summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_builder_h.py
blob: 4e1d6f72b633256621efec3ee4ab7caab3eab514 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

template = """\
/*
 * Copyright (c) 2019 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * This file was generated by aco_builder_h.py
 */

#ifndef _ACO_BUILDER_
#define _ACO_BUILDER_

#include "aco_ir.h"
#include "util/u_math.h"
#include "util/bitscan.h"

namespace aco {
enum dpp_ctrl {
    _dpp_quad_perm = 0x000,
    _dpp_row_sl = 0x100,
    _dpp_row_sr = 0x110,
    _dpp_row_rr = 0x120,
    dpp_wf_sl1 = 0x130,
    dpp_wf_rl1 = 0x134,
    dpp_wf_sr1 = 0x138,
    dpp_wf_rr1 = 0x13C,
    dpp_row_mirror = 0x140,
    dpp_row_half_mirror = 0x141,
    dpp_row_bcast15 = 0x142,
    dpp_row_bcast31 = 0x143
};

inline dpp_ctrl
dpp_quad_perm(unsigned lane0, unsigned lane1, unsigned lane2, unsigned lane3)
{
    assert(lane0 < 4 && lane1 < 4 && lane2 < 4 && lane3 < 4);
    return (dpp_ctrl)(lane0 | (lane1 << 2) | (lane2 << 4) | (lane3 << 6));
}

inline dpp_ctrl
dpp_row_sl(unsigned amount)
{
    assert(amount > 0 && amount < 16);
    return (dpp_ctrl)(((unsigned) _dpp_row_sl) | amount);
}

inline dpp_ctrl
dpp_row_sr(unsigned amount)
{
    assert(amount > 0 && amount < 16);
    return (dpp_ctrl)(((unsigned) _dpp_row_sr) | amount);
}

inline unsigned
ds_pattern_bitmode(unsigned and_mask, unsigned or_mask, unsigned xor_mask)
{
    assert(and_mask < 32 && or_mask < 32 && xor_mask < 32);
    return and_mask | (or_mask << 5) | (xor_mask << 10);
}

aco_ptr<Instruction> create_s_mov(Definition dst, Operand src);

enum sendmsg {
   sendmsg_none = 0,
   _sendmsg_gs = 2,
   _sendmsg_gs_done = 3,
   sendmsg_save_wave = 4,
   sendmsg_stall_wave_gen = 5,
   sendmsg_halt_waves = 6,
   sendmsg_ordered_ps_done = 7,
   sendmsg_early_prim_dealloc = 8,
   sendmsg_gs_alloc_req = 9,
   sendmsg_id_mask = 0xf,
};

inline sendmsg
sendmsg_gs(bool cut, bool emit, unsigned stream)
{
    assert(stream < 4);
    return (sendmsg)((unsigned)_sendmsg_gs | (cut << 4) | (emit << 5) | (stream << 8));
}

inline sendmsg
sendmsg_gs_done(bool cut, bool emit, unsigned stream)
{
    assert(stream < 4);
    return (sendmsg)((unsigned)_sendmsg_gs_done | (cut << 4) | (emit << 5) | (stream << 8));
}

class Builder {
public:
   struct Result {
      Instruction *instr;

      Result(Instruction *instr) : instr(instr) {}

      operator Instruction *() const {
         return instr;
      }

      operator Temp() const {
         return instr->definitions[0].getTemp();
      }

      operator Operand() const {
         return Operand((Temp)*this);
      }

      Definition& def(unsigned index) const {
         return instr->definitions[index];
      }

      aco_ptr<Instruction> get_ptr() const {
        return aco_ptr<Instruction>(instr);
      }
   };

   struct Op {
      Operand op;
      Op(Temp tmp) : op(tmp) {}
      Op(Operand op_) : op(op_) {}
      Op(Result res) : op((Temp)res) {}
   };

   enum WaveSpecificOpcode {
      s_cselect = (unsigned) aco_opcode::s_cselect_b64,
      s_cmp_lg = (unsigned) aco_opcode::s_cmp_lg_u64,
      s_and = (unsigned) aco_opcode::s_and_b64,
      s_andn2 = (unsigned) aco_opcode::s_andn2_b64,
      s_or = (unsigned) aco_opcode::s_or_b64,
      s_orn2 = (unsigned) aco_opcode::s_orn2_b64,
      s_not = (unsigned) aco_opcode::s_not_b64,
      s_mov = (unsigned) aco_opcode::s_mov_b64,
      s_wqm = (unsigned) aco_opcode::s_wqm_b64,
      s_and_saveexec = (unsigned) aco_opcode::s_and_saveexec_b64,
      s_or_saveexec = (unsigned) aco_opcode::s_or_saveexec_b64,
      s_xnor = (unsigned) aco_opcode::s_xnor_b64,
      s_xor = (unsigned) aco_opcode::s_xor_b64,
      s_bcnt1_i32 = (unsigned) aco_opcode::s_bcnt1_i32_b64,
      s_bitcmp1 = (unsigned) aco_opcode::s_bitcmp1_b64,
      s_ff1_i32 = (unsigned) aco_opcode::s_ff1_i32_b64,
   };

   Program *program;
   bool use_iterator;
   bool start; // only when use_iterator == false
   RegClass lm;

   std::vector<aco_ptr<Instruction>> *instructions;
   std::vector<aco_ptr<Instruction>>::iterator it;

   Builder(Program *pgm) : program(pgm), use_iterator(false), start(false), lm(pgm->lane_mask), instructions(NULL) {}
   Builder(Program *pgm, Block *block) : program(pgm), use_iterator(false), start(false), lm(pgm ? pgm->lane_mask : s2), instructions(&block->instructions) {}
   Builder(Program *pgm, std::vector<aco_ptr<Instruction>> *instrs) : program(pgm), use_iterator(false), start(false), lm(pgm ? pgm->lane_mask : s2), instructions(instrs) {}

   void moveEnd(Block *block) {
      instructions = &block->instructions;
   }

   void reset() {
      use_iterator = false;
      start = false;
      instructions = NULL;
   }

   void reset(Block *block) {
      use_iterator = false;
      start = false;
      instructions = &block->instructions;
   }

   void reset(std::vector<aco_ptr<Instruction>> *instrs) {
      use_iterator = false;
      start = false;
      instructions = instrs;
   }

   void reset(std::vector<aco_ptr<Instruction>> *instrs, std::vector<aco_ptr<Instruction>>::iterator instr_it) {
      use_iterator = true;
      start = false;
      instructions = instrs;
      it = instr_it;
   }

   Result insert(aco_ptr<Instruction> instr) {
      Instruction *instr_ptr = instr.get();
      if (instructions) {
         if (use_iterator) {
            it = instructions->emplace(it, std::move(instr));
            it = std::next(it);
         } else if (!start) {
            instructions->emplace_back(std::move(instr));
         } else {
            instructions->emplace(instructions->begin(), std::move(instr));
         }
      }
      return Result(instr_ptr);
   }

   Result insert(Instruction* instr) {
      if (instructions) {
         if (use_iterator) {
            it = instructions->emplace(it, aco_ptr<Instruction>(instr));
            it = std::next(it);
         } else if (!start) {
            instructions->emplace_back(aco_ptr<Instruction>(instr));
         } else {
            instructions->emplace(instructions->begin(), aco_ptr<Instruction>(instr));
         }
      }
      return Result(instr);
   }

   Temp tmp(RegClass rc) {
      return (Temp){program->allocateId(), rc};
   }

   Temp tmp(RegType type, unsigned size) {
      return (Temp){program->allocateId(), RegClass(type, size)};
   }

   Definition def(RegClass rc) {
      return Definition((Temp){program->allocateId(), rc});
   }

   Definition def(RegType type, unsigned size) {
      return Definition((Temp){program->allocateId(), RegClass(type, size)});
   }

   Definition def(RegClass rc, PhysReg reg) {
      return Definition(program->allocateId(), reg, rc);
   }

   inline aco_opcode w64or32(WaveSpecificOpcode opcode) const {
      if (program->wave_size == 64)
         return (aco_opcode) opcode;

      switch (opcode) {
      case s_cselect:
         return aco_opcode::s_cselect_b32;
      case s_cmp_lg:
         return aco_opcode::s_cmp_lg_u32;
      case s_and:
         return aco_opcode::s_and_b32;
      case s_andn2:
         return aco_opcode::s_andn2_b32;
      case s_or:
         return aco_opcode::s_or_b32;
      case s_orn2:
         return aco_opcode::s_orn2_b32;
      case s_not:
         return aco_opcode::s_not_b32;
      case s_mov:
         return aco_opcode::s_mov_b32;
      case s_wqm:
         return aco_opcode::s_wqm_b32;
      case s_and_saveexec:
         return aco_opcode::s_and_saveexec_b32;
      case s_or_saveexec:
         return aco_opcode::s_or_saveexec_b32;
      case s_xnor:
         return aco_opcode::s_xnor_b32;
      case s_xor:
         return aco_opcode::s_xor_b32;
      case s_bcnt1_i32:
         return aco_opcode::s_bcnt1_i32_b32;
      case s_bitcmp1:
         return aco_opcode::s_bitcmp1_b32;
      case s_ff1_i32:
         return aco_opcode::s_ff1_i32_b32;
      default:
         unreachable("Unsupported wave specific opcode.");
      }
   }

% for fixed in ['m0', 'vcc', 'exec', 'scc']:
   Operand ${fixed}(Temp tmp) {
       % if fixed == 'vcc' or fixed == 'exec':
          assert(tmp.regClass() == lm);
       % endif
       Operand op(tmp);
       op.setFixed(aco::${fixed});
       return op;
   }

   Definition ${fixed}(Definition def) {
       % if fixed == 'vcc' or fixed == 'exec':
          assert(def.regClass() == lm);
       % endif
       def.setFixed(aco::${fixed});
       return def;
   }

   Definition hint_${fixed}(Definition def) {
       % if fixed == 'vcc' or fixed == 'exec':
          assert(def.regClass() == lm);
       % endif
       def.setHint(aco::${fixed});
       return def;
   }

% endfor
   /* hand-written helpers */
   Temp as_uniform(Op op)
   {
      assert(op.op.isTemp());
      if (op.op.getTemp().type() == RegType::vgpr)
         return pseudo(aco_opcode::p_as_uniform, def(RegType::sgpr, op.op.size()), op);
      else
         return op.op.getTemp();
   }

   Result v_mul_imm(Definition dst, Temp tmp, uint32_t imm, bool bits24=false)
   {
      assert(tmp.type() == RegType::vgpr);
      if (imm == 0) {
         return vop1(aco_opcode::v_mov_b32, dst, Operand(0u));
      } else if (imm == 1) {
         return copy(dst, Operand(tmp));
      } else if (util_is_power_of_two_or_zero(imm)) {
         return vop2(aco_opcode::v_lshlrev_b32, dst, Operand((uint32_t)ffs(imm) - 1u), tmp);
      } else if (bits24) {
        return vop2(aco_opcode::v_mul_u32_u24, dst, Operand(imm), tmp);
      } else {
        Temp imm_tmp = copy(def(v1), Operand(imm));
        return vop3(aco_opcode::v_mul_lo_u32, dst, imm_tmp, tmp);
      }
   }

   Result v_mul24_imm(Definition dst, Temp tmp, uint32_t imm)
   {
      return v_mul_imm(dst, tmp, imm, true);
   }

   Result copy(Definition dst, Op op_) {
      Operand op = op_.op;
      if (dst.regClass() == s1 && op.size() == 1 && op.isLiteral()) {
         uint32_t imm = op.constantValue();
         if (imm == 0x3e22f983) {
            if (program->chip_class >= GFX8)
               op.setFixed(PhysReg{248}); /* it can be an inline constant on GFX8+ */
         } else if (imm >= 0xffff8000 || imm <= 0x7fff) {
            return sopk(aco_opcode::s_movk_i32, dst, imm & 0xFFFFu);
         } else if (util_bitreverse(imm) <= 64 || util_bitreverse(imm) >= 0xFFFFFFF0) {
            uint32_t rev = util_bitreverse(imm);
            return dst.regClass() == v1 ?
                   vop1(aco_opcode::v_bfrev_b32, dst, Operand(rev)) :
                   sop1(aco_opcode::s_brev_b32, dst, Operand(rev));
         } else if (imm != 0) {
            unsigned start = (ffs(imm) - 1) & 0x1f;
            unsigned size = util_bitcount(imm) & 0x1f;
            if ((((1u << size) - 1u) << start) == imm)
                return sop2(aco_opcode::s_bfm_b32, dst, Operand(size), Operand(start));
         }
      }

      if (dst.regClass() == s2) {
        return sop1(aco_opcode::s_mov_b64, dst, op);
      } else if (op.size() > 1) {
         return pseudo(aco_opcode::p_create_vector, dst, op);
      } else if (dst.regClass() == v1 || dst.regClass() == v1.as_linear()) {
        return vop1(aco_opcode::v_mov_b32, dst, op);
      } else {
        assert(dst.regClass() == s1);
        return sop1(aco_opcode::s_mov_b32, dst, op);
      }
   }

   Result vadd32(Definition dst, Op a, Op b, bool carry_out=false, Op carry_in=Op(Operand(s2)), bool post_ra=false) {
      if (!b.op.isTemp() || b.op.regClass().type() != RegType::vgpr)
         std::swap(a, b);
      assert((post_ra || b.op.hasRegClass()) && b.op.regClass().type() == RegType::vgpr);

      if (!carry_in.op.isUndefined())
         return vop2(aco_opcode::v_addc_co_u32, Definition(dst), hint_vcc(def(lm)), a, b, carry_in);
      else if (program->chip_class >= GFX10 && carry_out)
         return vop3(aco_opcode::v_add_co_u32_e64, Definition(dst), def(s2), a, b);
      else if (program->chip_class < GFX9 || carry_out)
         return vop2(aco_opcode::v_add_co_u32, Definition(dst), hint_vcc(def(lm)), a, b);
      else
         return vop2(aco_opcode::v_add_u32, Definition(dst), a, b);
   }

   Result vsub32(Definition dst, Op a, Op b, bool carry_out=false, Op borrow=Op(Operand(s2)))
   {
      if (!borrow.op.isUndefined() || program->chip_class < GFX9)
         carry_out = true;

      bool reverse = !b.op.isTemp() || b.op.regClass().type() != RegType::vgpr;
      if (reverse)
         std::swap(a, b);
      assert(b.op.isTemp() && b.op.regClass().type() == RegType::vgpr);

      aco_opcode op;
      Temp carry;
      if (carry_out) {
         carry = tmp(s2);
         if (borrow.op.isUndefined())
            op = reverse ? aco_opcode::v_subrev_co_u32 : aco_opcode::v_sub_co_u32;
         else
            op = reverse ? aco_opcode::v_subbrev_co_u32 : aco_opcode::v_subb_co_u32;
      } else {
         op = reverse ? aco_opcode::v_subrev_u32 : aco_opcode::v_sub_u32;
      }
      bool vop3 = false;
      if (program->chip_class >= GFX10 && op == aco_opcode::v_subrev_co_u32) {
        vop3 = true;
        op = aco_opcode::v_subrev_co_u32_e64;
      } else if (program->chip_class >= GFX10 && op == aco_opcode::v_sub_co_u32) {
        vop3 = true;
        op = aco_opcode::v_sub_co_u32_e64;
      }

      int num_ops = borrow.op.isUndefined() ? 2 : 3;
      int num_defs = carry_out ? 2 : 1;
      aco_ptr<Instruction> sub;
      if (vop3)
        sub.reset(create_instruction<VOP3A_instruction>(op, Format::VOP3B, num_ops, num_defs));
      else
        sub.reset(create_instruction<VOP2_instruction>(op, Format::VOP2, num_ops, num_defs));
      sub->operands[0] = a.op;
      sub->operands[1] = b.op;
      if (!borrow.op.isUndefined())
         sub->operands[2] = borrow.op;
      sub->definitions[0] = dst;
      if (carry_out) {
         sub->definitions[1] = Definition(carry);
         sub->definitions[1].setHint(aco::vcc);
      }
      return insert(std::move(sub));
   }

   Result readlane(Definition dst, Op vsrc, Op lane)
   {
      if (program->chip_class >= GFX8)
         return vop3(aco_opcode::v_readlane_b32_e64, dst, vsrc, lane);
      else
         return vop2(aco_opcode::v_readlane_b32, dst, vsrc, lane);
   }
   Result writelane(Definition dst, Op val, Op lane, Op vsrc) {
      if (program->chip_class >= GFX8)
         return vop3(aco_opcode::v_writelane_b32_e64, dst, val, lane, vsrc);
      else
         return vop2(aco_opcode::v_writelane_b32, dst, val, lane, vsrc);
   }
<%
import itertools
formats = [("pseudo", [Format.PSEUDO], 'Pseudo_instruction', list(itertools.product(range(5), range(5))) + [(8, 1), (1, 8)]),
           ("sop1", [Format.SOP1], 'SOP1_instruction', [(1, 1), (2, 1), (3, 2)]),
           ("sop2", [Format.SOP2], 'SOP2_instruction', itertools.product([1, 2], [2, 3])),
           ("sopk", [Format.SOPK], 'SOPK_instruction', itertools.product([0, 1, 2], [0, 1])),
           ("sopp", [Format.SOPP], 'SOPP_instruction', [(0, 0), (0, 1)]),
           ("sopc", [Format.SOPC], 'SOPC_instruction', [(1, 2)]),
           ("smem", [Format.SMEM], 'SMEM_instruction', [(0, 4), (0, 3), (1, 0), (1, 3), (1, 2), (0, 0)]),
           ("ds", [Format.DS], 'DS_instruction', [(1, 1), (1, 2), (0, 3), (0, 4)]),
           ("mubuf", [Format.MUBUF], 'MUBUF_instruction', [(0, 4), (1, 3)]),
           ("mtbuf", [Format.MTBUF], 'MTBUF_instruction', [(0, 4), (1, 3)]),
           ("mimg", [Format.MIMG], 'MIMG_instruction', [(0, 4), (1, 3), (0, 3), (1, 2)]), #TODO(pendingchaos): less shapes?
           ("exp", [Format.EXP], 'Export_instruction', [(0, 4)]),
           ("branch", [Format.PSEUDO_BRANCH], 'Pseudo_branch_instruction', itertools.product([0], [0, 1])),
           ("barrier", [Format.PSEUDO_BARRIER], 'Pseudo_barrier_instruction', [(0, 0)]),
           ("reduction", [Format.PSEUDO_REDUCTION], 'Pseudo_reduction_instruction', [(3, 2), (3, 4)]),
           ("vop1", [Format.VOP1], 'VOP1_instruction', [(1, 1), (2, 2)]),
           ("vop2", [Format.VOP2], 'VOP2_instruction', itertools.product([1, 2], [2, 3])),
           ("vopc", [Format.VOPC], 'VOPC_instruction', itertools.product([1, 2], [2])),
           ("vop3", [Format.VOP3A], 'VOP3A_instruction', [(1, 3), (1, 2), (1, 1), (2, 2)]),
           ("vintrp", [Format.VINTRP], 'Interp_instruction', [(1, 2), (1, 3)]),
           ("vop1_dpp", [Format.VOP1, Format.DPP], 'DPP_instruction', [(1, 1)]),
           ("vop2_dpp", [Format.VOP2, Format.DPP], 'DPP_instruction', itertools.product([1, 2], [2, 3])),
           ("vopc_dpp", [Format.VOPC, Format.DPP], 'DPP_instruction', itertools.product([1, 2], [2])),
           ("vop1_e64", [Format.VOP1, Format.VOP3A], 'VOP3A_instruction', itertools.product([1], [1])),
           ("vop2_e64", [Format.VOP2, Format.VOP3A], 'VOP3A_instruction', itertools.product([1, 2], [2, 3])),
           ("vopc_e64", [Format.VOPC, Format.VOP3A], 'VOP3A_instruction', itertools.product([1, 2], [2])),
           ("flat", [Format.FLAT], 'FLAT_instruction', [(0, 3), (1, 2)]),
           ("global", [Format.GLOBAL], 'FLAT_instruction', [(0, 3), (1, 2)])]
%>\\
% for name, formats, struct, shapes in formats:
    % for num_definitions, num_operands in shapes:
        <%
        args = ['aco_opcode opcode']
        for i in range(num_definitions):
            args.append('Definition def%d' % i)
        for i in range(num_operands):
            args.append('Op op%d' % i)
        for f in formats:
            args += f.get_builder_field_decls()
        %>\\

   Result ${name}(${', '.join(args)})
   {
      ${struct} *instr = create_instruction<${struct}>(opcode, (Format)(${'|'.join('(int)Format::%s' % f.name for f in formats)}), ${num_operands}, ${num_definitions});
        % for i in range(num_definitions):
            instr->definitions[${i}] = def${i};
        % endfor
        % for i in range(num_operands):
            instr->operands[${i}] = op${i}.op;
        % endfor
        % for f in formats:
            % for dest, field_name in zip(f.get_builder_field_dests(), f.get_builder_field_names()):
      instr->${dest} = ${field_name};
            % endfor
        % endfor
      return insert(instr);
   }

    % if name == 'sop1' or name == 'sop2' or name == 'sopc':
        <%
        args[0] = 'WaveSpecificOpcode opcode'
        params = []
        for i in range(num_definitions):
            params.append('def%d' % i)
        for i in range(num_operands):
            params.append('op%d' % i)
        %>\\

   inline Result ${name}(${', '.join(args)})
   {
       return ${name}(w64or32(opcode), ${', '.join(params)});
   }

    % endif
    % endfor
% endfor
};

}
#endif /* _ACO_BUILDER_ */"""

from aco_opcodes import opcodes, Format
from mako.template import Template

print(Template(template).render(opcodes=opcodes, Format=Format))