summaryrefslogtreecommitdiff
path: root/src/amd/vulkan/radv_shader.c
blob: afc94245725f92f8de51c74c92ded1086513451d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "util/memstream.h"
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "radv_shader_args.h"

#include "util/debug.h"
#include "ac_binary.h"
#include "ac_nir.h"
#include "ac_rtld.h"
#include "aco_interface.h"
#include "sid.h"
#include "vk_format.h"

#ifdef LLVM_AVAILABLE
#include "ac_llvm_util.h"
#endif

static void
get_nir_options_for_stage(struct radv_physical_device *device, gl_shader_stage stage)
{
   bool split_fma = (stage <= MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH) &&
                    device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA;
   device->nir_options[stage] = (nir_shader_compiler_options){
      .vertex_id_zero_based = true,
      .lower_scmp = true,
      .lower_flrp16 = true,
      .lower_flrp32 = true,
      .lower_flrp64 = true,
      .lower_device_index_to_zero = true,
      .lower_fdiv = true,
      .lower_fmod = true,
      .lower_ineg = true,
      .lower_bitfield_insert_to_bitfield_select = true,
      .lower_bitfield_extract = true,
      .lower_pack_snorm_2x16 = true,
      .lower_pack_snorm_4x8 = true,
      .lower_pack_unorm_2x16 = true,
      .lower_pack_unorm_4x8 = true,
      .lower_pack_half_2x16 = true,
      .lower_pack_64_2x32 = true,
      .lower_pack_64_4x16 = true,
      .lower_pack_32_2x16 = true,
      .lower_unpack_snorm_2x16 = true,
      .lower_unpack_snorm_4x8 = true,
      .lower_unpack_unorm_2x16 = true,
      .lower_unpack_unorm_4x8 = true,
      .lower_unpack_half_2x16 = true,
      .lower_ffma16 = split_fma || device->rad_info.chip_class < GFX9,
      .lower_ffma32 = split_fma || device->rad_info.chip_class < GFX10_3,
      .lower_ffma64 = split_fma,
      .lower_fpow = true,
      .lower_mul_2x32_64 = true,
      .lower_rotate = true,
      .lower_iadd_sat = device->rad_info.chip_class <= GFX8,
      .has_fsub = true,
      .has_isub = true,
      .has_sdot_4x8 = device->rad_info.has_accelerated_dot_product,
      .has_udot_4x8 = device->rad_info.has_accelerated_dot_product,
      .has_dot_2x16 = device->rad_info.has_accelerated_dot_product,
      .use_scoped_barrier = true,
      .max_unroll_iterations = 32,
      .max_unroll_iterations_aggressive = 128,
      .use_interpolated_input_intrinsics = true,
      .vectorize_vec2_16bit = true,
      /* nir_lower_int64() isn't actually called for the LLVM backend,
       * but this helps the loop unrolling heuristics. */
      .lower_int64_options = nir_lower_imul64 | nir_lower_imul_high64 | nir_lower_imul_2x32_64 |
                             nir_lower_divmod64 | nir_lower_minmax64 | nir_lower_iabs64,
      .lower_doubles_options = nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_ddiv,
      .divergence_analysis_options = nir_divergence_view_index_uniform,
   };
}

void
radv_get_nir_options(struct radv_physical_device *device)
{
   for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_VULKAN_SHADER_STAGES; stage++)
      get_nir_options_for_stage(device, stage);
}

static bool
is_meta_shader(nir_shader *nir)
{
   return nir && nir->info.internal;
}

bool
radv_can_dump_shader(struct radv_device *device, struct vk_shader_module *module,
                     bool meta_shader)
{
   if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
      return false;
   if (module)
      return !is_meta_shader(module->nir) ||
             (device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS);

   return meta_shader;
}

bool
radv_can_dump_shader_stats(struct radv_device *device, struct vk_shader_module *module)
{
   /* Only dump non-meta shader stats. */
   return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && module &&
          !is_meta_shader(module->nir);
}

void
radv_optimize_nir(const struct radv_device *device, struct nir_shader *shader,
                  bool optimize_conservatively, bool allow_copies)
{
   bool progress;

   do {
      progress = false;

      NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
      NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);

      NIR_PASS_V(shader, nir_lower_vars_to_ssa);

      if (allow_copies) {
         /* Only run this pass in the first call to
          * radv_optimize_nir.  Later calls assume that we've
          * lowered away any copy_deref instructions and we
          *  don't want to introduce any more.
          */
         NIR_PASS(progress, shader, nir_opt_find_array_copies);
      }

      NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
      NIR_PASS(progress, shader, nir_opt_dead_write_vars);
      NIR_PASS(progress, shader, nir_remove_dead_variables,
               nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL);

      NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL, NULL);
      NIR_PASS_V(shader, nir_lower_phis_to_scalar, true);

      NIR_PASS(progress, shader, nir_copy_prop);
      NIR_PASS(progress, shader, nir_opt_remove_phis);
      NIR_PASS(progress, shader, nir_opt_dce);
      if (nir_opt_trivial_continues(shader)) {
         progress = true;
         NIR_PASS(progress, shader, nir_copy_prop);
         NIR_PASS(progress, shader, nir_opt_remove_phis);
         NIR_PASS(progress, shader, nir_opt_dce);
      }
      NIR_PASS(progress, shader, nir_opt_if, true);
      NIR_PASS(progress, shader, nir_opt_dead_cf);
      NIR_PASS(progress, shader, nir_opt_cse);
      NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
      NIR_PASS(progress, shader, nir_opt_constant_folding);
      NIR_PASS(progress, shader, nir_opt_algebraic);

      NIR_PASS(progress, shader, nir_opt_undef);
      NIR_PASS(progress, shader, nir_opt_shrink_vectors,
               !device->instance->disable_shrink_image_store);
      if (shader->options->max_unroll_iterations) {
         NIR_PASS(progress, shader, nir_opt_loop_unroll);
      }
   } while (progress && !optimize_conservatively);

   NIR_PASS(progress, shader, nir_opt_conditional_discard);
   NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
}

void
radv_optimize_nir_algebraic(nir_shader *nir, bool opt_offsets)
{
   bool more_algebraic = true;
   while (more_algebraic) {
      more_algebraic = false;
      NIR_PASS_V(nir, nir_copy_prop);
      NIR_PASS_V(nir, nir_opt_dce);
      NIR_PASS_V(nir, nir_opt_constant_folding);
      NIR_PASS_V(nir, nir_opt_cse);
      NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
   }

   if (opt_offsets)
      NIR_PASS_V(nir, nir_opt_offsets);

   /* Do late algebraic optimization to turn add(a,
    * neg(b)) back into subs, then the mandatory cleanup
    * after algebraic.  Note that it may produce fnegs,
    * and if so then we need to keep running to squash
    * fneg(fneg(a)).
    */
   bool more_late_algebraic = true;
   while (more_late_algebraic) {
      more_late_algebraic = false;
      NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
      NIR_PASS_V(nir, nir_opt_constant_folding);
      NIR_PASS_V(nir, nir_copy_prop);
      NIR_PASS_V(nir, nir_opt_dce);
      NIR_PASS_V(nir, nir_opt_cse);
   }
}

static void
shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
   assert(glsl_type_is_vector_or_scalar(type));

   uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
   unsigned length = glsl_get_vector_elements(type);
   *size = comp_size * length, *align = comp_size;
}

struct radv_shader_debug_data {
   struct radv_device *device;
   const struct vk_shader_module *module;
};

static void
radv_spirv_nir_debug(void *private_data, enum nir_spirv_debug_level level, size_t spirv_offset,
                     const char *message)
{
   struct radv_shader_debug_data *debug_data = private_data;
   struct radv_instance *instance = debug_data->device->instance;

   static const VkDebugReportFlagsEXT vk_flags[] = {
      [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
      [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
      [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
   };
   char buffer[256];

   snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long)spirv_offset, message);

   vk_debug_report(&instance->vk, vk_flags[level], &debug_data->module->base, 0, 0, "radv", buffer);
}

static void
radv_compiler_debug(void *private_data, enum radv_compiler_debug_level level, const char *message)
{
   struct radv_shader_debug_data *debug_data = private_data;
   struct radv_instance *instance = debug_data->device->instance;

   static const VkDebugReportFlagsEXT vk_flags[] = {
      [RADV_COMPILER_DEBUG_LEVEL_PERFWARN] = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
      [RADV_COMPILER_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
   };

   /* VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information
    * from the implementation and layers.
    */
   vk_debug_report(&instance->vk, vk_flags[level] | VK_DEBUG_REPORT_DEBUG_BIT_EXT,
                   &debug_data->module->base, 0, 0, "radv", message);
}

static nir_ssa_def *
convert_pointer_to_64(nir_builder *b, const struct radv_physical_device *pdev, nir_ssa_def *ptr)
{
   nir_ssa_def *comp[] = {ptr, nir_imm_int(b, pdev->rad_info.address32_hi)};
   return nir_pack_64_2x32(b, nir_vec(b, comp, 2));
}

static bool
lower_intrinsics(nir_shader *nir, const struct radv_pipeline_key *key,
                 const struct radv_pipeline_layout *layout, const struct radv_physical_device *pdev)
{
   nir_function_impl *entry = nir_shader_get_entrypoint(nir);
   bool progress = false;
   nir_builder b;

   nir_builder_init(&b, entry);

   nir_foreach_block (block, entry) {
      nir_foreach_instr_safe (instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
         b.cursor = nir_before_instr(&intrin->instr);

         nir_ssa_def *def = NULL;
         switch (intrin->intrinsic) {
         case nir_intrinsic_load_vulkan_descriptor:
            if (nir_intrinsic_desc_type(intrin) == VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) {
               nir_ssa_def *addr =
                  convert_pointer_to_64(&b, pdev,
                                        nir_iadd(&b, nir_channel(&b, intrin->src[0].ssa, 0),
                                                 nir_channel(&b, intrin->src[0].ssa, 1)));

               def = nir_build_load_global(&b, 1, 64, addr, .access = ACCESS_NON_WRITEABLE,
                                           .align_mul = 8, .align_offset = 0);
            } else {
               def = nir_vector_insert_imm(&b, intrin->src[0].ssa, nir_imm_int(&b, 0), 2);
            }
            break;
         case nir_intrinsic_vulkan_resource_index: {
            unsigned desc_set = nir_intrinsic_desc_set(intrin);
            unsigned binding = nir_intrinsic_binding(intrin);
            struct radv_descriptor_set_layout *desc_layout = layout->set[desc_set].layout;

            nir_ssa_def *new_res = nir_vulkan_resource_index(
               &b, 3, 32, intrin->src[0].ssa, .desc_set = desc_set, .binding = binding,
               .desc_type = nir_intrinsic_desc_type(intrin));

            nir_ssa_def *stride;
            if (desc_layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
                desc_layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
               stride = nir_imm_int(&b, 16);
            } else {
               stride = nir_imm_int(&b, desc_layout->binding[binding].size);
            }
            def = nir_vector_insert_imm(&b, new_res, stride, 2);
            break;
         }
         case nir_intrinsic_vulkan_resource_reindex: {
            nir_ssa_def *binding_ptr = nir_channel(&b, intrin->src[0].ssa, 1);
            nir_ssa_def *stride = nir_channel(&b, intrin->src[0].ssa, 2);
            binding_ptr = nir_iadd(&b, binding_ptr, nir_imul(&b, intrin->src[1].ssa, stride));
            def = nir_vector_insert_imm(&b, intrin->src[0].ssa, binding_ptr, 1);
            break;
         }
         case nir_intrinsic_is_sparse_texels_resident:
            def = nir_ieq_imm(&b, intrin->src[0].ssa, 0);
            break;
         case nir_intrinsic_sparse_residency_code_and:
            def = nir_ior(&b, intrin->src[0].ssa, intrin->src[1].ssa);
            break;
         case nir_intrinsic_load_view_index:
            if (key->has_multiview_view_index)
               continue;
            def = nir_imm_zero(&b, 1, 32);
            break;
         default:
            continue;
         }

         nir_ssa_def_rewrite_uses(&intrin->dest.ssa, def);

         nir_instr_remove(instr);
         progress = true;
      }
   }

   return progress;
}

static bool
radv_lower_primitive_shading_rate(nir_shader *nir)
{
   nir_function_impl *impl = nir_shader_get_entrypoint(nir);
   bool progress = false;

   nir_builder b;
   nir_builder_init(&b, impl);

   /* Iterate in reverse order since there should be only one deref store to PRIMITIVE_SHADING_RATE
    * after lower_io_to_temporaries for vertex shaders.
    */
   nir_foreach_block_reverse(block, impl) {
      nir_foreach_instr_reverse(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         if (intr->intrinsic != nir_intrinsic_store_deref)
            continue;

         nir_variable *var = nir_intrinsic_get_var(intr, 0);
         if (var->data.mode != nir_var_shader_out ||
             var->data.location != VARYING_SLOT_PRIMITIVE_SHADING_RATE)
            continue;

         b.cursor = nir_before_instr(instr);

         nir_ssa_def *val = nir_ssa_for_src(&b, intr->src[1], 1);

         /* x_rate = (shadingRate & (Horizontal2Pixels | Horizontal4Pixels)) ? 0x1 : 0x0; */
         nir_ssa_def *x_rate = nir_iand(&b, val, nir_imm_int(&b, 12));
         x_rate = nir_b2i32(&b, nir_ine(&b, x_rate, nir_imm_int(&b, 0)));

         /* y_rate = (shadingRate & (Vertical2Pixels | Vertical4Pixels)) ? 0x1 : 0x0; */
         nir_ssa_def *y_rate = nir_iand(&b, val, nir_imm_int(&b, 3));
         y_rate = nir_b2i32(&b, nir_ine(&b, y_rate, nir_imm_int(&b, 0)));

         nir_ssa_def *out = NULL;

         if (nir->info.stage == MESA_SHADER_MESH) {
            /* MS:
             * Primitive shading rate is a per-primitive output, it is
             * part of the second channel of the primitive export.
             *
             * Bits [28:29] = VRS rate X
             * Bits [30:31] = VRS rate Y
             * This will be added to the other bits of that channel in the backend.
             */
            out = nir_ior(&b, nir_ishl(&b, x_rate, nir_imm_int(&b, 28)),
                              nir_ishl(&b, y_rate, nir_imm_int(&b, 30)));
         } else {
            /* VS, TES, GS:
             * Primitive shading rate is a per-vertex output pos export.
             *
             * Bits [2:3] = VRS rate X
             * Bits [4:5] = VRS rate Y
             * HW shading rate = (xRate << 2) | (yRate << 4)
             */
            out = nir_ior(&b, nir_ishl(&b, x_rate, nir_imm_int(&b, 2)),
                              nir_ishl(&b, y_rate, nir_imm_int(&b, 4)));
         }

         nir_instr_rewrite_src(&intr->instr, &intr->src[1], nir_src_for_ssa(out));

         progress = true;
         if (nir->info.stage == MESA_SHADER_VERTEX)
            return progress;
      }
   }

   return progress;
}

nir_shader *
radv_shader_compile_to_nir(struct radv_device *device, struct vk_shader_module *module,
                           const char *entrypoint_name, gl_shader_stage stage,
                           const VkSpecializationInfo *spec_info,
                           const struct radv_pipeline_layout *layout,
                           const struct radv_pipeline_key *key)
{
   unsigned subgroup_size = 64, ballot_bit_size = 64;
   if (key->cs.compute_subgroup_size) {
      /* Only compute shaders currently support requiring a
       * specific subgroup size.
       */
      assert(stage == MESA_SHADER_COMPUTE);
      subgroup_size = key->cs.compute_subgroup_size;
      ballot_bit_size = key->cs.compute_subgroup_size;
   }

   nir_shader *nir;

   if (module->nir) {
      /* Some things such as our meta clear/blit code will give us a NIR
       * shader directly.  In that case, we just ignore the SPIR-V entirely
       * and just use the NIR shader.  We don't want to alter meta and RT
       * shaders IR directly, so clone it first. */
      nir = nir_shader_clone(NULL, module->nir);
      nir->options = &device->physical_device->nir_options[stage];
      nir_validate_shader(nir, "in internal shader");

      assert(exec_list_length(&nir->functions) == 1);
   } else {
      uint32_t *spirv = (uint32_t *)module->data;
      assert(module->size % 4 == 0);

      if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
         radv_print_spirv(module->data, module->size, stderr);

      uint32_t num_spec_entries = 0;
      struct nir_spirv_specialization *spec_entries =
         vk_spec_info_to_nir_spirv(spec_info, &num_spec_entries);
      struct radv_shader_debug_data spirv_debug_data = {
         .device = device,
         .module = module,
      };
      const struct spirv_to_nir_options spirv_options = {
         .caps =
            {
               .amd_fragment_mask = true,
               .amd_gcn_shader = true,
               .amd_image_gather_bias_lod = true,
               .amd_image_read_write_lod = true,
               .amd_shader_ballot = true,
               .amd_shader_explicit_vertex_parameter = true,
               .amd_trinary_minmax = true,
               .demote_to_helper_invocation = true,
               .derivative_group = true,
               .descriptor_array_dynamic_indexing = true,
               .descriptor_array_non_uniform_indexing = true,
               .descriptor_indexing = true,
               .device_group = true,
               .draw_parameters = true,
               .float_controls = true,
               .float16 = device->physical_device->rad_info.has_packed_math_16bit,
               .float32_atomic_add = true,
               .float32_atomic_min_max = true,
               .float64 = true,
               .float64_atomic_min_max = true,
               .geometry_streams = true,
               .groups = true,
               .image_atomic_int64 = true,
               .image_ms_array = true,
               .image_read_without_format = true,
               .image_write_without_format = true,
               .int8 = true,
               .int16 = true,
               .int64 = true,
               .int64_atomics = true,
               .mesh_shading_nv = true,
               .min_lod = true,
               .multiview = true,
               .physical_storage_buffer_address = true,
               .post_depth_coverage = true,
               .ray_tracing = true,
               .runtime_descriptor_array = true,
               .shader_clock = true,
               .shader_viewport_index_layer = true,
               .sparse_residency = true,
               .stencil_export = true,
               .storage_8bit = true,
               .storage_16bit = true,
               .storage_image_ms = true,
               .subgroup_arithmetic = true,
               .subgroup_ballot = true,
               .subgroup_basic = true,
               .subgroup_quad = true,
               .subgroup_shuffle = true,
               .subgroup_uniform_control_flow = true,
               .subgroup_vote = true,
               .tessellation = true,
               .transform_feedback = true,
               .variable_pointers = true,
               .vk_memory_model = true,
               .vk_memory_model_device_scope = true,
               .fragment_shading_rate = device->physical_device->rad_info.chip_class >= GFX10_3,
               .workgroup_memory_explicit_layout = true,
            },
         .ubo_addr_format = nir_address_format_vec2_index_32bit_offset,
         .ssbo_addr_format = nir_address_format_vec2_index_32bit_offset,
         .phys_ssbo_addr_format = nir_address_format_64bit_global,
         .push_const_addr_format = nir_address_format_logical,
         .shared_addr_format = nir_address_format_32bit_offset,
         .constant_addr_format = nir_address_format_64bit_global,
         .use_deref_buffer_array_length = true,
         .debug =
            {
               .func = radv_spirv_nir_debug,
               .private_data = &spirv_debug_data,
            },
      };
      nir = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage,
                         entrypoint_name, &spirv_options,
                         &device->physical_device->nir_options[stage]);
      assert(nir->info.stage == stage);
      nir_validate_shader(nir, "after spirv_to_nir");

      free(spec_entries);

      const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
         .point_coord = true,
      };
      NIR_PASS_V(nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);

      /* We have to lower away local constant initializers right before we
       * inline functions.  That way they get properly initialized at the top
       * of the function and not at the top of its caller.
       */
      NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp);
      NIR_PASS_V(nir, nir_lower_returns);
      if (nir_inline_functions(nir))
         NIR_PASS_V(nir, nir_copy_prop);
      NIR_PASS_V(nir, nir_opt_deref);

      /* Pick off the single entrypoint that we want */
      foreach_list_typed_safe(nir_function, func, node, &nir->functions)
      {
         if (func->is_entrypoint)
            func->name = ralloc_strdup(func, "main");
         else
            exec_node_remove(&func->node);
      }
      assert(exec_list_length(&nir->functions) == 1);

      /* Make sure we lower constant initializers on output variables so that
       * nir_remove_dead_variables below sees the corresponding stores
       */
      NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_shader_out);

      /* Now that we've deleted all but the main function, we can go ahead and
       * lower the rest of the constant initializers.
       */
      NIR_PASS_V(nir, nir_lower_variable_initializers, ~0);

      /* Split member structs.  We do this before lower_io_to_temporaries so that
       * it doesn't lower system values to temporaries by accident.
       */
      NIR_PASS_V(nir, nir_split_var_copies);
      NIR_PASS_V(nir, nir_split_per_member_structs);

      if (nir->info.stage == MESA_SHADER_FRAGMENT)
         NIR_PASS_V(nir, nir_lower_io_to_vector, nir_var_shader_out);
      if (nir->info.stage == MESA_SHADER_FRAGMENT)
         NIR_PASS_V(nir, nir_lower_input_attachments,
                    &(nir_input_attachment_options){
                       .use_fragcoord_sysval = true,
                       .use_layer_id_sysval = false,
                    });

      NIR_PASS_V(nir, nir_remove_dead_variables,
                 nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared,
                 NULL);

      /* Variables can make nir_propagate_invariant more conservative
       * than it needs to be.
       */
      NIR_PASS_V(nir, nir_lower_global_vars_to_local);
      NIR_PASS_V(nir, nir_lower_vars_to_ssa);

      NIR_PASS_V(nir, nir_propagate_invariant, key->invariant_geom);

      NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);

      NIR_PASS_V(nir, nir_lower_discard_or_demote, key->ps.lower_discard_to_demote);

      nir_lower_doubles_options lower_doubles = nir->options->lower_doubles_options;

      if (device->physical_device->rad_info.chip_class == GFX6) {
         /* GFX6 doesn't support v_floor_f64 and the precision
          * of v_fract_f64 which is used to implement 64-bit
          * floor is less than what Vulkan requires.
          */
         lower_doubles |= nir_lower_dfloor;
      }

      NIR_PASS_V(nir, nir_lower_doubles, NULL, lower_doubles);
   }

   NIR_PASS_V(nir, nir_lower_system_values);
   nir_lower_compute_system_values_options csv_options = {
      /* Mesh shaders run as NGG which can implement local_invocation_index from
       * the wave ID in merged_wave_info, but they don't have local_invocation_ids.
       */
      .lower_cs_local_id_from_index = nir->info.stage == MESA_SHADER_MESH,
      .lower_local_invocation_index = nir->info.stage == MESA_SHADER_COMPUTE &&
                                      ((nir->info.workgroup_size[0] == 1) +
                                       (nir->info.workgroup_size[1] == 1) +
                                       (nir->info.workgroup_size[2] == 1)) == 2,
   };
   NIR_PASS_V(nir, nir_lower_compute_system_values, &csv_options);

   /* Vulkan uses the separate-shader linking model */
   nir->info.separate_shader = true;

   nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));

   if (nir->info.stage == MESA_SHADER_GEOMETRY) {
      unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream;

      if (key->use_ngg && !radv_use_llvm_for_stage(device, stage)) {
         /* ACO needs NIR to do some of the hard lifting */
         nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives |
                         nir_lower_gs_intrinsics_count_vertices_per_primitive |
                         nir_lower_gs_intrinsics_overwrite_incomplete;
      }

      nir_lower_gs_intrinsics(nir, nir_gs_flags);
   }

   static const nir_lower_tex_options tex_options = {
      .lower_txp = ~0,
      .lower_tg4_offsets = true,
      .lower_txs_cube_array = true,
      .lower_to_fragment_fetch_amd = true,
      .lower_lod_zero_width = true,
   };

   nir_lower_tex(nir, &tex_options);

   static const nir_lower_image_options image_options = {
      .lower_cube_size = true,
   };

   nir_lower_image(nir, &image_options);

   nir_lower_vars_to_ssa(nir);

   if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
       nir->info.stage == MESA_SHADER_FRAGMENT) {
      NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true);
   } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
      NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false);
   }

   nir_split_var_copies(nir);

   nir_lower_global_vars_to_local(nir);
   nir_remove_dead_variables(nir, nir_var_function_temp, NULL);
   bool gfx7minus = device->physical_device->rad_info.chip_class <= GFX7;
   nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options){
                               .subgroup_size = subgroup_size,
                               .ballot_bit_size = ballot_bit_size,
                               .ballot_components = 1,
                               .lower_to_scalar = 1,
                               .lower_subgroup_masks = 1,
                               .lower_shuffle = 1,
                               .lower_shuffle_to_32bit = 1,
                               .lower_vote_eq = 1,
                               .lower_quad_broadcast_dynamic = 1,
                               .lower_quad_broadcast_dynamic_to_const = gfx7minus,
                               .lower_shuffle_to_swizzle_amd = 1,
                            });

   nir_lower_load_const_to_scalar(nir);

   if (!key->optimisations_disabled)
      radv_optimize_nir(device, nir, false, true);

   /* call radv_nir_lower_ycbcr_textures() late as there might still be
    * tex with undef texture/sampler before first optimization */
   NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout);

   /* We call nir_lower_var_copies() after the first radv_optimize_nir()
    * to remove any copies introduced by nir_opt_find_array_copies().
    */
   nir_lower_var_copies(nir);

   unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) |
                         (nir->options->lower_flrp32 ? 32 : 0) |
                         (nir->options->lower_flrp64 ? 64 : 0);
   if (lower_flrp != 0) {
      if (nir_lower_flrp(nir, lower_flrp, false /* always_precise */))
         NIR_PASS_V(nir, nir_opt_constant_folding);
   }

   const nir_opt_access_options opt_access_options = {
      .is_vulkan = true,
      .infer_non_readable = true,
   };
   NIR_PASS_V(nir, nir_opt_access, &opt_access_options);

   NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_push_const, nir_address_format_32bit_offset);

   NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo | nir_var_mem_ssbo,
              nir_address_format_vec2_index_32bit_offset);

   NIR_PASS_V(nir, lower_intrinsics, key, layout, device->physical_device);

   /* Lower deref operations for compute shared memory. */
   if (nir->info.stage == MESA_SHADER_COMPUTE ||
       nir->info.stage == MESA_SHADER_MESH) {
      if (!nir->info.shared_memory_explicit_layout) {
         NIR_PASS_V(nir, nir_lower_vars_to_explicit_types, nir_var_mem_shared, shared_var_info);
      }
      NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_shared, nir_address_format_32bit_offset);

      if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) {
         const unsigned chunk_size = 16; /* max single store size */
         const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
         NIR_PASS_V(nir, nir_zero_initialize_shared_memory, shared_size, chunk_size);
      }
   }

   nir_lower_explicit_io(nir, nir_var_mem_global | nir_var_mem_constant,
                         nir_address_format_64bit_global);

   /* Lower large variables that are always constant with load_constant
    * intrinsics, which get turned into PC-relative loads from a data
    * section next to the shader.
    */
   NIR_PASS_V(nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);

   /* Lower primitive shading rate to match HW requirements. */
   if ((nir->info.stage == MESA_SHADER_VERTEX ||
        nir->info.stage == MESA_SHADER_GEOMETRY ||
        nir->info.stage == MESA_SHADER_MESH) &&
       nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) {
      NIR_PASS_V(nir, radv_lower_primitive_shading_rate);
   }

   /* Indirect lowering must be called after the radv_optimize_nir() loop
    * has been called at least once. Otherwise indirect lowering can
    * bloat the instruction count of the loop and cause it to be
    * considered too large for unrolling.
    */
   if (ac_nir_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class) &&
       !key->optimisations_disabled && nir->info.stage != MESA_SHADER_COMPUTE) {
      /* Optimize the lowered code before the linking optimizations. */
      radv_optimize_nir(device, nir, false, false);
   }

   return nir;
}

static int
type_size_vec4(const struct glsl_type *type, bool bindless)
{
   return glsl_count_attribute_slots(type, false);
}

static nir_variable *
find_layer_in_var(nir_shader *nir)
{
   nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_in, VARYING_SLOT_LAYER);
   if (var != NULL)
      return var;

   var = nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id");
   var->data.location = VARYING_SLOT_LAYER;
   var->data.interpolation = INTERP_MODE_FLAT;
   return var;
}

/* We use layered rendering to implement multiview, which means we need to map
 * view_index to gl_Layer. The code generates a load from the layer_id sysval,
 * but since we don't have a way to get at this information from the fragment
 * shader, we also need to lower this to the gl_Layer varying.  This pass
 * lowers both to a varying load from the LAYER slot, before lowering io, so
 * that nir_assign_var_locations() will give the LAYER varying the correct
 * driver_location.
 */

static bool
lower_view_index(nir_shader *nir)
{
   bool progress = false;
   nir_function_impl *entry = nir_shader_get_entrypoint(nir);
   nir_builder b;
   nir_builder_init(&b, entry);

   nir_variable *layer = NULL;
   nir_foreach_block (block, entry) {
      nir_foreach_instr_safe (instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
         if (load->intrinsic != nir_intrinsic_load_view_index)
            continue;

         if (!layer)
            layer = find_layer_in_var(nir);

         b.cursor = nir_before_instr(instr);
         nir_ssa_def *def = nir_load_var(&b, layer);
         nir_ssa_def_rewrite_uses(&load->dest.ssa, def);

         nir_instr_remove(instr);
         progress = true;
      }
   }

   return progress;
}

void
radv_lower_io(struct radv_device *device, nir_shader *nir)
{
   if (nir->info.stage == MESA_SHADER_COMPUTE)
      return;

   if (nir->info.stage == MESA_SHADER_FRAGMENT) {
      NIR_PASS_V(nir, lower_view_index);
      nir_assign_io_var_locations(nir, nir_var_shader_in, &nir->num_inputs, MESA_SHADER_FRAGMENT);
   }

   /* The RADV/LLVM backend expects 64-bit IO to be lowered. */
   nir_lower_io_options options =
      radv_use_llvm_for_stage(device, nir->info.stage) ? nir_lower_io_lower_64bit_to_32 : 0;

   NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out, type_size_vec4, options);

   /* This pass needs actual constants */
   nir_opt_constant_folding(nir);

   NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in | nir_var_shader_out);
}

bool
radv_lower_io_to_mem(struct radv_device *device, struct nir_shader *nir,
                     const struct radv_shader_info *info, const struct radv_pipeline_key *pl_key)
{
   if (nir->info.stage == MESA_SHADER_VERTEX) {
      if (info->vs.as_ls) {
         ac_nir_lower_ls_outputs_to_mem(nir, info->vs.tcs_in_out_eq,
                                        info->vs.tcs_temp_only_input_mask,
                                        info->vs.num_linked_outputs);
         return true;
      } else if (info->vs.as_es) {
         ac_nir_lower_es_outputs_to_mem(nir, device->physical_device->rad_info.chip_class,
                                        info->vs.num_linked_outputs);
         return true;
      }
   } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
      ac_nir_lower_hs_inputs_to_mem(nir, info->vs.tcs_in_out_eq, info->tcs.num_linked_inputs);
      ac_nir_lower_hs_outputs_to_mem(
         nir, device->physical_device->rad_info.chip_class, info->tcs.tes_reads_tess_factors,
         info->tcs.tes_inputs_read, info->tcs.tes_patch_inputs_read, info->tcs.num_linked_inputs,
         info->tcs.num_linked_outputs, info->tcs.num_linked_patch_outputs, true);
      ac_nir_lower_tess_to_const(nir, pl_key->tcs.tess_input_vertices, info->num_tess_patches,
                                 ac_nir_lower_patch_vtx_in | ac_nir_lower_num_patches);

      return true;
   } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
      ac_nir_lower_tes_inputs_to_mem(nir, info->tes.num_linked_inputs,
                                     info->tes.num_linked_patch_inputs);
      ac_nir_lower_tess_to_const(nir, nir->info.tess.tcs_vertices_out, info->num_tess_patches,
                                 ac_nir_lower_patch_vtx_in | ac_nir_lower_num_patches);

      if (info->tes.as_es) {
         ac_nir_lower_es_outputs_to_mem(nir, device->physical_device->rad_info.chip_class,
                                        info->tes.num_linked_outputs);
      }

      return true;
   } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
      ac_nir_lower_gs_inputs_to_mem(nir, device->physical_device->rad_info.chip_class,
                                    info->gs.num_linked_inputs);
      return true;
   }

   return false;
}

bool
radv_consider_culling(struct radv_device *device, struct nir_shader *nir, uint64_t ps_inputs_read,
                      unsigned num_vertices_per_primitive, const struct radv_shader_info *info)
{
   /* Culling doesn't make sense for meta shaders. */
   if (is_meta_shader(nir))
      return false;

   /* We don't support culling with multiple viewports yet. */
   if (nir->info.outputs_written & (VARYING_BIT_VIEWPORT | VARYING_BIT_VIEWPORT_MASK))
      return false;

   /* We don't support culling with vertex shader prologs. */
   if (info->vs.has_prolog)
      return false;

   if (!device->physical_device->use_ngg_culling)
      return false;

   /* Shader based culling efficiency can depend on PS throughput.
    * Estimate an upper limit for PS input param count based on GPU info.
    */
   unsigned max_ps_params;
   unsigned max_render_backends = device->physical_device->rad_info.max_render_backends;
   unsigned max_se = device->physical_device->rad_info.max_se;

   if (max_render_backends / max_se == 4)
      max_ps_params = 6; /* Sienna Cichlid and other GFX10.3 dGPUs. */
   else
      max_ps_params = 4; /* Navi 1x. */

   /* TODO: consider other heuristics here, such as PS execution time */
   if (util_bitcount64(ps_inputs_read & ~VARYING_BIT_POS) > max_ps_params)
      return false;

   /* Only triangle culling is supported. */
   if (num_vertices_per_primitive != 3)
      return false;

   /* When the shader writes memory, it is difficult to guarantee correctness.
    * Future work:
    * - if only write-only SSBOs are used
    * - if we can prove that non-position outputs don't rely on memory stores
    * then may be okay to keep the memory stores in the 1st shader part, and delete them from the 2nd.
    */
   if (nir->info.writes_memory)
      return false;

   /* When the shader relies on the subgroup invocation ID, we'd break it, because the ID changes after the culling.
    * Future work: try to save this to LDS and reload, but it can still be broken in subtle ways.
    */
   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_INVOCATION))
      return false;

   return true;
}

void radv_lower_ngg(struct radv_device *device, struct nir_shader *nir,
                    const struct radv_shader_info *info,
                    const struct radv_pipeline_key *pl_key)
{
   /* TODO: support the LLVM backend with the NIR lowering */
   assert(!radv_use_llvm_for_stage(device, nir->info.stage));

   assert(nir->info.stage == MESA_SHADER_VERTEX ||
          nir->info.stage == MESA_SHADER_TESS_EVAL ||
          nir->info.stage == MESA_SHADER_GEOMETRY ||
          nir->info.stage == MESA_SHADER_MESH);

   const struct gfx10_ngg_info *ngg_info = &info->ngg_info;
   unsigned num_vertices_per_prim = 3;

   /* Get the number of vertices per input primitive */
   if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
      if (nir->info.tess.point_mode)
         num_vertices_per_prim = 1;
      else if (nir->info.tess.primitive_mode == GL_ISOLINES)
         num_vertices_per_prim = 2;

      /* Manually mark the primitive ID used, so the shader can repack it. */
      if (info->tes.outinfo.export_prim_id)
         BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);

   } else if (nir->info.stage == MESA_SHADER_VERTEX) {
      /* Need to add 1, because: V_028A6C_POINTLIST=0, V_028A6C_LINESTRIP=1, V_028A6C_TRISTRIP=2, etc. */
      num_vertices_per_prim = si_conv_prim_to_gs_out(pl_key->vs.topology) + 1;

      /* Manually mark the instance ID used, so the shader can repack it. */
      if (pl_key->vs.instance_rate_inputs)
         BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);

   } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
      num_vertices_per_prim = nir->info.gs.vertices_in;
   } else if (nir->info.stage == MESA_SHADER_MESH) {
      if (nir->info.mesh.primitive_type == GL_POINTS)
         num_vertices_per_prim = 1;
      else if (nir->info.mesh.primitive_type == GL_LINES)
         num_vertices_per_prim = 2;
      else
         assert(nir->info.mesh.primitive_type == GL_TRIANGLES);
   } else {
      unreachable("NGG needs to be VS, TES or GS.");
   }

   /* Invocations that process an input vertex */
   unsigned max_vtx_in = MIN2(256, ngg_info->enable_vertex_grouping ? ngg_info->hw_max_esverts : num_vertices_per_prim * ngg_info->max_gsprims);

   if (nir->info.stage == MESA_SHADER_VERTEX ||
       nir->info.stage == MESA_SHADER_TESS_EVAL) {
      bool export_prim_id;

      assert(info->is_ngg);

      if (info->has_ngg_culling)
         radv_optimize_nir_algebraic(nir, false);

      if (nir->info.stage == MESA_SHADER_VERTEX) {
         export_prim_id = info->vs.outinfo.export_prim_id;
      } else {
         export_prim_id = info->tes.outinfo.export_prim_id;
      }

      ac_nir_lower_ngg_nogs(
         nir,
         max_vtx_in,
         num_vertices_per_prim,
         info->workgroup_size,
         info->wave_size,
         info->has_ngg_culling,
         info->has_ngg_early_prim_export,
         info->is_ngg_passthrough,
         export_prim_id,
         pl_key->vs.provoking_vtx_last,
         false,
         pl_key->vs.instance_rate_inputs);
   } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
      assert(info->is_ngg);
      ac_nir_lower_ngg_gs(
         nir, info->wave_size, info->workgroup_size,
         info->ngg_info.esgs_ring_size,
         info->gs.gsvs_vertex_size,
         info->ngg_info.ngg_emit_size * 4u,
         pl_key->vs.provoking_vtx_last);
   } else if (nir->info.stage == MESA_SHADER_MESH) {
      ac_nir_lower_ngg_ms(nir, info->wave_size);
   } else {
      unreachable("invalid SW stage passed to radv_lower_ngg");
   }
}

static unsigned
get_size_class(unsigned size, bool round_up)
{
   size = round_up ? util_logbase2_ceil(size) : util_logbase2(size);
   unsigned size_class =
      MAX2(size, RADV_SHADER_ALLOC_MIN_SIZE_CLASS) - RADV_SHADER_ALLOC_MIN_SIZE_CLASS;
   return MIN2(size_class, RADV_SHADER_ALLOC_NUM_FREE_LISTS - 1);
}

static void
remove_hole(struct radv_device *device, union radv_shader_arena_block *hole)
{
   unsigned size_class = get_size_class(hole->size, false);
   list_del(&hole->freelist);
   if (list_is_empty(&device->shader_free_lists[size_class]))
      device->shader_free_list_mask &= ~(1u << size_class);
}

static void
add_hole(struct radv_device *device, union radv_shader_arena_block *hole)
{
   unsigned size_class = get_size_class(hole->size, false);
   list_addtail(&hole->freelist, &device->shader_free_lists[size_class]);
   device->shader_free_list_mask |= 1u << size_class;
}

static union radv_shader_arena_block *
alloc_block_obj(struct radv_device *device)
{
   if (!list_is_empty(&device->shader_block_obj_pool)) {
      union radv_shader_arena_block *block =
         list_first_entry(&device->shader_block_obj_pool, union radv_shader_arena_block, pool);
      list_del(&block->pool);
      return block;
   }

   return malloc(sizeof(union radv_shader_arena_block));
}

static void
free_block_obj(struct radv_device *device, union radv_shader_arena_block *block)
{
   list_add(&block->pool, &device->shader_block_obj_pool);
}

/* Segregated fit allocator, implementing a good-fit allocation policy.
 *
 * This is an variation of sequential fit allocation with several lists of free blocks ("holes")
 * instead of one. Each list of holes only contains holes of a certain range of sizes, so holes that
 * are too small can easily be ignored while allocating. Because this also ignores holes that are
 * larger than necessary (approximating best-fit allocation), this could be described as a
 * "good-fit" allocator.
 *
 * Typically, shaders are allocated and only free'd when the device is destroyed. For this pattern,
 * this should allocate blocks for shaders fast and with no fragmentation, while still allowing
 * free'd memory to be re-used.
 */
union radv_shader_arena_block *
radv_alloc_shader_memory(struct radv_device *device, uint32_t size, void *ptr)
{
   size = align(size, RADV_SHADER_ALLOC_ALIGNMENT);

   mtx_lock(&device->shader_arena_mutex);

   /* Try to use an existing hole. Unless the shader is very large, this should only have to look
    * at the first one available.
    */
   unsigned free_list_mask = BITFIELD_MASK(RADV_SHADER_ALLOC_NUM_FREE_LISTS);
   unsigned size_class =
      ffs(device->shader_free_list_mask & (free_list_mask << get_size_class(size, true)));
   if (size_class) {
      size_class--;

      list_for_each_entry(union radv_shader_arena_block, hole,
                          &device->shader_free_lists[size_class], freelist)
      {
         if (hole->size < size)
            continue;

         assert(hole->offset % RADV_SHADER_ALLOC_ALIGNMENT == 0);

         if (size == hole->size) {
            remove_hole(device, hole);
            hole->freelist.next = ptr;
            mtx_unlock(&device->shader_arena_mutex);
            return hole;
         } else {
            union radv_shader_arena_block *alloc = alloc_block_obj(device);
            if (!alloc) {
               mtx_unlock(&device->shader_arena_mutex);
               return NULL;
            }
            list_addtail(&alloc->list, &hole->list);
            alloc->freelist.prev = NULL;
            alloc->freelist.next = ptr;
            alloc->arena = hole->arena;
            alloc->offset = hole->offset;
            alloc->size = size;

            remove_hole(device, hole);
            hole->offset += size;
            hole->size -= size;
            add_hole(device, hole);

            mtx_unlock(&device->shader_arena_mutex);
            return alloc;
         }
      }
   }

   /* Allocate a new shader arena. */
   struct radv_shader_arena *arena = calloc(1, sizeof(struct radv_shader_arena));
   union radv_shader_arena_block *alloc = NULL, *hole = NULL;
   if (!arena)
      goto fail;

   unsigned arena_size = MAX2(RADV_SHADER_ALLOC_MIN_ARENA_SIZE, size);
   VkResult result = device->ws->buffer_create(
      device->ws, arena_size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_VRAM,
      RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT |
         (device->physical_device->rad_info.cpdma_prefetch_writes_memory ? 0
                                                                         : RADEON_FLAG_READ_ONLY),
      RADV_BO_PRIORITY_SHADER, 0, &arena->bo);
   if (result != VK_SUCCESS)
      goto fail;

   list_inithead(&arena->entries);

   arena->ptr = (char *)device->ws->buffer_map(arena->bo);
   if (!arena->ptr)
      goto fail;

   alloc = alloc_block_obj(device);
   hole = arena_size - size > 0 ? alloc_block_obj(device) : alloc;
   if (!alloc || !hole)
      goto fail;
   list_addtail(&alloc->list, &arena->entries);
   alloc->freelist.prev = NULL;
   alloc->freelist.next = ptr;
   alloc->arena = arena;
   alloc->offset = 0;
   alloc->size = size;

   if (hole != alloc) {
      hole->arena = arena;
      hole->offset = size;
      hole->size = arena_size - size;

      list_addtail(&hole->list, &arena->entries);
      add_hole(device, hole);
   }

   list_addtail(&arena->list, &device->shader_arenas);

   mtx_unlock(&device->shader_arena_mutex);
   return alloc;

fail:
   mtx_unlock(&device->shader_arena_mutex);
   free(alloc);
   free(hole);
   if (arena && arena->bo)
      device->ws->buffer_destroy(device->ws, arena->bo);
   free(arena);
   return NULL;
}

static union radv_shader_arena_block *
get_hole(struct radv_shader_arena *arena, struct list_head *head)
{
   if (head == &arena->entries)
      return NULL;

   union radv_shader_arena_block *hole = LIST_ENTRY(union radv_shader_arena_block, head, list);
   return hole->freelist.prev ? hole : NULL;
}

void
radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc)
{
   mtx_lock(&device->shader_arena_mutex);

   union radv_shader_arena_block *hole_prev = get_hole(alloc->arena, alloc->list.prev);
   union radv_shader_arena_block *hole_next = get_hole(alloc->arena, alloc->list.next);

   union radv_shader_arena_block *hole = alloc;

   /* merge with previous hole */
   if (hole_prev) {
      remove_hole(device, hole_prev);

      hole_prev->size += hole->size;
      list_del(&hole->list);
      free_block_obj(device, hole);

      hole = hole_prev;
   }

   /* merge with next hole */
   if (hole_next) {
      remove_hole(device, hole_next);

      hole_next->offset -= hole->size;
      hole_next->size += hole->size;
      list_del(&hole->list);
      free_block_obj(device, hole);

      hole = hole_next;
   }

   if (list_is_singular(&hole->list)) {
      struct radv_shader_arena *arena = hole->arena;
      free_block_obj(device, hole);

      device->ws->buffer_destroy(device->ws, arena->bo);
      list_del(&arena->list);
      free(arena);
   } else {
      add_hole(device, hole);
   }

   mtx_unlock(&device->shader_arena_mutex);
}

void
radv_init_shader_arenas(struct radv_device *device)
{
   mtx_init(&device->shader_arena_mutex, mtx_plain);

   device->shader_free_list_mask = 0;

   list_inithead(&device->shader_arenas);
   list_inithead(&device->shader_block_obj_pool);
   for (unsigned i = 0; i < RADV_SHADER_ALLOC_NUM_FREE_LISTS; i++)
      list_inithead(&device->shader_free_lists[i]);
}

void
radv_destroy_shader_arenas(struct radv_device *device)
{
   list_for_each_entry_safe(union radv_shader_arena_block, block, &device->shader_block_obj_pool,
                            pool) free(block);

   list_for_each_entry_safe(struct radv_shader_arena, arena, &device->shader_arenas, list)
   {
      device->ws->buffer_destroy(device->ws, arena->bo);
      free(arena);
   }
   mtx_destroy(&device->shader_arena_mutex);
}

/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS        5

static unsigned
radv_get_shader_binary_size(size_t code_size)
{
   return code_size + DEBUGGER_NUM_MARKERS * 4;
}

static bool
radv_should_use_wgp_mode(const struct radv_device *device, gl_shader_stage stage,
                         const struct radv_shader_info *info)
{
   enum chip_class chip = device->physical_device->rad_info.chip_class;
   switch (stage) {
   case MESA_SHADER_COMPUTE:
   case MESA_SHADER_TESS_CTRL:
      return chip >= GFX10;
   case MESA_SHADER_GEOMETRY:
      return chip == GFX10 || (chip >= GFX10_3 && !info->is_ngg);
   case MESA_SHADER_VERTEX:
   case MESA_SHADER_TESS_EVAL:
      return chip == GFX10 && info->is_ngg;
   default:
      return false;
   }
}

static void
radv_postprocess_config(const struct radv_device *device, const struct ac_shader_config *config_in,
                        const struct radv_shader_info *info, gl_shader_stage stage,
                        const struct radv_shader_args *args,
                        struct ac_shader_config *config_out)
{
   const struct radv_physical_device *pdevice = device->physical_device;
   bool scratch_enabled = config_in->scratch_bytes_per_wave > 0;
   bool trap_enabled = !!device->trap_handler_shader;
   unsigned vgpr_comp_cnt = 0;
   unsigned num_input_vgprs = args->ac.num_vgprs_used;

   if (stage == MESA_SHADER_FRAGMENT) {
      num_input_vgprs = ac_get_fs_input_vgpr_cnt(config_in, NULL, NULL, NULL);
   }

   unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs);
   /* +2 for the ring offsets, +3 for scratch wave offset and VCC */
   unsigned num_sgprs = MAX2(config_in->num_sgprs, args->ac.num_sgprs_used + 2 + 3);
   unsigned num_shared_vgprs = config_in->num_shared_vgprs;
   /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
   assert((pdevice->rad_info.chip_class >= GFX10 && num_shared_vgprs % 8 == 0) ||
          (pdevice->rad_info.chip_class < GFX10 && num_shared_vgprs == 0));
   unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;
   unsigned excp_en = 0;

   *config_out = *config_in;
   config_out->num_vgprs = num_vgprs;
   config_out->num_sgprs = num_sgprs;
   config_out->num_shared_vgprs = num_shared_vgprs;

   config_out->rsrc2 = S_00B12C_USER_SGPR(args->num_user_sgprs) |
                       S_00B12C_SCRATCH_EN(scratch_enabled) | S_00B12C_TRAP_PRESENT(trap_enabled);

   if (trap_enabled) {
      /* Configure the shader exceptions like memory violation, etc.
       * TODO: Enable (and validate) more exceptions.
       */
      excp_en = 1 << 8; /* mem_viol */
   }

   if (!pdevice->use_ngg_streamout) {
      config_out->rsrc2 |=
         S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
         S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
         S_00B12C_SO_EN(!!info->so.num_outputs);
   }

   config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) |
                       S_00B848_DX10_CLAMP(1) | S_00B848_FLOAT_MODE(config_out->float_mode);

   if (pdevice->rad_info.chip_class >= GFX10) {
      config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(args->num_user_sgprs >> 5);
   } else {
      config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
      config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(args->num_user_sgprs >> 5);
   }

   bool wgp_mode = radv_should_use_wgp_mode(device, stage, info);

   switch (stage) {
   case MESA_SHADER_TESS_EVAL:
      if (info->is_ngg) {
         config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
         config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1) | S_00B22C_EXCP_EN(excp_en);
      } else if (info->tes.as_es) {
         assert(pdevice->rad_info.chip_class <= GFX8);
         vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;

         config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
      } else {
         bool enable_prim_id = info->tes.outinfo.export_prim_id || info->uses_prim_id;
         vgpr_comp_cnt = enable_prim_id ? 3 : 2;

         config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
         config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
      }
      config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
      break;
   case MESA_SHADER_TESS_CTRL:
      if (pdevice->rad_info.chip_class >= GFX9) {
         /* We need at least 2 components for LS.
          * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
          * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
          */
         if (pdevice->rad_info.chip_class >= GFX10) {
            vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 1;
            config_out->rsrc2 |=
               S_00B42C_LDS_SIZE_GFX10(info->tcs.num_lds_blocks) | S_00B42C_EXCP_EN_GFX6(excp_en);
         } else {
            vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
            config_out->rsrc2 |=
               S_00B42C_LDS_SIZE_GFX9(info->tcs.num_lds_blocks) | S_00B42C_EXCP_EN_GFX9(excp_en);
         }
      } else {
         config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
      }
      config_out->rsrc1 |=
         S_00B428_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | S_00B428_WGP_MODE(wgp_mode);
      config_out->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
      break;
   case MESA_SHADER_VERTEX:
      if (info->is_ngg) {
         config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
      } else if (info->vs.as_ls) {
         assert(pdevice->rad_info.chip_class <= GFX8);
         /* We need at least 2 components for LS.
          * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
          * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
          */
         vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
      } else if (info->vs.as_es) {
         assert(pdevice->rad_info.chip_class <= GFX8);
         /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
         vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
      } else {
         /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
          * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
          * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
          */
         if (info->vs.needs_instance_id && pdevice->rad_info.chip_class >= GFX10) {
            vgpr_comp_cnt = 3;
         } else if (info->vs.outinfo.export_prim_id) {
            vgpr_comp_cnt = 2;
         } else if (info->vs.needs_instance_id) {
            vgpr_comp_cnt = 1;
         } else {
            vgpr_comp_cnt = 0;
         }

         config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
      }
      config_out->rsrc2 |=
         S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
      break;
   case MESA_SHADER_MESH:
      config_out->rsrc1 |= S_00B228_MEM_ORDERED(1);
      config_out->rsrc2 |=
         S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
      break;
   case MESA_SHADER_FRAGMENT:
      config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
      config_out->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) |
                           S_00B02C_EXCP_EN(excp_en);
      break;
   case MESA_SHADER_GEOMETRY:
      config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
      config_out->rsrc2 |=
         S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B22C_EXCP_EN(excp_en);
      break;
   case MESA_SHADER_COMPUTE:
      config_out->rsrc1 |=
         S_00B848_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | S_00B848_WGP_MODE(wgp_mode);
      config_out->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
                           S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
                           S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
                           S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2]   ? 2
                                                   : info->cs.uses_thread_id[1] ? 1
                                                                                : 0) |
                           S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
                           S_00B84C_LDS_SIZE(config_in->lds_size) | S_00B84C_EXCP_EN(excp_en);
      config_out->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);

      break;
   default:
      unreachable("unsupported shader type");
      break;
   }

   if (pdevice->rad_info.chip_class >= GFX10 && info->is_ngg &&
       (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL ||
        stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH)) {
      unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
      gl_shader_stage es_stage = stage;
      if (stage == MESA_SHADER_GEOMETRY)
         es_stage = info->gs.es_type;

      /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */
      if (es_stage == MESA_SHADER_VERTEX) {
         es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0;
      } else if (es_stage == MESA_SHADER_TESS_EVAL) {
         bool enable_prim_id = info->tes.outinfo.export_prim_id || info->uses_prim_id;
         es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
      } else if (es_stage == MESA_SHADER_MESH) {
         es_vgpr_comp_cnt = 0;
      } else {
         unreachable("Unexpected ES shader stage");
      }

      bool nggc = info->has_ngg_culling; /* Culling uses GS vertex offsets 0, 1, 2. */
      bool tes_triangles =
         stage == MESA_SHADER_TESS_EVAL && info->tes.primitive_mode >= 4; /* GL_TRIANGLES */
      if (info->uses_invocation_id) {
         gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
      } else if (info->uses_prim_id || (es_stage == MESA_SHADER_VERTEX &&
                                        info->vs.outinfo.export_prim_id)) {
         gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
      } else if (info->gs.vertices_in >= 3 || tes_triangles || nggc) {
         gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
      } else {
         gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
      }

      /* Disable the WGP mode on gfx10.3 because it can hang. (it
       * happened on VanGogh) Let's disable it on all chips that
       * disable exactly 1 CU per SA for GS.
       */
      config_out->rsrc1 |=
         S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
      config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
                           S_00B22C_LDS_SIZE(config_in->lds_size) |
                           S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
   } else if (pdevice->rad_info.chip_class >= GFX9 && stage == MESA_SHADER_GEOMETRY) {
      unsigned es_type = info->gs.es_type;
      unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;

      if (es_type == MESA_SHADER_VERTEX) {
         /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
         if (info->vs.needs_instance_id) {
            es_vgpr_comp_cnt = pdevice->rad_info.chip_class >= GFX10 ? 3 : 1;
         } else {
            es_vgpr_comp_cnt = 0;
         }
      } else if (es_type == MESA_SHADER_TESS_EVAL) {
         es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
      } else {
         unreachable("invalid shader ES type");
      }

      /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
       * VGPR[0:4] are always loaded.
       */
      if (info->uses_invocation_id) {
         gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
      } else if (info->uses_prim_id) {
         gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
      } else if (info->gs.vertices_in >= 3) {
         gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
      } else {
         gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
      }

      config_out->rsrc1 |=
         S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
      config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
                           S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
   } else if (pdevice->rad_info.chip_class >= GFX9 && stage == MESA_SHADER_TESS_CTRL) {
      config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
   } else {
      config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
   }
}

static bool
radv_open_rtld_binary(struct radv_device *device, const struct radv_shader *shader,
                      const struct radv_shader_binary *binary, struct ac_rtld_binary *rtld_binary)
{
   const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
   size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
   struct ac_rtld_symbol lds_symbols[2];
   unsigned num_lds_symbols = 0;

   if (device->physical_device->rad_info.chip_class >= GFX9 &&
       (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) &&
        !binary->is_gs_copy_shader) {
      struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
      sym->name = "esgs_ring";
      sym->size = binary->info.ngg_info.esgs_ring_size;
      sym->align = 64 * 1024;
   }

   if (binary->info.is_ngg && binary->stage == MESA_SHADER_GEOMETRY) {
      struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
      sym->name = "ngg_emit";
      sym->size = binary->info.ngg_info.ngg_emit_size * 4;
      sym->align = 4;
   }

   struct ac_rtld_open_info open_info = {
      .info = &device->physical_device->rad_info,
      .shader_type = binary->stage,
      .wave_size = binary->info.wave_size,
      .num_parts = 1,
      .elf_ptrs = &elf_data,
      .elf_sizes = &elf_size,
      .num_shared_lds_symbols = num_lds_symbols,
      .shared_lds_symbols = lds_symbols,
   };

   return ac_rtld_open(rtld_binary, open_info);
}

bool
radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary,
                          struct radv_shader *shader, void *dest_ptr)
{
   if (binary->type == RADV_BINARY_TYPE_RTLD) {
      struct ac_rtld_binary rtld_binary = {0};

      if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) {
         free(shader);
         return false;
      }

      struct ac_rtld_upload_info info = {
         .binary = &rtld_binary,
         .rx_va = radv_shader_get_va(shader),
         .rx_ptr = dest_ptr,
      };

      if (!ac_rtld_upload(&info)) {
         radv_shader_destroy(device, shader);
         ac_rtld_close(&rtld_binary);
         return false;
      }

      shader->code_ptr = dest_ptr;
      ac_rtld_close(&rtld_binary);
   } else {
      struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
      memcpy(dest_ptr, bin->data + bin->stats_size, bin->code_size);

      /* Add end-of-code markers for the UMR disassembler. */
      uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
      for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
         ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;

      shader->code_ptr = dest_ptr;
   }

   return true;
}

struct radv_shader *
radv_shader_create(struct radv_device *device, const struct radv_shader_binary *binary,
                   bool keep_shader_info, bool from_cache, const struct radv_shader_args *args)
{
   struct ac_shader_config config = {0};
   struct radv_shader *shader = calloc(1, sizeof(struct radv_shader));
   if (!shader)
      return NULL;

   shader->ref_count = 1;

   if (binary->type == RADV_BINARY_TYPE_RTLD) {
      struct ac_rtld_binary rtld_binary = {0};

      if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) {
         free(shader);
         return NULL;
      }

      if (!ac_rtld_read_config(&device->physical_device->rad_info, &rtld_binary, &config)) {
         ac_rtld_close(&rtld_binary);
         free(shader);
         return NULL;
      }

      if (rtld_binary.lds_size > 0) {
         unsigned encode_granularity = device->physical_device->rad_info.lds_encode_granularity;
         config.lds_size = align(rtld_binary.lds_size, encode_granularity) / encode_granularity;
      }
      if (!config.lds_size && binary->stage == MESA_SHADER_TESS_CTRL) {
         /* This is used for reporting LDS statistics */
         config.lds_size = binary->info.tcs.num_lds_blocks;
      }

      shader->code_size = rtld_binary.rx_size;
      shader->exec_size = rtld_binary.exec_size;
      ac_rtld_close(&rtld_binary);
   } else {
      assert(binary->type == RADV_BINARY_TYPE_LEGACY);
      config = ((struct radv_shader_binary_legacy *)binary)->base.config;
      shader->code_size =
         radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size);
      shader->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size;
   }

   shader->info = binary->info;

   if (from_cache) {
      /* Copy the shader binary configuration from the cache. */
      memcpy(&shader->config, &binary->config, sizeof(shader->config));
   } else {
      assert(args);
      radv_postprocess_config(device, &config, &binary->info, binary->stage, args, &shader->config);
   }

   if (binary->type == RADV_BINARY_TYPE_RTLD) {
      struct radv_shader_binary_rtld *bin = (struct radv_shader_binary_rtld *)binary;
      struct ac_rtld_binary rtld_binary = {0};

      if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) {
         free(shader);
         return NULL;
      }

      if (keep_shader_info || (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) {
         const char *disasm_data;
         size_t disasm_size;
         if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data,
                                          &disasm_size)) {
            radv_shader_destroy(device, shader);
            ac_rtld_close(&rtld_binary);
            return NULL;
         }

         shader->ir_string =
            bin->llvm_ir_size ? strdup((const char *)(bin->data + bin->elf_size)) : NULL;
         shader->disasm_string = malloc(disasm_size + 1);
         memcpy(shader->disasm_string, disasm_data, disasm_size);
         shader->disasm_string[disasm_size] = 0;
      }
      ac_rtld_close(&rtld_binary);
   } else {
      struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;

      shader->ir_string =
         bin->ir_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size)) : NULL;
      shader->disasm_string =
         bin->disasm_size
            ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size + bin->ir_size))
            : NULL;

      if (bin->stats_size) {
         shader->statistics = calloc(bin->stats_size, 1);
         memcpy(shader->statistics, bin->data, bin->stats_size);
      }
   }
   return shader;
}

static char *
radv_dump_nir_shaders(struct nir_shader *const *shaders, int shader_count)
{
   char *data = NULL;
   char *ret = NULL;
   size_t size = 0;
   struct u_memstream mem;
   if (u_memstream_open(&mem, &data, &size)) {
      FILE *const memf = u_memstream_get(&mem);
      for (int i = 0; i < shader_count; ++i)
         nir_print_shader(shaders[i], memf);
      u_memstream_close(&mem);
   }

   ret = malloc(size + 1);
   if (ret) {
      memcpy(ret, data, size);
      ret[size] = 0;
   }
   free(data);
   return ret;
}

static struct radv_shader *
shader_compile(struct radv_device *device, struct vk_shader_module *module,
               struct nir_shader *const *shaders, int shader_count, gl_shader_stage stage,
               struct radv_shader_info *info, struct radv_nir_compiler_options *options,
               bool gs_copy_shader, bool trap_handler_shader, bool keep_shader_info,
               bool keep_statistic_info, struct radv_shader_binary **binary_out)
{
   enum radeon_family chip_family = device->physical_device->rad_info.family;
   struct radv_shader_binary *binary = NULL;

   struct radv_shader_debug_data debug_data = {
      .device = device,
      .module = module,
   };

   options->family = chip_family;
   options->chip_class = device->physical_device->rad_info.chip_class;
   options->info = &device->physical_device->rad_info;
   options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader || trap_handler_shader);
   options->dump_preoptir =
      options->dump_shader && device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
   options->record_ir = keep_shader_info;
   options->record_stats = keep_statistic_info;
   options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
   options->address32_hi = device->physical_device->rad_info.address32_hi;
   options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug;
   options->enable_mrt_output_nan_fixup =
      module && !is_meta_shader(module->nir) && options->key.ps.enable_mrt_output_nan_fixup;
   options->adjust_frag_coord_z = device->adjust_frag_coord_z;
   options->has_image_load_dcc_bug = device->physical_device->rad_info.has_image_load_dcc_bug;
   options->debug.func = radv_compiler_debug;
   options->debug.private_data = &debug_data;

   switch (options->key.ps.force_vrs) {
   case RADV_FORCE_VRS_2x2:
      options->force_vrs_rates = (1u << 2) | (1u << 4);
      break;
   case RADV_FORCE_VRS_2x1:
      options->force_vrs_rates = (1u << 2) | (0u << 4);
      break;
   case RADV_FORCE_VRS_1x2:
      options->force_vrs_rates = (0u << 2) | (1u << 4);
      break;
   default:
      break;
   }

   struct radv_shader_args args = {0};
   args.is_gs_copy_shader = gs_copy_shader;
   args.is_trap_handler_shader = trap_handler_shader;

   radv_declare_shader_args(options, info,
      gs_copy_shader ? MESA_SHADER_VERTEX : shaders[shader_count - 1]->info.stage,
      shader_count >= 2,
      shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX, &args);

   info->user_sgprs_locs = args.user_sgprs_locs;

#ifdef LLVM_AVAILABLE
   if (radv_use_llvm_for_stage(device, stage) || options->dump_shader || options->record_ir)
      ac_init_llvm_once();

   if (radv_use_llvm_for_stage(device, stage)) {
      llvm_compile_shader(options, info, shader_count, shaders, &binary, &args);
#else
   if (false) {
#endif
   } else {
      aco_compile_shader(options, info, shader_count, shaders, &args, &binary);
   }

   binary->info = *info;

   struct radv_shader *shader = radv_shader_create(device, binary, keep_shader_info, false, &args);
   if (!shader) {
      free(binary);
      return NULL;
   }

   if (options->dump_shader) {
      fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage));
      for (int i = 1; i < shader_count; ++i)
         fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage));

      fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string);
   }

   if (keep_shader_info) {
      shader->nir_string = radv_dump_nir_shaders(shaders, shader_count);
      if (!gs_copy_shader && !trap_handler_shader && !module->nir) {
         shader->spirv = malloc(module->size);
         if (!shader->spirv) {
            free(shader);
            free(binary);
            return NULL;
         }

         memcpy(shader->spirv, module->data, module->size);
         shader->spirv_size = module->size;
      }
   }

   /* Copy the shader binary configuration to store it in the cache. */
   memcpy(&binary->config, &shader->config, sizeof(binary->config));

   *binary_out = binary;
   return shader;
}

struct radv_shader *
radv_shader_compile(struct radv_device *device, struct vk_shader_module *module,
                    struct nir_shader *const *shaders, int shader_count,
                    struct radv_pipeline_layout *layout,
                    const struct radv_pipeline_key *key,
                    struct radv_shader_info *info, bool keep_shader_info,
                    bool keep_statistic_info,
                    struct radv_shader_binary **binary_out)
{
   gl_shader_stage stage = shaders[shader_count - 1]->info.stage;
   struct radv_nir_compiler_options options = {0};

   options.layout = layout;
   if (key)
      options.key = *key;

   options.explicit_scratch_args = !radv_use_llvm_for_stage(device, stage);
   options.remap_spi_ps_input = !radv_use_llvm_for_stage(device, stage);
   options.robust_buffer_access = device->robust_buffer_access;
   options.wgp_mode = radv_should_use_wgp_mode(device, stage, info);

   return shader_compile(device, module, shaders, shader_count, stage, info, &options, false, false,
                         keep_shader_info, keep_statistic_info, binary_out);
}

struct radv_shader *
radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *shader,
                           struct radv_shader_info *info, struct radv_shader_binary **binary_out,
                           bool keep_shader_info, bool keep_statistic_info, bool multiview,
                           bool disable_optimizations)
{
   struct radv_nir_compiler_options options = {0};
   gl_shader_stage stage = MESA_SHADER_VERTEX;

   options.explicit_scratch_args = !radv_use_llvm_for_stage(device, stage);
   options.remap_spi_ps_input = !radv_use_llvm_for_stage(device, stage);
   options.key.has_multiview_view_index = multiview;
   options.key.optimisations_disabled = disable_optimizations;

   return shader_compile(device, NULL, &shader, 1, stage, info, &options, true, false,
                         keep_shader_info, keep_statistic_info, binary_out);
}

struct radv_shader *
radv_create_trap_handler_shader(struct radv_device *device)
{
   struct radv_nir_compiler_options options = {0};
   struct radv_shader *shader = NULL;
   struct radv_shader_binary *binary = NULL;
   struct radv_shader_info info = {0};

   nir_builder b = radv_meta_init_shader(MESA_SHADER_COMPUTE, "meta_trap_handler");

   options.explicit_scratch_args = true;
   options.wgp_mode = radv_should_use_wgp_mode(device, MESA_SHADER_COMPUTE, &info);
   info.wave_size = 64;

   shader = shader_compile(device, NULL, &b.shader, 1, MESA_SHADER_COMPUTE, &info, &options, false,
                           true, true, false, &binary);

   ralloc_free(b.shader);
   free(binary);

   return shader;
}

static struct radv_shader_prolog *
upload_vs_prolog(struct radv_device *device, struct radv_prolog_binary *bin, unsigned wave_size)
{
   uint32_t code_size = radv_get_shader_binary_size(bin->code_size);
   struct radv_shader_prolog *prolog = malloc(sizeof(struct radv_shader_prolog));
   if (!prolog)
      return NULL;

   prolog->alloc = radv_alloc_shader_memory(device, code_size, NULL);
   if (!prolog->alloc) {
      free(prolog);
      return NULL;
   }

   prolog->bo = prolog->alloc->arena->bo;
   char *dest_ptr = prolog->alloc->arena->ptr + prolog->alloc->offset;

   memcpy(dest_ptr, bin->data, bin->code_size);

   /* Add end-of-code markers for the UMR disassembler. */
   uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
   for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
      ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;

   prolog->rsrc1 = S_00B848_VGPRS((bin->num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) |
                   S_00B228_SGPRS((bin->num_sgprs - 1) / 8);
   prolog->num_preserved_sgprs = bin->num_preserved_sgprs;
   prolog->disasm_string = NULL;

   return prolog;
}

struct radv_shader_prolog *
radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key)
{
   struct radv_nir_compiler_options options = {0};
   options.explicit_scratch_args = true;
   options.family = device->physical_device->rad_info.family;
   options.chip_class = device->physical_device->rad_info.chip_class;
   options.info = &device->physical_device->rad_info;
   options.address32_hi = device->physical_device->rad_info.address32_hi;
   options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS;
   options.record_ir = device->instance->debug_flags & RADV_DEBUG_HANG;

   struct radv_shader_info info = {0};
   info.wave_size = key->wave32 ? 32 : 64;
   info.vs.needs_instance_id = true;
   info.vs.needs_base_instance = true;
   info.vs.needs_draw_id = true;
   info.vs.use_per_attribute_vb_descs = true;
   info.vs.vb_desc_usage_mask = BITFIELD_MASK(key->num_attributes);
   info.vs.has_prolog = true;
   info.vs.as_ls = key->as_ls;
   info.is_ngg = key->is_ngg;

   struct radv_shader_args args = {0};
   radv_declare_shader_args(&options, &info, key->next_stage, key->next_stage != MESA_SHADER_VERTEX,
                            MESA_SHADER_VERTEX, &args);

   info.user_sgprs_locs = args.user_sgprs_locs;

#ifdef LLVM_AVAILABLE
   if (options.dump_shader || options.record_ir)
      ac_init_llvm_once();
#endif

   struct radv_prolog_binary *binary = NULL;
   aco_compile_vs_prolog(&options, &info, key, &args, &binary);
   struct radv_shader_prolog *prolog = upload_vs_prolog(device, binary, info.wave_size);
   if (prolog) {
      prolog->nontrivial_divisors = key->state->nontrivial_divisors;
      prolog->disasm_string =
         binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL;
   }

   free(binary);

   if (prolog && options.dump_shader) {
      fprintf(stderr, "Vertex prolog");
      fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
   }

   return prolog;
}

void
radv_shader_destroy(struct radv_device *device, struct radv_shader *shader)
{
   if (!p_atomic_dec_zero(&shader->ref_count))
      return;

   free(shader->spirv);
   free(shader->nir_string);
   free(shader->disasm_string);
   free(shader->ir_string);
   free(shader->statistics);
   free(shader);
}

void
radv_prolog_destroy(struct radv_device *device, struct radv_shader_prolog *prolog)
{
   if (!prolog)
      return;

   radv_free_shader_memory(device, prolog->alloc);
   free(prolog->disasm_string);
   free(prolog);
}

uint64_t
radv_shader_get_va(const struct radv_shader *shader)
{
   return shader->va;
}

struct radv_shader *
radv_find_shader(struct radv_device *device, uint64_t pc)
{
   mtx_lock(&device->shader_arena_mutex);
   list_for_each_entry(struct radv_shader_arena, arena, &device->shader_arenas, list)
   {
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#endif
      list_for_each_entry(union radv_shader_arena_block, block, &arena->entries, list)
      {
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
         uint64_t start = radv_buffer_get_va(block->arena->bo) + block->offset;
         if (!block->freelist.prev && pc >= start && pc < start + block->size) {
            mtx_unlock(&device->shader_arena_mutex);
            return (struct radv_shader *)block->freelist.next;
         }
      }
   }

   mtx_unlock(&device->shader_arena_mutex);
   return NULL;
}

const char *
radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage)
{
   switch (stage) {
   case MESA_SHADER_VERTEX:
      if (info->vs.as_ls)
         return "Vertex Shader as LS";
      else if (info->vs.as_es)
         return "Vertex Shader as ES";
      else if (info->is_ngg)
         return "Vertex Shader as ESGS";
      else
         return "Vertex Shader as VS";
   case MESA_SHADER_TESS_CTRL:
      return "Tessellation Control Shader";
   case MESA_SHADER_TESS_EVAL:
      if (info->tes.as_es)
         return "Tessellation Evaluation Shader as ES";
      else if (info->is_ngg)
         return "Tessellation Evaluation Shader as ESGS";
      else
         return "Tessellation Evaluation Shader as VS";
   case MESA_SHADER_GEOMETRY:
      return "Geometry Shader";
   case MESA_SHADER_FRAGMENT:
      return "Pixel Shader";
   case MESA_SHADER_COMPUTE:
      return "Compute Shader";
   case MESA_SHADER_MESH:
      return "Mesh Shader as NGG";
   default:
      return "Unknown shader";
   };
}

unsigned
radv_get_max_waves(const struct radv_device *device, struct radv_shader *shader,
                   gl_shader_stage stage)
{
   struct radeon_info *info = &device->physical_device->rad_info;
   enum chip_class chip_class = info->chip_class;
   uint8_t wave_size = shader->info.wave_size;
   struct ac_shader_config *conf = &shader->config;
   unsigned max_simd_waves;
   unsigned lds_per_wave = 0;

   max_simd_waves = info->max_wave64_per_simd * (64 / wave_size);

   if (stage == MESA_SHADER_FRAGMENT) {
      lds_per_wave =
         conf->lds_size * info->lds_encode_granularity + shader->info.ps.num_interp * 48;
      lds_per_wave = align(lds_per_wave, info->lds_alloc_granularity);
   } else if (stage == MESA_SHADER_COMPUTE) {
      unsigned max_workgroup_size = shader->info.workgroup_size;
      lds_per_wave =
         align(conf->lds_size * info->lds_encode_granularity, info->lds_alloc_granularity);
      lds_per_wave /= DIV_ROUND_UP(max_workgroup_size, wave_size);
   }

   if (conf->num_sgprs && chip_class < GFX10) {
      unsigned sgprs = align(conf->num_sgprs, chip_class >= GFX8 ? 16 : 8);
      max_simd_waves = MIN2(max_simd_waves, info->num_physical_sgprs_per_simd / sgprs);
   }

   if (conf->num_vgprs) {
      unsigned physical_vgprs = info->num_physical_wave64_vgprs_per_simd * (64 / wave_size);
      unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
      if (chip_class >= GFX10_3)
         vgprs = align(vgprs, wave_size == 32 ? 16 : 8);
      max_simd_waves = MIN2(max_simd_waves, physical_vgprs / vgprs);
   }

   unsigned simd_per_workgroup = info->num_simd_per_compute_unit;
   if (chip_class >= GFX10)
      simd_per_workgroup *= 2; /* like lds_size_per_workgroup, assume WGP on GFX10+ */

   unsigned max_lds_per_simd = info->lds_size_per_workgroup / simd_per_workgroup;
   if (lds_per_wave)
      max_simd_waves = MIN2(max_simd_waves, DIV_ROUND_UP(max_lds_per_simd, lds_per_wave));

   return chip_class >= GFX10 ? max_simd_waves * (wave_size / 32) : max_simd_waves;
}

unsigned
radv_compute_spi_ps_input(const struct radv_device *device,
                          const struct radv_shader_info *info)
{
   unsigned spi_ps_input;

   spi_ps_input = S_0286CC_PERSP_CENTER_ENA(info->ps.reads_persp_center) |
                  S_0286CC_PERSP_CENTROID_ENA(info->ps.reads_persp_centroid) |
                  S_0286CC_PERSP_SAMPLE_ENA(info->ps.reads_persp_sample) |
                  S_0286CC_LINEAR_CENTER_ENA(info->ps.reads_linear_center) |
                  S_0286CC_LINEAR_CENTROID_ENA(info->ps.reads_linear_centroid) |
                  S_0286CC_LINEAR_SAMPLE_ENA(info->ps.reads_linear_sample)|
                  S_0286CC_PERSP_PULL_MODEL_ENA(info->ps.reads_barycentric_model) |
                  S_0286CC_FRONT_FACE_ENA(info->ps.reads_front_face);

   if (info->ps.reads_frag_coord_mask ||
       info->ps.reads_sample_pos_mask) {
      uint8_t mask = info->ps.reads_frag_coord_mask | info->ps.reads_sample_pos_mask;

      for (unsigned i = 0; i < 4; i++) {
         if (mask & (1 << i))
            spi_ps_input |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
      }

      if (device->adjust_frag_coord_z && info->ps.reads_frag_coord_mask & (1 << 2)) {
         spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
      }
   }

   if (info->ps.reads_sample_id || info->ps.reads_frag_shading_rate || info->ps.reads_sample_mask_in) {
      spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
   }

   if (info->ps.reads_sample_mask_in) {
      spi_ps_input |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
   }

   if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_input)) {
      /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
      spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
   }

   if (!(spi_ps_input & 0x7F)) {
      /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
      spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
   }

   return spi_ps_input;
}

VKAPI_ATTR VkResult VKAPI_CALL
radv_GetShaderInfoAMD(VkDevice _device, VkPipeline _pipeline, VkShaderStageFlagBits shaderStage,
                      VkShaderInfoTypeAMD infoType, size_t *pInfoSize, void *pInfo)
{
   RADV_FROM_HANDLE(radv_device, device, _device);
   RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
   gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
   struct radv_shader *shader = pipeline->shaders[stage];
   VkResult result = VK_SUCCESS;

   /* Spec doesn't indicate what to do if the stage is invalid, so just
    * return no info for this. */
   if (!shader)
      return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);

   switch (infoType) {
   case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
      if (!pInfo) {
         *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
      } else {
         unsigned lds_multiplier = device->physical_device->rad_info.lds_encode_granularity;
         struct ac_shader_config *conf = &shader->config;

         VkShaderStatisticsInfoAMD statistics = {0};
         statistics.shaderStageMask = shaderStage;
         statistics.numPhysicalVgprs =
            device->physical_device->rad_info.num_physical_wave64_vgprs_per_simd;
         statistics.numPhysicalSgprs =
            device->physical_device->rad_info.num_physical_sgprs_per_simd;
         statistics.numAvailableSgprs = statistics.numPhysicalSgprs;

         if (stage == MESA_SHADER_COMPUTE) {
            unsigned *local_size = shader->info.cs.block_size;
            unsigned workgroup_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.workgroup_size;

            statistics.numAvailableVgprs =
               statistics.numPhysicalVgprs /
               ceil((double)workgroup_size / statistics.numPhysicalVgprs);

            statistics.computeWorkGroupSize[0] = local_size[0];
            statistics.computeWorkGroupSize[1] = local_size[1];
            statistics.computeWorkGroupSize[2] = local_size[2];
         } else {
            statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
         }

         statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
         statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
         statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
         statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
         statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;

         size_t size = *pInfoSize;
         *pInfoSize = sizeof(statistics);

         memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));

         if (size < *pInfoSize)
            result = VK_INCOMPLETE;
      }

      break;
   case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD: {
      char *out;
      size_t outsize;
      struct u_memstream mem;
      u_memstream_open(&mem, &out, &outsize);
      FILE *const memf = u_memstream_get(&mem);

      fprintf(memf, "%s:\n", radv_get_shader_name(&shader->info, stage));
      fprintf(memf, "%s\n\n", shader->ir_string);
      if (shader->disasm_string) {
         fprintf(memf, "%s\n\n", shader->disasm_string);
      }
      radv_dump_shader_stats(device, pipeline, stage, memf);
      u_memstream_close(&mem);

      /* Need to include the null terminator. */
      size_t length = outsize + 1;

      if (!pInfo) {
         *pInfoSize = length;
      } else {
         size_t size = *pInfoSize;
         *pInfoSize = length;

         memcpy(pInfo, out, MIN2(size, length));

         if (size < length)
            result = VK_INCOMPLETE;
      }

      free(out);
      break;
   }
   default:
      /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
      result = VK_ERROR_FEATURE_NOT_PRESENT;
      break;
   }

   return result;
}

VkResult
radv_dump_shader_stats(struct radv_device *device, struct radv_pipeline *pipeline,
                       gl_shader_stage stage, FILE *output)
{
   struct radv_shader *shader = pipeline->shaders[stage];
   VkPipelineExecutablePropertiesKHR *props = NULL;
   uint32_t prop_count = 0;
   VkResult result;

   VkPipelineInfoKHR pipeline_info = {0};
   pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR;
   pipeline_info.pipeline = radv_pipeline_to_handle(pipeline);

   result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info,
                                                    &prop_count, NULL);
   if (result != VK_SUCCESS)
      return result;

   props = calloc(prop_count, sizeof(*props));
   if (!props)
      return VK_ERROR_OUT_OF_HOST_MEMORY;

   result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info,
                                                    &prop_count, props);
   if (result != VK_SUCCESS)
      goto fail;

   for (unsigned exec_idx = 0; exec_idx < prop_count; exec_idx++) {
      if (!(props[exec_idx].stages & mesa_to_vk_shader_stage(stage)))
         continue;

      VkPipelineExecutableStatisticKHR *stats = NULL;
      uint32_t stat_count = 0;

      VkPipelineExecutableInfoKHR exec_info = {0};
      exec_info.pipeline = radv_pipeline_to_handle(pipeline);
      exec_info.executableIndex = exec_idx;

      result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info,
                                                       &stat_count, NULL);
      if (result != VK_SUCCESS)
         goto fail;

      stats = calloc(stat_count, sizeof(*stats));
      if (!stats) {
         result = VK_ERROR_OUT_OF_HOST_MEMORY;
         goto fail;
      }

      result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info,
                                                       &stat_count, stats);
      if (result != VK_SUCCESS) {
         free(stats);
         goto fail;
      }

      fprintf(output, "\n%s:\n", radv_get_shader_name(&shader->info, stage));
      fprintf(output, "*** SHADER STATS ***\n");

      for (unsigned i = 0; i < stat_count; i++) {
         fprintf(output, "%s: ", stats[i].name);
         switch (stats[i].format) {
         case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR:
            fprintf(output, "%s", stats[i].value.b32 == VK_TRUE ? "true" : "false");
            break;
         case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR:
            fprintf(output, "%" PRIi64, stats[i].value.i64);
            break;
         case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR:
            fprintf(output, "%" PRIu64, stats[i].value.u64);
            break;
         case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR:
            fprintf(output, "%f", stats[i].value.f64);
            break;
         default:
            unreachable("Invalid pipeline statistic format");
         }
         fprintf(output, "\n");
      }

      fprintf(output, "********************\n\n\n");

      free(stats);
   }

fail:
   free(props);
   return result;
}