summaryrefslogtreecommitdiff
path: root/src/mesa/drivers/dri/i965/brw_batch.c
blob: 1d7da7abed31f666ea0e18e671627835f5923c82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
/*
 * Copyright 2006 VMware, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "brw_batch.h"
#include "brw_buffer_objects.h"
#include "brw_bufmgr.h"
#include "brw_buffers.h"
#include "brw_fbo.h"
#include "brw_context.h"
#include "brw_defines.h"
#include "brw_state.h"
#include "common/intel_decoder.h"
#include "common/intel_gem.h"

#include "util/hash_table.h"

#include <xf86drm.h>
#include "drm-uapi/i915_drm.h"

#define FILE_DEBUG_FLAG DEBUG_BUFMGR

/**
 * Target sizes of the batch and state buffers.  We create the initial
 * buffers at these sizes, and flush when they're nearly full.  If we
 * underestimate how close we are to the end, and suddenly need more space
 * in the middle of a draw, we can grow the buffers, and finish the draw.
 * At that point, we'll be over our target size, so the next operation
 * should flush.  Each time we flush the batch, we recreate both buffers
 * at the original target size, so it doesn't grow without bound.
 */
#define BATCH_SZ (20 * 1024)
#define STATE_SZ (16 * 1024)

static void
brw_batch_reset(struct brw_context *brw);
static void
brw_new_batch(struct brw_context *brw);

static unsigned
num_fences(struct brw_batch *batch)
{
   return util_dynarray_num_elements(&batch->exec_fences,
                                     struct drm_i915_gem_exec_fence);
}


static void
dump_validation_list(struct brw_batch *batch)
{
   fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);

   for (int i = 0; i < batch->exec_count; i++) {
      uint64_t flags = batch->validation_list[i].flags;
      assert(batch->validation_list[i].handle ==
             batch->exec_bos[i]->gem_handle);
      fprintf(stderr, "[%2d]: %2d %-14s %p %s%-7s @ 0x%"PRIx64"%s (%"PRIu64"B)\n",
              i,
              batch->validation_list[i].handle,
              batch->exec_bos[i]->name,
              batch->exec_bos[i],
              (flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) ? "(48b" : "(32b",
              (flags & EXEC_OBJECT_WRITE) ? " write)" : ")",
              (uint64_t)batch->validation_list[i].offset,
              (flags & EXEC_OBJECT_PINNED) ? " (pinned)" : "",
              batch->exec_bos[i]->size);
   }
}

static struct intel_batch_decode_bo
decode_get_bo(void *v_brw, bool ppgtt, uint64_t address)
{
   struct brw_context *brw = v_brw;
   struct brw_batch *batch = &brw->batch;

   for (int i = 0; i < batch->exec_count; i++) {
      struct brw_bo *bo = batch->exec_bos[i];
      /* The decoder zeroes out the top 16 bits, so we need to as well */
      uint64_t bo_address = bo->gtt_offset & (~0ull >> 16);

      if (address >= bo_address && address < bo_address + bo->size) {
         return (struct intel_batch_decode_bo) {
            .addr = bo_address,
            .size = bo->size,
            .map = brw_bo_map(brw, bo, MAP_READ),
         };
      }
   }

   return (struct intel_batch_decode_bo) { };
}

static unsigned
decode_get_state_size(void *v_brw, uint64_t address, uint64_t base_address)
{
   struct brw_context *brw = v_brw;
   struct brw_batch *batch = &brw->batch;
   unsigned size = (uintptr_t)
      _mesa_hash_table_u64_search(batch->state_batch_sizes,
                                  address - base_address);
   return size;
}

static void
init_reloc_list(struct brw_reloc_list *rlist, int count)
{
   rlist->reloc_count = 0;
   rlist->reloc_array_size = count;
   rlist->relocs = malloc(rlist->reloc_array_size *
                          sizeof(struct drm_i915_gem_relocation_entry));
}

void
brw_batch_init(struct brw_context *brw)
{
   struct brw_screen *screen = brw->screen;
   struct brw_batch *batch = &brw->batch;
   const struct intel_device_info *devinfo = &screen->devinfo;

   if (INTEL_DEBUG(DEBUG_BATCH)) {
      /* The shadow doesn't get relocs written so state decode fails. */
      batch->use_shadow_copy = false;
   } else
      batch->use_shadow_copy = !devinfo->has_llc;

   init_reloc_list(&batch->batch_relocs, 250);
   init_reloc_list(&batch->state_relocs, 250);

   batch->batch.map = NULL;
   batch->state.map = NULL;
   batch->exec_count = 0;
   batch->exec_array_size = 100;
   batch->exec_bos =
      malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
   batch->validation_list =
      malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
   batch->contains_fence_signal = false;

   if (INTEL_DEBUG(DEBUG_BATCH)) {
      batch->state_batch_sizes =
         _mesa_hash_table_u64_create(NULL);

      const unsigned decode_flags =
         INTEL_BATCH_DECODE_FULL |
         (INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) |
         INTEL_BATCH_DECODE_OFFSETS |
         INTEL_BATCH_DECODE_FLOATS;

      intel_batch_decode_ctx_init(&batch->decoder, devinfo, stderr,
                                  decode_flags, NULL, decode_get_bo,
                                  decode_get_state_size, brw);
      batch->decoder.max_vbo_decoded_lines = 100;
   }

   batch->use_batch_first =
      screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;

   /* PIPE_CONTROL needs a w/a but only on gfx6 */
   batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
   if (devinfo->ver == 6)
      batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;

   brw_batch_reset(brw);
}

#define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))

static unsigned
add_exec_bo(struct brw_batch *batch, struct brw_bo *bo)
{
   assert(bo->bufmgr == batch->batch.bo->bufmgr);

   unsigned index = READ_ONCE(bo->index);

   if (index < batch->exec_count && batch->exec_bos[index] == bo)
      return index;

   /* May have been shared between multiple active batches */
   for (index = 0; index < batch->exec_count; index++) {
      if (batch->exec_bos[index] == bo)
         return index;
   }

   brw_bo_reference(bo);

   if (batch->exec_count == batch->exec_array_size) {
      batch->exec_array_size *= 2;
      batch->exec_bos =
         realloc(batch->exec_bos,
                 batch->exec_array_size * sizeof(batch->exec_bos[0]));
      batch->validation_list =
         realloc(batch->validation_list,
                 batch->exec_array_size * sizeof(batch->validation_list[0]));
   }

   batch->validation_list[batch->exec_count] =
      (struct drm_i915_gem_exec_object2) {
         .handle = bo->gem_handle,
         .offset = bo->gtt_offset,
         .flags = bo->kflags,
      };

   bo->index = batch->exec_count;
   batch->exec_bos[batch->exec_count] = bo;
   batch->aperture_space += bo->size;

   return batch->exec_count++;
}

static void
recreate_growing_buffer(struct brw_context *brw,
                        struct brw_growing_bo *grow,
                        const char *name, unsigned size,
                        enum brw_memory_zone memzone)
{
   struct brw_screen *screen = brw->screen;
   struct brw_batch *batch = &brw->batch;
   struct brw_bufmgr *bufmgr = screen->bufmgr;

   /* We can't grow buffers when using softpin, so just overallocate them. */
   if (brw_using_softpin(bufmgr))
      size *= 2;

   grow->bo = brw_bo_alloc(bufmgr, name, size, memzone);
   grow->bo->kflags |= can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
   grow->partial_bo = NULL;
   grow->partial_bo_map = NULL;
   grow->partial_bytes = 0;
   grow->memzone = memzone;

   if (batch->use_shadow_copy)
      grow->map = realloc(grow->map, grow->bo->size);
   else
      grow->map = brw_bo_map(brw, grow->bo, MAP_READ | MAP_WRITE);
}

static void
brw_batch_reset(struct brw_context *brw)
{
   struct brw_batch *batch = &brw->batch;

   if (batch->last_bo != NULL) {
      brw_bo_unreference(batch->last_bo);
      batch->last_bo = NULL;
   }
   batch->last_bo = batch->batch.bo;

   recreate_growing_buffer(brw, &batch->batch, "batchbuffer", BATCH_SZ,
                           BRW_MEMZONE_OTHER);
   batch->map_next = batch->batch.map;

   recreate_growing_buffer(brw, &batch->state, "statebuffer", STATE_SZ,
                           BRW_MEMZONE_DYNAMIC);

   /* Avoid making 0 a valid state offset - otherwise the decoder will try
    * and decode data when we use offset 0 as a null pointer.
    */
   batch->state_used = 1;

   add_exec_bo(batch, batch->batch.bo);
   assert(batch->batch.bo->index == 0);

   batch->needs_sol_reset = false;
   batch->state_base_address_emitted = false;

   if (batch->state_batch_sizes)
      _mesa_hash_table_u64_clear(batch->state_batch_sizes);

   /* Always add workaround_bo which contains a driver identifier to be
    * recorded in error states.
    */
   struct brw_bo *identifier_bo = brw->workaround_bo;
   if (identifier_bo)
      add_exec_bo(batch, identifier_bo);

   if (batch->contains_fence_signal)
      batch->contains_fence_signal = false;
}

static void
brw_batch_reset_and_clear_render_cache(struct brw_context *brw)
{
   brw_batch_reset(brw);
   brw_cache_sets_clear(brw);
}

void
brw_batch_save_state(struct brw_context *brw)
{
   brw->batch.saved.map_next = brw->batch.map_next;
   brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
   brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
   brw->batch.saved.exec_count = brw->batch.exec_count;
}

bool
brw_batch_saved_state_is_empty(struct brw_context *brw)
{
   struct brw_batch *batch = &brw->batch;
   return (batch->saved.map_next == batch->batch.map);
}

void
brw_batch_reset_to_saved(struct brw_context *brw)
{
   for (int i = brw->batch.saved.exec_count;
        i < brw->batch.exec_count; i++) {
      brw_bo_unreference(brw->batch.exec_bos[i]);
   }
   brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
   brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
   brw->batch.exec_count = brw->batch.saved.exec_count;

   brw->batch.map_next = brw->batch.saved.map_next;
   if (USED_BATCH(brw->batch) == 0)
      brw_new_batch(brw);
}

void
brw_batch_free(struct brw_batch *batch)
{
   if (batch->use_shadow_copy) {
      free(batch->batch.map);
      free(batch->state.map);
   }

   for (int i = 0; i < batch->exec_count; i++) {
      brw_bo_unreference(batch->exec_bos[i]);
   }
   free(batch->batch_relocs.relocs);
   free(batch->state_relocs.relocs);
   free(batch->exec_bos);
   free(batch->validation_list);

   brw_bo_unreference(batch->last_bo);
   brw_bo_unreference(batch->batch.bo);
   brw_bo_unreference(batch->state.bo);
   if (batch->state_batch_sizes) {
      _mesa_hash_table_u64_destroy(batch->state_batch_sizes);
      intel_batch_decode_ctx_finish(&batch->decoder);
   }
}

/**
 * Finish copying the old batch/state buffer's contents to the new one
 * after we tried to "grow" the buffer in an earlier operation.
 */
static void
finish_growing_bos(struct brw_growing_bo *grow)
{
   struct brw_bo *old_bo = grow->partial_bo;
   if (!old_bo)
      return;

   memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);

   grow->partial_bo = NULL;
   grow->partial_bo_map = NULL;
   grow->partial_bytes = 0;

   brw_bo_unreference(old_bo);
}

static void
replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
                         uint32_t old_handle, uint32_t new_handle)
{
   for (int i = 0; i < rlist->reloc_count; i++) {
      if (rlist->relocs[i].target_handle == old_handle)
         rlist->relocs[i].target_handle = new_handle;
   }
}

/**
 * Grow either the batch or state buffer to a new larger size.
 *
 * We can't actually grow buffers, so we allocate a new one, copy over
 * the existing contents, and update our lists to refer to the new one.
 *
 * Note that this is only temporary - each new batch recreates the buffers
 * at their original target size (BATCH_SZ or STATE_SZ).
 */
static void
grow_buffer(struct brw_context *brw,
            struct brw_growing_bo *grow,
            unsigned existing_bytes,
            unsigned new_size)
{
   struct brw_batch *batch = &brw->batch;
   struct brw_bufmgr *bufmgr = brw->bufmgr;
   struct brw_bo *bo = grow->bo;

   /* We can't grow buffers that are softpinned, as the growing mechanism
    * involves putting a larger buffer at the same gtt_offset...and we've
    * only allocated the smaller amount of VMA.  Without relocations, this
    * simply won't work.  This should never happen, however.
    */
   assert(!(bo->kflags & EXEC_OBJECT_PINNED));

   perf_debug("Growing %s - ran out of space\n", bo->name);

   if (grow->partial_bo) {
      /* We've already grown once, and now we need to do it again.
       * Finish our last grow operation so we can start a new one.
       * This should basically never happen.
       */
      perf_debug("Had to grow multiple times");
      finish_growing_bos(grow);
   }

   struct brw_bo *new_bo =
      brw_bo_alloc(bufmgr, bo->name, new_size, grow->memzone);

   /* Copy existing data to the new larger buffer */
   grow->partial_bo_map = grow->map;

   if (batch->use_shadow_copy) {
      /* We can't safely use realloc, as it may move the existing buffer,
       * breaking existing pointers the caller may still be using.  Just
       * malloc a new copy and memcpy it like the normal BO path.
       *
       * Use bo->size rather than new_size because the bufmgr may have
       * rounded up the size, and we want the shadow size to match.
       */
      grow->map = malloc(new_bo->size);
   } else {
      grow->map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
   }

   /* Try to put the new BO at the same GTT offset as the old BO (which
    * we're throwing away, so it doesn't need to be there).
    *
    * This guarantees that our relocations continue to work: values we've
    * already written into the buffer, values we're going to write into the
    * buffer, and the validation/relocation lists all will match.
    *
    * Also preserve kflags for EXEC_OBJECT_CAPTURE.
    */
   new_bo->gtt_offset = bo->gtt_offset;
   new_bo->index = bo->index;
   new_bo->kflags = bo->kflags;

   /* Batch/state buffers are per-context, and if we've run out of space,
    * we must have actually used them before, so...they will be in the list.
    */
   assert(bo->index < batch->exec_count);
   assert(batch->exec_bos[bo->index] == bo);

   /* Update the validation list to use the new BO. */
   batch->validation_list[bo->index].handle = new_bo->gem_handle;

   if (!batch->use_batch_first) {
      /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
       * update the relocation list entries to point at the new BO as well.
       * (With newer kernels, the "handle" is an offset into the validation
       * list, which remains unchanged, so we can skip this.)
       */
      replace_bo_in_reloc_list(&batch->batch_relocs,
                               bo->gem_handle, new_bo->gem_handle);
      replace_bo_in_reloc_list(&batch->state_relocs,
                               bo->gem_handle, new_bo->gem_handle);
   }

   /* Exchange the two BOs...without breaking pointers to the old BO.
    *
    * Consider this scenario:
    *
    * 1. Somebody calls brw_state_batch() to get a region of memory, and
    *    and then creates a brw_address pointing to brw->batch.state.bo.
    * 2. They then call brw_state_batch() a second time, which happens to
    *    grow and replace the state buffer.  They then try to emit a
    *    relocation to their first section of memory.
    *
    * If we replace the brw->batch.state.bo pointer at step 2, we would
    * break the address created in step 1.  They'd have a pointer to the
    * old destroyed BO.  Emitting a relocation would add this dead BO to
    * the validation list...causing /both/ statebuffers to be in the list,
    * and all kinds of disasters.
    *
    * This is not a contrived case - BLORP vertex data upload hits this.
    *
    * There are worse scenarios too.  Fences for GL sync objects reference
    * brw->batch.batch.bo.  If we replaced the batch pointer when growing,
    * we'd need to chase down every fence and update it to point to the
    * new BO.  Otherwise, it would refer to a "batch" that never actually
    * gets submitted, and would fail to trigger.
    *
    * To work around both of these issues, we transmutate the buffers in
    * place, making the existing struct brw_bo represent the new buffer,
    * and "new_bo" represent the old BO.  This is highly unusual, but it
    * seems like a necessary evil.
    *
    * We also defer the memcpy of the existing batch's contents.  Callers
    * may make multiple brw_state_batch calls, and retain pointers to the
    * old BO's map.  We'll perform the memcpy in finish_growing_bo() when
    * we finally submit the batch, at which point we've finished uploading
    * state, and nobody should have any old references anymore.
    *
    * To do that, we keep a reference to the old BO in grow->partial_bo,
    * and store the number of bytes to copy in grow->partial_bytes.  We
    * can monkey with the refcounts directly without atomics because these
    * are per-context BOs and they can only be touched by this thread.
    */
   assert(new_bo->refcount == 1);
   new_bo->refcount = bo->refcount;
   bo->refcount = 1;

   assert(list_is_empty(&bo->exports));
   assert(list_is_empty(&new_bo->exports));

   struct brw_bo tmp;
   memcpy(&tmp, bo, sizeof(struct brw_bo));
   memcpy(bo, new_bo, sizeof(struct brw_bo));
   memcpy(new_bo, &tmp, sizeof(struct brw_bo));

   list_inithead(&bo->exports);
   list_inithead(&new_bo->exports);

   grow->partial_bo = new_bo; /* the one reference of the OLD bo */
   grow->partial_bytes = existing_bytes;
}

void
brw_batch_require_space(struct brw_context *brw, GLuint sz)
{
   struct brw_batch *batch = &brw->batch;

   const unsigned batch_used = USED_BATCH(*batch) * 4;
   if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
      brw_batch_flush(brw);
   } else if (batch_used + sz >= batch->batch.bo->size) {
      const unsigned new_size =
         MIN2(batch->batch.bo->size + batch->batch.bo->size / 2,
              MAX_BATCH_SIZE);
      grow_buffer(brw, &batch->batch, batch_used, new_size);
      batch->map_next = (void *) batch->batch.map + batch_used;
      assert(batch_used + sz < batch->batch.bo->size);
   }
}

/**
 * Called when starting a new batch buffer.
 */
static void
brw_new_batch(struct brw_context *brw)
{
   /* Unreference any BOs held by the previous batch, and reset counts. */
   for (int i = 0; i < brw->batch.exec_count; i++) {
      brw_bo_unreference(brw->batch.exec_bos[i]);
      brw->batch.exec_bos[i] = NULL;
   }
   brw->batch.batch_relocs.reloc_count = 0;
   brw->batch.state_relocs.reloc_count = 0;
   brw->batch.exec_count = 0;
   brw->batch.aperture_space = 0;

   brw_bo_unreference(brw->batch.state.bo);

   /* Create a new batchbuffer and reset the associated state: */
   brw_batch_reset_and_clear_render_cache(brw);

   /* If the kernel supports hardware contexts, then most hardware state is
    * preserved between batches; we only need to re-emit state that is required
    * to be in every batch.  Otherwise we need to re-emit all the state that
    * would otherwise be stored in the context (which for all intents and
    * purposes means everything).
    */
   if (brw->hw_ctx == 0) {
      brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
      brw_upload_invariant_state(brw);
   }

   brw->ctx.NewDriverState |= BRW_NEW_BATCH;

   brw->ib.index_size = -1;

   /* We need to periodically reap the shader time results, because rollover
    * happens every few seconds.  We also want to see results every once in a
    * while, because many programs won't cleanly destroy our context, so the
    * end-of-run printout may not happen.
    */
   if (INTEL_DEBUG(DEBUG_SHADER_TIME))
      brw_collect_and_report_shader_time(brw);

   brw_batch_maybe_noop(brw);
}

/**
 * Called from brw_batch_flush before emitting MI_BATCHBUFFER_END and
 * sending it off.
 *
 * This function can emit state (say, to preserve registers that aren't saved
 * between batches).
 */
static void
brw_finish_batch(struct brw_context *brw)
{
   const struct intel_device_info *devinfo = &brw->screen->devinfo;

   brw->batch.no_wrap = true;

   /* Capture the closing pipeline statistics register values necessary to
    * support query objects (in the non-hardware context world).
    */
   brw_emit_query_end(brw);

   /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
    * assume that the L3 cache is configured according to the hardware
    * defaults.  On Kernel 4.16+, we no longer need to do this.
    */
   if (devinfo->ver >= 7 &&
       !(brw->screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION))
      gfx7_restore_default_l3_config(brw);

   if (devinfo->is_haswell) {
      /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
       * 3DSTATE_CC_STATE_POINTERS > "Note":
       *
       * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
       *  3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
       *
       * From the example in the docs, it seems to expect a regular pipe control
       * flush here as well. We may have done it already, but meh.
       *
       * See also WaAvoidRCZCounterRollover.
       */
      brw_emit_mi_flush(brw);
      BEGIN_BATCH(2);
      OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
      OUT_BATCH(brw->cc.state_offset | 1);
      ADVANCE_BATCH();
      brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
                                       PIPE_CONTROL_CS_STALL);
   }

   /* Do not restore push constant packets during context restore. */
   if (devinfo->ver >= 7)
      gfx7_emit_isp_disable(brw);

   /* Emit MI_BATCH_BUFFER_END to finish our batch.  Note that execbuf2
    * requires our batch size to be QWord aligned, so we pad it out if
    * necessary by emitting an extra MI_NOOP after the end.
    */
   brw_batch_require_space(brw, 8);
   *brw->batch.map_next++ = MI_BATCH_BUFFER_END;
   if (USED_BATCH(brw->batch) & 1) {
      *brw->batch.map_next++ = MI_NOOP;
   }

   brw->batch.no_wrap = false;
}

static void
throttle(struct brw_context *brw)
{
   /* Wait for the swapbuffers before the one we just emitted, so we
    * don't get too many swaps outstanding for apps that are GPU-heavy
    * but not CPU-heavy.
    *
    * We're using intelDRI2Flush (called from the loader before
    * swapbuffer) and glFlush (for front buffer rendering) as the
    * indicator that a frame is done and then throttle when we get
    * here as we prepare to render the next frame.  At this point for
    * round trips for swap/copy and getting new buffers are done and
    * we'll spend less time waiting on the GPU.
    *
    * Unfortunately, we don't have a handle to the batch containing
    * the swap, and getting our hands on that doesn't seem worth it,
    * so we just use the first batch we emitted after the last swap.
    */
   if (brw->need_swap_throttle && brw->throttle_batch[0]) {
      if (brw->throttle_batch[1]) {
         if (!brw->disable_throttling) {
            brw_bo_wait_rendering(brw->throttle_batch[1]);
         }
         brw_bo_unreference(brw->throttle_batch[1]);
      }
      brw->throttle_batch[1] = brw->throttle_batch[0];
      brw->throttle_batch[0] = NULL;
      brw->need_swap_throttle = false;
      /* Throttling here is more precise than the throttle ioctl, so skip it */
      brw->need_flush_throttle = false;
   }

   if (brw->need_flush_throttle) {
      drmCommandNone(brw->screen->fd, DRM_I915_GEM_THROTTLE);
      brw->need_flush_throttle = false;
   }
}

static int
execbuffer(int fd,
           struct brw_batch *batch,
           uint32_t ctx_id,
           int used,
           int in_fence,
           int *out_fence,
           int flags)
{
   struct drm_i915_gem_execbuffer2 execbuf = {
      .buffers_ptr = (uintptr_t) batch->validation_list,
      .buffer_count = batch->exec_count,
      .batch_start_offset = 0,
      .batch_len = used,
      .flags = flags,
      .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
   };

   unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;

   if (in_fence != -1) {
      execbuf.rsvd2 = in_fence;
      execbuf.flags |= I915_EXEC_FENCE_IN;
   }

   if (out_fence != NULL) {
      cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
      *out_fence = -1;
      execbuf.flags |= I915_EXEC_FENCE_OUT;
   }

   if (num_fences(batch)) {
      execbuf.flags |= I915_EXEC_FENCE_ARRAY;
      execbuf.num_cliprects = num_fences(batch);
      execbuf.cliprects_ptr =
         (uintptr_t)util_dynarray_begin(&batch->exec_fences);
   }


   int ret = drmIoctl(fd, cmd, &execbuf);
   if (ret != 0)
      ret = -errno;

   for (int i = 0; i < batch->exec_count; i++) {
      struct brw_bo *bo = batch->exec_bos[i];

      bo->idle = false;
      bo->index = -1;

      /* Update brw_bo::gtt_offset */
      if (batch->validation_list[i].offset != bo->gtt_offset) {
         DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
             bo->gem_handle, bo->gtt_offset,
             (uint64_t)batch->validation_list[i].offset);
         assert(!(bo->kflags & EXEC_OBJECT_PINNED));
         bo->gtt_offset = batch->validation_list[i].offset;
      }
   }

   if (ret == 0 && out_fence != NULL)
      *out_fence = execbuf.rsvd2 >> 32;

   return ret;
}

static int
submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
{
   struct brw_batch *batch = &brw->batch;
   int ret = 0;

   if (batch->use_shadow_copy) {
      void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE);
      memcpy(bo_map, batch->batch.map, 4 * USED_BATCH(*batch));

      bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE);
      memcpy(bo_map, batch->state.map, batch->state_used);
   }

   brw_bo_unmap(batch->batch.bo);
   brw_bo_unmap(batch->state.bo);

   if (!brw->screen->devinfo.no_hw) {
      /* The requirement for using I915_EXEC_NO_RELOC are:
       *
       *   The addresses written in the objects must match the corresponding
       *   reloc.gtt_offset which in turn must match the corresponding
       *   execobject.offset.
       *
       *   Any render targets written to in the batch must be flagged with
       *   EXEC_OBJECT_WRITE.
       *
       *   To avoid stalling, execobject.offset should match the current
       *   address of that object within the active context.
       */
      int flags = I915_EXEC_NO_RELOC | I915_EXEC_RENDER;

      if (batch->needs_sol_reset)
         flags |= I915_EXEC_GEN7_SOL_RESET;

      /* Set statebuffer relocations */
      const unsigned state_index = batch->state.bo->index;
      if (state_index < batch->exec_count &&
          batch->exec_bos[state_index] == batch->state.bo) {
         struct drm_i915_gem_exec_object2 *entry =
            &batch->validation_list[state_index];
         assert(entry->handle == batch->state.bo->gem_handle);
         entry->relocation_count = batch->state_relocs.reloc_count;
         entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
      }

      /* Set batchbuffer relocations */
      struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
      assert(entry->handle == batch->batch.bo->gem_handle);
      entry->relocation_count = batch->batch_relocs.reloc_count;
      entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;

      if (batch->use_batch_first) {
         flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
      } else {
         /* Move the batch to the end of the validation list */
         struct drm_i915_gem_exec_object2 tmp;
         struct brw_bo *tmp_bo;
         const unsigned index = batch->exec_count - 1;

         tmp = *entry;
         *entry = batch->validation_list[index];
         batch->validation_list[index] = tmp;

         tmp_bo = batch->exec_bos[0];
         batch->exec_bos[0] = batch->exec_bos[index];
         batch->exec_bos[index] = tmp_bo;
      }

      ret = execbuffer(brw->screen->fd, batch, brw->hw_ctx,
                       4 * USED_BATCH(*batch),
                       in_fence_fd, out_fence_fd, flags);

      throttle(brw);
   }

   if (INTEL_DEBUG(DEBUG_BATCH)) {
      intel_print_batch(&batch->decoder, batch->batch.map,
                        4 * USED_BATCH(*batch),
                        batch->batch.bo->gtt_offset, false);
   }

   if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
      brw_check_for_reset(brw);

   if (ret != 0) {
      fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
              strerror(-ret));
      abort();
   }

   return ret;
}

/**
 * The in_fence_fd is ignored if -1.  Otherwise this function takes ownership
 * of the fd.
 *
 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
 * of the returned fd.
 */
int
_brw_batch_flush_fence(struct brw_context *brw,
                               int in_fence_fd, int *out_fence_fd,
                               const char *file, int line)
{
   int ret;

   if (USED_BATCH(brw->batch) == 0 && !brw->batch.contains_fence_signal)
      return 0;

   /* Check that we didn't just wrap our batchbuffer at a bad time. */
   assert(!brw->batch.no_wrap);

   brw_finish_batch(brw);
   brw_upload_finish(&brw->upload);

   finish_growing_bos(&brw->batch.batch);
   finish_growing_bos(&brw->batch.state);

   if (brw->throttle_batch[0] == NULL) {
      brw->throttle_batch[0] = brw->batch.batch.bo;
      brw_bo_reference(brw->throttle_batch[0]);
   }

   if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT)) {
      int bytes_for_commands = 4 * USED_BATCH(brw->batch);
      int bytes_for_state = brw->batch.state_used;
      fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
              " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
              " %4d batch relocs, %4d state relocs\n", file, line,
              bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
              bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
              brw->batch.exec_count,
              (float) (brw->batch.aperture_space / (1024 * 1024)),
              brw->batch.batch_relocs.reloc_count,
              brw->batch.state_relocs.reloc_count);

      dump_validation_list(&brw->batch);
   }

   ret = submit_batch(brw, in_fence_fd, out_fence_fd);

   if (INTEL_DEBUG(DEBUG_SYNC)) {
      fprintf(stderr, "waiting for idle\n");
      brw_bo_wait_rendering(brw->batch.batch.bo);
   }

   /* Start a new batch buffer. */
   brw_new_batch(brw);

   return ret;
}

void
brw_batch_maybe_noop(struct brw_context *brw)
{
   if (!brw->frontend_noop || USED_BATCH(brw->batch) != 0)
      return;

   BEGIN_BATCH(1);
   OUT_BATCH(MI_BATCH_BUFFER_END);
   ADVANCE_BATCH();
}

bool
brw_batch_references(struct brw_batch *batch, struct brw_bo *bo)
{
   unsigned index = READ_ONCE(bo->index);
   if (index < batch->exec_count && batch->exec_bos[index] == bo)
      return true;

   for (int i = 0; i < batch->exec_count; i++) {
      if (batch->exec_bos[i] == bo)
         return true;
   }
   return false;
}

/*  This is the only way buffers get added to the validate list.
 */
static uint64_t
emit_reloc(struct brw_batch *batch,
           struct brw_reloc_list *rlist, uint32_t offset,
           struct brw_bo *target, int32_t target_offset,
           unsigned int reloc_flags)
{
   assert(target != NULL);

   if (target->kflags & EXEC_OBJECT_PINNED) {
      brw_use_pinned_bo(batch, target, reloc_flags & RELOC_WRITE);
      return intel_canonical_address(target->gtt_offset + target_offset);
   }

   unsigned int index = add_exec_bo(batch, target);
   struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];

   if (rlist->reloc_count == rlist->reloc_array_size) {
      rlist->reloc_array_size *= 2;
      rlist->relocs = realloc(rlist->relocs,
                              rlist->reloc_array_size *
                              sizeof(struct drm_i915_gem_relocation_entry));
   }

   if (reloc_flags & RELOC_32BIT) {
      /* Restrict this buffer to the low 32 bits of the address space.
       *
       * Altering the validation list flags restricts it for this batch,
       * but we also alter the BO's kflags to restrict it permanently
       * (until the BO is destroyed and put back in the cache).  Buffers
       * may stay bound across batches, and we want keep it constrained.
       */
      target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
      entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;

      /* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */
      reloc_flags &= ~RELOC_32BIT;
   }

   if (reloc_flags)
      entry->flags |= reloc_flags & batch->valid_reloc_flags;

   rlist->relocs[rlist->reloc_count++] =
      (struct drm_i915_gem_relocation_entry) {
         .offset = offset,
         .delta = target_offset,
         .target_handle = batch->use_batch_first ? index : target->gem_handle,
         .presumed_offset = entry->offset,
      };

   /* Using the old buffer offset, write in what the right data would be, in
    * case the buffer doesn't move and we can short-circuit the relocation
    * processing in the kernel
    */
   return entry->offset + target_offset;
}

void
brw_use_pinned_bo(struct brw_batch *batch, struct brw_bo *bo,
                  unsigned writable_flag)
{
   assert(bo->kflags & EXEC_OBJECT_PINNED);
   assert((writable_flag & ~EXEC_OBJECT_WRITE) == 0);

   unsigned int index = add_exec_bo(batch, bo);
   struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
   assert(entry->offset == bo->gtt_offset);

   if (writable_flag)
      entry->flags |= EXEC_OBJECT_WRITE;
}

uint64_t
brw_batch_reloc(struct brw_batch *batch, uint32_t batch_offset,
                struct brw_bo *target, uint32_t target_offset,
                unsigned int reloc_flags)
{
   assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t));

   return emit_reloc(batch, &batch->batch_relocs, batch_offset,
                     target, target_offset, reloc_flags);
}

uint64_t
brw_state_reloc(struct brw_batch *batch, uint32_t state_offset,
                struct brw_bo *target, uint32_t target_offset,
                unsigned int reloc_flags)
{
   assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));

   return emit_reloc(batch, &batch->state_relocs, state_offset,
                     target, target_offset, reloc_flags);
}

/**
 * Reserve some space in the statebuffer, or flush.
 *
 * This is used to estimate when we're near the end of the batch,
 * so we can flush early.
 */
void
brw_require_statebuffer_space(struct brw_context *brw, int size)
{
   if (brw->batch.state_used + size >= STATE_SZ)
      brw_batch_flush(brw);
}

/**
 * Allocates a block of space in the batchbuffer for indirect state.
 */
void *
brw_state_batch(struct brw_context *brw,
                int size,
                int alignment,
                uint32_t *out_offset)
{
   struct brw_batch *batch = &brw->batch;

   assert(size < batch->state.bo->size);

   uint32_t offset = ALIGN(batch->state_used, alignment);

   if (offset + size >= STATE_SZ && !batch->no_wrap) {
      brw_batch_flush(brw);
      offset = ALIGN(batch->state_used, alignment);
   } else if (offset + size >= batch->state.bo->size) {
      const unsigned new_size =
         MIN2(batch->state.bo->size + batch->state.bo->size / 2,
              MAX_STATE_SIZE);
      grow_buffer(brw, &batch->state, batch->state_used, new_size);
      assert(offset + size < batch->state.bo->size);
   }

   if (INTEL_DEBUG(DEBUG_BATCH)) {
      _mesa_hash_table_u64_insert(batch->state_batch_sizes,
                                  offset, (void *) (uintptr_t) size);
   }

   batch->state_used = offset + size;

   *out_offset = offset;
   return batch->state.map + (offset >> 2);
}

void
brw_batch_data(struct brw_context *brw,
                       const void *data, GLuint bytes)
{
   assert((bytes & 3) == 0);
   brw_batch_require_space(brw, bytes);
   memcpy(brw->batch.map_next, data, bytes);
   brw->batch.map_next += bytes >> 2;
}

static void
load_sized_register_mem(struct brw_context *brw,
                        uint32_t reg,
                        struct brw_bo *bo,
                        uint32_t offset,
                        int size)
{
   const struct intel_device_info *devinfo = &brw->screen->devinfo;
   int i;

   /* MI_LOAD_REGISTER_MEM only exists on Gfx7+. */
   assert(devinfo->ver >= 7);

   if (devinfo->ver >= 8) {
      BEGIN_BATCH(4 * size);
      for (i = 0; i < size; i++) {
         OUT_BATCH(GFX7_MI_LOAD_REGISTER_MEM | (4 - 2));
         OUT_BATCH(reg + i * 4);
         OUT_RELOC64(bo, 0, offset + i * 4);
      }
      ADVANCE_BATCH();
   } else {
      BEGIN_BATCH(3 * size);
      for (i = 0; i < size; i++) {
         OUT_BATCH(GFX7_MI_LOAD_REGISTER_MEM | (3 - 2));
         OUT_BATCH(reg + i * 4);
         OUT_RELOC(bo, 0, offset + i * 4);
      }
      ADVANCE_BATCH();
   }
}

void
brw_load_register_mem(struct brw_context *brw,
                      uint32_t reg,
                      struct brw_bo *bo,
                      uint32_t offset)
{
   load_sized_register_mem(brw, reg, bo, offset, 1);
}

void
brw_load_register_mem64(struct brw_context *brw,
                        uint32_t reg,
                        struct brw_bo *bo,
                        uint32_t offset)
{
   load_sized_register_mem(brw, reg, bo, offset, 2);
}

/*
 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
 */
void
brw_store_register_mem32(struct brw_context *brw,
                         struct brw_bo *bo, uint32_t reg, uint32_t offset)
{
   const struct intel_device_info *devinfo = &brw->screen->devinfo;

   assert(devinfo->ver >= 6);

   if (devinfo->ver >= 8) {
      BEGIN_BATCH(4);
      OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
      OUT_BATCH(reg);
      OUT_RELOC64(bo, RELOC_WRITE, offset);
      ADVANCE_BATCH();
   } else {
      BEGIN_BATCH(3);
      OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
      OUT_BATCH(reg);
      OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
      ADVANCE_BATCH();
   }
}

/*
 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
 */
void
brw_store_register_mem64(struct brw_context *brw,
                         struct brw_bo *bo, uint32_t reg, uint32_t offset)
{
   const struct intel_device_info *devinfo = &brw->screen->devinfo;

   assert(devinfo->ver >= 6);

   /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
    * read a full 64-bit register, we need to do two of them.
    */
   if (devinfo->ver >= 8) {
      BEGIN_BATCH(8);
      OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
      OUT_BATCH(reg);
      OUT_RELOC64(bo, RELOC_WRITE, offset);
      OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
      OUT_BATCH(reg + sizeof(uint32_t));
      OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
      ADVANCE_BATCH();
   } else {
      BEGIN_BATCH(6);
      OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
      OUT_BATCH(reg);
      OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
      OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
      OUT_BATCH(reg + sizeof(uint32_t));
      OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
      ADVANCE_BATCH();
   }
}

/*
 * Write a 32-bit register using immediate data.
 */
void
brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
{
   assert(brw->screen->devinfo.ver >= 6);

   BEGIN_BATCH(3);
   OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
   OUT_BATCH(reg);
   OUT_BATCH(imm);
   ADVANCE_BATCH();
}

/*
 * Write a 64-bit register using immediate data.
 */
void
brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
{
   assert(brw->screen->devinfo.ver >= 6);

   BEGIN_BATCH(5);
   OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
   OUT_BATCH(reg);
   OUT_BATCH(imm & 0xffffffff);
   OUT_BATCH(reg + 4);
   OUT_BATCH(imm >> 32);
   ADVANCE_BATCH();
}

/*
 * Copies a 32-bit register.
 */
void
brw_load_register_reg(struct brw_context *brw, uint32_t dest, uint32_t src)
{
   assert(brw->screen->devinfo.verx10 >= 75);

   BEGIN_BATCH(3);
   OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
   OUT_BATCH(src);
   OUT_BATCH(dest);
   ADVANCE_BATCH();
}

/*
 * Copies a 64-bit register.
 */
void
brw_load_register_reg64(struct brw_context *brw, uint32_t dest, uint32_t src)
{
   assert(brw->screen->devinfo.verx10 >= 75);

   BEGIN_BATCH(6);
   OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
   OUT_BATCH(src);
   OUT_BATCH(dest);
   OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
   OUT_BATCH(src + sizeof(uint32_t));
   OUT_BATCH(dest + sizeof(uint32_t));
   ADVANCE_BATCH();
}

/*
 * Write 32-bits of immediate data to a GPU memory buffer.
 */
void
brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
                     uint32_t offset, uint32_t imm)
{
   const struct intel_device_info *devinfo = &brw->screen->devinfo;

   assert(devinfo->ver >= 6);

   BEGIN_BATCH(4);
   OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
   if (devinfo->ver >= 8)
      OUT_RELOC64(bo, RELOC_WRITE, offset);
   else {
      OUT_BATCH(0); /* MBZ */
      OUT_RELOC(bo, RELOC_WRITE, offset);
   }
   OUT_BATCH(imm);
   ADVANCE_BATCH();
}

/*
 * Write 64-bits of immediate data to a GPU memory buffer.
 */
void
brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
                     uint32_t offset, uint64_t imm)
{
   const struct intel_device_info *devinfo = &brw->screen->devinfo;

   assert(devinfo->ver >= 6);

   BEGIN_BATCH(5);
   OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
   if (devinfo->ver >= 8)
      OUT_RELOC64(bo, RELOC_WRITE, offset);
   else {
      OUT_BATCH(0); /* MBZ */
      OUT_RELOC(bo, RELOC_WRITE, offset);
   }
   OUT_BATCH(imm & 0xffffffffu);
   OUT_BATCH(imm >> 32);
   ADVANCE_BATCH();
}