summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/zink/zink_compiler.c
blob: f030483817d4671ac01b832c5a169e6dfe05c40c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/*
 * Copyright 2018 Collabora Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "zink_context.h"
#include "zink_compiler.h"
#include "zink_program.h"
#include "zink_screen.h"
#include "nir_to_spirv/nir_to_spirv.h"

#include "pipe/p_state.h"

#include "nir.h"
#include "compiler/nir/nir_builder.h"

#include "nir/tgsi_to_nir.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_from_mesa.h"

#include "util/u_memory.h"

static void
create_vs_pushconst(nir_shader *nir)
{
   nir_variable *vs_pushconst;
   /* create compatible layout for the ntv push constant loader */
   struct glsl_struct_field *fields = rzalloc_array(nir, struct glsl_struct_field, 2);
   fields[0].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[0].name = ralloc_asprintf(nir, "draw_mode_is_indexed");
   fields[0].offset = offsetof(struct zink_gfx_push_constant, draw_mode_is_indexed);
   fields[1].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[1].name = ralloc_asprintf(nir, "draw_id");
   fields[1].offset = offsetof(struct zink_gfx_push_constant, draw_id);
   vs_pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 2, "struct", false), "vs_pushconst");
   vs_pushconst->data.location = INT_MAX; //doesn't really matter
}

static void
create_cs_pushconst(nir_shader *nir)
{
   nir_variable *cs_pushconst;
   /* create compatible layout for the ntv push constant loader */
   struct glsl_struct_field *fields = rzalloc_size(nir, 1 * sizeof(struct glsl_struct_field));
   fields[0].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[0].name = ralloc_asprintf(nir, "work_dim");
   fields[0].offset = 0;
   cs_pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 1, "struct", false), "cs_pushconst");
   cs_pushconst->data.location = INT_MAX; //doesn't really matter
}

static bool
reads_work_dim(nir_shader *shader)
{
   return BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_WORK_DIM);
}

static bool
lower_discard_if_instr(nir_intrinsic_instr *instr, nir_builder *b)
{
   if (instr->intrinsic == nir_intrinsic_discard_if) {
      b->cursor = nir_before_instr(&instr->instr);

      nir_if *if_stmt = nir_push_if(b, nir_ssa_for_src(b, instr->src[0], 1));
      nir_discard(b);
      nir_pop_if(b, if_stmt);
      nir_instr_remove(&instr->instr);
      return true;
   }
   /* a shader like this (shaders@glsl-fs-discard-04):

      uniform int j, k;

      void main()
      {
       for (int i = 0; i < j; i++) {
        if (i > k)
         continue;
        discard;
       }
       gl_FragColor = vec4(0.0, 1.0, 0.0, 0.0);
      }



      will generate nir like:

      loop   {
         //snip
         if   ssa_11   {
            block   block_5:
            /   preds:   block_4   /
            vec1   32   ssa_17   =   iadd   ssa_50,   ssa_31
            /   succs:   block_7   /
         }   else   {
            block   block_6:
            /   preds:   block_4   /
            intrinsic   discard   ()   () <-- not last instruction
            vec1   32   ssa_23   =   iadd   ssa_50,   ssa_31 <-- dead code loop itr increment
            /   succs:   block_7   /
         }
         //snip
      }

      which means that we can't assert like this:

      assert(instr->intrinsic != nir_intrinsic_discard ||
             nir_block_last_instr(instr->instr.block) == &instr->instr);


      and it's unnecessary anyway since post-vtn optimizing will dce the instructions following the discard
    */

   return false;
}

static bool
lower_discard_if(nir_shader *shader)
{
   bool progress = false;

   nir_foreach_function(function, shader) {
      if (function->impl) {
         nir_builder builder;
         nir_builder_init(&builder, function->impl);
         nir_foreach_block(block, function->impl) {
            nir_foreach_instr_safe(instr, block) {
               if (instr->type == nir_instr_type_intrinsic)
                  progress |= lower_discard_if_instr(
                                                  nir_instr_as_intrinsic(instr),
                                                  &builder);
            }
         }

         nir_metadata_preserve(function->impl, nir_metadata_dominance);
      }
   }

   return progress;
}

static bool
lower_work_dim_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_work_dim)
      return false;

   if (instr->intrinsic == nir_intrinsic_load_work_dim) {
      b->cursor = nir_after_instr(&instr->instr);
      nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
      load->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
      nir_intrinsic_set_range(load, 3 * sizeof(uint32_t));
      load->num_components = 1;
      nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "work_dim");
      nir_builder_instr_insert(b, &load->instr);

      nir_ssa_def_rewrite_uses(&instr->dest.ssa, &load->dest.ssa);
   }

   return true;
}

static bool
lower_work_dim(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_KERNEL)
      return false;

   if (!reads_work_dim(shader))
      return false;

   return nir_shader_instructions_pass(shader, lower_work_dim_instr, nir_metadata_dominance, NULL);
}

static bool
lower_64bit_vertex_attribs_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_deref)
      return false;
   nir_deref_instr *deref = nir_instr_as_deref(instr);
   if (deref->deref_type != nir_deref_type_var)
      return false;
   nir_variable *var = nir_deref_instr_get_variable(deref);
   if (var->data.mode != nir_var_shader_in)
      return false;
   if (!glsl_type_is_64bit(var->type) || !glsl_type_is_vector(var->type) || glsl_get_vector_elements(var->type) < 3)
      return false;

   /* create second variable for the split */
   nir_variable *var2 = nir_variable_clone(var, b->shader);
   /* split new variable into second slot */
   var2->data.driver_location++;
   nir_shader_add_variable(b->shader, var2);

   unsigned total_num_components = glsl_get_vector_elements(var->type);
   /* new variable is the second half of the dvec */
   var2->type = glsl_vector_type(glsl_get_base_type(var->type), glsl_get_vector_elements(var->type) - 2);
   /* clamp original variable to a dvec2 */
   deref->type = var->type = glsl_vector_type(glsl_get_base_type(var->type), 2);

   /* create deref instr for new variable */
   b->cursor = nir_after_instr(instr);
   nir_deref_instr *deref2 = nir_build_deref_var(b, var2);

   nir_foreach_use_safe(use_src, &deref->dest.ssa) {
      nir_instr *use_instr = use_src->parent_instr;
      assert(use_instr->type == nir_instr_type_intrinsic &&
             nir_instr_as_intrinsic(use_instr)->intrinsic == nir_intrinsic_load_deref);

      /* this is a load instruction for the deref, and we need to split it into two instructions that we can
       * then zip back into a single ssa def */
      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(use_instr);
      /* clamp the first load to 2 64bit components */
      intr->num_components = intr->dest.ssa.num_components = 2;
      b->cursor = nir_after_instr(use_instr);
      /* this is the second load instruction for the second half of the dvec3/4 components */
      nir_intrinsic_instr *intr2 = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_deref);
      intr2->src[0] = nir_src_for_ssa(&deref2->dest.ssa);
      intr2->num_components = total_num_components - 2;
      nir_ssa_dest_init(&intr2->instr, &intr2->dest, intr2->num_components, 64, NULL);
      nir_builder_instr_insert(b, &intr2->instr);

      nir_ssa_def *def[4];
      /* create a new dvec3/4 comprised of all the loaded components from both variables */
      def[0] = nir_vector_extract(b, &intr->dest.ssa, nir_imm_int(b, 0));
      def[1] = nir_vector_extract(b, &intr->dest.ssa, nir_imm_int(b, 1));
      def[2] = nir_vector_extract(b, &intr2->dest.ssa, nir_imm_int(b, 0));
      if (total_num_components == 4)
         def[3] = nir_vector_extract(b, &intr2->dest.ssa, nir_imm_int(b, 1));
      nir_ssa_def *new_vec = nir_vec(b, def, total_num_components);
      /* use the assembled dvec3/4 for all other uses of the load */
      nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, new_vec,
                                     new_vec->parent_instr);
   }

   return true;
}

/* "64-bit three- and four-component vectors consume two consecutive locations."
 *  - 14.1.4. Location Assignment
 *
 * this pass splits dvec3 and dvec4 vertex inputs into a dvec2 and a double/dvec2 which
 * are assigned to consecutive locations, loaded separately, and then assembled back into a
 * composite value that's used in place of the original loaded ssa src
 */
static bool
lower_64bit_vertex_attribs(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   return nir_shader_instructions_pass(shader, lower_64bit_vertex_attribs_instr, nir_metadata_dominance, NULL);
}

static bool
lower_basevertex_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_base_vertex)
      return false;

   b->cursor = nir_after_instr(&instr->instr);
   nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
   load->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
   nir_intrinsic_set_range(load, 4);
   load->num_components = 1;
   nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "draw_mode_is_indexed");
   nir_builder_instr_insert(b, &load->instr);

   nir_ssa_def *composite = nir_build_alu(b, nir_op_bcsel,
                                          nir_build_alu(b, nir_op_ieq, &load->dest.ssa, nir_imm_int(b, 1), NULL, NULL),
                                          &instr->dest.ssa,
                                          nir_imm_int(b, 0),
                                          NULL);

   nir_ssa_def_rewrite_uses_after(&instr->dest.ssa, composite,
                                  composite->parent_instr);
   return true;
}

static bool
lower_basevertex(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   if (!BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_BASE_VERTEX))
      return false;

   return nir_shader_instructions_pass(shader, lower_basevertex_instr, nir_metadata_dominance, NULL);
}


static bool
lower_drawid_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_draw_id)
      return false;

   b->cursor = nir_before_instr(&instr->instr);
   nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
   load->src[0] = nir_src_for_ssa(nir_imm_int(b, 1));
   nir_intrinsic_set_range(load, 4);
   load->num_components = 1;
   nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "draw_id");
   nir_builder_instr_insert(b, &load->instr);

   nir_ssa_def_rewrite_uses(&instr->dest.ssa, &load->dest.ssa);

   return true;
}

static bool
lower_drawid(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   if (!BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
      return false;

   return nir_shader_instructions_pass(shader, lower_drawid_instr, nir_metadata_dominance, NULL);
}

static bool
lower_dual_blend(nir_shader *shader)
{
   bool progress = false;
   nir_variable *var = nir_find_variable_with_location(shader, nir_var_shader_out, FRAG_RESULT_DATA1);
   if (var) {
      var->data.location = FRAG_RESULT_DATA0;
      var->data.index = 1;
      progress = true;
   }
   nir_shader_preserve_all_metadata(shader);
   return progress;
}

void
zink_screen_init_compiler(struct zink_screen *screen)
{
   static const struct nir_shader_compiler_options
   default_options = {
      .lower_ffma16 = true,
      .lower_ffma32 = true,
      .lower_ffma64 = true,
      .lower_scmp = true,
      .lower_fdph = true,
      .lower_flrp32 = true,
      .lower_fpow = true,
      .lower_fsat = true,
      .lower_extract_byte = true,
      .lower_extract_word = true,
      .lower_mul_high = true,
      .lower_rotate = true,
      .lower_uadd_carry = true,
      .lower_pack_64_2x32_split = true,
      .lower_unpack_64_2x32_split = true,
      .lower_vector_cmp = true,
      .lower_int64_options = 0,
      .lower_doubles_options = ~nir_lower_fp64_full_software,
      .has_fsub = true,
      .has_isub = true,
      .lower_mul_2x32_64 = true,
   };

   screen->nir_options = default_options;

   if (!screen->info.feats.features.shaderInt64)
      screen->nir_options.lower_int64_options = ~0;

   if (!screen->info.feats.features.shaderFloat64) {
      screen->nir_options.lower_doubles_options = ~0;
      screen->nir_options.lower_flrp64 = true;
      screen->nir_options.lower_ffma64 = true;
   }
}

const void *
zink_get_compiler_options(struct pipe_screen *pscreen,
                          enum pipe_shader_ir ir,
                          enum pipe_shader_type shader)
{
   assert(ir == PIPE_SHADER_IR_NIR);
   return &zink_screen(pscreen)->nir_options;
}

struct nir_shader *
zink_tgsi_to_nir(struct pipe_screen *screen, const struct tgsi_token *tokens)
{
   if (zink_debug & ZINK_DEBUG_TGSI) {
      fprintf(stderr, "TGSI shader:\n---8<---\n");
      tgsi_dump_to_file(tokens, 0, stderr);
      fprintf(stderr, "---8<---\n\n");
   }

   return tgsi_to_nir(tokens, screen, false);
}

static void
optimize_nir(struct nir_shader *s)
{
   bool progress;
   do {
      progress = false;
      NIR_PASS_V(s, nir_lower_vars_to_ssa);
      NIR_PASS(progress, s, nir_copy_prop);
      NIR_PASS(progress, s, nir_opt_remove_phis);
      NIR_PASS(progress, s, nir_opt_dce);
      NIR_PASS(progress, s, nir_opt_dead_cf);
      NIR_PASS(progress, s, nir_opt_cse);
      NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
      NIR_PASS(progress, s, nir_opt_algebraic);
      NIR_PASS(progress, s, nir_opt_constant_folding);
      NIR_PASS(progress, s, nir_opt_undef);
      NIR_PASS(progress, s, zink_nir_lower_b2b);
   } while (progress);
}

/* check for a genuine gl_PointSize output vs one from nir_lower_point_size_mov */
static bool
check_psiz(struct nir_shader *s)
{
   nir_foreach_shader_out_variable(var, s) {
      if (var->data.location == VARYING_SLOT_PSIZ) {
         /* genuine PSIZ outputs will have this set */
         return !!var->data.explicit_location;
      }
   }
   return false;
}

static void
update_so_info(struct zink_shader *zs, const struct pipe_stream_output_info *so_info,
               uint64_t outputs_written, bool have_psiz)
{
   uint8_t reverse_map[64] = {};
   unsigned slot = 0;
   /* semi-copied from iris */
   while (outputs_written) {
      int bit = u_bit_scan64(&outputs_written);
      /* PSIZ from nir_lower_point_size_mov breaks stream output, so always skip it */
      if (bit == VARYING_SLOT_PSIZ && !have_psiz)
         continue;
      reverse_map[slot++] = bit;
   }

   nir_foreach_shader_out_variable(var, zs->nir)
      var->data.explicit_xfb_buffer = 0;

   bool inlined[64] = {0};
   for (unsigned i = 0; i < so_info->num_outputs; i++) {
      const struct pipe_stream_output *output = &so_info->output[i];
      unsigned slot = reverse_map[output->register_index];
      /* always set stride to be used during draw */
      zs->streamout.so_info.stride[output->output_buffer] = so_info->stride[output->output_buffer];
      if ((zs->nir->info.stage != MESA_SHADER_GEOMETRY || util_bitcount(zs->nir->info.gs.active_stream_mask) == 1) &&
          !output->start_component) {
         nir_variable *var = NULL;
         while (!var)
            var = nir_find_variable_with_location(zs->nir, nir_var_shader_out, slot--);
         slot++;
         if (inlined[slot])
            continue;
         assert(var && var->data.location == slot);
         /* if this is the entire variable, try to blast it out during the initial declaration */
         if (glsl_get_components(var->type) == output->num_components) {
            var->data.explicit_xfb_buffer = 1;
            var->data.xfb.buffer = output->output_buffer;
            var->data.xfb.stride = so_info->stride[output->output_buffer] * 4;
            var->data.offset = output->dst_offset * 4;
            var->data.stream = output->stream;
            inlined[slot] = true;
            continue;
         }
      }
      zs->streamout.so_info.output[zs->streamout.so_info.num_outputs] = *output;
      /* Map Gallium's condensed "slots" back to real VARYING_SLOT_* enums */
      zs->streamout.so_info_slots[zs->streamout.so_info.num_outputs++] = reverse_map[output->register_index];
   }
   zs->streamout.have_xfb = !!zs->streamout.so_info.num_outputs;
}

static void
assign_io_locations(nir_shader *nir, unsigned char *shader_slot_map,
                    unsigned char *shader_slots_reserved)
{
   unsigned reserved = shader_slots_reserved ? *shader_slots_reserved : 0;
   nir_foreach_variable_with_modes(var, nir, nir_var_shader_in | nir_var_shader_out) {
      if ((nir->info.stage == MESA_SHADER_VERTEX && var->data.mode == nir_var_shader_in) ||
          (nir->info.stage == MESA_SHADER_FRAGMENT && var->data.mode == nir_var_shader_out))
         continue;

      unsigned slot = var->data.location;
      switch (var->data.location) {
      case VARYING_SLOT_POS:
      case VARYING_SLOT_PNTC:
      case VARYING_SLOT_PSIZ:
      case VARYING_SLOT_LAYER:
      case VARYING_SLOT_PRIMITIVE_ID:
      case VARYING_SLOT_CLIP_DIST0:
      case VARYING_SLOT_CULL_DIST0:
      case VARYING_SLOT_VIEWPORT:
      case VARYING_SLOT_FACE:
      case VARYING_SLOT_TESS_LEVEL_OUTER:
      case VARYING_SLOT_TESS_LEVEL_INNER:
         /* use a sentinel value to avoid counting later */
         var->data.driver_location = UINT_MAX;
         break;

      default:
         if (var->data.patch) {
            assert(var->data.location >= VARYING_SLOT_PATCH0);
            slot = var->data.location - VARYING_SLOT_PATCH0;
         } else if (var->data.location >= VARYING_SLOT_VAR0 &&
                     ((var->data.mode == nir_var_shader_out &&
                     nir->info.stage == MESA_SHADER_TESS_CTRL) ||
                    (var->data.mode != nir_var_shader_out &&
                     nir->info.stage == MESA_SHADER_TESS_EVAL))) {
            slot = var->data.location - VARYING_SLOT_VAR0;
         } else {
            if (shader_slot_map[var->data.location] == 0xff) {
               assert(reserved < MAX_VARYING);
               shader_slot_map[var->data.location] = reserved;
               reserved += glsl_count_vec4_slots(var->type, false, false);
            }
            slot = shader_slot_map[var->data.location];
            assert(slot < MAX_VARYING);
         }
         var->data.driver_location = slot;
      }
   }

   if (shader_slots_reserved)
      *shader_slots_reserved = reserved;
}

VkShaderModule
zink_shader_compile(struct zink_screen *screen, struct zink_shader *zs, struct zink_shader_key *key,
                    unsigned char *shader_slot_map, unsigned char *shader_slots_reserved)
{
   VkShaderModule mod = VK_NULL_HANDLE;
   void *streamout = NULL;
   nir_shader *nir = zs->nir;

   if (key) {
      if (key->inline_uniforms) {
         if (nir == zs->nir)
            nir = nir_shader_clone(NULL, nir);
         NIR_PASS_V(nir, nir_inline_uniforms,
                    nir->info.num_inlinable_uniforms,
                    key->base.inlined_uniform_values,
                    nir->info.inlinable_uniform_dw_offsets);

         optimize_nir(nir);

         /* This must be done again. */
         NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in |
                                                          nir_var_shader_out);
      }
   }

   /* TODO: use a separate mem ctx here for ralloc */
   if (zs->nir->info.stage < MESA_SHADER_FRAGMENT) {
      if (zink_vs_key(key)->last_vertex_stage) {
         if (zs->streamout.have_xfb)
            streamout = &zs->streamout;

         if (!zink_vs_key(key)->clip_halfz) {
            nir = nir_shader_clone(NULL, zs->nir);
            NIR_PASS_V(nir, nir_lower_clip_halfz);
         }
         if (zink_vs_key(key)->push_drawid) {
            if (nir == zs->nir)
               nir = nir_shader_clone(NULL, zs->nir);
            NIR_PASS_V(nir, lower_drawid);
         }
      }
   } else if (zs->nir->info.stage == MESA_SHADER_FRAGMENT) {
      if (!zink_fs_key(key)->samples &&
          nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
         nir = nir_shader_clone(NULL, zs->nir);
         /* VK will always use gl_SampleMask[] values even if sample count is 0,
          * so we need to skip this write here to mimic GL's behavior of ignoring it
          */
         nir_foreach_shader_out_variable(var, nir) {
            if (var->data.location == FRAG_RESULT_SAMPLE_MASK)
               var->data.mode = nir_var_shader_temp;
         }
         nir_fixup_deref_modes(nir);
         NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
         optimize_nir(nir);
      }
      if (zink_fs_key(key)->force_dual_color_blend && nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA1)) {
         if (nir == zs->nir)
            nir = nir_shader_clone(NULL, zs->nir);
         NIR_PASS_V(nir, lower_dual_blend);
      }
      if (zink_fs_key(key)->coord_replace_bits) {
         if (nir == zs->nir)
            nir = nir_shader_clone(NULL, zs->nir);
         NIR_PASS_V(nir, nir_lower_texcoord_replace, zink_fs_key(key)->coord_replace_bits,
                    false, zink_fs_key(key)->coord_replace_yinvert);
      }
   }
   NIR_PASS_V(nir, nir_convert_from_ssa, true);

   assign_io_locations(nir, shader_slot_map, shader_slots_reserved);

   struct spirv_shader *spirv = nir_to_spirv(nir, streamout);
   if (!spirv)
      goto done;

   if (zink_debug & ZINK_DEBUG_SPIRV) {
      char buf[256];
      static int i;
      snprintf(buf, sizeof(buf), "dump%02d.spv", i++);
      FILE *fp = fopen(buf, "wb");
      if (fp) {
         fwrite(spirv->words, sizeof(uint32_t), spirv->num_words, fp);
         fclose(fp);
         fprintf(stderr, "wrote '%s'...\n", buf);
      }
   }

   VkShaderModuleCreateInfo smci = {};
   smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
   smci.codeSize = spirv->num_words * sizeof(uint32_t);
   smci.pCode = spirv->words;

   if (vkCreateShaderModule(screen->dev, &smci, NULL, &mod) != VK_SUCCESS)
      mod = VK_NULL_HANDLE;

done:
   if (nir != zs->nir)
      ralloc_free(nir);

   /* TODO: determine if there's any reason to cache spirv output? */
   ralloc_free(spirv);
   return mod;
}

static bool
lower_baseinstance_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_instance_id)
      return false;
   b->cursor = nir_after_instr(instr);
   nir_ssa_def *def = nir_isub(b, &intr->dest.ssa, nir_load_base_instance(b));
   nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, def, def->parent_instr);
   return true;
}

static bool
lower_baseinstance(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;
   return nir_shader_instructions_pass(shader, lower_baseinstance_instr, nir_metadata_dominance, NULL);
}

bool nir_lower_dynamic_bo_access(nir_shader *shader);

/* gl_nir_lower_buffers makes variables unusable for all UBO/SSBO access
 * so instead we delete all those broken variables and just make new ones
 */
static bool
unbreak_bos(nir_shader *shader)
{
   uint32_t ssbo_used = 0;
   uint32_t ubo_used = 0;
   uint64_t max_ssbo_size = 0;
   uint64_t max_ubo_size = 0;
   bool ssbo_sizes[PIPE_MAX_SHADER_BUFFERS] = {false};

   if (!shader->info.num_ssbos && !shader->info.num_ubos && !shader->num_uniforms)
      return false;
   nir_function_impl *impl = nir_shader_get_entrypoint(shader);
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
         switch (intrin->intrinsic) {
         case nir_intrinsic_store_ssbo:
            ssbo_used |= BITFIELD_BIT(nir_src_as_uint(intrin->src[1]));
            break;

         case nir_intrinsic_get_ssbo_size: {
            uint32_t slot = nir_src_as_uint(intrin->src[0]);
            ssbo_used |= BITFIELD_BIT(slot);
            ssbo_sizes[slot] = true;
            break;
         }
         case nir_intrinsic_ssbo_atomic_add:
         case nir_intrinsic_ssbo_atomic_imin:
         case nir_intrinsic_ssbo_atomic_umin:
         case nir_intrinsic_ssbo_atomic_imax:
         case nir_intrinsic_ssbo_atomic_umax:
         case nir_intrinsic_ssbo_atomic_and:
         case nir_intrinsic_ssbo_atomic_or:
         case nir_intrinsic_ssbo_atomic_xor:
         case nir_intrinsic_ssbo_atomic_exchange:
         case nir_intrinsic_ssbo_atomic_comp_swap:
         case nir_intrinsic_ssbo_atomic_fmin:
         case nir_intrinsic_ssbo_atomic_fmax:
         case nir_intrinsic_ssbo_atomic_fcomp_swap:
         case nir_intrinsic_load_ssbo:
            ssbo_used |= BITFIELD_BIT(nir_src_as_uint(intrin->src[0]));
            break;
         case nir_intrinsic_load_ubo:
         case nir_intrinsic_load_ubo_vec4:
            ubo_used |= BITFIELD_BIT(nir_src_as_uint(intrin->src[0]));
            break;
         default:
            break;
         }
      }
   }

   nir_foreach_variable_with_modes(var, shader, nir_var_mem_ssbo | nir_var_mem_ubo) {
      const struct glsl_type *type = glsl_without_array(var->type);
      if (type_is_counter(type))
         continue;
      unsigned size = glsl_count_attribute_slots(type, false);
      if (var->data.mode == nir_var_mem_ubo)
         max_ubo_size = MAX2(max_ubo_size, size);
      else
         max_ssbo_size = MAX2(max_ssbo_size, size);
      var->data.mode = nir_var_shader_temp;
   }
   nir_fixup_deref_modes(shader);
   NIR_PASS_V(shader, nir_remove_dead_variables, nir_var_shader_temp, NULL);
   optimize_nir(shader);

   if (!ssbo_used && !ubo_used)
      return false;

   struct glsl_struct_field *fields = rzalloc_array(shader, struct glsl_struct_field, 2);
   fields[0].name = ralloc_strdup(shader, "base");
   fields[1].name = ralloc_strdup(shader, "unsized");
   if (ubo_used) {
      const struct glsl_type *ubo_type = glsl_array_type(glsl_uint_type(), max_ubo_size * 4, 4);
      fields[0].type = ubo_type;
      u_foreach_bit(slot, ubo_used) {
         char buf[64];
         snprintf(buf, sizeof(buf), "ubo_slot_%u", slot);
         nir_variable *var = nir_variable_create(shader, nir_var_mem_ubo, glsl_struct_type(fields, 1, "struct", false), buf);
         var->interface_type = var->type;
         var->data.driver_location = slot;
      }
   }
   if (ssbo_used) {
      const struct glsl_type *ssbo_type = glsl_array_type(glsl_uint_type(), max_ssbo_size * 4, 4);
      const struct glsl_type *unsized = glsl_array_type(glsl_uint_type(), 0, 4);
      fields[0].type = ssbo_type;
      u_foreach_bit(slot, ssbo_used) {
         char buf[64];
         snprintf(buf, sizeof(buf), "ssbo_slot_%u", slot);
         if (ssbo_sizes[slot])
            fields[1].type = unsized;
         else
            fields[1].type = NULL;
         nir_variable *var = nir_variable_create(shader, nir_var_mem_ssbo,
                                                 glsl_struct_type(fields, 1 + !!ssbo_sizes[slot], "struct", false), buf);
         var->interface_type = var->type;
         var->data.driver_location = slot;
      }
   }
   return true;
}

struct zink_shader *
zink_shader_create(struct zink_screen *screen, struct nir_shader *nir,
                   const struct pipe_stream_output_info *so_info)
{
   struct zink_shader *ret = CALLOC_STRUCT(zink_shader);
   bool have_psiz = false;

   ret->shader_id = p_atomic_inc_return(&screen->shader_id);
   ret->programs = _mesa_pointer_set_create(NULL);

   if (nir->info.stage == MESA_SHADER_VERTEX)
      create_vs_pushconst(nir);
   else if (nir->info.stage == MESA_SHADER_TESS_CTRL ||
            nir->info.stage == MESA_SHADER_TESS_EVAL) {
      NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_shader_in | nir_var_shader_out, UINT_MAX);
      NIR_PASS_V(nir, nir_lower_io_arrays_to_elements_no_indirects, false);
   } else if (nir->info.stage == MESA_SHADER_KERNEL)
      create_cs_pushconst(nir);

   if (nir->info.stage < MESA_SHADER_FRAGMENT)
      have_psiz = check_psiz(nir);
   NIR_PASS_V(nir, lower_basevertex);
   NIR_PASS_V(nir, lower_work_dim);
   NIR_PASS_V(nir, nir_lower_regs_to_ssa);
   NIR_PASS_V(nir, lower_baseinstance);
   optimize_nir(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
   NIR_PASS_V(nir, lower_discard_if);
   NIR_PASS_V(nir, nir_lower_fragcolor);
   NIR_PASS_V(nir, lower_64bit_vertex_attribs);
   NIR_PASS_V(nir, unbreak_bos);

   if (zink_debug & ZINK_DEBUG_NIR) {
      fprintf(stderr, "NIR shader:\n---8<---\n");
      nir_print_shader(nir, stderr);
      fprintf(stderr, "---8<---\n");
   }

   foreach_list_typed_reverse(nir_variable, var, node, &nir->variables) {
      if (_nir_shader_variable_has_mode(var, nir_var_uniform |
                                        nir_var_mem_ubo |
                                        nir_var_mem_ssbo)) {
         enum zink_descriptor_type ztype;
         const struct glsl_type *type = glsl_without_array(var->type);
         if (var->data.mode == nir_var_mem_ubo) {
            ztype = ZINK_DESCRIPTOR_TYPE_UBO;
            var->data.descriptor_set = ztype;
            var->data.binding = zink_binding(nir->info.stage,
                                 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                                 var->data.driver_location);
            VkDescriptorType vktype = !var->data.driver_location ? VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC : VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
            int binding = var->data.binding;

            ret->bindings[ztype][ret->num_bindings[ztype]].index = var->data.driver_location;
            ret->bindings[ztype][ret->num_bindings[ztype]].binding = binding;
            ret->bindings[ztype][ret->num_bindings[ztype]].type = vktype;
            ret->bindings[ztype][ret->num_bindings[ztype]].size = 1;
            ret->ubos_used |= (1 << ret->bindings[ztype][ret->num_bindings[ztype]].index);
            ret->num_bindings[ztype]++;
         } else if (var->data.mode == nir_var_mem_ssbo) {
            ztype = ZINK_DESCRIPTOR_TYPE_SSBO;
            var->data.descriptor_set = ztype;
            var->data.binding = zink_binding(nir->info.stage,
                                             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
                                             var->data.driver_location);
            ret->bindings[ztype][ret->num_bindings[ztype]].index = var->data.driver_location;
            ret->ssbos_used |= (1 << ret->bindings[ztype][ret->num_bindings[ztype]].index);
            ret->bindings[ztype][ret->num_bindings[ztype]].binding = var->data.binding;
            ret->bindings[ztype][ret->num_bindings[ztype]].type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
            ret->bindings[ztype][ret->num_bindings[ztype]].size = 1;
            ret->num_bindings[ztype]++;
         } else {
            assert(var->data.mode == nir_var_uniform);
            if (glsl_type_is_sampler(type) || glsl_type_is_image(type)) {
               VkDescriptorType vktype = glsl_type_is_image(type) ? zink_image_type(type) : zink_sampler_type(type);
               ztype = zink_desc_type_from_vktype(vktype);
               var->data.descriptor_set = ztype;
               var->data.driver_location = var->data.binding;
               var->data.binding = zink_binding(nir->info.stage,
                                                vktype,
                                                var->data.driver_location);
               ret->bindings[ztype][ret->num_bindings[ztype]].index = var->data.driver_location;
               ret->bindings[ztype][ret->num_bindings[ztype]].binding = var->data.binding;
               ret->bindings[ztype][ret->num_bindings[ztype]].type = vktype;
               if (glsl_type_is_array(var->type))
                  ret->bindings[ztype][ret->num_bindings[ztype]].size = glsl_get_aoa_size(var->type);
               else
                  ret->bindings[ztype][ret->num_bindings[ztype]].size = 1;
               ret->num_bindings[ztype]++;
            }
         }
      }
   }

   ret->nir = nir;
   if (so_info && nir->info.outputs_written && nir->info.has_transform_feedback_varyings)
      update_so_info(ret, so_info, nir->info.outputs_written, have_psiz);

   return ret;
}

void
zink_shader_finalize(struct pipe_screen *pscreen, void *nirptr, bool optimize)
{
   struct zink_screen *screen = zink_screen(pscreen);
   nir_shader *nir = nirptr;

   if (!screen->info.feats.features.shaderImageGatherExtended) {
      nir_lower_tex_options tex_opts = {};
      tex_opts.lower_tg4_offsets = true;
      NIR_PASS_V(nir, nir_lower_tex, &tex_opts);
   }
   NIR_PASS_V(nir, nir_lower_uniforms_to_ubo, 16);
   if (nir->info.stage == MESA_SHADER_GEOMETRY)
      NIR_PASS_V(nir, nir_lower_gs_intrinsics, nir_lower_gs_intrinsics_per_stream);
   optimize_nir(nir);
   if (nir->info.num_ubos || nir->info.num_ssbos)
      NIR_PASS_V(nir, nir_lower_dynamic_bo_access);
   nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
   if (screen->driconf.inline_uniforms)
      nir_find_inlinable_uniforms(nir);
}

void
zink_shader_free(struct zink_context *ctx, struct zink_shader *shader)
{
   struct zink_screen *screen = zink_screen(ctx->base.screen);
   set_foreach(shader->programs, entry) {
      if (shader->nir->info.stage == MESA_SHADER_COMPUTE) {
         struct zink_compute_program *comp = (void*)entry->key;
         _mesa_hash_table_remove_key(ctx->compute_program_cache, &comp->shader->shader_id);
         comp->shader = NULL;
         bool in_use = comp == ctx->curr_compute;
         if (in_use)
            ctx->compute_stage = NULL;
         if (zink_compute_program_reference(screen, &comp, NULL) && in_use)
            ctx->curr_compute = NULL;
      } else {
         struct zink_gfx_program *prog = (void*)entry->key;
         enum pipe_shader_type pstage = pipe_shader_type_from_mesa(shader->nir->info.stage);
         assert(pstage < ZINK_SHADER_COUNT);
         bool in_use = prog == ctx->curr_program;
         if (shader->nir->info.stage != MESA_SHADER_TESS_CTRL || !shader->is_generated)
            _mesa_hash_table_remove_key(ctx->program_cache, prog->shaders);
         prog->shaders[pstage] = NULL;
         if (shader->nir->info.stage == MESA_SHADER_TESS_EVAL && shader->generated)
            /* automatically destroy generated tcs shaders when tes is destroyed */
            zink_shader_free(ctx, shader->generated);
         if (in_use) {
            ctx->gfx_pipeline_state.modules[pstage] = VK_NULL_HANDLE;
            ctx->gfx_stages[pstage] = NULL;
         }
         if (zink_gfx_program_reference(screen, &prog, NULL) && in_use)
            ctx->curr_program = NULL;
      }
   }
   _mesa_set_destroy(shader->programs, NULL);
   ralloc_free(shader->nir);
   FREE(shader);
}


/* creating a passthrough tcs shader that's roughly:

#version 150
#extension GL_ARB_tessellation_shader : require

in vec4 some_var[gl_MaxPatchVertices];
out vec4 some_var_out;

layout(push_constant) uniform tcsPushConstants {
    layout(offset = 0) float TessLevelInner[2];
    layout(offset = 8) float TessLevelOuter[4];
} u_tcsPushConstants;
layout(vertices = $vertices_per_patch) out;
void main()
{
  gl_TessLevelInner = u_tcsPushConstants.TessLevelInner;
  gl_TessLevelOuter = u_tcsPushConstants.TessLevelOuter;
  some_var_out = some_var[gl_InvocationID];
}

*/
struct zink_shader *
zink_shader_tcs_create(struct zink_context *ctx, struct zink_shader *vs)
{
   unsigned vertices_per_patch = ctx->gfx_pipeline_state.vertices_per_patch;
   struct zink_shader *ret = CALLOC_STRUCT(zink_shader);
   ret->shader_id = 0; //special value for internal shaders
   ret->programs = _mesa_pointer_set_create(NULL);

   nir_shader *nir = nir_shader_create(NULL, MESA_SHADER_TESS_CTRL, &zink_screen(ctx->base.screen)->nir_options, NULL);
   nir_function *fn = nir_function_create(nir, "main");
   fn->is_entrypoint = true;
   nir_function_impl *impl = nir_function_impl_create(fn);

   nir_builder b;
   nir_builder_init(&b, impl);
   b.cursor = nir_before_block(nir_start_block(impl));

   nir_ssa_def *invocation_id = nir_load_invocation_id(&b);

   nir_foreach_shader_out_variable(var, vs->nir) {
      const struct glsl_type *type = var->type;
      const struct glsl_type *in_type = var->type;
      const struct glsl_type *out_type = var->type;
      char buf[1024];
      snprintf(buf, sizeof(buf), "%s_out", var->name);
      in_type = glsl_array_type(type, 32 /* MAX_PATCH_VERTICES */, 0);
      out_type = glsl_array_type(type, vertices_per_patch, 0);

      nir_variable *in = nir_variable_create(nir, nir_var_shader_in, in_type, var->name);
      nir_variable *out = nir_variable_create(nir, nir_var_shader_out, out_type, buf);
      out->data.location = in->data.location = var->data.location;
      out->data.location_frac = in->data.location_frac = var->data.location_frac;

      /* gl_in[] receives values from equivalent built-in output
         variables written by the vertex shader (section 2.14.7).  Each array
         element of gl_in[] is a structure holding values for a specific vertex of
         the input patch.  The length of gl_in[] is equal to the
         implementation-dependent maximum patch size (gl_MaxPatchVertices).
         - ARB_tessellation_shader
       */
      for (unsigned i = 0; i < vertices_per_patch; i++) {
         /* we need to load the invocation-specific value of the vertex output and then store it to the per-patch output */
         nir_if *start_block = nir_push_if(&b, nir_ieq(&b, invocation_id, nir_imm_int(&b, i)));
         nir_deref_instr *in_array_var = nir_build_deref_array(&b, nir_build_deref_var(&b, in), invocation_id);
         nir_ssa_def *load = nir_load_deref(&b, in_array_var);
         nir_deref_instr *out_array_var = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, out), i);
         nir_store_deref(&b, out_array_var, load, 0xff);
         nir_pop_if(&b, start_block);
      }
   }
   nir_variable *gl_TessLevelInner = nir_variable_create(nir, nir_var_shader_out, glsl_array_type(glsl_float_type(), 2, 0), "gl_TessLevelInner");
   gl_TessLevelInner->data.location = VARYING_SLOT_TESS_LEVEL_INNER;
   gl_TessLevelInner->data.patch = 1;
   nir_variable *gl_TessLevelOuter = nir_variable_create(nir, nir_var_shader_out, glsl_array_type(glsl_float_type(), 4, 0), "gl_TessLevelOuter");
   gl_TessLevelOuter->data.location = VARYING_SLOT_TESS_LEVEL_OUTER;
   gl_TessLevelOuter->data.patch = 1;

   /* hacks so we can size these right for now */
   struct glsl_struct_field *fields = rzalloc_array(nir, struct glsl_struct_field, 3);
   /* just use a single blob for padding here because it's easier */
   fields[0].type = glsl_array_type(glsl_uint_type(), offsetof(struct zink_gfx_push_constant, default_inner_level) / 4, 0);
   fields[0].name = ralloc_asprintf(nir, "padding");
   fields[0].offset = 0;
   fields[1].type = glsl_array_type(glsl_uint_type(), 2, 0);
   fields[1].name = ralloc_asprintf(nir, "gl_TessLevelInner");
   fields[1].offset = offsetof(struct zink_gfx_push_constant, default_inner_level);
   fields[2].type = glsl_array_type(glsl_uint_type(), 4, 0);
   fields[2].name = ralloc_asprintf(nir, "gl_TessLevelOuter");
   fields[2].offset = offsetof(struct zink_gfx_push_constant, default_outer_level);
   nir_variable *pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 3, "struct", false), "pushconst");
   pushconst->data.location = VARYING_SLOT_VAR0;

   nir_ssa_def *load_inner = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 1), .base = 1, .range = 8);
   nir_ssa_def *load_outer = nir_load_push_constant(&b, 4, 32, nir_imm_int(&b, 2), .base = 2, .range = 16);

   for (unsigned i = 0; i < 2; i++) {
      nir_deref_instr *store_idx = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, gl_TessLevelInner), i);
      nir_store_deref(&b, store_idx, nir_channel(&b, load_inner, i), 0xff);
   }
   for (unsigned i = 0; i < 4; i++) {
      nir_deref_instr *store_idx = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, gl_TessLevelOuter), i);
      nir_store_deref(&b, store_idx, nir_channel(&b, load_outer, i), 0xff);
   }

   nir->info.tess.tcs_vertices_out = vertices_per_patch;
   nir_validate_shader(nir, "created");

   NIR_PASS_V(nir, nir_lower_regs_to_ssa);
   optimize_nir(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
   NIR_PASS_V(nir, lower_discard_if);
   NIR_PASS_V(nir, nir_convert_from_ssa, true);

   ret->nir = nir;
   ret->is_generated = true;
   return ret;
}

uint32_t
zink_binding(gl_shader_stage stage, VkDescriptorType type, int index)
{
   if (stage == MESA_SHADER_NONE) {
      unreachable("not supported");
   } else {
      switch (type) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
         assert(index < PIPE_MAX_CONSTANT_BUFFERS);
         return (stage * PIPE_MAX_CONSTANT_BUFFERS) + index;

      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
         assert(index < PIPE_MAX_SAMPLERS);
         return (stage * PIPE_MAX_SAMPLERS) + index;

      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
         assert(index < PIPE_MAX_SHADER_BUFFERS);
         return (stage * PIPE_MAX_SHADER_BUFFERS) + index;

      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         assert(index < PIPE_MAX_SHADER_IMAGES);
         return (stage * PIPE_MAX_SHADER_IMAGES) + index;

      default:
         unreachable("unexpected type");
      }
   }
}