summaryrefslogtreecommitdiff
path: root/src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp')
-rw-r--r--src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp1753
1 files changed, 0 insertions, 1753 deletions
diff --git a/src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp b/src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp
deleted file mode 100644
index b3f7e877c80..00000000000
--- a/src/mesa/drivers/dri/i965/brw_schedule_instructions.cpp
+++ /dev/null
@@ -1,1753 +0,0 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- *
- * Authors:
- * Eric Anholt <eric@anholt.net>
- *
- */
-
-#include "brw_fs.h"
-#include "brw_fs_live_variables.h"
-#include "brw_vec4.h"
-#include "brw_cfg.h"
-#include "brw_shader.h"
-
-using namespace brw;
-
-/** @file brw_fs_schedule_instructions.cpp
- *
- * List scheduling of FS instructions.
- *
- * The basic model of the list scheduler is to take a basic block,
- * compute a DAG of the dependencies (RAW ordering with latency, WAW
- * ordering with latency, WAR ordering), and make a list of the DAG heads.
- * Heuristically pick a DAG head, then put all the children that are
- * now DAG heads into the list of things to schedule.
- *
- * The heuristic is the important part. We're trying to be cheap,
- * since actually computing the optimal scheduling is NP complete.
- * What we do is track a "current clock". When we schedule a node, we
- * update the earliest-unblocked clock time of its children, and
- * increment the clock. Then, when trying to schedule, we just pick
- * the earliest-unblocked instruction to schedule.
- *
- * Note that often there will be many things which could execute
- * immediately, and there are a range of heuristic options to choose
- * from in picking among those.
- */
-
-static bool debug = false;
-
-class instruction_scheduler;
-
-class schedule_node : public exec_node
-{
-public:
- schedule_node(backend_instruction *inst, instruction_scheduler *sched);
- void set_latency_gen4();
- void set_latency_gen7(bool is_haswell);
-
- backend_instruction *inst;
- schedule_node **children;
- int *child_latency;
- int child_count;
- int parent_count;
- int child_array_size;
- int unblocked_time;
- int latency;
-
- /**
- * Which iteration of pushing groups of children onto the candidates list
- * this node was a part of.
- */
- unsigned cand_generation;
-
- /**
- * This is the sum of the instruction's latency plus the maximum delay of
- * its children, or just the issue_time if it's a leaf node.
- */
- int delay;
-
- /**
- * Preferred exit node among the (direct or indirect) successors of this
- * node. Among the scheduler nodes blocked by this node, this will be the
- * one that may cause earliest program termination, or NULL if none of the
- * successors is an exit node.
- */
- schedule_node *exit;
-
- bool is_barrier;
-};
-
-/**
- * Lower bound of the scheduling time after which one of the instructions
- * blocked by this node may lead to program termination.
- *
- * exit_unblocked_time() determines a strict partial ordering relation '«' on
- * the set of scheduler nodes as follows:
- *
- * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
- *
- * which can be used to heuristically order nodes according to how early they
- * can unblock an exit node and lead to program termination.
- */
-static inline int
-exit_unblocked_time(const schedule_node *n)
-{
- return n->exit ? n->exit->unblocked_time : INT_MAX;
-}
-
-void
-schedule_node::set_latency_gen4()
-{
- int chans = 8;
- int math_latency = 22;
-
- switch (inst->opcode) {
- case SHADER_OPCODE_RCP:
- this->latency = 1 * chans * math_latency;
- break;
- case SHADER_OPCODE_RSQ:
- this->latency = 2 * chans * math_latency;
- break;
- case SHADER_OPCODE_INT_QUOTIENT:
- case SHADER_OPCODE_SQRT:
- case SHADER_OPCODE_LOG2:
- /* full precision log. partial is 2. */
- this->latency = 3 * chans * math_latency;
- break;
- case SHADER_OPCODE_INT_REMAINDER:
- case SHADER_OPCODE_EXP2:
- /* full precision. partial is 3, same throughput. */
- this->latency = 4 * chans * math_latency;
- break;
- case SHADER_OPCODE_POW:
- this->latency = 8 * chans * math_latency;
- break;
- case SHADER_OPCODE_SIN:
- case SHADER_OPCODE_COS:
- /* minimum latency, max is 12 rounds. */
- this->latency = 5 * chans * math_latency;
- break;
- default:
- this->latency = 2;
- break;
- }
-}
-
-void
-schedule_node::set_latency_gen7(bool is_haswell)
-{
- switch (inst->opcode) {
- case BRW_OPCODE_MAD:
- /* 2 cycles
- * (since the last two src operands are in different register banks):
- * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
- *
- * 3 cycles on IVB, 4 on HSW
- * (since the last two src operands are in the same register bank):
- * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
- *
- * 18 cycles on IVB, 16 on HSW
- * (since the last two src operands are in different register banks):
- * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
- * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
- *
- * 20 cycles on IVB, 18 on HSW
- * (since the last two src operands are in the same register bank):
- * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
- * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
- */
-
- /* Our register allocator doesn't know about register banks, so use the
- * higher latency.
- */
- latency = is_haswell ? 16 : 18;
- break;
-
- case BRW_OPCODE_LRP:
- /* 2 cycles
- * (since the last two src operands are in different register banks):
- * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
- *
- * 3 cycles on IVB, 4 on HSW
- * (since the last two src operands are in the same register bank):
- * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
- *
- * 16 cycles on IVB, 14 on HSW
- * (since the last two src operands are in different register banks):
- * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
- * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
- *
- * 16 cycles
- * (since the last two src operands are in the same register bank):
- * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
- * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
- */
-
- /* Our register allocator doesn't know about register banks, so use the
- * higher latency.
- */
- latency = 14;
- break;
-
- case SHADER_OPCODE_RCP:
- case SHADER_OPCODE_RSQ:
- case SHADER_OPCODE_SQRT:
- case SHADER_OPCODE_LOG2:
- case SHADER_OPCODE_EXP2:
- case SHADER_OPCODE_SIN:
- case SHADER_OPCODE_COS:
- /* 2 cycles:
- * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
- *
- * 18 cycles:
- * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- *
- * Same for exp2, log2, rsq, sqrt, sin, cos.
- */
- latency = is_haswell ? 14 : 16;
- break;
-
- case SHADER_OPCODE_POW:
- /* 2 cycles:
- * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
- *
- * 26 cycles:
- * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- */
- latency = is_haswell ? 22 : 24;
- break;
-
- case SHADER_OPCODE_TEX:
- case SHADER_OPCODE_TXD:
- case SHADER_OPCODE_TXF:
- case SHADER_OPCODE_TXF_LZ:
- case SHADER_OPCODE_TXL:
- case SHADER_OPCODE_TXL_LZ:
- /* 18 cycles:
- * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
- * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
- * send(8) g4<1>UW g114<8,8,1>F
- * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
- *
- * 697 +/-49 cycles (min 610, n=26):
- * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
- * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
- * send(8) g4<1>UW g114<8,8,1>F
- * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- *
- * So the latency on our first texture load of the batchbuffer takes
- * ~700 cycles, since the caches are cold at that point.
- *
- * 840 +/- 92 cycles (min 720, n=25):
- * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
- * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
- * send(8) g4<1>UW g114<8,8,1>F
- * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- * send(8) g4<1>UW g114<8,8,1>F
- * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- *
- * On the second load, it takes just an extra ~140 cycles, and after
- * accounting for the 14 cycles of the MOV's latency, that makes ~130.
- *
- * 683 +/- 49 cycles (min = 602, n=47):
- * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
- * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
- * send(8) g4<1>UW g114<8,8,1>F
- * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
- * send(8) g50<1>UW g114<8,8,1>F
- * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- *
- * The unit appears to be pipelined, since this matches up with the
- * cache-cold case, despite there being two loads here. If you replace
- * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
- *
- * So, take some number between the cache-hot 140 cycles and the
- * cache-cold 700 cycles. No particular tuning was done on this.
- *
- * I haven't done significant testing of the non-TEX opcodes. TXL at
- * least looked about the same as TEX.
- */
- latency = 200;
- break;
-
- case SHADER_OPCODE_TXS:
- /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
- * cycles (n=15):
- * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
- * send(8) g6<1>UW g114<8,8,1>F
- * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
- * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
- *
- *
- * Two loads was 535 +/- 30 cycles (n=19):
- * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
- * send(16) g6<1>UW g114<8,8,1>F
- * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
- * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
- * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
- * send(16) g8<1>UW g114<8,8,1>F
- * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
- * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
- * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
- *
- * Since the only caches that should matter are just the
- * instruction/state cache containing the surface state, assume that we
- * always have hot caches.
- */
- latency = 100;
- break;
-
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
- case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
- case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
- case VS_OPCODE_PULL_CONSTANT_LOAD:
- /* testing using varying-index pull constants:
- *
- * 16 cycles:
- * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
- * send(8) g4<1>F g4<8,8,1>D
- * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
- *
- * ~480 cycles:
- * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
- * send(8) g4<1>F g4<8,8,1>D
- * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- *
- * ~620 cycles:
- * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
- * send(8) g4<1>F g4<8,8,1>D
- * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- * send(8) g4<1>F g4<8,8,1>D
- * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- *
- * So, if it's cache-hot, it's about 140. If it's cache cold, it's
- * about 460. We expect to mostly be cache hot, so pick something more
- * in that direction.
- */
- latency = 200;
- break;
-
- case SHADER_OPCODE_GEN7_SCRATCH_READ:
- /* Testing a load from offset 0, that had been previously written:
- *
- * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
- * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
- *
- * The cycles spent seemed to be grouped around 40-50 (as low as 38),
- * then around 140. Presumably this is cache hit vs miss.
- */
- latency = 50;
- break;
-
- case SHADER_OPCODE_UNTYPED_ATOMIC:
- case SHADER_OPCODE_TYPED_ATOMIC:
- /* Test code:
- * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
- * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
- * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
- * send(8) g4<1>ud g112<8,8,1>ud
- * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
- *
- * Running it 100 times as fragment shader on a 128x128 quad
- * gives an average latency of 13867 cycles per atomic op,
- * standard deviation 3%. Note that this is a rather
- * pessimistic estimate, the actual latency in cases with few
- * collisions between threads and favorable pipelining has been
- * seen to be reduced by a factor of 100.
- */
- latency = 14000;
- break;
-
- case SHADER_OPCODE_UNTYPED_SURFACE_READ:
- case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
- case SHADER_OPCODE_TYPED_SURFACE_READ:
- case SHADER_OPCODE_TYPED_SURFACE_WRITE:
- /* Test code:
- * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
- * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
- * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
- * send(8) g4<1>UD g112<8,8,1>UD
- * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
- * .
- * . [repeats 8 times]
- * .
- * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
- * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
- * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
- * send(8) g4<1>UD g112<8,8,1>UD
- * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
- *
- * Running it 100 times as fragment shader on a 128x128 quad
- * gives an average latency of 583 cycles per surface read,
- * standard deviation 0.9%.
- */
- latency = is_haswell ? 300 : 600;
- break;
-
- default:
- /* 2 cycles:
- * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
- *
- * 16 cycles:
- * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
- * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
- */
- latency = 14;
- break;
- }
-}
-
-class instruction_scheduler {
-public:
- instruction_scheduler(backend_shader *s, int grf_count,
- int hw_reg_count, int block_count,
- instruction_scheduler_mode mode)
- {
- this->bs = s;
- this->mem_ctx = ralloc_context(NULL);
- this->grf_count = grf_count;
- this->hw_reg_count = hw_reg_count;
- this->instructions.make_empty();
- this->instructions_to_schedule = 0;
- this->post_reg_alloc = (mode == SCHEDULE_POST);
- this->mode = mode;
- if (!post_reg_alloc) {
- this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
-
- this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
- for (int i = 0; i < block_count; i++)
- this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
- BITSET_WORDS(grf_count));
-
- this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
- for (int i = 0; i < block_count; i++)
- this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
- BITSET_WORDS(grf_count));
-
- this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
- for (int i = 0; i < block_count; i++)
- this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
- BITSET_WORDS(hw_reg_count));
-
- this->written = rzalloc_array(mem_ctx, bool, grf_count);
-
- this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
-
- this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
- } else {
- this->reg_pressure_in = NULL;
- this->livein = NULL;
- this->liveout = NULL;
- this->hw_liveout = NULL;
- this->written = NULL;
- this->reads_remaining = NULL;
- this->hw_reads_remaining = NULL;
- }
- }
-
- ~instruction_scheduler()
- {
- ralloc_free(this->mem_ctx);
- }
- void add_barrier_deps(schedule_node *n);
- void add_dep(schedule_node *before, schedule_node *after, int latency);
- void add_dep(schedule_node *before, schedule_node *after);
-
- void run(cfg_t *cfg);
- void add_insts_from_block(bblock_t *block);
- void compute_delays();
- void compute_exits();
- virtual void calculate_deps() = 0;
- virtual schedule_node *choose_instruction_to_schedule() = 0;
-
- /**
- * Returns how many cycles it takes the instruction to issue.
- *
- * Instructions in gen hardware are handled one simd4 vector at a time,
- * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
- * cycles to dispatch and SIMD16 (compressed) instructions take 4.
- */
- virtual int issue_time(backend_instruction *inst) = 0;
-
- virtual void count_reads_remaining(backend_instruction *inst) = 0;
- virtual void setup_liveness(cfg_t *cfg) = 0;
- virtual void update_register_pressure(backend_instruction *inst) = 0;
- virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
-
- void schedule_instructions(bblock_t *block);
-
- void *mem_ctx;
-
- bool post_reg_alloc;
- int instructions_to_schedule;
- int grf_count;
- int hw_reg_count;
- int reg_pressure;
- int block_idx;
- exec_list instructions;
- backend_shader *bs;
-
- instruction_scheduler_mode mode;
-
- /*
- * The register pressure at the beginning of each basic block.
- */
-
- int *reg_pressure_in;
-
- /*
- * The virtual GRF's whose range overlaps the beginning of each basic block.
- */
-
- BITSET_WORD **livein;
-
- /*
- * The virtual GRF's whose range overlaps the end of each basic block.
- */
-
- BITSET_WORD **liveout;
-
- /*
- * The hardware GRF's whose range overlaps the end of each basic block.
- */
-
- BITSET_WORD **hw_liveout;
-
- /*
- * Whether we've scheduled a write for this virtual GRF yet.
- */
-
- bool *written;
-
- /*
- * How many reads we haven't scheduled for this virtual GRF yet.
- */
-
- int *reads_remaining;
-
- /*
- * How many reads we haven't scheduled for this hardware GRF yet.
- */
-
- int *hw_reads_remaining;
-};
-
-class fs_instruction_scheduler : public instruction_scheduler
-{
-public:
- fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
- int block_count,
- instruction_scheduler_mode mode);
- void calculate_deps();
- bool is_compressed(fs_inst *inst);
- schedule_node *choose_instruction_to_schedule();
- int issue_time(backend_instruction *inst);
- fs_visitor *v;
-
- void count_reads_remaining(backend_instruction *inst);
- void setup_liveness(cfg_t *cfg);
- void update_register_pressure(backend_instruction *inst);
- int get_register_pressure_benefit(backend_instruction *inst);
-};
-
-fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
- int grf_count, int hw_reg_count,
- int block_count,
- instruction_scheduler_mode mode)
- : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
- v(v)
-{
-}
-
-static bool
-is_src_duplicate(fs_inst *inst, int src)
-{
- for (int i = 0; i < src; i++)
- if (inst->src[i].equals(inst->src[src]))
- return true;
-
- return false;
-}
-
-void
-fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
-{
- fs_inst *inst = (fs_inst *)be;
-
- if (!reads_remaining)
- return;
-
- for (int i = 0; i < inst->sources; i++) {
- if (is_src_duplicate(inst, i))
- continue;
-
- if (inst->src[i].file == VGRF) {
- reads_remaining[inst->src[i].nr]++;
- } else if (inst->src[i].file == FIXED_GRF) {
- if (inst->src[i].nr >= hw_reg_count)
- continue;
-
- for (unsigned j = 0; j < regs_read(inst, i); j++)
- hw_reads_remaining[inst->src[i].nr + j]++;
- }
- }
-}
-
-void
-fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
-{
- /* First, compute liveness on a per-GRF level using the in/out sets from
- * liveness calculation.
- */
- for (int block = 0; block < cfg->num_blocks; block++) {
- for (int i = 0; i < v->live_intervals->num_vars; i++) {
- if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
- int vgrf = v->live_intervals->vgrf_from_var[i];
- if (!BITSET_TEST(livein[block], vgrf)) {
- reg_pressure_in[block] += v->alloc.sizes[vgrf];
- BITSET_SET(livein[block], vgrf);
- }
- }
-
- if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
- BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
- }
- }
-
- /* Now, extend the live in/live out sets for when a range crosses a block
- * boundary, which matches what our register allocator/interference code
- * does to account for force_writemask_all and incompatible exec_mask's.
- */
- for (int block = 0; block < cfg->num_blocks - 1; block++) {
- for (int i = 0; i < grf_count; i++) {
- if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
- v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
- if (!BITSET_TEST(livein[block + 1], i)) {
- reg_pressure_in[block + 1] += v->alloc.sizes[i];
- BITSET_SET(livein[block + 1], i);
- }
-
- BITSET_SET(liveout[block], i);
- }
- }
- }
-
- int payload_last_use_ip[hw_reg_count];
- v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
-
- for (int i = 0; i < hw_reg_count; i++) {
- if (payload_last_use_ip[i] == -1)
- continue;
-
- for (int block = 0; block < cfg->num_blocks; block++) {
- if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
- reg_pressure_in[block]++;
-
- if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
- BITSET_SET(hw_liveout[block], i);
- }
- }
-}
-
-void
-fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
-{
- fs_inst *inst = (fs_inst *)be;
-
- if (!reads_remaining)
- return;
-
- if (inst->dst.file == VGRF) {
- written[inst->dst.nr] = true;
- }
-
- for (int i = 0; i < inst->sources; i++) {
- if (is_src_duplicate(inst, i))
- continue;
-
- if (inst->src[i].file == VGRF) {
- reads_remaining[inst->src[i].nr]--;
- } else if (inst->src[i].file == FIXED_GRF &&
- inst->src[i].nr < hw_reg_count) {
- for (unsigned off = 0; off < regs_read(inst, i); off++)
- hw_reads_remaining[inst->src[i].nr + off]--;
- }
- }
-}
-
-int
-fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
-{
- fs_inst *inst = (fs_inst *)be;
- int benefit = 0;
-
- if (inst->dst.file == VGRF) {
- if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
- !written[inst->dst.nr])
- benefit -= v->alloc.sizes[inst->dst.nr];
- }
-
- for (int i = 0; i < inst->sources; i++) {
- if (is_src_duplicate(inst, i))
- continue;
-
- if (inst->src[i].file == VGRF &&
- !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
- reads_remaining[inst->src[i].nr] == 1)
- benefit += v->alloc.sizes[inst->src[i].nr];
-
- if (inst->src[i].file == FIXED_GRF &&
- inst->src[i].nr < hw_reg_count) {
- for (unsigned off = 0; off < regs_read(inst, i); off++) {
- int reg = inst->src[i].nr + off;
- if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
- hw_reads_remaining[reg] == 1) {
- benefit++;
- }
- }
- }
- }
-
- return benefit;
-}
-
-class vec4_instruction_scheduler : public instruction_scheduler
-{
-public:
- vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
- void calculate_deps();
- schedule_node *choose_instruction_to_schedule();
- int issue_time(backend_instruction *inst);
- vec4_visitor *v;
-
- void count_reads_remaining(backend_instruction *inst);
- void setup_liveness(cfg_t *cfg);
- void update_register_pressure(backend_instruction *inst);
- int get_register_pressure_benefit(backend_instruction *inst);
-};
-
-vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
- int grf_count)
- : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
- v(v)
-{
-}
-
-void
-vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be)
-{
-}
-
-void
-vec4_instruction_scheduler::setup_liveness(cfg_t *cfg)
-{
-}
-
-void
-vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
-{
-}
-
-int
-vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
-{
- return 0;
-}
-
-schedule_node::schedule_node(backend_instruction *inst,
- instruction_scheduler *sched)
-{
- const struct gen_device_info *devinfo = sched->bs->devinfo;
-
- this->inst = inst;
- this->child_array_size = 0;
- this->children = NULL;
- this->child_latency = NULL;
- this->child_count = 0;
- this->parent_count = 0;
- this->unblocked_time = 0;
- this->cand_generation = 0;
- this->delay = 0;
- this->exit = NULL;
- this->is_barrier = false;
-
- /* We can't measure Gen6 timings directly but expect them to be much
- * closer to Gen7 than Gen4.
- */
- if (!sched->post_reg_alloc)
- this->latency = 1;
- else if (devinfo->gen >= 6)
- set_latency_gen7(devinfo->is_haswell);
- else
- set_latency_gen4();
-}
-
-void
-instruction_scheduler::add_insts_from_block(bblock_t *block)
-{
- foreach_inst_in_block(backend_instruction, inst, block) {
- schedule_node *n = new(mem_ctx) schedule_node(inst, this);
-
- instructions.push_tail(n);
- }
-
- this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
-}
-
-/** Computation of the delay member of each node. */
-void
-instruction_scheduler::compute_delays()
-{
- foreach_in_list_reverse(schedule_node, n, &instructions) {
- if (!n->child_count) {
- n->delay = issue_time(n->inst);
- } else {
- for (int i = 0; i < n->child_count; i++) {
- assert(n->children[i]->delay);
- n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
- }
- }
- }
-}
-
-void
-instruction_scheduler::compute_exits()
-{
- /* Calculate a lower bound of the scheduling time of each node in the
- * graph. This is analogous to the node's critical path but calculated
- * from the top instead of from the bottom of the block.
- */
- foreach_in_list(schedule_node, n, &instructions) {
- for (int i = 0; i < n->child_count; i++) {
- n->children[i]->unblocked_time =
- MAX2(n->children[i]->unblocked_time,
- n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
- }
- }
-
- /* Calculate the exit of each node by induction based on the exit nodes of
- * its children. The preferred exit of a node is the one among the exit
- * nodes of its children which can be unblocked first according to the
- * optimistic unblocked time estimate calculated above.
- */
- foreach_in_list_reverse(schedule_node, n, &instructions) {
- n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
-
- for (int i = 0; i < n->child_count; i++) {
- if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
- n->exit = n->children[i]->exit;
- }
- }
-}
-
-/**
- * Add a dependency between two instruction nodes.
- *
- * The @after node will be scheduled after @before. We will try to
- * schedule it @latency cycles after @before, but no guarantees there.
- */
-void
-instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
- int latency)
-{
- if (!before || !after)
- return;
-
- assert(before != after);
-
- for (int i = 0; i < before->child_count; i++) {
- if (before->children[i] == after) {
- before->child_latency[i] = MAX2(before->child_latency[i], latency);
- return;
- }
- }
-
- if (before->child_array_size <= before->child_count) {
- if (before->child_array_size < 16)
- before->child_array_size = 16;
- else
- before->child_array_size *= 2;
-
- before->children = reralloc(mem_ctx, before->children,
- schedule_node *,
- before->child_array_size);
- before->child_latency = reralloc(mem_ctx, before->child_latency,
- int, before->child_array_size);
- }
-
- before->children[before->child_count] = after;
- before->child_latency[before->child_count] = latency;
- before->child_count++;
- after->parent_count++;
-}
-
-void
-instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
-{
- if (!before)
- return;
-
- add_dep(before, after, before->latency);
-}
-
-/**
- * Sometimes we really want this node to execute after everything that
- * was before it and before everything that followed it. This adds
- * the deps to do so.
- */
-void
-instruction_scheduler::add_barrier_deps(schedule_node *n)
-{
- schedule_node *prev = (schedule_node *)n->prev;
- schedule_node *next = (schedule_node *)n->next;
-
- n->is_barrier = true;
-
- if (prev) {
- while (!prev->is_head_sentinel()) {
- add_dep(prev, n, 0);
- if (prev->is_barrier)
- break;
- prev = (schedule_node *)prev->prev;
- }
- }
-
- if (next) {
- while (!next->is_tail_sentinel()) {
- add_dep(n, next, 0);
- if (next->is_barrier)
- break;
- next = (schedule_node *)next->next;
- }
- }
-}
-
-/* instruction scheduling needs to be aware of when an MRF write
- * actually writes 2 MRFs.
- */
-bool
-fs_instruction_scheduler::is_compressed(fs_inst *inst)
-{
- return inst->exec_size == 16;
-}
-
-static bool
-is_scheduling_barrier(const fs_inst *inst)
-{
- return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
- inst->is_control_flow() ||
- inst->has_side_effects();
-}
-
-void
-fs_instruction_scheduler::calculate_deps()
-{
- /* Pre-register-allocation, this tracks the last write per VGRF offset.
- * After register allocation, reg_offsets are gone and we track individual
- * GRF registers.
- */
- schedule_node *last_grf_write[grf_count * 16];
- schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
- schedule_node *last_conditional_mod[4] = {};
- schedule_node *last_accumulator_write = NULL;
- /* Fixed HW registers are assumed to be separate from the virtual
- * GRFs, so they can be tracked separately. We don't really write
- * to fixed GRFs much, so don't bother tracking them on a more
- * granular level.
- */
- schedule_node *last_fixed_grf_write = NULL;
-
- memset(last_grf_write, 0, sizeof(last_grf_write));
- memset(last_mrf_write, 0, sizeof(last_mrf_write));
-
- /* top-to-bottom dependencies: RAW and WAW. */
- foreach_in_list(schedule_node, n, &instructions) {
- fs_inst *inst = (fs_inst *)n->inst;
-
- if (is_scheduling_barrier(inst))
- add_barrier_deps(n);
-
- /* read-after-write deps. */
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_read(inst, i); r++)
- add_dep(last_grf_write[inst->src[i].nr + r], n);
- } else {
- for (unsigned r = 0; r < regs_read(inst, i); r++) {
- add_dep(last_grf_write[inst->src[i].nr * 16 +
- inst->src[i].offset / REG_SIZE + r], n);
- }
- }
- } else if (inst->src[i].file == FIXED_GRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_read(inst, i); r++)
- add_dep(last_grf_write[inst->src[i].nr + r], n);
- } else {
- add_dep(last_fixed_grf_write, n);
- }
- } else if (inst->src[i].is_accumulator()) {
- add_dep(last_accumulator_write, n);
- } else if (inst->src[i].file == ARF) {
- add_barrier_deps(n);
- }
- }
-
- if (inst->base_mrf != -1) {
- for (int i = 0; i < inst->mlen; i++) {
- /* It looks like the MRF regs are released in the send
- * instruction once it's sent, not when the result comes
- * back.
- */
- add_dep(last_mrf_write[inst->base_mrf + i], n);
- }
- }
-
- if (const unsigned mask = inst->flags_read(v->devinfo)) {
- assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
-
- for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
- if (mask & (1 << i))
- add_dep(last_conditional_mod[i], n);
- }
- }
-
- if (inst->reads_accumulator_implicitly()) {
- add_dep(last_accumulator_write, n);
- }
-
- /* write-after-write deps. */
- if (inst->dst.file == VGRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_written(inst); r++) {
- add_dep(last_grf_write[inst->dst.nr + r], n);
- last_grf_write[inst->dst.nr + r] = n;
- }
- } else {
- for (unsigned r = 0; r < regs_written(inst); r++) {
- add_dep(last_grf_write[inst->dst.nr * 16 +
- inst->dst.offset / REG_SIZE + r], n);
- last_grf_write[inst->dst.nr * 16 +
- inst->dst.offset / REG_SIZE + r] = n;
- }
- }
- } else if (inst->dst.file == MRF) {
- int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
-
- add_dep(last_mrf_write[reg], n);
- last_mrf_write[reg] = n;
- if (is_compressed(inst)) {
- if (inst->dst.nr & BRW_MRF_COMPR4)
- reg += 4;
- else
- reg++;
- add_dep(last_mrf_write[reg], n);
- last_mrf_write[reg] = n;
- }
- } else if (inst->dst.file == FIXED_GRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_written(inst); r++)
- last_grf_write[inst->dst.nr + r] = n;
- } else {
- last_fixed_grf_write = n;
- }
- } else if (inst->dst.is_accumulator()) {
- add_dep(last_accumulator_write, n);
- last_accumulator_write = n;
- } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
- add_barrier_deps(n);
- }
-
- if (inst->mlen > 0 && inst->base_mrf != -1) {
- for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
- add_dep(last_mrf_write[inst->base_mrf + i], n);
- last_mrf_write[inst->base_mrf + i] = n;
- }
- }
-
- if (const unsigned mask = inst->flags_written()) {
- assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
-
- for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
- if (mask & (1 << i)) {
- add_dep(last_conditional_mod[i], n, 0);
- last_conditional_mod[i] = n;
- }
- }
- }
-
- if (inst->writes_accumulator_implicitly(v->devinfo) &&
- !inst->dst.is_accumulator()) {
- add_dep(last_accumulator_write, n);
- last_accumulator_write = n;
- }
- }
-
- /* bottom-to-top dependencies: WAR */
- memset(last_grf_write, 0, sizeof(last_grf_write));
- memset(last_mrf_write, 0, sizeof(last_mrf_write));
- memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
- last_accumulator_write = NULL;
- last_fixed_grf_write = NULL;
-
- foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
- fs_inst *inst = (fs_inst *)n->inst;
-
- /* write-after-read deps. */
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_read(inst, i); r++)
- add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
- } else {
- for (unsigned r = 0; r < regs_read(inst, i); r++) {
- add_dep(n, last_grf_write[inst->src[i].nr * 16 +
- inst->src[i].offset / REG_SIZE + r], 0);
- }
- }
- } else if (inst->src[i].file == FIXED_GRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_read(inst, i); r++)
- add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
- } else {
- add_dep(n, last_fixed_grf_write, 0);
- }
- } else if (inst->src[i].is_accumulator()) {
- add_dep(n, last_accumulator_write, 0);
- } else if (inst->src[i].file == ARF) {
- add_barrier_deps(n);
- }
- }
-
- if (inst->base_mrf != -1) {
- for (int i = 0; i < inst->mlen; i++) {
- /* It looks like the MRF regs are released in the send
- * instruction once it's sent, not when the result comes
- * back.
- */
- add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
- }
- }
-
- if (const unsigned mask = inst->flags_read(v->devinfo)) {
- assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
-
- for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
- if (mask & (1 << i))
- add_dep(n, last_conditional_mod[i]);
- }
- }
-
- if (inst->reads_accumulator_implicitly()) {
- add_dep(n, last_accumulator_write);
- }
-
- /* Update the things this instruction wrote, so earlier reads
- * can mark this as WAR dependency.
- */
- if (inst->dst.file == VGRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_written(inst); r++)
- last_grf_write[inst->dst.nr + r] = n;
- } else {
- for (unsigned r = 0; r < regs_written(inst); r++) {
- last_grf_write[inst->dst.nr * 16 +
- inst->dst.offset / REG_SIZE + r] = n;
- }
- }
- } else if (inst->dst.file == MRF) {
- int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
-
- last_mrf_write[reg] = n;
-
- if (is_compressed(inst)) {
- if (inst->dst.nr & BRW_MRF_COMPR4)
- reg += 4;
- else
- reg++;
-
- last_mrf_write[reg] = n;
- }
- } else if (inst->dst.file == FIXED_GRF) {
- if (post_reg_alloc) {
- for (unsigned r = 0; r < regs_written(inst); r++)
- last_grf_write[inst->dst.nr + r] = n;
- } else {
- last_fixed_grf_write = n;
- }
- } else if (inst->dst.is_accumulator()) {
- last_accumulator_write = n;
- } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
- add_barrier_deps(n);
- }
-
- if (inst->mlen > 0 && inst->base_mrf != -1) {
- for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
- last_mrf_write[inst->base_mrf + i] = n;
- }
- }
-
- if (const unsigned mask = inst->flags_written()) {
- assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
-
- for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
- if (mask & (1 << i))
- last_conditional_mod[i] = n;
- }
- }
-
- if (inst->writes_accumulator_implicitly(v->devinfo)) {
- last_accumulator_write = n;
- }
- }
-}
-
-static bool
-is_scheduling_barrier(const vec4_instruction *inst)
-{
- return inst->is_control_flow() ||
- inst->has_side_effects();
-}
-
-void
-vec4_instruction_scheduler::calculate_deps()
-{
- schedule_node *last_grf_write[grf_count];
- schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
- schedule_node *last_conditional_mod = NULL;
- schedule_node *last_accumulator_write = NULL;
- /* Fixed HW registers are assumed to be separate from the virtual
- * GRFs, so they can be tracked separately. We don't really write
- * to fixed GRFs much, so don't bother tracking them on a more
- * granular level.
- */
- schedule_node *last_fixed_grf_write = NULL;
-
- memset(last_grf_write, 0, sizeof(last_grf_write));
- memset(last_mrf_write, 0, sizeof(last_mrf_write));
-
- /* top-to-bottom dependencies: RAW and WAW. */
- foreach_in_list(schedule_node, n, &instructions) {
- vec4_instruction *inst = (vec4_instruction *)n->inst;
-
- if (is_scheduling_barrier(inst))
- add_barrier_deps(n);
-
- /* read-after-write deps. */
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file == VGRF) {
- for (unsigned j = 0; j < regs_read(inst, i); ++j)
- add_dep(last_grf_write[inst->src[i].nr + j], n);
- } else if (inst->src[i].file == FIXED_GRF) {
- add_dep(last_fixed_grf_write, n);
- } else if (inst->src[i].is_accumulator()) {
- assert(last_accumulator_write);
- add_dep(last_accumulator_write, n);
- } else if (inst->src[i].file == ARF) {
- add_barrier_deps(n);
- }
- }
-
- if (!inst->is_send_from_grf()) {
- for (int i = 0; i < inst->mlen; i++) {
- /* It looks like the MRF regs are released in the send
- * instruction once it's sent, not when the result comes
- * back.
- */
- add_dep(last_mrf_write[inst->base_mrf + i], n);
- }
- }
-
- if (inst->reads_flag()) {
- assert(last_conditional_mod);
- add_dep(last_conditional_mod, n);
- }
-
- if (inst->reads_accumulator_implicitly()) {
- assert(last_accumulator_write);
- add_dep(last_accumulator_write, n);
- }
-
- /* write-after-write deps. */
- if (inst->dst.file == VGRF) {
- for (unsigned j = 0; j < regs_written(inst); ++j) {
- add_dep(last_grf_write[inst->dst.nr + j], n);
- last_grf_write[inst->dst.nr + j] = n;
- }
- } else if (inst->dst.file == MRF) {
- add_dep(last_mrf_write[inst->dst.nr], n);
- last_mrf_write[inst->dst.nr] = n;
- } else if (inst->dst.file == FIXED_GRF) {
- last_fixed_grf_write = n;
- } else if (inst->dst.is_accumulator()) {
- add_dep(last_accumulator_write, n);
- last_accumulator_write = n;
- } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
- add_barrier_deps(n);
- }
-
- if (inst->mlen > 0 && !inst->is_send_from_grf()) {
- for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
- add_dep(last_mrf_write[inst->base_mrf + i], n);
- last_mrf_write[inst->base_mrf + i] = n;
- }
- }
-
- if (inst->writes_flag()) {
- add_dep(last_conditional_mod, n, 0);
- last_conditional_mod = n;
- }
-
- if (inst->writes_accumulator_implicitly(v->devinfo) &&
- !inst->dst.is_accumulator()) {
- add_dep(last_accumulator_write, n);
- last_accumulator_write = n;
- }
- }
-
- /* bottom-to-top dependencies: WAR */
- memset(last_grf_write, 0, sizeof(last_grf_write));
- memset(last_mrf_write, 0, sizeof(last_mrf_write));
- last_conditional_mod = NULL;
- last_accumulator_write = NULL;
- last_fixed_grf_write = NULL;
-
- foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
- vec4_instruction *inst = (vec4_instruction *)n->inst;
-
- /* write-after-read deps. */
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file == VGRF) {
- for (unsigned j = 0; j < regs_read(inst, i); ++j)
- add_dep(n, last_grf_write[inst->src[i].nr + j]);
- } else if (inst->src[i].file == FIXED_GRF) {
- add_dep(n, last_fixed_grf_write);
- } else if (inst->src[i].is_accumulator()) {
- add_dep(n, last_accumulator_write);
- } else if (inst->src[i].file == ARF) {
- add_barrier_deps(n);
- }
- }
-
- if (!inst->is_send_from_grf()) {
- for (int i = 0; i < inst->mlen; i++) {
- /* It looks like the MRF regs are released in the send
- * instruction once it's sent, not when the result comes
- * back.
- */
- add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
- }
- }
-
- if (inst->reads_flag()) {
- add_dep(n, last_conditional_mod);
- }
-
- if (inst->reads_accumulator_implicitly()) {
- add_dep(n, last_accumulator_write);
- }
-
- /* Update the things this instruction wrote, so earlier reads
- * can mark this as WAR dependency.
- */
- if (inst->dst.file == VGRF) {
- for (unsigned j = 0; j < regs_written(inst); ++j)
- last_grf_write[inst->dst.nr + j] = n;
- } else if (inst->dst.file == MRF) {
- last_mrf_write[inst->dst.nr] = n;
- } else if (inst->dst.file == FIXED_GRF) {
- last_fixed_grf_write = n;
- } else if (inst->dst.is_accumulator()) {
- last_accumulator_write = n;
- } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
- add_barrier_deps(n);
- }
-
- if (inst->mlen > 0 && !inst->is_send_from_grf()) {
- for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
- last_mrf_write[inst->base_mrf + i] = n;
- }
- }
-
- if (inst->writes_flag()) {
- last_conditional_mod = n;
- }
-
- if (inst->writes_accumulator_implicitly(v->devinfo)) {
- last_accumulator_write = n;
- }
- }
-}
-
-schedule_node *
-fs_instruction_scheduler::choose_instruction_to_schedule()
-{
- schedule_node *chosen = NULL;
-
- if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
- int chosen_time = 0;
-
- /* Of the instructions ready to execute or the closest to being ready,
- * choose the one most likely to unblock an early program exit, or
- * otherwise the oldest one.
- */
- foreach_in_list(schedule_node, n, &instructions) {
- if (!chosen ||
- exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
- (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
- n->unblocked_time < chosen_time)) {
- chosen = n;
- chosen_time = n->unblocked_time;
- }
- }
- } else {
- /* Before register allocation, we don't care about the latencies of
- * instructions. All we care about is reducing live intervals of
- * variables so that we can avoid register spilling, or get SIMD16
- * shaders which naturally do a better job of hiding instruction
- * latency.
- */
- foreach_in_list(schedule_node, n, &instructions) {
- fs_inst *inst = (fs_inst *)n->inst;
-
- if (!chosen) {
- chosen = n;
- continue;
- }
-
- /* Most important: If we can definitely reduce register pressure, do
- * so immediately.
- */
- int register_pressure_benefit = get_register_pressure_benefit(n->inst);
- int chosen_register_pressure_benefit =
- get_register_pressure_benefit(chosen->inst);
-
- if (register_pressure_benefit > 0 &&
- register_pressure_benefit > chosen_register_pressure_benefit) {
- chosen = n;
- continue;
- } else if (chosen_register_pressure_benefit > 0 &&
- (register_pressure_benefit <
- chosen_register_pressure_benefit)) {
- continue;
- }
-
- if (mode == SCHEDULE_PRE_LIFO) {
- /* Prefer instructions that recently became available for
- * scheduling. These are the things that are most likely to
- * (eventually) make a variable dead and reduce register pressure.
- * Typical register pressure estimates don't work for us because
- * most of our pressure comes from texturing, where no single
- * instruction to schedule will make a vec4 value dead.
- */
- if (n->cand_generation > chosen->cand_generation) {
- chosen = n;
- continue;
- } else if (n->cand_generation < chosen->cand_generation) {
- continue;
- }
-
- /* On MRF-using chips, prefer non-SEND instructions. If we don't
- * do this, then because we prefer instructions that just became
- * candidates, we'll end up in a pattern of scheduling a SEND,
- * then the MRFs for the next SEND, then the next SEND, then the
- * MRFs, etc., without ever consuming the results of a send.
- */
- if (v->devinfo->gen < 7) {
- fs_inst *chosen_inst = (fs_inst *)chosen->inst;
-
- /* We use size_written > 4 * exec_size as our test for the kind
- * of send instruction to avoid -- only sends generate many
- * regs, and a single-result send is probably actually reducing
- * register pressure.
- */
- if (inst->size_written <= 4 * inst->exec_size &&
- chosen_inst->size_written > 4 * chosen_inst->exec_size) {
- chosen = n;
- continue;
- } else if (inst->size_written > chosen_inst->size_written) {
- continue;
- }
- }
- }
-
- /* For instructions pushed on the cands list at the same time, prefer
- * the one with the highest delay to the end of the program. This is
- * most likely to have its values able to be consumed first (such as
- * for a large tree of lowered ubo loads, which appear reversed in
- * the instruction stream with respect to when they can be consumed).
- */
- if (n->delay > chosen->delay) {
- chosen = n;
- continue;
- } else if (n->delay < chosen->delay) {
- continue;
- }
-
- /* Prefer the node most likely to unblock an early program exit.
- */
- if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
- chosen = n;
- continue;
- } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
- continue;
- }
-
- /* If all other metrics are equal, we prefer the first instruction in
- * the list (program execution).
- */
- }
- }
-
- return chosen;
-}
-
-schedule_node *
-vec4_instruction_scheduler::choose_instruction_to_schedule()
-{
- schedule_node *chosen = NULL;
- int chosen_time = 0;
-
- /* Of the instructions ready to execute or the closest to being ready,
- * choose the oldest one.
- */
- foreach_in_list(schedule_node, n, &instructions) {
- if (!chosen || n->unblocked_time < chosen_time) {
- chosen = n;
- chosen_time = n->unblocked_time;
- }
- }
-
- return chosen;
-}
-
-int
-fs_instruction_scheduler::issue_time(backend_instruction *inst)
-{
- if (is_compressed((fs_inst *)inst))
- return 4;
- else
- return 2;
-}
-
-int
-vec4_instruction_scheduler::issue_time(backend_instruction *inst)
-{
- /* We always execute as two vec4s in parallel. */
- return 2;
-}
-
-void
-instruction_scheduler::schedule_instructions(bblock_t *block)
-{
- const struct gen_device_info *devinfo = bs->devinfo;
- int time = 0;
- if (!post_reg_alloc)
- reg_pressure = reg_pressure_in[block->num];
- block_idx = block->num;
-
- /* Remove non-DAG heads from the list. */
- foreach_in_list_safe(schedule_node, n, &instructions) {
- if (n->parent_count != 0)
- n->remove();
- }
-
- unsigned cand_generation = 1;
- while (!instructions.is_empty()) {
- schedule_node *chosen = choose_instruction_to_schedule();
-
- /* Schedule this instruction. */
- assert(chosen);
- chosen->remove();
- chosen->inst->exec_node::remove();
- block->instructions.push_tail(chosen->inst);
- instructions_to_schedule--;
-
- if (!post_reg_alloc) {
- reg_pressure -= get_register_pressure_benefit(chosen->inst);
- update_register_pressure(chosen->inst);
- }
-
- /* If we expected a delay for scheduling, then bump the clock to reflect
- * that. In reality, the hardware will switch to another hyperthread
- * and may not return to dispatching our thread for a while even after
- * we're unblocked. After this, we have the time when the chosen
- * instruction will start executing.
- */
- time = MAX2(time, chosen->unblocked_time);
-
- /* Update the clock for how soon an instruction could start after the
- * chosen one.
- */
- time += issue_time(chosen->inst);
-
- if (debug) {
- fprintf(stderr, "clock %4d, scheduled: ", time);
- bs->dump_instruction(chosen->inst);
- if (!post_reg_alloc)
- fprintf(stderr, "(register pressure %d)\n", reg_pressure);
- }
-
- /* Now that we've scheduled a new instruction, some of its
- * children can be promoted to the list of instructions ready to
- * be scheduled. Update the children's unblocked time for this
- * DAG edge as we do so.
- */
- for (int i = chosen->child_count - 1; i >= 0; i--) {
- schedule_node *child = chosen->children[i];
-
- child->unblocked_time = MAX2(child->unblocked_time,
- time + chosen->child_latency[i]);
-
- if (debug) {
- fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
- bs->dump_instruction(child->inst);
- }
-
- child->cand_generation = cand_generation;
- child->parent_count--;
- if (child->parent_count == 0) {
- if (debug) {
- fprintf(stderr, "\t\tnow available\n");
- }
- instructions.push_head(child);
- }
- }
- cand_generation++;
-
- /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
- * but it's more limited pre-gen6, so if we send something off to it then
- * the next math instruction isn't going to make progress until the first
- * is done.
- */
- if (devinfo->gen < 6 && chosen->inst->is_math()) {
- foreach_in_list(schedule_node, n, &instructions) {
- if (n->inst->is_math())
- n->unblocked_time = MAX2(n->unblocked_time,
- time + chosen->latency);
- }
- }
- }
-
- assert(instructions_to_schedule == 0);
-
- block->cycle_count = time;
-}
-
-static unsigned get_cycle_count(cfg_t *cfg)
-{
- unsigned count = 0, multiplier = 1;
- foreach_block(block, cfg) {
- if (block->start()->opcode == BRW_OPCODE_DO)
- multiplier *= 10; /* assume that loops execute ~10 times */
-
- count += block->cycle_count * multiplier;
-
- if (block->end()->opcode == BRW_OPCODE_WHILE)
- multiplier /= 10;
- }
-
- return count;
-}
-
-void
-instruction_scheduler::run(cfg_t *cfg)
-{
- if (debug && !post_reg_alloc) {
- fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
- post_reg_alloc);
- bs->dump_instructions();
- }
-
- if (!post_reg_alloc)
- setup_liveness(cfg);
-
- foreach_block(block, cfg) {
- if (reads_remaining) {
- memset(reads_remaining, 0,
- grf_count * sizeof(*reads_remaining));
- memset(hw_reads_remaining, 0,
- hw_reg_count * sizeof(*hw_reads_remaining));
- memset(written, 0, grf_count * sizeof(*written));
-
- foreach_inst_in_block(fs_inst, inst, block)
- count_reads_remaining(inst);
- }
-
- add_insts_from_block(block);
-
- calculate_deps();
-
- compute_delays();
- compute_exits();
-
- schedule_instructions(block);
- }
-
- if (debug && !post_reg_alloc) {
- fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
- post_reg_alloc);
- bs->dump_instructions();
- }
-
- cfg->cycle_count = get_cycle_count(cfg);
-}
-
-void
-fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
-{
- if (mode != SCHEDULE_POST)
- calculate_live_intervals();
-
- int grf_count;
- if (mode == SCHEDULE_POST)
- grf_count = grf_used;
- else
- grf_count = alloc.count;
-
- fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
- cfg->num_blocks, mode);
- sched.run(cfg);
-
- invalidate_live_intervals();
-}
-
-void
-vec4_visitor::opt_schedule_instructions()
-{
- vec4_instruction_scheduler sched(this, prog_data->total_grf);
- sched.run(cfg);
-
- invalidate_live_intervals();
-}