summaryrefslogtreecommitdiff
path: root/uxa/uxa.h
diff options
context:
space:
mode:
Diffstat (limited to 'uxa/uxa.h')
-rw-r--r--uxa/uxa.h528
1 files changed, 528 insertions, 0 deletions
diff --git a/uxa/uxa.h b/uxa/uxa.h
new file mode 100644
index 00000000..f1c1cfa9
--- /dev/null
+++ b/uxa/uxa.h
@@ -0,0 +1,528 @@
+/*
+ * Copyright © 2000, 2008 Keith Packard
+ * 2004 Eric Anholt
+ * 2005 Zack Rusin
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and its
+ * documentation for any purpose is hereby granted without fee, provided that
+ * the above copyright notice appear in all copies and that both that
+ * copyright notice and this permission notice appear in supporting
+ * documentation, and that the name of copyright holders not be used in
+ * advertising or publicity pertaining to distribution of the software without
+ * specific, written prior permission. Copyright holders make no
+ * representations about the suitability of this software for any purpose. It
+ * is provided "as is" without express or implied warranty.
+ *
+ * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
+ * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+ * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
+ * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
+ * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
+ * SOFTWARE.
+ */
+
+/** @file
+ * UXA - the unified memory acceleration architecture.
+ *
+ * This is the header containing the public API of UXA for uxa drivers.
+ */
+
+#ifndef UXA_H
+#define UXA_H
+
+#include "scrnintstr.h"
+#include "pixmapstr.h"
+#include "windowstr.h"
+#include "gcstruct.h"
+#include "picturestr.h"
+#include "fb.h"
+
+#define UXA_VERSION_MAJOR 1
+#define UXA_VERSION_MINOR 0
+#define UXA_VERSION_RELEASE 0
+
+typedef enum {
+ UXA_ACCESS_RO,
+ UXA_ACCESS_RW
+} uxa_access_t;
+
+/**
+ * The UxaDriver structure is allocated through uxa_driver_alloc(), and then
+ * fllled in by drivers.
+ */
+typedef struct _UxaDriver {
+ /**
+ * uxa_major and uxa_minor should be set by the driver to the version of
+ * UXA which the driver was compiled for (or configures itself at runtime
+ * to support). This allows UXA to extend the structure for new features
+ * without breaking ABI for drivers compiled against older versions.
+ */
+ int uxa_major, uxa_minor;
+
+ /**
+ * The flags field is bitfield of boolean values controlling UXA's behavior.
+ *
+ * The flags include UXA_TWO_BITBLT_DIRECTIONS.
+ */
+ int flags;
+
+ /** @name solid
+ * @{
+ */
+ /**
+ * prepare_solid() sets up the driver for doing a solid fill.
+ * @param pPixmap Destination pixmap
+ * @param alu raster operation
+ * @param planemask write mask for the fill
+ * @param fg "foreground" color for the fill
+ *
+ * This call should set up the driver for doing a series of solid fills
+ * through the solid() call. The alu raster op is one of the GX*
+ * graphics functions listed in X.h, and typically maps to a similar
+ * single-byte "ROP" setting in all hardware. The planemask controls
+ * which bits of the destination should be affected, and will only represent
+ * the bits up to the depth of pPixmap. The fg is the pixel value of the
+ * foreground color referred to in ROP descriptions.
+ *
+ * Note that many drivers will need to store some of the data in the driver
+ * private record, for sending to the hardware with each drawing command.
+ *
+ * The prepare_solid() call is required of all drivers, but it may fail for any
+ * reason. Failure results in a fallback to software rendering.
+ */
+ Bool (*prepare_solid) (PixmapPtr pPixmap,
+ int alu,
+ Pixel planemask,
+ Pixel fg);
+
+ /**
+ * solid() performs a solid fill set up in the last prepare_solid() call.
+ *
+ * @param pPixmap destination pixmap
+ * @param x1 left coordinate
+ * @param y1 top coordinate
+ * @param x2 right coordinate
+ * @param y2 bottom coordinate
+ *
+ * Performs the fill set up by the last prepare_solid() call, covering the
+ * area from (x1,y1) to (x2,y2) in pPixmap. Note that the coordinates are
+ * in the coordinate space of the destination pixmap, so the driver will
+ * need to set up the hardware's offset and pitch for the destination
+ * coordinates according to the pixmap's offset and pitch within
+ * framebuffer.
+ *
+ * This call is required if prepare_solid() ever succeeds.
+ */
+ void (*solid) (PixmapPtr pPixmap, int x1, int y1, int x2, int y2);
+
+ /**
+ * done_solid() finishes a set of solid fills.
+ *
+ * @param pPixmap destination pixmap.
+ *
+ * The done_solid() call is called at the end of a series of consecutive
+ * solid() calls following a successful prepare_solid(). This allows drivers
+ * to finish up emitting drawing commands that were buffered, or clean up
+ * state from prepare_solid().
+ *
+ * This call is required if prepare_solid() ever succeeds.
+ */
+ void (*done_solid) (PixmapPtr pPixmap);
+ /** @} */
+
+ /** @name copy
+ * @{
+ */
+ /**
+ * prepare_copy() sets up the driver for doing a copy within video
+ * memory.
+ *
+ * @param pSrcPixmap source pixmap
+ * @param pDstPixmap destination pixmap
+ * @param dx X copy direction
+ * @param dy Y copy direction
+ * @param alu raster operation
+ * @param planemask write mask for the fill
+ *
+ * This call should set up the driver for doing a series of copies from the
+ * the pSrcPixmap to the pDstPixmap. The dx flag will be positive if the
+ * hardware should do the copy from the left to the right, and dy will be
+ * positive if the copy should be done from the top to the bottom. This
+ * is to deal with self-overlapping copies when pSrcPixmap == pDstPixmap.
+ * If your hardware can only support blits that are (left to right, top to
+ * bottom) or (right to left, bottom to top), then you should set
+ * #UXA_TWO_BITBLT_DIRECTIONS, and UXA will break down copy operations to
+ * ones that meet those requirements. The alu raster op is one of the GX*
+ * graphics functions listed in X.h, and typically maps to a similar
+ * single-byte "ROP" setting in all hardware. The planemask controls which
+ * bits of the destination should be affected, and will only represent the
+ * bits up to the depth of pPixmap.
+ *
+ * Note that many drivers will need to store some of the data in the driver
+ * private record, for sending to the hardware with each drawing command.
+ *
+ * The prepare_copy() call is required of all drivers, but it may fail for any
+ * reason. Failure results in a fallback to software rendering.
+ */
+ Bool (*prepare_copy) (PixmapPtr pSrcPixmap,
+ PixmapPtr pDstPixmap,
+ int dx,
+ int dy,
+ int alu,
+ Pixel planemask);
+
+ /**
+ * copy() performs a copy set up in the last prepare_copy call.
+ *
+ * @param pDstPixmap destination pixmap
+ * @param srcX source X coordinate
+ * @param srcY source Y coordinate
+ * @param dstX destination X coordinate
+ * @param dstY destination Y coordinate
+ * @param width width of the rectangle to be copied
+ * @param height height of the rectangle to be copied.
+ *
+ * Performs the copy set up by the last prepare_copy() call, copying the
+ * rectangle from (srcX, srcY) to (srcX + width, srcY + width) in the source
+ * pixmap to the same-sized rectangle at (dstX, dstY) in the destination
+ * pixmap. Those rectangles may overlap in memory, if
+ * pSrcPixmap == pDstPixmap. Note that this call does not receive the
+ * pSrcPixmap as an argument -- if it's needed in this function, it should
+ * be stored in the driver private during prepare_copy(). As with solid(),
+ * the coordinates are in the coordinate space of each pixmap, so the driver
+ * will need to set up source and destination pitches and offsets from those
+ * pixmaps, probably using uxaGetPixmapOffset() and uxa_get_pixmap_pitch().
+ *
+ * This call is required if prepare_copy ever succeeds.
+ */
+ void (*copy) (PixmapPtr pDstPixmap,
+ int srcX,
+ int srcY,
+ int dstX,
+ int dstY,
+ int width,
+ int height);
+
+ /**
+ * done_copy() finishes a set of copies.
+ *
+ * @param pPixmap destination pixmap.
+ *
+ * The done_copy() call is called at the end of a series of consecutive
+ * copy() calls following a successful prepare_copy(). This allows drivers
+ * to finish up emitting drawing commands that were buffered, or clean up
+ * state from prepare_copy().
+ *
+ * This call is required if prepare_copy() ever succeeds.
+ */
+ void (*done_copy) (PixmapPtr pDstPixmap);
+ /** @} */
+
+ /** @name composite
+ * @{
+ */
+ /**
+ * check_composite() checks to see if a composite operation could be
+ * accelerated.
+ *
+ * @param op Render operation
+ * @param pSrcPicture source Picture
+ * @param pMaskPicture mask picture
+ * @param pDstPicture destination Picture
+ *
+ * The check_composite() call checks if the driver could handle acceleration
+ * of op with the given source, mask, and destination pictures. This allows
+ * drivers to check source and destination formats, supported operations,
+ * transformations, and component alpha state, and send operations it can't
+ * support to software rendering early on.
+ *
+ * See prepare_composite() for more details on likely issues that drivers
+ * will have in accelerating composite operations.
+ *
+ * The check_composite() call is recommended if prepare_composite() is
+ * implemented, but is not required.
+ */
+ Bool (*check_composite) (int op,
+ PicturePtr pSrcPicture,
+ PicturePtr pMaskPicture,
+ PicturePtr pDstPicture);
+
+ /**
+ * prepare_composite() sets up the driver for doing a composite operation
+ * described in the Render extension protocol spec.
+ *
+ * @param op Render operation
+ * @param pSrcPicture source Picture
+ * @param pMaskPicture mask picture
+ * @param pDstPicture destination Picture
+ * @param pSrc source pixmap
+ * @param pMask mask pixmap
+ * @param pDst destination pixmap
+ *
+ * This call should set up the driver for doing a series of composite
+ * operations, as described in the Render protocol spec, with the given
+ * pSrcPicture, pMaskPicture, and pDstPicture. The pSrc, pMask, and
+ * pDst are the pixmaps containing the pixel data, and should be used for
+ * setting the offset and pitch used for the coordinate spaces for each of
+ * the Pictures.
+ *
+ * Notes on interpreting Picture structures:
+ * - The Picture structures will always have a valid pDrawable.
+ * - The Picture structures will never have alphaMap set.
+ * - The mask Picture (and therefore pMask) may be NULL, in which case the
+ * operation is simply src OP dst instead of src IN mask OP dst, and
+ * mask coordinates should be ignored.
+ * - pMarkPicture may have componentAlpha set, which greatly changes
+ * the behavior of the composite operation. componentAlpha has no effect
+ * when set on pSrcPicture or pDstPicture.
+ * - The source and mask Pictures may have a transformation set
+ * (Picture->transform != NULL), which means that the source coordinates
+ * should be transformed by that transformation, resulting in scaling,
+ * rotation, etc. The PictureTransformPoint() call can transform
+ * coordinates for you. Transforms have no effect on Pictures when used
+ * as a destination.
+ * - The source and mask pictures may have a filter set. PictFilterNearest
+ * and PictFilterBilinear are defined in the Render protocol, but others
+ * may be encountered, and must be handled correctly (usually by
+ * prepare_composite failing, and falling back to software). Filters have
+ * no effect on Pictures when used as a destination.
+ * - The source and mask Pictures may have repeating set, which must be
+ * respected. Many chipsets will be unable to support repeating on
+ * pixmaps that have a width or height that is not a power of two.
+ *
+ * If your hardware can't support source pictures (textures) with
+ * non-power-of-two pitches, you should set #UXA_OFFSCREEN_ALIGN_POT.
+ *
+ * Note that many drivers will need to store some of the data in the driver
+ * private record, for sending to the hardware with each drawing command.
+ *
+ * The prepare_composite() call is not required. However, it is highly
+ * recommended for performance of antialiased font rendering and performance
+ * of cairo applications. Failure results in a fallback to software
+ * rendering.
+ */
+ Bool (*prepare_composite) (int op,
+ PicturePtr pSrcPicture,
+ PicturePtr pMaskPicture,
+ PicturePtr pDstPicture,
+ PixmapPtr pSrc,
+ PixmapPtr pMask,
+ PixmapPtr pDst);
+
+ /**
+ * composite() performs a composite operation set up in the last
+ * prepare_composite() call.
+ *
+ * @param pDstPixmap destination pixmap
+ * @param srcX source X coordinate
+ * @param srcY source Y coordinate
+ * @param maskX source X coordinate
+ * @param maskY source Y coordinate
+ * @param dstX destination X coordinate
+ * @param dstY destination Y coordinate
+ * @param width destination rectangle width
+ * @param height destination rectangle height
+ *
+ * Performs the composite operation set up by the last prepare_composite()
+ * call, to the rectangle from (dstX, dstY) to (dstX + width, dstY + height)
+ * in the destination Pixmap. Note that if a transformation was set on
+ * the source or mask Pictures, the source rectangles may not be the same
+ * size as the destination rectangles and filtering. Getting the coordinate
+ * transformation right at the subpixel level can be tricky, and rendercheck
+ * can test this for you.
+ *
+ * This call is required if prepare_composite() ever succeeds.
+ */
+ void (*composite) (PixmapPtr pDst,
+ int srcX,
+ int srcY,
+ int maskX,
+ int maskY,
+ int dstX,
+ int dstY,
+ int width,
+ int height);
+
+ /**
+ * done_composite() finishes a set of composite operations.
+ *
+ * @param pPixmap destination pixmap.
+ *
+ * The done_composite() call is called at the end of a series of consecutive
+ * composite() calls following a successful prepare_composite(). This allows
+ * drivers to finish up emitting drawing commands that were buffered, or
+ * clean up state from prepare_composite().
+ *
+ * This call is required if prepare_composite() ever succeeds.
+ */
+ void (*done_composite) (PixmapPtr pDst);
+ /** @} */
+
+ /**
+ * put_image() loads a rectangle of data from src into pDst.
+ *
+ * @param pDst destination pixmap
+ * @param x destination X coordinate.
+ * @param y destination Y coordinate
+ * @param width width of the rectangle to be copied
+ * @param height height of the rectangle to be copied
+ * @param src pointer to the beginning of the source data
+ * @param src_pitch pitch (in bytes) of the lines of source data.
+ *
+ * put_image() copies data in system memory beginning at src (with
+ * pitch src_pitch) into the destination pixmap from (x, y) to
+ * (x + width, y + height). This is typically done with hostdata uploads,
+ * where the CPU sets up a blit command on the hardware with instructions
+ * that the blit data will be fed through some sort of aperture on the card.
+ *
+ * put_image() is most important for the performance of uxa_glyphs()
+ * (antialiased font drawing) by allowing pipelining of data uploads,
+ * avoiding a sync of the card after each glyph.
+ *
+ * @return TRUE if the driver successfully uploaded the data. FALSE
+ * indicates that UXA should fall back to doing the upload in software.
+ *
+ * put_image() is not required, but is recommended if composite
+ * acceleration is supported.
+ */
+ Bool (*put_image) (PixmapPtr pDst,
+ int x,
+ int y,
+ int w,
+ int h,
+ char *src,
+ int src_pitch);
+
+ /**
+ * get_image() loads a rectangle of data from pSrc into dst
+ *
+ * @param pSrc source pixmap
+ * @param x source X coordinate.
+ * @param y source Y coordinate
+ * @param width width of the rectangle to be copied
+ * @param height height of the rectangle to be copied
+ * @param dst pointer to the beginning of the destination data
+ * @param dst_pitch pitch (in bytes) of the lines of destination data.
+ *
+ * get_image() copies data from offscreen memory in pSrc from
+ * (x, y) to (x + width, y + height), to system memory starting at
+ * dst (with pitch dst_pitch). This would usually be done
+ * using scatter-gather DMA, supported by a DRM call, or by blitting to AGP
+ * and then synchronously reading from AGP. Because the implementation
+ * might be synchronous, UXA leaves it up to the driver to call
+ * uxa_mark_sync() if get_image() was asynchronous. This is in
+ * contrast to most other acceleration calls in UXA.
+ *
+ * @return TRUE if the driver successfully downloaded the data. FALSE
+ * indicates that UXA should fall back to doing the download in software.
+ *
+ * get_image() is not required, but is highly recommended.
+ */
+ Bool (*get_image)(PixmapPtr pSrc,
+ int x, int y,
+ int w, int h,
+ char *dst, int dst_pitch);
+
+ /** @{ */
+ /**
+ * prepare_access() is called before CPU access to an offscreen pixmap.
+ *
+ * @param pPix the pixmap being accessed
+ * @param index the index of the pixmap being accessed.
+ *
+ * prepare_access() will be called before CPU access to an offscreen pixmap.
+ * This can be used to set up hardware surfaces for byteswapping or
+ * untiling, or to adjust the pixmap's devPrivate.ptr for the purpose of
+ * making CPU access use a different aperture.
+ *
+ * The index is one of #UXA_PREPARE_DEST, #UXA_PREPARE_SRC, or
+ * #UXA_PREPARE_MASK, indicating which pixmap is in question. Since only up
+ * to three pixmaps will have prepare_access() called on them per operation,
+ * drivers can have a small, statically-allocated space to maintain state
+ * for prepare_access() and finish_access() in. Note that the same pixmap may
+ * have prepare_access() called on it more than once, for uxample when doing
+ * a copy within the same pixmap (so it gets prepare_access as()
+ * #UXA_PREPARE_DEST and then as #UXA_PREPARE_SRC).
+ *
+ * prepare_access() may fail. An uxample might be the case of hardware that
+ * can set up 1 or 2 surfaces for CPU access, but not 3. If prepare_access()
+ * fails, UXA will migrate the pixmap to system memory.
+ * get_image() must be implemented and must not fail if a driver
+ * wishes to fail in prepare_access(). prepare_access() must not fail when
+ * pPix is the visible screen, because the visible screen can not be
+ * migrated.
+ *
+ * @return TRUE if prepare_access() successfully prepared the pixmap for CPU
+ * drawing.
+ * @return FALSE if prepare_access() is unsuccessful and UXA should use
+ * get_image() to migate the pixmap out.
+ */
+ Bool (*prepare_access)(PixmapPtr pPix, uxa_access_t access);
+
+ /**
+ * finish_access() is called after CPU access to an offscreen pixmap.
+ *
+ * @param pPix the pixmap being accessed
+ * @param index the index of the pixmap being accessed.
+ *
+ * finish_access() will be called after finishing CPU access of an offscreen
+ * pixmap set up by prepare_access(). Note that the finish_access() will not be
+ * called if prepare_access() failed.
+ */
+ void (*finish_access)(PixmapPtr pPix);
+
+ /**
+ * PixmapIsOffscreen() is an optional driver replacement to
+ * uxa_pixmap_is_offscreen(). Set to NULL if you want the standard behaviour
+ * of uxa_pixmap_is_offscreen().
+ *
+ * @param pPix the pixmap
+ * @return TRUE if the given drawable is in framebuffer memory.
+ *
+ * uxa_pixmap_is_offscreen() is used to determine if a pixmap is in offscreen
+ * memory, meaning that acceleration could probably be done to it, and that it
+ * will need to be wrapped by prepare_access()/finish_access() when accessing it
+ * with the CPU.
+ *
+ *
+ */
+ Bool (*pixmap_is_offscreen)(PixmapPtr pPix);
+
+ /** @} */
+} uxa_driver_t;
+
+/** @name UXA driver flags
+ * @{
+ */
+/**
+ * UXA_TWO_BITBLT_DIRECTIONS indicates to UXA that the driver can only
+ * support copies that are (left-to-right, top-to-bottom) or
+ * (right-to-left, bottom-to-top).
+ */
+#define UXA_TWO_BITBLT_DIRECTIONS (1 << 2)
+
+/** @} */
+
+uxa_driver_t *
+uxa_driver_alloc(void);
+
+Bool
+uxa_driver_init(ScreenPtr screen, uxa_driver_t *uxa_driver);
+
+void
+uxa_driver_fini(ScreenPtr pScreen);
+
+CARD32
+uxa_get_pixmap_first_pixel (PixmapPtr pPixmap);
+
+/**
+ * Returns TRUE if the given planemask covers all the significant bits in the
+ * pixel values for pDrawable.
+ */
+#define UXA_PM_IS_SOLID(_pDrawable, _pm) \
+ (((_pm) & FbFullMask((_pDrawable)->depth)) == \
+ FbFullMask((_pDrawable)->depth))
+
+#endif /* UXA_H */