summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_loop_analyze.c
blob: 259f02a854ec44c0466bcf18d31c041bf9da3464 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/*
 * Copyright © 2015 Thomas Helland
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir.h"
#include "nir_constant_expressions.h"
#include "nir_loop_analyze.h"

typedef enum {
   undefined,
   invariant,
   not_invariant,
   basic_induction
} nir_loop_variable_type;

struct nir_basic_induction_var;

typedef struct {
   /* A link for the work list */
   struct list_head process_link;

   bool in_loop;

   /* The ssa_def associated with this info */
   nir_ssa_def *def;

   /* The type of this ssa_def */
   nir_loop_variable_type type;

   /* If this is of type basic_induction */
   struct nir_basic_induction_var *ind;

   /* True if variable is in an if branch */
   bool in_if_branch;

   /* True if variable is in a nested loop */
   bool in_nested_loop;

} nir_loop_variable;

typedef struct nir_basic_induction_var {
   nir_op alu_op;                           /* The type of alu-operation    */
   nir_loop_variable *alu_def;              /* The def of the alu-operation */
   nir_loop_variable *invariant;            /* The invariant alu-operand    */
   nir_loop_variable *def_outside_loop;     /* The phi-src outside the loop */
} nir_basic_induction_var;

typedef struct {
   /* The loop we store information for */
   nir_loop *loop;

   /* Loop_variable for all ssa_defs in function */
   nir_loop_variable *loop_vars;

   /* A list of the loop_vars to analyze */
   struct list_head process_list;

   nir_variable_mode indirect_mask;

} loop_info_state;

static nir_loop_variable *
get_loop_var(nir_ssa_def *value, loop_info_state *state)
{
   return &(state->loop_vars[value->index]);
}

typedef struct {
   loop_info_state *state;
   bool in_if_branch;
   bool in_nested_loop;
} init_loop_state;

static bool
init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
{
   init_loop_state *loop_init_state = void_init_loop_state;
   nir_loop_variable *var = get_loop_var(def, loop_init_state->state);

   if (loop_init_state->in_nested_loop) {
      var->in_nested_loop = true;
   } else if (loop_init_state->in_if_branch) {
      var->in_if_branch = true;
   } else {
      /* Add to the tail of the list. That way we start at the beginning of
       * the defs in the loop instead of the end when walking the list. This
       * means less recursive calls. Only add defs that are not in nested
       * loops or conditional blocks.
       */
      list_addtail(&var->process_link, &loop_init_state->state->process_list);
   }

   var->in_loop = true;

   return true;
}

static bool
init_loop_block(nir_block *block, loop_info_state *state,
                bool in_if_branch, bool in_nested_loop)
{
   init_loop_state init_state = {.in_if_branch = in_if_branch,
                                 .in_nested_loop = in_nested_loop,
                                 .state = state };

   nir_foreach_instr(instr, block) {
      if (instr->type == nir_instr_type_intrinsic ||
          instr->type == nir_instr_type_alu ||
          instr->type == nir_instr_type_tex) {
         state->loop->info->num_instructions++;
      }

      nir_foreach_ssa_def(instr, init_loop_def, &init_state);
   }

   return true;
}

static inline bool
is_var_alu(nir_loop_variable *var)
{
   return var->def->parent_instr->type == nir_instr_type_alu;
}

static inline bool
is_var_constant(nir_loop_variable *var)
{
   return var->def->parent_instr->type == nir_instr_type_load_const;
}

static inline bool
is_var_phi(nir_loop_variable *var)
{
   return var->def->parent_instr->type == nir_instr_type_phi;
}

static inline bool
mark_invariant(nir_ssa_def *def, loop_info_state *state)
{
   nir_loop_variable *var = get_loop_var(def, state);

   if (var->type == invariant)
      return true;

   if (!var->in_loop) {
      var->type = invariant;
      return true;
   }

   if (var->type == not_invariant)
      return false;

   if (is_var_alu(var)) {
      nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);

      for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
         if (!mark_invariant(alu->src[i].src.ssa, state)) {
            var->type = not_invariant;
            return false;
         }
      }
      var->type = invariant;
      return true;
   }

   /* Phis shouldn't be invariant except if one operand is invariant, and the
    * other is the phi itself. These should be removed by opt_remove_phis.
    * load_consts are already set to invariant and constant during init,
    * and so should return earlier. Remaining op_codes are set undefined.
    */
   var->type = not_invariant;
   return false;
}

static void
compute_invariance_information(loop_info_state *state)
{
   /* An expression is invariant in a loop L if:
    *  (base cases)
    *    – it’s a constant
    *    – it’s a variable use, all of whose single defs are outside of L
    *  (inductive cases)
    *    – it’s a pure computation all of whose args are loop invariant
    *    – it’s a variable use whose single reaching def, and the
    *      rhs of that def is loop-invariant
    */
   list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
                            process_link) {
      assert(!var->in_if_branch && !var->in_nested_loop);

      if (mark_invariant(var->def, state))
         list_del(&var->process_link);
   }
}

static bool
compute_induction_information(loop_info_state *state)
{
   bool found_induction_var = false;
   list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
                            process_link) {

      /* It can't be an induction variable if it is invariant. Invariants and
       * things in nested loops or conditionals should have been removed from
       * the list by compute_invariance_information().
       */
      assert(!var->in_if_branch && !var->in_nested_loop &&
             var->type != invariant);

      /* We are only interested in checking phis for the basic induction
       * variable case as its simple to detect. All basic induction variables
       * have a phi node
       */
      if (!is_var_phi(var))
         continue;

      nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
      nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);

      nir_foreach_phi_src(src, phi) {
         nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);

         /* If one of the sources is in an if branch or nested loop then don't
          * attempt to go any further.
          */
         if (src_var->in_if_branch || src_var->in_nested_loop)
            break;

         /* Detect inductions variables that are incremented in both branches
          * of an unnested if rather than in a loop block.
          */
         if (is_var_phi(src_var)) {
            nir_phi_instr *src_phi =
               nir_instr_as_phi(src_var->def->parent_instr);

            nir_op alu_op;
            nir_ssa_def *alu_srcs[2] = {0};
            nir_foreach_phi_src(src2, src_phi) {
               nir_loop_variable *src_var2 =
                  get_loop_var(src2->src.ssa, state);

               if (!src_var2->in_if_branch || !is_var_alu(src_var2))
                  break;

               nir_alu_instr *alu =
                  nir_instr_as_alu(src_var2->def->parent_instr);
               if (nir_op_infos[alu->op].num_inputs != 2)
                  break;

               if (alu->src[0].src.ssa == alu_srcs[0] &&
                   alu->src[1].src.ssa == alu_srcs[1] &&
                   alu->op == alu_op) {
                  /* Both branches perform the same calculation so we can use
                   * one of them to find the induction variable.
                   */
                  src_var = src_var2;
               } else {
                  alu_srcs[0] = alu->src[0].src.ssa;
                  alu_srcs[1] = alu->src[1].src.ssa;
                  alu_op = alu->op;
               }
            }
         }

         if (!src_var->in_loop) {
            biv->def_outside_loop = src_var;
         } else if (is_var_alu(src_var)) {
            nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);

            if (nir_op_infos[alu->op].num_inputs == 2) {
               biv->alu_def = src_var;
               biv->alu_op = alu->op;

               for (unsigned i = 0; i < 2; i++) {
                  /* Is one of the operands const, and the other the phi */
                  if (alu->src[i].src.ssa->parent_instr->type == nir_instr_type_load_const &&
                      alu->src[1-i].src.ssa == &phi->dest.ssa)
                     biv->invariant = get_loop_var(alu->src[i].src.ssa, state);
               }
            }
         }
      }

      if (biv->alu_def && biv->def_outside_loop && biv->invariant &&
          is_var_constant(biv->def_outside_loop)) {
         assert(is_var_constant(biv->invariant));
         biv->alu_def->type = basic_induction;
         biv->alu_def->ind = biv;
         var->type = basic_induction;
         var->ind = biv;

         found_induction_var = true;
      } else {
         ralloc_free(biv);
      }
   }
   return found_induction_var;
}

static bool
initialize_ssa_def(nir_ssa_def *def, void *void_state)
{
   loop_info_state *state = void_state;
   nir_loop_variable *var = get_loop_var(def, state);

   var->in_loop = false;
   var->def = def;

   if (def->parent_instr->type == nir_instr_type_load_const) {
      var->type = invariant;
   } else {
      var->type = undefined;
   }

   return true;
}

static bool
find_loop_terminators(loop_info_state *state)
{
   bool success = false;
   foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
      if (node->type == nir_cf_node_if) {
         nir_if *nif = nir_cf_node_as_if(node);

         nir_block *break_blk = NULL;
         nir_block *continue_from_blk = NULL;
         bool continue_from_then = true;

         nir_block *last_then = nir_if_last_then_block(nif);
         nir_block *last_else = nir_if_last_else_block(nif);
         if (nir_block_ends_in_break(last_then)) {
            break_blk = last_then;
            continue_from_blk = last_else;
            continue_from_then = false;
         } else if (nir_block_ends_in_break(last_else)) {
            break_blk = last_else;
            continue_from_blk = last_then;
         }

         /* If there is a break then we should find a terminator. If we can
          * not find a loop terminator, but there is a break-statement then
          * we should return false so that we do not try to find trip-count
          */
         if (!nir_is_trivial_loop_if(nif, break_blk)) {
            state->loop->info->complex_loop = true;
            return false;
         }

         /* Continue if the if contained no jumps at all */
         if (!break_blk)
            continue;

         if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
            state->loop->info->complex_loop = true;
            return false;
         }

         nir_loop_terminator *terminator =
            rzalloc(state->loop->info, nir_loop_terminator);

         list_addtail(&terminator->loop_terminator_link,
                      &state->loop->info->loop_terminator_list);

         terminator->nif = nif;
         terminator->break_block = break_blk;
         terminator->continue_from_block = continue_from_blk;
         terminator->continue_from_then = continue_from_then;
         terminator->conditional_instr = nif->condition.ssa->parent_instr;

         success = true;
      }
   }

   return success;
}

/* This function looks for an array access within a loop that uses an
 * induction variable for the array index. If found it returns the size of the
 * array, otherwise 0 is returned. If we find an induction var we pass it back
 * to the caller via array_index_out.
 */
static unsigned
find_array_access_via_induction(loop_info_state *state,
                                nir_deref_instr *deref,
                                nir_loop_variable **array_index_out)
{
   for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
      if (d->deref_type != nir_deref_type_array)
         continue;

      assert(d->arr.index.is_ssa);
      nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);

      if (array_index->type != basic_induction)
         continue;

      if (array_index_out)
         *array_index_out = array_index;

      nir_deref_instr *parent = nir_deref_instr_parent(d);
      assert(glsl_type_is_array_or_matrix(parent->type));

      return glsl_get_length(parent->type);
   }

   return 0;
}

static int32_t
get_iteration(nir_op cond_op, nir_const_value *initial, nir_const_value *step,
              nir_const_value *limit)
{
   int32_t iter;

   switch (cond_op) {
   case nir_op_ige:
   case nir_op_ilt:
   case nir_op_ieq:
   case nir_op_ine: {
      int32_t initial_val = initial->i32[0];
      int32_t span = limit->i32[0] - initial_val;
      iter = span / step->i32[0];
      break;
   }
   case nir_op_uge:
   case nir_op_ult: {
      uint32_t initial_val = initial->u32[0];
      uint32_t span = limit->u32[0] - initial_val;
      iter = span / step->u32[0];
      break;
   }
   case nir_op_fge:
   case nir_op_flt:
   case nir_op_feq:
   case nir_op_fne: {
      float initial_val = initial->f32[0];
      float span = limit->f32[0] - initial_val;
      iter = span / step->f32[0];
      break;
   }
   default:
      return -1;
   }

   return iter;
}

static bool
test_iterations(int32_t iter_int, nir_const_value *step,
                nir_const_value *limit, nir_op cond_op, unsigned bit_size,
                nir_alu_type induction_base_type,
                nir_const_value *initial, bool limit_rhs, bool invert_cond)
{
   assert(nir_op_infos[cond_op].num_inputs == 2);

   nir_const_value iter_src = { {0, } };
   nir_op mul_op;
   nir_op add_op;
   switch (induction_base_type) {
   case nir_type_float:
      iter_src.f32[0] = (float) iter_int;
      mul_op = nir_op_fmul;
      add_op = nir_op_fadd;
      break;
   case nir_type_int:
   case nir_type_uint:
      iter_src.i32[0] = iter_int;
      mul_op = nir_op_imul;
      add_op = nir_op_iadd;
      break;
   default:
      unreachable("Unhandled induction variable base type!");
   }

   /* Multiple the iteration count we are testing by the number of times we
    * step the induction variable each iteration.
    */
   nir_const_value mul_src[2] = { iter_src, *step };
   nir_const_value mul_result =
      nir_eval_const_opcode(mul_op, 1, bit_size, mul_src);

   /* Add the initial value to the accumulated induction variable total */
   nir_const_value add_src[2] = { mul_result, *initial };
   nir_const_value add_result =
      nir_eval_const_opcode(add_op, 1, bit_size, add_src);

   nir_const_value src[2] = { { {0, } }, { {0, } } };
   src[limit_rhs ? 0 : 1] = add_result;
   src[limit_rhs ? 1 : 0] = *limit;

   /* Evaluate the loop exit condition */
   nir_const_value result = nir_eval_const_opcode(cond_op, 1, bit_size, src);

   return invert_cond ? (result.u32[0] == 0) : (result.u32[0] != 0);
}

static int
calculate_iterations(nir_const_value *initial, nir_const_value *step,
                     nir_const_value *limit, nir_loop_variable *alu_def,
                     nir_alu_instr *cond_alu, bool limit_rhs, bool invert_cond)
{
   assert(initial != NULL && step != NULL && limit != NULL);

   nir_alu_instr *alu = nir_instr_as_alu(alu_def->def->parent_instr);

   /* nir_op_isub should have been lowered away by this point */
   assert(alu->op != nir_op_isub);

   /* Make sure the alu type for our induction variable is compatible with the
    * conditional alus input type. If its not something has gone really wrong.
    */
   nir_alu_type induction_base_type =
      nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
   if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
      assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_int ||
             nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_uint);
   } else {
      assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[0]) ==
             induction_base_type);
   }

   /* Check for nsupported alu operations */
   if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
      return -1;

   /* do-while loops can increment the starting value before the condition is
    * checked. e.g.
    *
    *    do {
    *        ndx++;
    *     } while (ndx < 3);
    *
    * Here we check if the induction variable is used directly by the loop
    * condition and if so we assume we need to step the initial value.
    */
   unsigned trip_offset = 0;
   if (cond_alu->src[0].src.ssa == alu_def->def ||
       cond_alu->src[1].src.ssa == alu_def->def) {
      trip_offset = 1;
   }

   int iter_int = get_iteration(cond_alu->op, initial, step, limit);

   /* If iter_int is negative the loop is ill-formed or is the conditional is
    * unsigned with a huge iteration count so don't bother going any further.
    */
   if (iter_int < 0)
      return -1;

   /* An explanation from the GLSL unrolling pass:
    *
    * Make sure that the calculated number of iterations satisfies the exit
    * condition.  This is needed to catch off-by-one errors and some types of
    * ill-formed loops.  For example, we need to detect that the following
    * loop does not have a maximum iteration count.
    *
    *    for (float x = 0.0; x != 0.9; x += 0.2);
    */
   assert(nir_src_bit_size(alu->src[0].src) ==
          nir_src_bit_size(alu->src[1].src));
   unsigned bit_size = nir_src_bit_size(alu->src[0].src);
   for (int bias = -1; bias <= 1; bias++) {
      const int iter_bias = iter_int + bias;

      if (test_iterations(iter_bias, step, limit, cond_alu->op, bit_size,
                          induction_base_type, initial,
                          limit_rhs, invert_cond)) {
         return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
      }
   }

   return -1;
}

/* Run through each of the terminators of the loop and try to infer a possible
 * trip-count. We need to check them all, and set the lowest trip-count as the
 * trip-count of our loop. If one of the terminators has an undecidable
 * trip-count we can not safely assume anything about the duration of the
 * loop.
 */
static void
find_trip_count(loop_info_state *state)
{
   bool trip_count_known = true;
   nir_loop_terminator *limiting_terminator = NULL;
   int max_trip_count = -1;

   list_for_each_entry(nir_loop_terminator, terminator,
                       &state->loop->info->loop_terminator_list,
                       loop_terminator_link) {

      if (terminator->conditional_instr->type != nir_instr_type_alu) {
         /* If we get here the loop is dead and will get cleaned up by the
          * nir_opt_dead_cf pass.
          */
         trip_count_known = false;
         continue;
      }

      nir_alu_instr *alu = nir_instr_as_alu(terminator->conditional_instr);
      nir_loop_variable *basic_ind = NULL;
      nir_loop_variable *limit = NULL;
      bool limit_rhs = true;

      switch (alu->op) {
      case nir_op_fge:      case nir_op_ige:      case nir_op_uge:
      case nir_op_flt:      case nir_op_ilt:      case nir_op_ult:
      case nir_op_feq:      case nir_op_ieq:
      case nir_op_fne:      case nir_op_ine:

         /* We assume that the limit is the "right" operand */
         basic_ind = get_loop_var(alu->src[0].src.ssa, state);
         limit = get_loop_var(alu->src[1].src.ssa, state);

         if (basic_ind->type != basic_induction) {
            /* We had it the wrong way, flip things around */
            basic_ind = get_loop_var(alu->src[1].src.ssa, state);
            limit = get_loop_var(alu->src[0].src.ssa, state);
            limit_rhs = false;
         }

         /* The comparison has to have a basic induction variable
          * and a constant for us to be able to find trip counts
          */
         if (basic_ind->type != basic_induction || !is_var_constant(limit)) {
            trip_count_known = false;
            continue;
         }

         /* We have determined that we have the following constants:
          * (With the typical int i = 0; i < x; i++; as an example)
          *    - Upper limit.
          *    - Starting value
          *    - Step / iteration size
          * Thats all thats needed to calculate the trip-count
          */

         nir_const_value initial_val =
            nir_instr_as_load_const(basic_ind->ind->def_outside_loop->
                                       def->parent_instr)->value;

         nir_const_value step_val =
            nir_instr_as_load_const(basic_ind->ind->invariant->def->
                                       parent_instr)->value;

         nir_const_value limit_val =
            nir_instr_as_load_const(limit->def->parent_instr)->value;

         int iterations = calculate_iterations(&initial_val, &step_val,
                                               &limit_val,
                                               basic_ind->ind->alu_def, alu,
                                               limit_rhs,
                                               terminator->continue_from_then);

         /* Where we not able to calculate the iteration count */
         if (iterations == -1) {
            trip_count_known = false;
            continue;
         }

         /* If this is the first run or we have found a smaller amount of
          * iterations than previously (we have identified a more limiting
          * terminator) set the trip count and limiting terminator.
          */
         if (max_trip_count == -1 || iterations < max_trip_count) {
            max_trip_count = iterations;
            limiting_terminator = terminator;
         }
         break;

      default:
         trip_count_known = false;
      }
   }

   state->loop->info->exact_trip_count_known = trip_count_known;
   if (max_trip_count > -1)
      state->loop->info->max_trip_count = max_trip_count;
   state->loop->info->limiting_terminator = limiting_terminator;
}

static bool
force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref)
{
   unsigned array_size = find_array_access_via_induction(state, deref, NULL);
   if (array_size) {
      if (array_size == state->loop->info->max_trip_count)
         return true;

      if (deref->mode & state->indirect_mask)
         return true;
   }

   return false;
}

static bool
force_unroll_heuristics(loop_info_state *state, nir_block *block)
{
   nir_foreach_instr(instr, block) {
      if (instr->type != nir_instr_type_intrinsic)
         continue;

      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

      /* Check for arrays variably-indexed by a loop induction variable.
       * Unrolling the loop may convert that access into constant-indexing.
       */
      if (intrin->intrinsic == nir_intrinsic_load_deref ||
          intrin->intrinsic == nir_intrinsic_store_deref ||
          intrin->intrinsic == nir_intrinsic_copy_deref) {
         if (force_unroll_array_access(state,
                                       nir_src_as_deref(intrin->src[0])))
            return true;

         if (intrin->intrinsic == nir_intrinsic_copy_deref &&
             force_unroll_array_access(state,
                                       nir_src_as_deref(intrin->src[1])))
            return true;
      }
   }

   return false;
}

static void
get_loop_info(loop_info_state *state, nir_function_impl *impl)
{
   /* Initialize all variables to "outside_loop". This also marks defs
    * invariant and constant if they are nir_instr_type_load_consts
    */
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block)
         nir_foreach_ssa_def(instr, initialize_ssa_def, state);
   }

   /* Add all entries in the outermost part of the loop to the processing list
    * Mark the entries in conditionals or in nested loops accordingly
    */
   foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
      switch (node->type) {

      case nir_cf_node_block:
         init_loop_block(nir_cf_node_as_block(node), state, false, false);
         break;

      case nir_cf_node_if:
         nir_foreach_block_in_cf_node(block, node)
            init_loop_block(block, state, true, false);
         break;

      case nir_cf_node_loop:
         nir_foreach_block_in_cf_node(block, node) {
            init_loop_block(block, state, false, true);
         }
         break;

      case nir_cf_node_function:
         break;
      }
   }

   /* Try to find all simple terminators of the loop. If we can't find any,
    * or we find possible terminators that have side effects then bail.
    */
   if (!find_loop_terminators(state)) {
      list_for_each_entry_safe(nir_loop_terminator, terminator,
                               &state->loop->info->loop_terminator_list,
                               loop_terminator_link) {
         list_del(&terminator->loop_terminator_link);
         ralloc_free(terminator);
      }
      return;
   }

   /* Induction analysis needs invariance information so get that first */
   compute_invariance_information(state);

   /* We have invariance information so try to find induction variables */
   if (!compute_induction_information(state))
      return;

   /* Run through each of the terminators and try to compute a trip-count */
   find_trip_count(state);

   nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
      if (force_unroll_heuristics(state, block)) {
         state->loop->info->force_unroll = true;
         break;
      }
   }
}

static loop_info_state *
initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
                           nir_function_impl *impl)
{
   loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
   state->loop_vars = rzalloc_array(mem_ctx, nir_loop_variable,
                                    impl->ssa_alloc);
   state->loop = loop;

   list_inithead(&state->process_list);

   if (loop->info)
     ralloc_free(loop->info);

   loop->info = rzalloc(loop, nir_loop_info);

   list_inithead(&loop->info->loop_terminator_list);

   return state;
}

static void
process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask)
{
   switch (cf_node->type) {
   case nir_cf_node_block:
      return;
   case nir_cf_node_if: {
      nir_if *if_stmt = nir_cf_node_as_if(cf_node);
      foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
         process_loops(nested_node, indirect_mask);
      foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
         process_loops(nested_node, indirect_mask);
      return;
   }
   case nir_cf_node_loop: {
      nir_loop *loop = nir_cf_node_as_loop(cf_node);
      foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
         process_loops(nested_node, indirect_mask);
      break;
   }
   default:
      unreachable("unknown cf node type");
   }

   nir_loop *loop = nir_cf_node_as_loop(cf_node);
   nir_function_impl *impl = nir_cf_node_get_function(cf_node);
   void *mem_ctx = ralloc_context(NULL);

   loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
   state->indirect_mask = indirect_mask;

   get_loop_info(state, impl);

   ralloc_free(mem_ctx);
}

void
nir_loop_analyze_impl(nir_function_impl *impl,
                      nir_variable_mode indirect_mask)
{
   nir_index_ssa_defs(impl);
   foreach_list_typed(nir_cf_node, node, node, &impl->body)
      process_loops(node, indirect_mask);
}