summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/jitter/builder_misc.cpp
blob: 4116dad4430c234558ce9d3ec8f413281ff3177d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/****************************************************************************
 * Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * @file builder_misc.cpp
 *
 * @brief Implementation for miscellaneous builder functions
 *
 * Notes:
 *
 ******************************************************************************/
#include "jit_pch.hpp"
#include "builder.h"
#include "common/rdtsc_buckets.h"

#include <cstdarg>

extern "C" void CallPrint(const char* fmt, ...);

namespace SwrJit
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Convert an IEEE 754 32-bit single precision float to an
    ///        16 bit float with 5 exponent bits and a variable
    ///        number of mantissa bits.
    /// @param val - 32-bit float
    /// @todo Maybe move this outside of this file into a header?
    static uint16_t ConvertFloat32ToFloat16(float val)
    {
        uint32_t sign, exp, mant;
        uint32_t roundBits;

        // Extract the sign, exponent, and mantissa
        uint32_t uf = *(uint32_t*)&val;
        sign        = (uf & 0x80000000) >> 31;
        exp         = (uf & 0x7F800000) >> 23;
        mant        = uf & 0x007FFFFF;

        // Check for out of range
        if (std::isnan(val))
        {
            exp  = 0x1F;
            mant = 0x200;
            sign = 1; // set the sign bit for NANs
        }
        else if (std::isinf(val))
        {
            exp  = 0x1f;
            mant = 0x0;
        }
        else if (exp > (0x70 + 0x1E)) // Too big to represent -> max representable value
        {
            exp  = 0x1E;
            mant = 0x3FF;
        }
        else if ((exp <= 0x70) && (exp >= 0x66)) // It's a denorm
        {
            mant |= 0x00800000;
            for (; exp <= 0x70; mant >>= 1, exp++)
                ;
            exp  = 0;
            mant = mant >> 13;
        }
        else if (exp < 0x66) // Too small to represent -> Zero
        {
            exp  = 0;
            mant = 0;
        }
        else
        {
            // Saves bits that will be shifted off for rounding
            roundBits = mant & 0x1FFFu;
            // convert exponent and mantissa to 16 bit format
            exp  = exp - 0x70;
            mant = mant >> 13;

            // Essentially RTZ, but round up if off by only 1 lsb
            if (roundBits == 0x1FFFu)
            {
                mant++;
                // check for overflow
                if ((mant & 0xC00u) != 0)
                    exp++;
                // make sure only the needed bits are used
                mant &= 0x3FF;
            }
        }

        uint32_t tmpVal = (sign << 15) | (exp << 10) | mant;
        return (uint16_t)tmpVal;
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Convert an IEEE 754 16-bit float to an 32-bit single precision
    ///        float
    /// @param val - 16-bit float
    /// @todo Maybe move this outside of this file into a header?
    static float ConvertFloat16ToFloat32(uint32_t val)
    {
        uint32_t result;
        if ((val & 0x7fff) == 0)
        {
            result = ((uint32_t)(val & 0x8000)) << 16;
        }
        else if ((val & 0x7c00) == 0x7c00)
        {
            result = ((val & 0x3ff) == 0) ? 0x7f800000 : 0x7fc00000;
            result |= ((uint32_t)val & 0x8000) << 16;
        }
        else
        {
            uint32_t sign = (val & 0x8000) << 16;
            uint32_t mant = (val & 0x3ff) << 13;
            uint32_t exp  = (val >> 10) & 0x1f;
            if ((exp == 0) && (mant != 0)) // Adjust exponent and mantissa for denormals
            {
                mant <<= 1;
                while (mant < (0x400 << 13))
                {
                    exp--;
                    mant <<= 1;
                }
                mant &= (0x3ff << 13);
            }
            exp    = ((exp - 15 + 127) & 0xff) << 23;
            result = sign | exp | mant;
        }

        return *(float*)&result;
    }

    Constant* Builder::C(bool i) { return ConstantInt::get(IRB()->getInt1Ty(), (i ? 1 : 0)); }

    Constant* Builder::C(char i) { return ConstantInt::get(IRB()->getInt8Ty(), i); }

    Constant* Builder::C(uint8_t i) { return ConstantInt::get(IRB()->getInt8Ty(), i); }

    Constant* Builder::C(int i) { return ConstantInt::get(IRB()->getInt32Ty(), i); }

    Constant* Builder::C(int64_t i) { return ConstantInt::get(IRB()->getInt64Ty(), i); }

    Constant* Builder::C(uint16_t i) { return ConstantInt::get(mInt16Ty, i); }

    Constant* Builder::C(uint32_t i) { return ConstantInt::get(IRB()->getInt32Ty(), i); }

    Constant* Builder::C(uint64_t i) { return ConstantInt::get(IRB()->getInt64Ty(), i); }

    Constant* Builder::C(float i) { return ConstantFP::get(IRB()->getFloatTy(), i); }

    Constant* Builder::PRED(bool pred)
    {
        return ConstantInt::get(IRB()->getInt1Ty(), (pred ? 1 : 0));
    }

    Value* Builder::VIMMED1(int i)
    {
        return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
    }

    Value* Builder::VIMMED1_16(int i)
    {
        return ConstantVector::getSplat(mVWidth16, cast<ConstantInt>(C(i)));
    }

    Value* Builder::VIMMED1(uint32_t i)
    {
        return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
    }

    Value* Builder::VIMMED1_16(uint32_t i)
    {
        return ConstantVector::getSplat(mVWidth16, cast<ConstantInt>(C(i)));
    }

    Value* Builder::VIMMED1(float i)
    {
        return ConstantVector::getSplat(mVWidth, cast<ConstantFP>(C(i)));
    }

    Value* Builder::VIMMED1_16(float i)
    {
        return ConstantVector::getSplat(mVWidth16, cast<ConstantFP>(C(i)));
    }

    Value* Builder::VIMMED1(bool i)
    {
        return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
    }

    Value* Builder::VIMMED1_16(bool i)
    {
        return ConstantVector::getSplat(mVWidth16, cast<ConstantInt>(C(i)));
    }

    Value* Builder::VUNDEF_IPTR() { return UndefValue::get(VectorType::get(mInt32PtrTy, mVWidth)); }

    Value* Builder::VUNDEF(Type* t) { return UndefValue::get(VectorType::get(t, mVWidth)); }

    Value* Builder::VUNDEF_I() { return UndefValue::get(VectorType::get(mInt32Ty, mVWidth)); }

    Value* Builder::VUNDEF_I_16() { return UndefValue::get(VectorType::get(mInt32Ty, mVWidth16)); }

    Value* Builder::VUNDEF_F() { return UndefValue::get(VectorType::get(mFP32Ty, mVWidth)); }

    Value* Builder::VUNDEF_F_16() { return UndefValue::get(VectorType::get(mFP32Ty, mVWidth16)); }

    Value* Builder::VUNDEF(Type* ty, uint32_t size)
    {
        return UndefValue::get(VectorType::get(ty, size));
    }

    Value* Builder::VBROADCAST(Value* src, const llvm::Twine& name)
    {
        // check if src is already a vector
        if (src->getType()->isVectorTy())
        {
            return src;
        }

        return VECTOR_SPLAT(mVWidth, src, name);
    }

    Value* Builder::VBROADCAST_16(Value* src)
    {
        // check if src is already a vector
        if (src->getType()->isVectorTy())
        {
            return src;
        }

        return VECTOR_SPLAT(mVWidth16, src);
    }

    uint32_t Builder::IMMED(Value* v)
    {
        SWR_ASSERT(isa<ConstantInt>(v));
        ConstantInt* pValConst = cast<ConstantInt>(v);
        return pValConst->getZExtValue();
    }

    int32_t Builder::S_IMMED(Value* v)
    {
        SWR_ASSERT(isa<ConstantInt>(v));
        ConstantInt* pValConst = cast<ConstantInt>(v);
        return pValConst->getSExtValue();
    }

    CallInst* Builder::CALL(Value*                               Callee,
                            const std::initializer_list<Value*>& argsList,
                            const llvm::Twine&                   name)
    {
        std::vector<Value*> args;
        for (auto arg : argsList)
            args.push_back(arg);
        return CALLA(Callee, args, name);
    }

    CallInst* Builder::CALL(Value* Callee, Value* arg)
    {
        std::vector<Value*> args;
        args.push_back(arg);
        return CALLA(Callee, args);
    }

    CallInst* Builder::CALL2(Value* Callee, Value* arg1, Value* arg2)
    {
        std::vector<Value*> args;
        args.push_back(arg1);
        args.push_back(arg2);
        return CALLA(Callee, args);
    }

    CallInst* Builder::CALL3(Value* Callee, Value* arg1, Value* arg2, Value* arg3)
    {
        std::vector<Value*> args;
        args.push_back(arg1);
        args.push_back(arg2);
        args.push_back(arg3);
        return CALLA(Callee, args);
    }

    Value* Builder::VRCP(Value* va, const llvm::Twine& name)
    {
        return FDIV(VIMMED1(1.0f), va, name); // 1 / a
    }

    Value* Builder::VPLANEPS(Value* vA, Value* vB, Value* vC, Value*& vX, Value*& vY)
    {
        Value* vOut = FMADDPS(vA, vX, vC);
        vOut        = FMADDPS(vB, vY, vOut);
        return vOut;
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief insert a JIT call to CallPrint
    /// - outputs formatted string to both stdout and VS output window
    /// - DEBUG builds only
    /// Usage example:
    ///   PRINT("index %d = 0x%p\n",{C(lane), pIndex});
    ///   where C(lane) creates a constant value to print, and pIndex is the Value*
    ///   result from a GEP, printing out the pointer to memory
    /// @param printStr - constant string to print, which includes format specifiers
    /// @param printArgs - initializer list of Value*'s to print to std out
    CallInst* Builder::PRINT(const std::string&                   printStr,
                             const std::initializer_list<Value*>& printArgs)
    {
        // push the arguments to CallPrint into a vector
        std::vector<Value*> printCallArgs;
        // save room for the format string.  we still need to modify it for vectors
        printCallArgs.resize(1);

        // search through the format string for special processing
        size_t      pos = 0;
        std::string tempStr(printStr);
        pos    = tempStr.find('%', pos);
        auto v = printArgs.begin();

        while ((pos != std::string::npos) && (v != printArgs.end()))
        {
            Value* pArg  = *v;
            Type*  pType = pArg->getType();

            if (pType->isVectorTy())
            {
                Type* pContainedType = pType->getContainedType(0);

                if (toupper(tempStr[pos + 1]) == 'X')
                {
                    tempStr[pos]     = '0';
                    tempStr[pos + 1] = 'x';
                    tempStr.insert(pos + 2, "%08X ");
                    pos += 7;

                    printCallArgs.push_back(VEXTRACT(pArg, C(0)));

                    std::string vectorFormatStr;
                    for (uint32_t i = 1; i < pType->getVectorNumElements(); ++i)
                    {
                        vectorFormatStr += "0x%08X ";
                        printCallArgs.push_back(VEXTRACT(pArg, C(i)));
                    }

                    tempStr.insert(pos, vectorFormatStr);
                    pos += vectorFormatStr.size();
                }
                else if ((tempStr[pos + 1] == 'f') && (pContainedType->isFloatTy()))
                {
                    uint32_t i = 0;
                    for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
                    {
                        tempStr.insert(pos, std::string("%f "));
                        pos += 3;
                        printCallArgs.push_back(
                            FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
                    }
                    printCallArgs.push_back(
                        FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
                }
                else if ((tempStr[pos + 1] == 'd') && (pContainedType->isIntegerTy()))
                {
                    uint32_t i = 0;
                    for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
                    {
                        tempStr.insert(pos, std::string("%d "));
                        pos += 3;
                        printCallArgs.push_back(
                            S_EXT(VEXTRACT(pArg, C(i)), Type::getInt32Ty(JM()->mContext)));
                    }
                    printCallArgs.push_back(
                        S_EXT(VEXTRACT(pArg, C(i)), Type::getInt32Ty(JM()->mContext)));
                }
                else if ((tempStr[pos + 1] == 'u') && (pContainedType->isIntegerTy()))
                {
                    uint32_t i = 0;
                    for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
                    {
                        tempStr.insert(pos, std::string("%d "));
                        pos += 3;
                        printCallArgs.push_back(
                            Z_EXT(VEXTRACT(pArg, C(i)), Type::getInt32Ty(JM()->mContext)));
                    }
                    printCallArgs.push_back(
                        Z_EXT(VEXTRACT(pArg, C(i)), Type::getInt32Ty(JM()->mContext)));
                }
            }
            else
            {
                if (toupper(tempStr[pos + 1]) == 'X')
                {
                    tempStr[pos] = '0';
                    tempStr.insert(pos + 1, "x%08");
                    printCallArgs.push_back(pArg);
                    pos += 3;
                }
                // for %f we need to cast float Values to doubles so that they print out correctly
                else if ((tempStr[pos + 1] == 'f') && (pType->isFloatTy()))
                {
                    printCallArgs.push_back(FP_EXT(pArg, Type::getDoubleTy(JM()->mContext)));
                    pos++;
                }
                else
                {
                    printCallArgs.push_back(pArg);
                }
            }

            // advance to the next arguement
            v++;
            pos = tempStr.find('%', ++pos);
        }

        // create global variable constant string
        Constant*       constString = ConstantDataArray::getString(JM()->mContext, tempStr, true);
        GlobalVariable* gvPtr       = new GlobalVariable(
            constString->getType(), true, GlobalValue::InternalLinkage, constString, "printStr");
        JM()->mpCurrentModule->getGlobalList().push_back(gvPtr);

        // get a pointer to the first character in the constant string array
        std::vector<Constant*> geplist{C(0), C(0)};
        Constant* strGEP = ConstantExpr::getGetElementPtr(nullptr, gvPtr, geplist, false);

        // insert the pointer to the format string in the argument vector
        printCallArgs[0] = strGEP;

        // get pointer to CallPrint function and insert decl into the module if needed
        std::vector<Type*> args;
        args.push_back(PointerType::get(mInt8Ty, 0));
        FunctionType* callPrintTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, true);
        Function*     callPrintFn =
            cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("CallPrint", callPrintTy));

        // if we haven't yet added the symbol to the symbol table
        if ((sys::DynamicLibrary::SearchForAddressOfSymbol("CallPrint")) == nullptr)
        {
            sys::DynamicLibrary::AddSymbol("CallPrint", (void*)&CallPrint);
        }

        // insert a call to CallPrint
        return CALLA(callPrintFn, printCallArgs);
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Wrapper around PRINT with initializer list.
    CallInst* Builder::PRINT(const std::string& printStr) { return PRINT(printStr, {}); }

    Value* Builder::EXTRACT_16(Value* x, uint32_t imm)
    {
        if (imm == 0)
        {
            return VSHUFFLE(x, UndefValue::get(x->getType()), {0, 1, 2, 3, 4, 5, 6, 7});
        }
        else
        {
            return VSHUFFLE(x, UndefValue::get(x->getType()), {8, 9, 10, 11, 12, 13, 14, 15});
        }
    }

    Value* Builder::JOIN_16(Value* a, Value* b)
    {
        return VSHUFFLE(a, b, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15});
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief convert x86 <N x float> mask to llvm <N x i1> mask
    Value* Builder::MASK(Value* vmask)
    {
        Value* src = BITCAST(vmask, mSimdInt32Ty);
        return ICMP_SLT(src, VIMMED1(0));
    }

    Value* Builder::MASK_16(Value* vmask)
    {
        Value* src = BITCAST(vmask, mSimd16Int32Ty);
        return ICMP_SLT(src, VIMMED1_16(0));
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief convert llvm <N x i1> mask to x86 <N x i32> mask
    Value* Builder::VMASK(Value* mask) { return S_EXT(mask, mSimdInt32Ty); }

    Value* Builder::VMASK_16(Value* mask) { return S_EXT(mask, mSimd16Int32Ty); }

    /// @brief Convert <Nxi1> llvm mask to integer
    Value* Builder::VMOVMSK(Value* mask)
    {
        SWR_ASSERT(mask->getType()->getVectorElementType() == mInt1Ty);
        uint32_t numLanes = mask->getType()->getVectorNumElements();
        Value*   i32Result;
        if (numLanes == 8)
        {
            i32Result = BITCAST(mask, mInt8Ty);
        }
        else if (numLanes == 16)
        {
            i32Result = BITCAST(mask, mInt16Ty);
        }
        else
        {
            SWR_ASSERT("Unsupported vector width");
            i32Result = BITCAST(mask, mInt8Ty);
        }
        return Z_EXT(i32Result, mInt32Ty);
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Generate a VPSHUFB operation in LLVM IR.  If not
    /// supported on the underlying platform, emulate it
    /// @param a - 256bit SIMD(32x8bit) of 8bit integer values
    /// @param b - 256bit SIMD(32x8bit) of 8bit integer mask values
    /// Byte masks in lower 128 lane of b selects 8 bit values from lower
    /// 128bits of a, and vice versa for the upper lanes.  If the mask
    /// value is negative, '0' is inserted.
    Value* Builder::PSHUFB(Value* a, Value* b)
    {
        Value* res;
        // use avx2 pshufb instruction if available
        if (JM()->mArch.AVX2())
        {
            res = VPSHUFB(a, b);
        }
        else
        {
            Constant* cB = dyn_cast<Constant>(b);
            // number of 8 bit elements in b
            uint32_t numElms = cast<VectorType>(cB->getType())->getNumElements();
            // output vector
            Value* vShuf = UndefValue::get(VectorType::get(mInt8Ty, numElms));

            // insert an 8 bit value from the high and low lanes of a per loop iteration
            numElms /= 2;
            for (uint32_t i = 0; i < numElms; i++)
            {
                ConstantInt* cLow128b  = cast<ConstantInt>(cB->getAggregateElement(i));
                ConstantInt* cHigh128b = cast<ConstantInt>(cB->getAggregateElement(i + numElms));

                // extract values from constant mask
                char valLow128bLane  = (char)(cLow128b->getSExtValue());
                char valHigh128bLane = (char)(cHigh128b->getSExtValue());

                Value* insertValLow128b;
                Value* insertValHigh128b;

                // if the mask value is negative, insert a '0' in the respective output position
                // otherwise, lookup the value at mask position (bits 3..0 of the respective mask
                // byte) in a and insert in output vector
                insertValLow128b =
                    (valLow128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valLow128bLane & 0xF)));
                insertValHigh128b = (valHigh128bLane < 0)
                                        ? C((char)0)
                                        : VEXTRACT(a, C((valHigh128bLane & 0xF) + numElms));

                vShuf = VINSERT(vShuf, insertValLow128b, i);
                vShuf = VINSERT(vShuf, insertValHigh128b, (i + numElms));
            }
            res = vShuf;
        }
        return res;
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Generate a VPSHUFB operation (sign extend 8 8bit values to 32
    /// bits)in LLVM IR.  If not supported on the underlying platform, emulate it
    /// @param a - 128bit SIMD lane(16x8bit) of 8bit integer values.  Only
    /// lower 8 values are used.
    Value* Builder::PMOVSXBD(Value* a)
    {
        // VPMOVSXBD output type
        Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
        // Extract 8 values from 128bit lane and sign extend
        return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Generate a VPSHUFB operation (sign extend 8 16bit values to 32
    /// bits)in LLVM IR.  If not supported on the underlying platform, emulate it
    /// @param a - 128bit SIMD lane(8x16bit) of 16bit integer values.
    Value* Builder::PMOVSXWD(Value* a)
    {
        // VPMOVSXWD output type
        Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
        // Extract 8 values from 128bit lane and sign extend
        return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Generate a VCVTPH2PS operation (float16->float32 conversion)
    /// in LLVM IR.  If not supported on the underlying platform, emulate it
    /// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
    Value* Builder::CVTPH2PS(Value* a, const llvm::Twine& name)
    {
        if (JM()->mArch.F16C())
        {
            return VCVTPH2PS(a, name);
        }
        else
        {
            FunctionType* pFuncTy   = FunctionType::get(mFP32Ty, mInt16Ty);
            Function*     pCvtPh2Ps = cast<Function>(
                JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat16ToFloat32", pFuncTy));

            if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat16ToFloat32") == nullptr)
            {
                sys::DynamicLibrary::AddSymbol("ConvertFloat16ToFloat32",
                                               (void*)&ConvertFloat16ToFloat32);
            }

            Value* pResult = UndefValue::get(mSimdFP32Ty);
            for (uint32_t i = 0; i < mVWidth; ++i)
            {
                Value* pSrc  = VEXTRACT(a, C(i));
                Value* pConv = CALL(pCvtPh2Ps, std::initializer_list<Value*>{pSrc});
                pResult      = VINSERT(pResult, pConv, C(i));
            }

            pResult->setName(name);
            return pResult;
        }
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief Generate a VCVTPS2PH operation (float32->float16 conversion)
    /// in LLVM IR.  If not supported on the underlying platform, emulate it
    /// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
    Value* Builder::CVTPS2PH(Value* a, Value* rounding)
    {
        if (JM()->mArch.F16C())
        {
            return VCVTPS2PH(a, rounding);
        }
        else
        {
            // call scalar C function for now
            FunctionType* pFuncTy   = FunctionType::get(mInt16Ty, mFP32Ty);
            Function*     pCvtPs2Ph = cast<Function>(
                JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat32ToFloat16", pFuncTy));

            if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat32ToFloat16") == nullptr)
            {
                sys::DynamicLibrary::AddSymbol("ConvertFloat32ToFloat16",
                                               (void*)&ConvertFloat32ToFloat16);
            }

            Value* pResult = UndefValue::get(mSimdInt16Ty);
            for (uint32_t i = 0; i < mVWidth; ++i)
            {
                Value* pSrc  = VEXTRACT(a, C(i));
                Value* pConv = CALL(pCvtPs2Ph, std::initializer_list<Value*>{pSrc});
                pResult      = VINSERT(pResult, pConv, C(i));
            }

            return pResult;
        }
    }

    Value* Builder::PMAXSD(Value* a, Value* b)
    {
        Value* cmp = ICMP_SGT(a, b);
        return SELECT(cmp, a, b);
    }

    Value* Builder::PMINSD(Value* a, Value* b)
    {
        Value* cmp = ICMP_SLT(a, b);
        return SELECT(cmp, a, b);
    }

    Value* Builder::PMAXUD(Value* a, Value* b)
    {
        Value* cmp = ICMP_UGT(a, b);
        return SELECT(cmp, a, b);
    }

    Value* Builder::PMINUD(Value* a, Value* b)
    {
        Value* cmp = ICMP_ULT(a, b);
        return SELECT(cmp, a, b);
    }

    // Helper function to create alloca in entry block of function
    Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType)
    {
        auto saveIP = IRB()->saveIP();
        IRB()->SetInsertPoint(&pFunc->getEntryBlock(), pFunc->getEntryBlock().begin());
        Value* pAlloca = ALLOCA(pType);
        if (saveIP.isSet())
            IRB()->restoreIP(saveIP);
        return pAlloca;
    }

    Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType, Value* pArraySize)
    {
        auto saveIP = IRB()->saveIP();
        IRB()->SetInsertPoint(&pFunc->getEntryBlock(), pFunc->getEntryBlock().begin());
        Value* pAlloca = ALLOCA(pType, pArraySize);
        if (saveIP.isSet())
            IRB()->restoreIP(saveIP);
        return pAlloca;
    }

    Value* Builder::VABSPS(Value* a)
    {
        Value* asInt  = BITCAST(a, mSimdInt32Ty);
        Value* result = BITCAST(AND(asInt, VIMMED1(0x7fffffff)), mSimdFP32Ty);
        return result;
    }

    Value* Builder::ICLAMP(Value* src, Value* low, Value* high, const llvm::Twine& name)
    {
        Value* lowCmp = ICMP_SLT(src, low);
        Value* ret    = SELECT(lowCmp, low, src);

        Value* highCmp = ICMP_SGT(ret, high);
        ret            = SELECT(highCmp, high, ret, name);

        return ret;
    }

    Value* Builder::FCLAMP(Value* src, Value* low, Value* high)
    {
        Value* lowCmp = FCMP_OLT(src, low);
        Value* ret    = SELECT(lowCmp, low, src);

        Value* highCmp = FCMP_OGT(ret, high);
        ret            = SELECT(highCmp, high, ret);

        return ret;
    }

    Value* Builder::FCLAMP(Value* src, float low, float high)
    {
        Value* result = VMAXPS(src, VIMMED1(low));
        result        = VMINPS(result, VIMMED1(high));

        return result;
    }

    Value* Builder::FMADDPS(Value* a, Value* b, Value* c)
    {
        Value* vOut;
        // use FMADs if available
        if (JM()->mArch.AVX2())
        {
            vOut = VFMADDPS(a, b, c);
        }
        else
        {
            vOut = FADD(FMUL(a, b), c);
        }
        return vOut;
    }

    //////////////////////////////////////////////////////////////////////////
    /// @brief pop count on vector mask (e.g. <8 x i1>)
    Value* Builder::VPOPCNT(Value* a) { return POPCNT(VMOVMSK(a)); }

    //////////////////////////////////////////////////////////////////////////
    /// @brief C functions called by LLVM IR
    //////////////////////////////////////////////////////////////////////////

    Value* Builder::VEXTRACTI128(Value* a, Constant* imm8)
    {
        bool                      flag = !imm8->isZeroValue();
        SmallVector<Constant*, 8> idx;
        for (unsigned i = 0; i < mVWidth / 2; i++)
        {
            idx.push_back(C(flag ? i + mVWidth / 2 : i));
        }
        return VSHUFFLE(a, VUNDEF_I(), ConstantVector::get(idx));
    }

    Value* Builder::VINSERTI128(Value* a, Value* b, Constant* imm8)
    {
        bool                      flag = !imm8->isZeroValue();
        SmallVector<Constant*, 8> idx;
        for (unsigned i = 0; i < mVWidth; i++)
        {
            idx.push_back(C(i));
        }
        Value* inter = VSHUFFLE(b, VUNDEF_I(), ConstantVector::get(idx));

        SmallVector<Constant*, 8> idx2;
        for (unsigned i = 0; i < mVWidth / 2; i++)
        {
            idx2.push_back(C(flag ? i : i + mVWidth));
        }
        for (unsigned i = mVWidth / 2; i < mVWidth; i++)
        {
            idx2.push_back(C(flag ? i + mVWidth / 2 : i));
        }
        return VSHUFFLE(a, inter, ConstantVector::get(idx2));
    }

    // rdtsc buckets macros
    void Builder::RDTSC_START(Value* pBucketMgr, Value* pId)
    {
        // @todo due to an issue with thread local storage propagation in llvm, we can only safely
        // call into buckets framework when single threaded
        if (KNOB_SINGLE_THREADED)
        {
            std::vector<Type*> args{
                PointerType::get(mInt32Ty, 0), // pBucketMgr
                mInt32Ty                       // id
            };

            FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
            Function*     pFunc   = cast<Function>(
                JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StartBucket", pFuncTy));
            if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StartBucket") ==
                nullptr)
            {
                sys::DynamicLibrary::AddSymbol("BucketManager_StartBucket",
                                               (void*)&BucketManager_StartBucket);
            }

            CALL(pFunc, {pBucketMgr, pId});
        }
    }

    void Builder::RDTSC_STOP(Value* pBucketMgr, Value* pId)
    {
        // @todo due to an issue with thread local storage propagation in llvm, we can only safely
        // call into buckets framework when single threaded
        if (KNOB_SINGLE_THREADED)
        {
            std::vector<Type*> args{
                PointerType::get(mInt32Ty, 0), // pBucketMgr
                mInt32Ty                       // id
            };

            FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
            Function*     pFunc   = cast<Function>(
                JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StopBucket", pFuncTy));
            if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StopBucket") ==
                nullptr)
            {
                sys::DynamicLibrary::AddSymbol("BucketManager_StopBucket",
                                               (void*)&BucketManager_StopBucket);
            }

            CALL(pFunc, {pBucketMgr, pId});
        }
    }

    uint32_t Builder::GetTypeSize(Type* pType)
    {
        if (pType->isStructTy())
        {
            uint32_t numElems = pType->getStructNumElements();
            Type*    pElemTy  = pType->getStructElementType(0);
            return numElems * GetTypeSize(pElemTy);
        }

        if (pType->isArrayTy())
        {
            uint32_t numElems = pType->getArrayNumElements();
            Type*    pElemTy  = pType->getArrayElementType();
            return numElems * GetTypeSize(pElemTy);
        }

        if (pType->isIntegerTy())
        {
            uint32_t bitSize = pType->getIntegerBitWidth();
            return bitSize / 8;
        }

        if (pType->isFloatTy())
        {
            return 4;
        }

        if (pType->isHalfTy())
        {
            return 2;
        }

        if (pType->isDoubleTy())
        {
            return 8;
        }

        SWR_ASSERT(false, "Unimplemented type.");
        return 0;
    }
} // namespace SwrJit