||
    *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
    *
    * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
    * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
    * of an alpha test.
    */
   pipeline->rp_has_ds_self_dep =
      (state->pipeline_flags &
       VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT) != 0;
   pipeline->kill_pixel =
      pipeline->rp_has_ds_self_dep ||
      wm_prog_data->uses_kill ||
      wm_prog_data->uses_omask ||
      (ms && ms->alpha_to_coverage_enable);
}

#if GFX_VER >= 12
static void
emit_3dstate_primitive_replication(struct anv_graphics_pipeline *pipeline,
                                   const struct vk_render_pass_state *rp)
{
   if (anv_pipeline_is_mesh(pipeline)) {
      anv_pipeline_emit(pipeline, final.primitive_replication,
                        GENX(3DSTATE_PRIMITIVE_REPLICATION), pr);
      return;
   }

   const int replication_count =
      anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots;

   assert(replication_count >= 1);
   if (replication_count == 1) {
      anv_pipeline_emit(pipeline, final.primitive_replication,
                        GENX(3DSTATE_PRIMITIVE_REPLICATION), pr);
      return;
   }

   assert(replication_count == util_bitcount(rp->view_mask));
   assert(replication_count <= MAX_VIEWS_FOR_PRIMITIVE_REPLICATION);

   anv_pipeline_emit(pipeline, final.primitive_replication,
                     GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
      pr.ReplicaMask = (1 << replication_count) - 1;
      pr.ReplicationCount = replication_count - 1;

      int i = 0;
      u_foreach_bit(view_index, rp->view_mask) {
         pr.RTAIOffset[i] = view_index;
         i++;
      }
   }
}
#endif

#if GFX_VERx10 >= 125
static void
emit_task_state(struct anv_graphics_pipeline *pipeline)
{
   assert(anv_pipeline_is_mesh(pipeline));

   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
      anv_pipeline_emit(pipeline, final.task_control,
                        GENX(3DSTATE_TASK_CONTROL), zero);
      anv_pipeline_emit(pipeline, final.task_shader,
                        GENX(3DSTATE_TASK_SHADER), zero);
      anv_pipeline_emit(pipeline, final.task_redistrib,
                        GENX(3DSTATE_TASK_REDISTRIB), zero);
      return;
   }

   const struct anv_shader_bin *task_bin =
      pipeline->base.shaders[MESA_SHADER_TASK];

   anv_pipeline_emit(pipeline, final.task_control,
                     GENX(3DSTATE_TASK_CONTROL), tc) {
      tc.TaskShaderEnable = true;
      tc.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_TASK, task_bin);
      tc.MaximumNumberofThreadGroups = 511;
   }

   const struct intel_device_info *devinfo = pipeline->base.base.device->info;
   const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline);
   const struct intel_cs_dispatch_info task_dispatch =
      brw_cs_get_dispatch_info(devinfo, &task_prog_data->base, NULL);

   anv_pipeline_emit(pipeline, final.task_shader,
                     GENX(3DSTATE_TASK_SHADER), task) {
      task.KernelStartPointer                = task_bin->kernel.offset;
      task.SIMDSize                          = task_dispatch.simd_size / 16;
      task.MessageSIMD                       = task.SIMDSize;
      task.NumberofThreadsinGPGPUThreadGroup = task_dispatch.threads;
      task.ExecutionMask                     = task_dispatch.right_mask;
      task.LocalXMaximum                     = task_dispatch.group_size - 1;
      task.EmitLocalIDX                      = true;

      task.NumberofBarriers                  = task_prog_data->base.uses_barrier;
      task.SharedLocalMemorySize             =
         encode_slm_size(GFX_VER, task_prog_data->base.base.total_shared);
      task.PreferredSLMAllocationSize        =
         preferred_slm_allocation_size(devinfo);

      /*
       * 3DSTATE_TASK_SHADER_DATA.InlineData[0:1] will be used for an address
       * of a buffer with push constants and descriptor set table and
       * InlineData[2:7] will be used for first few push constants.
       */
      task.EmitInlineParameter = true;

      task.XP0Required = task_prog_data->uses_drawid;
   }

   /* Recommended values from "Task and Mesh Distribution Programming". */
   anv_pipeline_emit(pipeline, final.task_redistrib,
                     GENX(3DSTATE_TASK_REDISTRIB), redistrib) {
      redistrib.LocalBOTAccumulatorThreshold = MULTIPLIER_1;
      redistrib.SmallTaskThreshold = 1; /* 2^N */
      redistrib.TargetMeshBatchSize = devinfo->num_slices > 2 ? 3 : 5; /* 2^N */
      redistrib.TaskRedistributionLevel = TASKREDISTRIB_BOM;
      redistrib.TaskRedistributionMode = TASKREDISTRIB_RR_STRICT;
   }
}

static void
emit_mesh_state(struct anv_graphics_pipeline *pipeline)
{
   assert(anv_pipeline_is_mesh(pipeline));

   const struct anv_shader_bin *mesh_bin = pipeline->base.shaders[MESA_SHADER_MESH];

   anv_pipeline_emit(pipeline, final.mesh_control,
                     GENX(3DSTATE_MESH_CONTROL), mc) {
      mc.MeshShaderEnable = true;
      mc.ScratchSpaceBuffer =
         get_scratch_surf(&pipeline->base.base, MESA_SHADER_MESH, mesh_bin);
      mc.MaximumNumberofThreadGroups = 511;
   }

   const struct intel_device_info *devinfo = pipeline->base.base.device->info;
   const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
   const struct intel_cs_dispatch_info mesh_dispatch =
      brw_cs_get_dispatch_info(devinfo, &mesh_prog_data->base, NULL);

   const unsigned output_topology =
      mesh_prog_data->primitive_type == MESA_PRIM_POINTS ? OUTPUT_POINT :
      mesh_prog_data->primitive_type == MESA_PRIM_LINES  ? OUTPUT_LINE :
                                                             OUTPUT_TRI;

   uint32_t index_format;
   switch (mesh_prog_data->index_format) {
   case BRW_INDEX_FORMAT_U32:
      index_format = INDEX_U32;
      break;
   case BRW_INDEX_FORMAT_U888X:
      index_format = INDEX_U888X;
      break;
   default:
      unreachable("invalid index format");
   }

   anv_pipeline_emit(pipeline, final.mesh_shader,
                     GENX(3DSTATE_MESH_SHADER), mesh) {
      mesh.KernelStartPointer                = mesh_bin->kernel.offset;
      mesh.SIMDSize                          = mesh_dispatch.simd_size / 16;
      mesh.MessageSIMD                       = mesh.SIMDSize;
      mesh.NumberofThreadsinGPGPUThreadGroup = mesh_dispatch.threads;
      mesh.ExecutionMask                     = mesh_dispatch.right_mask;
      mesh.LocalXMaximum                     = mesh_dispatch.group_size - 1;
      mesh.EmitLocalIDX                      = true;

      mesh.MaximumPrimitiveCount             = MAX2(mesh_prog_data->map.max_primitives, 1) - 1;
      mesh.OutputTopology                    = output_topology;
      mesh.PerVertexDataPitch                = mesh_prog_data->map.per_vertex_pitch_dw / 8;
      mesh.PerPrimitiveDataPresent           = mesh_prog_data->map.per_primitive_pitch_dw > 0;
      mesh.PerPrimitiveDataPitch             = mesh_prog_data->map.per_primitive_pitch_dw / 8;
      mesh.IndexFormat                       = index_format;

      mesh.NumberofBarriers                  = mesh_prog_data->base.uses_barrier;
      mesh.SharedLocalMemorySize             =
         encode_slm_size(GFX_VER, mesh_prog_data->base.base.total_shared);
      mesh.PreferredSLMAllocationSize        =
         preferred_slm_allocation_size(devinfo);

      /*
       * 3DSTATE_MESH_SHADER_DATA.InlineData[0:1] will be used for an address
       * of a buffer with push constants and descriptor set table and
       * InlineData[2:7] will be used for first few push constants.
       */
      mesh.EmitInlineParameter = true;

      mesh.XP0Required = mesh_prog_data->uses_drawid;
   }

   /* Recommended values from "Task and Mesh Distribution Programming". */
   anv_pipeline_emit(pipeline, final.mesh_distrib,
                     GENX(3DSTATE_MESH_DISTRIB), distrib) {
      distrib.DistributionMode = MESH_RR_FREE;
      distrib.TaskDistributionBatchSize = devinfo->num_slices > 2 ? 4 : 9; /* 2^N thread groups */
      distrib.MeshDistributionBatchSize = devinfo->num_slices > 2 ? 3 : 3; /* 2^N thread groups */
   }
}
#endif

void
genX(graphics_pipeline_emit)(struct anv_graphics_pipeline *pipeline,
                             const struct vk_graphics_pipeline_state *state)
{
   enum intel_urb_deref_block_size urb_deref_block_size;
   emit_urb_setup(pipeline, &urb_deref_block_size);

   emit_rs_state(pipeline, state->ia, state->rs, state->ms, state->rp,
                 urb_deref_block_size);
   emit_ms_state(pipeline, state->ms);
   compute_kill_pixel(pipeline, state->ms, state);

   emit_3dstate_clip(pipeline, state->ia, state->vp, state->rs);

#if GFX_VER >= 12
   emit_3dstate_primitive_replication(pipeline, state->rp);
#endif

#if GFX_VERx10 >= 125
   bool needs_instance_granularity =
      intel_needs_workaround(pipeline->base.base.device->info, 14019166699) &&
      (sbe_primitive_id_override(pipeline) ||
       geom_or_tess_prim_id_used(pipeline));

   anv_pipeline_emit(pipeline, partial.vfg, GENX(3DSTATE_VFG), vfg) {
      /* If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE*/
      vfg.DistributionMode =
         anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL) ? RR_STRICT :
         RR_FREE;
      vfg.DistributionGranularity = needs_instance_granularity ?
         InstanceLevelGranularity : BatchLevelGranularity;
#if INTEL_WA_14014851047_GFX_VER
      vfg.GranularityThresholdDisable =
         intel_needs_workaround(pipeline->base.base.device->info, 14014851047);
#endif
      /* 192 vertices for TRILIST_ADJ */
      vfg.ListNBatchSizeScale = 0;
      /* Batch size of 384 vertices */
      vfg.List3BatchSizeScale = 2;
      /* Batch size of 128 vertices */
      vfg.List2BatchSizeScale = 1;
      /* Batch size of 128 vertices */
      vfg.List1BatchSizeScale = 2;
      /* Batch size of 256 vertices for STRIP topologies */
      vfg.StripBatchSizeScale = 3;
      /* 192 control points for PATCHLIST_3 */
      vfg.PatchBatchSizeScale = 1;
      /* 192 control points for PATCHLIST_3 */
      vfg.PatchBatchSizeMultiplier = 31;
   }
#endif

   emit_3dstate_vf_statistics(pipeline);

   if (anv_pipeline_is_primitive(pipeline)) {
      emit_vertex_input(pipeline, state, state->vi);

      emit_3dstate_vs(pipeline);
      emit_3dstate_hs_ds(pipeline, state->ts);
      emit_3dstate_te(pipeline);
      emit_3dstate_gs(pipeline);

      emit_3dstate_streamout(pipeline, state->rs);

#if GFX_VERx10 >= 125
      const struct anv_device *device = pipeline->base.base.device;
      /* Disable Mesh. */
      if (device->vk.enabled_extensions.EXT_mesh_shader) {
         anv_pipeline_emit(pipeline, final.mesh_control,
                           GENX(3DSTATE_MESH_CONTROL), zero);
         anv_pipeline_emit(pipeline, final.mesh_shader,
                           GENX(3DSTATE_MESH_SHADER), zero);
         anv_pipeline_emit(pipeline, final.mesh_distrib,
                           GENX(3DSTATE_MESH_DISTRIB), zero);
         anv_pipeline_emit(pipeline, final.clip_mesh,
                           GENX(3DSTATE_CLIP_MESH), zero);
         anv_pipeline_emit(pipeline, final.sbe_mesh,
                           GENX(3DSTATE_SBE_MESH), zero);
         anv_pipeline_emit(pipeline, final.task_control,
                           GENX(3DSTATE_TASK_CONTROL), zero);
         anv_pipeline_emit(pipeline, final.task_shader,
                           GENX(3DSTATE_TASK_SHADER), zero);
         anv_pipeline_emit(pipeline, final.task_redistrib,
                           GENX(3DSTATE_TASK_REDISTRIB), zero);
      }
#endif
   } else {
      assert(anv_pipeline_is_mesh(pipeline));

      anv_pipeline_emit(pipeline, final.vf_sgvs, GENX(3DSTATE_VF_SGVS), sgvs);
#if GFX_VER >= 11
      anv_pipeline_emit(pipeline, final.vf_sgvs_2, GENX(3DSTATE_VF_SGVS_2), sgvs);
#endif
      anv_pipeline_emit(pipeline, final.vs, GENX(3DSTATE_VS), vs);
      anv_pipeline_emit(pipeline, final.hs, GENX(3DSTATE_HS), hs);
      anv_pipeline_emit(pipeline, final.ds, GENX(3DSTATE_DS), ds);
      anv_pipeline_emit(pipeline, partial.te, GENX(3DSTATE_TE), te);
      anv_pipeline_emit(pipeline, partial.gs, GENX(3DSTATE_GS), gs);

      /* BSpec 46303 forbids both 3DSTATE_MESH_CONTROL.MeshShaderEnable
       * and 3DSTATE_STREAMOUT.SOFunctionEnable to be 1.
       */
      anv_pipeline_emit(pipeline, partial.so, GENX(3DSTATE_STREAMOUT), so);

#if GFX_VERx10 >= 125
      emit_task_state(pipeline);
      emit_mesh_state(pipeline);
#endif
   }

   emit_3dstate_sbe(pipeline);
   emit_3dstate_wm(pipeline, state->ia, state->rs,
                   state->ms, state->cb, state->rp);
   emit_3dstate_ps(pipeline, state->ms, state->cb);
   emit_3dstate_ps_extra(pipeline, state->rs, state);
}

#if GFX_VERx10 >= 125

void
genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline)
{
   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
   anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);
}

#else /* #if GFX_VERx10 >= 125 */

void
genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline)
{
   struct anv_device *device = pipeline->base.device;
   const struct intel_device_info *devinfo = device->info;
   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);

   anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);

   const struct intel_cs_dispatch_info dispatch =
      brw_cs_get_dispatch_info(devinfo, cs_prog_data, NULL);
   const uint32_t vfe_curbe_allocation =
      ALIGN(cs_prog_data->push.per_thread.regs * dispatch.threads +
            cs_prog_data->push.cross_thread.regs, 2);

   const struct anv_shader_bin *cs_bin = pipeline->cs;

   anv_batch_emit(&pipeline->base.batch, GENX(MEDIA_VFE_STATE), vfe) {
      vfe.StackSize              = 0;
      vfe.MaximumNumberofThreads =
         devinfo->max_cs_threads * devinfo->subslice_total - 1;
      vfe.NumberofURBEntries     = 2;
#if GFX_VER < 11
      vfe.ResetGatewayTimer      = true;
#endif
      vfe.URBEntryAllocationSize = 2;
      vfe.CURBEAllocationSize    = vfe_curbe_allocation;

      if (cs_bin->prog_data->total_scratch) {
         /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
          * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
          */
         vfe.PerThreadScratchSpace =
            ffs(cs_bin->prog_data->total_scratch) - 11;
         vfe.ScratchSpaceBasePointer =
            get_scratch_address(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin);
      }
   }

   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
      .KernelStartPointer     =
         cs_bin->kernel.offset +
         brw_cs_prog_data_prog_offset(cs_prog_data, dispatch.simd_size),

      /* Wa_1606682166 */
      .SamplerCount           = GFX_VER == 11 ? 0 : get_sampler_count(cs_bin),
      /* We add 1 because the CS indirect parameters buffer isn't accounted
       * for in bind_map.surface_count.
       *
       * Typically set to 0 to avoid prefetching on every thread dispatch.
       */
      .BindingTableEntryCount = devinfo->verx10 == 125 ?
         0 : 1 + MIN2(pipeline->cs->bind_map.surface_count, 30),
      .BarrierEnable          = cs_prog_data->uses_barrier,
      .SharedLocalMemorySize  =
         encode_slm_size(GFX_VER, cs_prog_data->base.total_shared),

      .ConstantURBEntryReadOffset = 0,
      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
      .CrossThreadConstantDataReadLength =
         cs_prog_data->push.cross_thread.regs,
#if GFX_VER >= 12
      /* TODO: Check if we are missing workarounds and enable mid-thread
       * preemption.
       *
       * We still have issues with mid-thread preemption (it was already
       * disabled by the kernel on gfx11, due to missing workarounds). It's
       * possible that we are just missing some workarounds, and could enable
       * it later, but for now let's disable it to fix a GPU in compute in Car
       * Chase (and possibly more).
       */
      .ThreadPreemptionDisable = true,
#endif

      .NumberofThreadsinGPGPUThreadGroup = dispatch.threads,
   };
   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
                                        pipeline->interface_descriptor_data,
                                        &desc);
}

#endif /* #if GFX_VERx10 >= 125 */

#if GFX_VERx10 >= 125

void
genX(ray_tracing_pipeline_emit)(struct anv_ray_tracing_pipeline *pipeline)
{
   for (uint32_t i = 0; i < pipeline->group_count; i++) {
      struct anv_rt_shader_group *group = &pipeline->groups[i];

      switch (group->type) {
      case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR: {
         struct GENX(RT_GENERAL_SBT_HANDLE) sh = {};
         sh.General = anv_shader_bin_get_bsr(group->general, 32);
         GENX(RT_GENERAL_SBT_HANDLE_pack)(NULL, group->handle, &sh);
         break;
      }

      case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR: {
         struct GENX(RT_TRIANGLES_SBT_HANDLE) sh = {};
         if (group->closest_hit)
            sh.ClosestHit = anv_shader_bin_get_bsr(group->closest_hit, 32);
         if (group->any_hit)
            sh.AnyHit = anv_shader_bin_get_bsr(group->any_hit, 24);
         GENX(RT_TRIANGLES_SBT_HANDLE_pack)(NULL, group->handle, &sh);
         break;
      }

      case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
         struct GENX(RT_PROCEDURAL_SBT_HANDLE) sh = {};
         if (group->closest_hit)
            sh.ClosestHit = anv_shader_bin_get_bsr(group->closest_hit, 32);
         sh.Intersection = anv_shader_bin_get_bsr(group->intersection, 24);
         GENX(RT_PROCEDURAL_SBT_HANDLE_pack)(NULL, group->handle, &sh);
         break;
      }

      default:
         unreachable("Invalid shader group type");
      }
   }
}

#else

void
genX(ray_tracing_pipeline_emit)(struct anv_ray_tracing_pipeline *pipeline)
{
   unreachable("Ray tracing not supported");
}

#endif /* GFX_VERx10 >= 125 */