summaryrefslogtreecommitdiff
path: root/src/intel/compiler/brw_vec4.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/compiler/brw_vec4.cpp')
-rw-r--r--src/intel/compiler/brw_vec4.cpp3040
1 files changed, 0 insertions, 3040 deletions
diff --git a/src/intel/compiler/brw_vec4.cpp b/src/intel/compiler/brw_vec4.cpp
deleted file mode 100644
index cd868f8eec2..00000000000
--- a/src/intel/compiler/brw_vec4.cpp
+++ /dev/null
@@ -1,3040 +0,0 @@
-/*
- * Copyright © 2011 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
-
-#include "brw_vec4.h"
-#include "brw_fs.h"
-#include "brw_cfg.h"
-#include "brw_nir.h"
-#include "brw_vec4_builder.h"
-#include "brw_vec4_vs.h"
-#include "brw_dead_control_flow.h"
-#include "dev/intel_debug.h"
-#include "program/prog_parameter.h"
-#include "util/u_math.h"
-
-#define MAX_INSTRUCTION (1 << 30)
-
-using namespace brw;
-
-namespace brw {
-
-void
-src_reg::init()
-{
- memset((void*)this, 0, sizeof(*this));
- this->file = BAD_FILE;
- this->type = BRW_REGISTER_TYPE_UD;
-}
-
-src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
-{
- init();
-
- this->file = file;
- this->nr = nr;
- if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
- this->swizzle = brw_swizzle_for_size(type->vector_elements);
- else
- this->swizzle = BRW_SWIZZLE_XYZW;
- if (type)
- this->type = brw_type_for_base_type(type);
-}
-
-/** Generic unset register constructor. */
-src_reg::src_reg()
-{
- init();
-}
-
-src_reg::src_reg(struct ::brw_reg reg) :
- backend_reg(reg)
-{
- this->offset = 0;
- this->reladdr = NULL;
-}
-
-src_reg::src_reg(const dst_reg &reg) :
- backend_reg(reg)
-{
- this->reladdr = reg.reladdr;
- this->swizzle = brw_swizzle_for_mask(reg.writemask);
-}
-
-void
-dst_reg::init()
-{
- memset((void*)this, 0, sizeof(*this));
- this->file = BAD_FILE;
- this->type = BRW_REGISTER_TYPE_UD;
- this->writemask = WRITEMASK_XYZW;
-}
-
-dst_reg::dst_reg()
-{
- init();
-}
-
-dst_reg::dst_reg(enum brw_reg_file file, int nr)
-{
- init();
-
- this->file = file;
- this->nr = nr;
-}
-
-dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
- unsigned writemask)
-{
- init();
-
- this->file = file;
- this->nr = nr;
- this->type = brw_type_for_base_type(type);
- this->writemask = writemask;
-}
-
-dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
- unsigned writemask)
-{
- init();
-
- this->file = file;
- this->nr = nr;
- this->type = type;
- this->writemask = writemask;
-}
-
-dst_reg::dst_reg(struct ::brw_reg reg) :
- backend_reg(reg)
-{
- this->offset = 0;
- this->reladdr = NULL;
-}
-
-dst_reg::dst_reg(const src_reg &reg) :
- backend_reg(reg)
-{
- this->writemask = brw_mask_for_swizzle(reg.swizzle);
- this->reladdr = reg.reladdr;
-}
-
-bool
-dst_reg::equals(const dst_reg &r) const
-{
- return (this->backend_reg::equals(r) &&
- (reladdr == r.reladdr ||
- (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
-}
-
-bool
-vec4_instruction::is_send_from_grf() const
-{
- switch (opcode) {
- case SHADER_OPCODE_SHADER_TIME_ADD:
- case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
- case VEC4_OPCODE_UNTYPED_ATOMIC:
- case VEC4_OPCODE_UNTYPED_SURFACE_READ:
- case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
- case VEC4_OPCODE_URB_READ:
- case TCS_OPCODE_URB_WRITE:
- case TCS_OPCODE_RELEASE_INPUT:
- case SHADER_OPCODE_BARRIER:
- return true;
- default:
- return false;
- }
-}
-
-/**
- * Returns true if this instruction's sources and destinations cannot
- * safely be the same register.
- *
- * In most cases, a register can be written over safely by the same
- * instruction that is its last use. For a single instruction, the
- * sources are dereferenced before writing of the destination starts
- * (naturally).
- *
- * However, there are a few cases where this can be problematic:
- *
- * - Virtual opcodes that translate to multiple instructions in the
- * code generator: if src == dst and one instruction writes the
- * destination before a later instruction reads the source, then
- * src will have been clobbered.
- *
- * The register allocator uses this information to set up conflicts between
- * GRF sources and the destination.
- */
-bool
-vec4_instruction::has_source_and_destination_hazard() const
-{
- switch (opcode) {
- case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
- case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
- case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
- return true;
- default:
- /* 8-wide compressed DF operations are executed as two 4-wide operations,
- * so we have a src/dst hazard if the first half of the instruction
- * overwrites the source of the second half. Prevent this by marking
- * compressed instructions as having src/dst hazards, so the register
- * allocator assigns safe register regions for dst and srcs.
- */
- return size_written > REG_SIZE;
- }
-}
-
-unsigned
-vec4_instruction::size_read(unsigned arg) const
-{
- switch (opcode) {
- case SHADER_OPCODE_SHADER_TIME_ADD:
- case VEC4_OPCODE_UNTYPED_ATOMIC:
- case VEC4_OPCODE_UNTYPED_SURFACE_READ:
- case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
- case TCS_OPCODE_URB_WRITE:
- if (arg == 0)
- return mlen * REG_SIZE;
- break;
- case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
- if (arg == 1)
- return mlen * REG_SIZE;
- break;
- default:
- break;
- }
-
- switch (src[arg].file) {
- case BAD_FILE:
- return 0;
- case IMM:
- case UNIFORM:
- return 4 * type_sz(src[arg].type);
- default:
- /* XXX - Represent actual vertical stride. */
- return exec_size * type_sz(src[arg].type);
- }
-}
-
-bool
-vec4_instruction::can_do_source_mods(const struct intel_device_info *devinfo)
-{
- if (devinfo->ver == 6 && is_math())
- return false;
-
- if (is_send_from_grf())
- return false;
-
- if (!backend_instruction::can_do_source_mods())
- return false;
-
- return true;
-}
-
-bool
-vec4_instruction::can_do_cmod()
-{
- if (!backend_instruction::can_do_cmod())
- return false;
-
- /* The accumulator result appears to get used for the conditional modifier
- * generation. When negating a UD value, there is a 33rd bit generated for
- * the sign in the accumulator value, so now you can't check, for example,
- * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
- */
- for (unsigned i = 0; i < 3; i++) {
- if (src[i].file != BAD_FILE &&
- brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
- return false;
- }
-
- return true;
-}
-
-bool
-vec4_instruction::can_do_writemask(const struct intel_device_info *devinfo)
-{
- switch (opcode) {
- case SHADER_OPCODE_GFX4_SCRATCH_READ:
- case VEC4_OPCODE_DOUBLE_TO_F32:
- case VEC4_OPCODE_DOUBLE_TO_D32:
- case VEC4_OPCODE_DOUBLE_TO_U32:
- case VEC4_OPCODE_TO_DOUBLE:
- case VEC4_OPCODE_PICK_LOW_32BIT:
- case VEC4_OPCODE_PICK_HIGH_32BIT:
- case VEC4_OPCODE_SET_LOW_32BIT:
- case VEC4_OPCODE_SET_HIGH_32BIT:
- case VS_OPCODE_PULL_CONSTANT_LOAD:
- case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
- case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
- case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
- case TES_OPCODE_CREATE_INPUT_READ_HEADER:
- case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
- case VEC4_OPCODE_URB_READ:
- case SHADER_OPCODE_MOV_INDIRECT:
- return false;
- default:
- /* The MATH instruction on Gfx6 only executes in align1 mode, which does
- * not support writemasking.
- */
- if (devinfo->ver == 6 && is_math())
- return false;
-
- if (is_tex())
- return false;
-
- return true;
- }
-}
-
-bool
-vec4_instruction::can_change_types() const
-{
- return dst.type == src[0].type &&
- !src[0].abs && !src[0].negate && !saturate &&
- (opcode == BRW_OPCODE_MOV ||
- (opcode == BRW_OPCODE_SEL &&
- dst.type == src[1].type &&
- predicate != BRW_PREDICATE_NONE &&
- !src[1].abs && !src[1].negate));
-}
-
-/**
- * Returns how many MRFs an opcode will write over.
- *
- * Note that this is not the 0 or 1 implied writes in an actual gen
- * instruction -- the generate_* functions generate additional MOVs
- * for setup.
- */
-unsigned
-vec4_instruction::implied_mrf_writes() const
-{
- if (mlen == 0 || is_send_from_grf())
- return 0;
-
- switch (opcode) {
- case SHADER_OPCODE_RCP:
- case SHADER_OPCODE_RSQ:
- case SHADER_OPCODE_SQRT:
- case SHADER_OPCODE_EXP2:
- case SHADER_OPCODE_LOG2:
- case SHADER_OPCODE_SIN:
- case SHADER_OPCODE_COS:
- return 1;
- case SHADER_OPCODE_INT_QUOTIENT:
- case SHADER_OPCODE_INT_REMAINDER:
- case SHADER_OPCODE_POW:
- case TCS_OPCODE_THREAD_END:
- return 2;
- case VS_OPCODE_URB_WRITE:
- return 1;
- case VS_OPCODE_PULL_CONSTANT_LOAD:
- return 2;
- case SHADER_OPCODE_GFX4_SCRATCH_READ:
- return 2;
- case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
- return 3;
- case GS_OPCODE_URB_WRITE:
- case GS_OPCODE_URB_WRITE_ALLOCATE:
- case GS_OPCODE_THREAD_END:
- return 0;
- case GS_OPCODE_FF_SYNC:
- return 1;
- case TCS_OPCODE_URB_WRITE:
- return 0;
- case SHADER_OPCODE_SHADER_TIME_ADD:
- return 0;
- case SHADER_OPCODE_TEX:
- case SHADER_OPCODE_TXL:
- case SHADER_OPCODE_TXD:
- case SHADER_OPCODE_TXF:
- case SHADER_OPCODE_TXF_CMS:
- case SHADER_OPCODE_TXF_CMS_W:
- case SHADER_OPCODE_TXF_MCS:
- case SHADER_OPCODE_TXS:
- case SHADER_OPCODE_TG4:
- case SHADER_OPCODE_TG4_OFFSET:
- case SHADER_OPCODE_SAMPLEINFO:
- case SHADER_OPCODE_GET_BUFFER_SIZE:
- return header_size;
- default:
- unreachable("not reached");
- }
-}
-
-bool
-src_reg::equals(const src_reg &r) const
-{
- return (this->backend_reg::equals(r) &&
- !reladdr && !r.reladdr);
-}
-
-bool
-src_reg::negative_equals(const src_reg &r) const
-{
- return this->backend_reg::negative_equals(r) &&
- !reladdr && !r.reladdr;
-}
-
-bool
-vec4_visitor::opt_vector_float()
-{
- bool progress = false;
-
- foreach_block(block, cfg) {
- unsigned last_reg = ~0u, last_offset = ~0u;
- enum brw_reg_file last_reg_file = BAD_FILE;
-
- uint8_t imm[4] = { 0 };
- int inst_count = 0;
- vec4_instruction *imm_inst[4];
- unsigned writemask = 0;
- enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
-
- foreach_inst_in_block_safe(vec4_instruction, inst, block) {
- int vf = -1;
- enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
-
- /* Look for unconditional MOVs from an immediate with a partial
- * writemask. Skip type-conversion MOVs other than integer 0,
- * where the type doesn't matter. See if the immediate can be
- * represented as a VF.
- */
- if (inst->opcode == BRW_OPCODE_MOV &&
- inst->src[0].file == IMM &&
- inst->predicate == BRW_PREDICATE_NONE &&
- inst->dst.writemask != WRITEMASK_XYZW &&
- type_sz(inst->src[0].type) < 8 &&
- (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
-
- vf = brw_float_to_vf(inst->src[0].d);
- need_type = BRW_REGISTER_TYPE_D;
-
- if (vf == -1) {
- vf = brw_float_to_vf(inst->src[0].f);
- need_type = BRW_REGISTER_TYPE_F;
- }
- } else {
- last_reg = ~0u;
- }
-
- /* If this wasn't a MOV, or the destination register doesn't match,
- * or we have to switch destination types, then this breaks our
- * sequence. Combine anything we've accumulated so far.
- */
- if (last_reg != inst->dst.nr ||
- last_offset != inst->dst.offset ||
- last_reg_file != inst->dst.file ||
- (vf > 0 && dest_type != need_type)) {
-
- if (inst_count > 1) {
- unsigned vf;
- memcpy(&vf, imm, sizeof(vf));
- vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
- mov->dst.type = dest_type;
- mov->dst.writemask = writemask;
- inst->insert_before(block, mov);
-
- for (int i = 0; i < inst_count; i++) {
- imm_inst[i]->remove(block);
- }
-
- progress = true;
- }
-
- inst_count = 0;
- last_reg = ~0u;;
- writemask = 0;
- dest_type = BRW_REGISTER_TYPE_F;
-
- for (int i = 0; i < 4; i++) {
- imm[i] = 0;
- }
- }
-
- /* Record this instruction's value (if it was representable). */
- if (vf != -1) {
- if ((inst->dst.writemask & WRITEMASK_X) != 0)
- imm[0] = vf;
- if ((inst->dst.writemask & WRITEMASK_Y) != 0)
- imm[1] = vf;
- if ((inst->dst.writemask & WRITEMASK_Z) != 0)
- imm[2] = vf;
- if ((inst->dst.writemask & WRITEMASK_W) != 0)
- imm[3] = vf;
-
- writemask |= inst->dst.writemask;
- imm_inst[inst_count++] = inst;
-
- last_reg = inst->dst.nr;
- last_offset = inst->dst.offset;
- last_reg_file = inst->dst.file;
- if (vf > 0)
- dest_type = need_type;
- }
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
-
- return progress;
-}
-
-/* Replaces unused channels of a swizzle with channels that are used.
- *
- * For instance, this pass transforms
- *
- * mov vgrf4.yz, vgrf5.wxzy
- *
- * into
- *
- * mov vgrf4.yz, vgrf5.xxzx
- *
- * This eliminates false uses of some channels, letting dead code elimination
- * remove the instructions that wrote them.
- */
-bool
-vec4_visitor::opt_reduce_swizzle()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- if (inst->dst.file == BAD_FILE ||
- inst->dst.file == ARF ||
- inst->dst.file == FIXED_GRF ||
- inst->is_send_from_grf())
- continue;
-
- unsigned swizzle;
-
- /* Determine which channels of the sources are read. */
- switch (inst->opcode) {
- case VEC4_OPCODE_PACK_BYTES:
- case BRW_OPCODE_DP4:
- case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
- * but all four of src1.
- */
- swizzle = brw_swizzle_for_size(4);
- break;
- case BRW_OPCODE_DP3:
- swizzle = brw_swizzle_for_size(3);
- break;
- case BRW_OPCODE_DP2:
- swizzle = brw_swizzle_for_size(2);
- break;
-
- case VEC4_OPCODE_TO_DOUBLE:
- case VEC4_OPCODE_DOUBLE_TO_F32:
- case VEC4_OPCODE_DOUBLE_TO_D32:
- case VEC4_OPCODE_DOUBLE_TO_U32:
- case VEC4_OPCODE_PICK_LOW_32BIT:
- case VEC4_OPCODE_PICK_HIGH_32BIT:
- case VEC4_OPCODE_SET_LOW_32BIT:
- case VEC4_OPCODE_SET_HIGH_32BIT:
- swizzle = brw_swizzle_for_size(4);
- break;
-
- default:
- swizzle = brw_swizzle_for_mask(inst->dst.writemask);
- break;
- }
-
- /* Update sources' swizzles. */
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file != VGRF &&
- inst->src[i].file != ATTR &&
- inst->src[i].file != UNIFORM)
- continue;
-
- const unsigned new_swizzle =
- brw_compose_swizzle(swizzle, inst->src[i].swizzle);
- if (inst->src[i].swizzle != new_swizzle) {
- inst->src[i].swizzle = new_swizzle;
- progress = true;
- }
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
-
- return progress;
-}
-
-void
-vec4_visitor::split_uniform_registers()
-{
- /* Prior to this, uniforms have been in an array sized according to
- * the number of vector uniforms present, sparsely filled (so an
- * aggregate results in reg indices being skipped over). Now we're
- * going to cut those aggregates up so each .nr index is one
- * vector. The goal is to make elimination of unused uniform
- * components easier later.
- */
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- for (int i = 0 ; i < 3; i++) {
- if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
- continue;
-
- assert(!inst->src[i].reladdr);
-
- inst->src[i].nr += inst->src[i].offset / 16;
- inst->src[i].offset %= 16;
- }
- }
-}
-
-/* This function returns the register number where we placed the uniform */
-static int
-set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
- const int src, const int size, const int channel_size,
- int *new_loc, int *new_chan,
- int *new_chans_used)
-{
- int dst;
- /* Find the lowest place we can slot this uniform in. */
- for (dst = 0; dst < nr_uniforms; dst++) {
- if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
- break;
- }
-
- assert(dst < nr_uniforms);
-
- new_loc[src] = dst;
- new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
- new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
-
- *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
- return dst;
-}
-
-void
-vec4_visitor::pack_uniform_registers()
-{
- if (!compiler->compact_params)
- return;
-
- uint8_t chans_used[this->uniforms];
- int new_loc[this->uniforms];
- int new_chan[this->uniforms];
- bool is_aligned_to_dvec4[this->uniforms];
- int new_chans_used[this->uniforms];
- int channel_sizes[this->uniforms];
-
- memset(chans_used, 0, sizeof(chans_used));
- memset(new_loc, 0, sizeof(new_loc));
- memset(new_chan, 0, sizeof(new_chan));
- memset(new_chans_used, 0, sizeof(new_chans_used));
- memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
- memset(channel_sizes, 0, sizeof(channel_sizes));
-
- /* Find which uniform vectors are actually used by the program. We
- * expect unused vector elements when we've moved array access out
- * to pull constants, and from some GLSL code generators like wine.
- */
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- unsigned readmask;
- switch (inst->opcode) {
- case VEC4_OPCODE_PACK_BYTES:
- case BRW_OPCODE_DP4:
- case BRW_OPCODE_DPH:
- readmask = 0xf;
- break;
- case BRW_OPCODE_DP3:
- readmask = 0x7;
- break;
- case BRW_OPCODE_DP2:
- readmask = 0x3;
- break;
- default:
- readmask = inst->dst.writemask;
- break;
- }
-
- for (int i = 0 ; i < 3; i++) {
- if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
- continue;
-
- assert(type_sz(inst->src[i].type) % 4 == 0);
- int channel_size = type_sz(inst->src[i].type) / 4;
-
- int reg = inst->src[i].nr;
- for (int c = 0; c < 4; c++) {
- if (!(readmask & (1 << c)))
- continue;
-
- unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
- unsigned used = MAX2(chans_used[reg], channel * channel_size);
- if (used <= 4) {
- chans_used[reg] = used;
- channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
- } else {
- is_aligned_to_dvec4[reg] = true;
- is_aligned_to_dvec4[reg + 1] = true;
- chans_used[reg + 1] = used - 4;
- channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
- }
- }
- }
-
- if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
- inst->src[0].file == UNIFORM) {
- assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
- assert(inst->src[0].subnr == 0);
-
- unsigned bytes_read = inst->src[2].ud;
- assert(bytes_read % 4 == 0);
- unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
-
- /* We just mark every register touched by a MOV_INDIRECT as being
- * fully used. This ensures that it doesn't broken up piecewise by
- * the next part of our packing algorithm.
- */
- int reg = inst->src[0].nr;
- int channel_size = type_sz(inst->src[0].type) / 4;
- for (unsigned i = 0; i < vec4s_read; i++) {
- chans_used[reg + i] = 4;
- channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
- }
- }
- }
-
- int new_uniform_count = 0;
-
- /* As the uniforms are going to be reordered, take the data from a temporary
- * copy of the original param[].
- */
- uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
- memcpy(param, stage_prog_data->param,
- sizeof(uint32_t) * stage_prog_data->nr_params);
-
- /* Now, figure out a packing of the live uniform vectors into our
- * push constants. Start with dvec{3,4} because they are aligned to
- * dvec4 size (2 vec4).
- */
- for (int src = 0; src < uniforms; src++) {
- int size = chans_used[src];
-
- if (size == 0 || !is_aligned_to_dvec4[src])
- continue;
-
- /* dvec3 are aligned to dvec4 size, apply the alignment of the size
- * to 4 to avoid moving last component of a dvec3 to the available
- * location at the end of a previous dvec3. These available locations
- * could be filled by smaller variables in next loop.
- */
- size = ALIGN(size, 4);
- int dst = set_push_constant_loc(uniforms, &new_uniform_count,
- src, size, channel_sizes[src],
- new_loc, new_chan,
- new_chans_used);
- /* Move the references to the data */
- for (int j = 0; j < size; j++) {
- stage_prog_data->param[dst * 4 + new_chan[src] + j] =
- param[src * 4 + j];
- }
- }
-
- /* Continue with the rest of data, which is aligned to vec4. */
- for (int src = 0; src < uniforms; src++) {
- int size = chans_used[src];
-
- if (size == 0 || is_aligned_to_dvec4[src])
- continue;
-
- int dst = set_push_constant_loc(uniforms, &new_uniform_count,
- src, size, channel_sizes[src],
- new_loc, new_chan,
- new_chans_used);
- /* Move the references to the data */
- for (int j = 0; j < size; j++) {
- stage_prog_data->param[dst * 4 + new_chan[src] + j] =
- param[src * 4 + j];
- }
- }
-
- ralloc_free(param);
- this->uniforms = new_uniform_count;
- stage_prog_data->nr_params = new_uniform_count * 4;
-
- /* Now, update the instructions for our repacked uniforms. */
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- for (int i = 0 ; i < 3; i++) {
- int src = inst->src[i].nr;
-
- if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
- continue;
-
- int chan = new_chan[src] / channel_sizes[src];
- inst->src[i].nr = new_loc[src];
- inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
- }
- }
-}
-
-/**
- * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
- *
- * While GLSL IR also performs this optimization, we end up with it in
- * our instruction stream for a couple of reasons. One is that we
- * sometimes generate silly instructions, for example in array access
- * where we'll generate "ADD offset, index, base" even if base is 0.
- * The other is that GLSL IR's constant propagation doesn't track the
- * components of aggregates, so some VS patterns (initialize matrix to
- * 0, accumulate in vertex blending factors) end up breaking down to
- * instructions involving 0.
- */
-bool
-vec4_visitor::opt_algebraic()
-{
- bool progress = false;
-
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- switch (inst->opcode) {
- case BRW_OPCODE_MOV:
- if (inst->src[0].file != IMM)
- break;
-
- if (inst->saturate) {
- /* Full mixed-type saturates don't happen. However, we can end up
- * with things like:
- *
- * mov.sat(8) g21<1>DF -1F
- *
- * Other mixed-size-but-same-base-type cases may also be possible.
- */
- if (inst->dst.type != inst->src[0].type &&
- inst->dst.type != BRW_REGISTER_TYPE_DF &&
- inst->src[0].type != BRW_REGISTER_TYPE_F)
- assert(!"unimplemented: saturate mixed types");
-
- if (brw_saturate_immediate(inst->src[0].type,
- &inst->src[0].as_brw_reg())) {
- inst->saturate = false;
- progress = true;
- }
- }
- break;
-
- case BRW_OPCODE_OR:
- if (inst->src[1].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = src_reg();
- progress = true;
- }
- break;
-
- case VEC4_OPCODE_UNPACK_UNIFORM:
- if (inst->src[0].file != UNIFORM) {
- inst->opcode = BRW_OPCODE_MOV;
- progress = true;
- }
- break;
-
- case BRW_OPCODE_ADD:
- if (inst->src[1].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = src_reg();
- progress = true;
- }
- break;
-
- case BRW_OPCODE_MUL:
- if (inst->src[1].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- switch (inst->src[0].type) {
- case BRW_REGISTER_TYPE_F:
- inst->src[0] = brw_imm_f(0.0f);
- break;
- case BRW_REGISTER_TYPE_D:
- inst->src[0] = brw_imm_d(0);
- break;
- case BRW_REGISTER_TYPE_UD:
- inst->src[0] = brw_imm_ud(0u);
- break;
- default:
- unreachable("not reached");
- }
- inst->src[1] = src_reg();
- progress = true;
- } else if (inst->src[1].is_one()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = src_reg();
- progress = true;
- } else if (inst->src[1].is_negative_one()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0].negate = !inst->src[0].negate;
- inst->src[1] = src_reg();
- progress = true;
- }
- break;
- case SHADER_OPCODE_BROADCAST:
- if (is_uniform(inst->src[0]) ||
- inst->src[1].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = src_reg();
- inst->force_writemask_all = true;
- progress = true;
- }
- break;
-
- default:
- break;
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
- DEPENDENCY_INSTRUCTION_DETAIL);
-
- return progress;
-}
-
-/**
- * Only a limited number of hardware registers may be used for push
- * constants, so this turns access to the overflowed constants into
- * pull constants.
- */
-void
-vec4_visitor::move_push_constants_to_pull_constants()
-{
- int pull_constant_loc[this->uniforms];
-
- const int max_uniform_components = push_length * 8;
-
- if (this->uniforms * 4 <= max_uniform_components)
- return;
-
- assert(compiler->supports_pull_constants);
- assert(compiler->compact_params);
-
- /* If we got here, we also can't have any push ranges */
- for (unsigned i = 0; i < 4; i++)
- assert(prog_data->base.ubo_ranges[i].length == 0);
-
- /* Make some sort of choice as to which uniforms get sent to pull
- * constants. We could potentially do something clever here like
- * look for the most infrequently used uniform vec4s, but leave
- * that for later.
- */
- for (int i = 0; i < this->uniforms * 4; i += 4) {
- pull_constant_loc[i / 4] = -1;
-
- if (i >= max_uniform_components) {
- uint32_t *values = &stage_prog_data->param[i];
-
- /* Try to find an existing copy of this uniform in the pull
- * constants if it was part of an array access already.
- */
- for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
- int matches;
-
- for (matches = 0; matches < 4; matches++) {
- if (stage_prog_data->pull_param[j + matches] != values[matches])
- break;
- }
-
- if (matches == 4) {
- pull_constant_loc[i / 4] = j / 4;
- break;
- }
- }
-
- if (pull_constant_loc[i / 4] == -1) {
- assert(stage_prog_data->nr_pull_params % 4 == 0);
- pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
-
- for (int j = 0; j < 4; j++) {
- stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
- values[j];
- }
- }
- }
- }
-
- /* Now actually rewrite usage of the things we've moved to pull
- * constants.
- */
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- for (int i = 0 ; i < 3; i++) {
- if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START ||
- pull_constant_loc[inst->src[i].nr] == -1)
- continue;
-
- int uniform = inst->src[i].nr;
-
- const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
- glsl_type::dvec4_type : glsl_type::vec4_type;
- dst_reg temp = dst_reg(this, temp_type);
-
- emit_pull_constant_load(block, inst, temp, inst->src[i],
- pull_constant_loc[uniform], src_reg());
-
- inst->src[i].file = temp.file;
- inst->src[i].nr = temp.nr;
- inst->src[i].offset %= 16;
- inst->src[i].reladdr = NULL;
- }
- }
-
- /* Repack push constants to remove the now-unused ones. */
- pack_uniform_registers();
-}
-
-/* Conditions for which we want to avoid setting the dependency control bits */
-bool
-vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
-{
-#define IS_DWORD(reg) \
- (reg.type == BRW_REGISTER_TYPE_UD || \
- reg.type == BRW_REGISTER_TYPE_D)
-
-#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
-
- if (devinfo->ver >= 7) {
- if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
- IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
- return true;
- }
-
-#undef IS_64BIT
-#undef IS_DWORD
-
- /*
- * mlen:
- * In the presence of send messages, totally interrupt dependency
- * control. They're long enough that the chance of dependency
- * control around them just doesn't matter.
- *
- * predicate:
- * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
- * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
- * completes the scoreboard clear must have a non-zero execution mask. This
- * means, if any kind of predication can change the execution mask or channel
- * enable of the last instruction, the optimization must be avoided. This is
- * to avoid instructions being shot down the pipeline when no writes are
- * required.
- *
- * math:
- * Dependency control does not work well over math instructions.
- * NB: Discovered empirically
- */
- return (inst->mlen || inst->predicate || inst->is_math());
-}
-
-/**
- * Sets the dependency control fields on instructions after register
- * allocation and before the generator is run.
- *
- * When you have a sequence of instructions like:
- *
- * DP4 temp.x vertex uniform[0]
- * DP4 temp.y vertex uniform[0]
- * DP4 temp.z vertex uniform[0]
- * DP4 temp.w vertex uniform[0]
- *
- * The hardware doesn't know that it can actually run the later instructions
- * while the previous ones are in flight, producing stalls. However, we have
- * manual fields we can set in the instructions that let it do so.
- */
-void
-vec4_visitor::opt_set_dependency_control()
-{
- vec4_instruction *last_grf_write[BRW_MAX_GRF];
- uint8_t grf_channels_written[BRW_MAX_GRF];
- vec4_instruction *last_mrf_write[BRW_MAX_GRF];
- uint8_t mrf_channels_written[BRW_MAX_GRF];
-
- assert(prog_data->total_grf ||
- !"Must be called after register allocation");
-
- foreach_block (block, cfg) {
- memset(last_grf_write, 0, sizeof(last_grf_write));
- memset(last_mrf_write, 0, sizeof(last_mrf_write));
-
- foreach_inst_in_block (vec4_instruction, inst, block) {
- /* If we read from a register that we were doing dependency control
- * on, don't do dependency control across the read.
- */
- for (int i = 0; i < 3; i++) {
- int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
- if (inst->src[i].file == VGRF) {
- last_grf_write[reg] = NULL;
- } else if (inst->src[i].file == FIXED_GRF) {
- memset(last_grf_write, 0, sizeof(last_grf_write));
- break;
- }
- assert(inst->src[i].file != MRF);
- }
-
- if (is_dep_ctrl_unsafe(inst)) {
- memset(last_grf_write, 0, sizeof(last_grf_write));
- memset(last_mrf_write, 0, sizeof(last_mrf_write));
- continue;
- }
-
- /* Now, see if we can do dependency control for this instruction
- * against a previous one writing to its destination.
- */
- int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
- if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
- if (last_grf_write[reg] &&
- last_grf_write[reg]->dst.offset == inst->dst.offset &&
- !(inst->dst.writemask & grf_channels_written[reg])) {
- last_grf_write[reg]->no_dd_clear = true;
- inst->no_dd_check = true;
- } else {
- grf_channels_written[reg] = 0;
- }
-
- last_grf_write[reg] = inst;
- grf_channels_written[reg] |= inst->dst.writemask;
- } else if (inst->dst.file == MRF) {
- if (last_mrf_write[reg] &&
- last_mrf_write[reg]->dst.offset == inst->dst.offset &&
- !(inst->dst.writemask & mrf_channels_written[reg])) {
- last_mrf_write[reg]->no_dd_clear = true;
- inst->no_dd_check = true;
- } else {
- mrf_channels_written[reg] = 0;
- }
-
- last_mrf_write[reg] = inst;
- mrf_channels_written[reg] |= inst->dst.writemask;
- }
- }
- }
-}
-
-bool
-vec4_instruction::can_reswizzle(const struct intel_device_info *devinfo,
- int dst_writemask,
- int swizzle,
- int swizzle_mask)
-{
- /* Gfx6 MATH instructions can not execute in align16 mode, so swizzles
- * are not allowed.
- */
- if (devinfo->ver == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
- return false;
-
- /* If we write to the flag register changing the swizzle would change
- * what channels are written to the flag register.
- */
- if (writes_flag(devinfo))
- return false;
-
- /* We can't swizzle implicit accumulator access. We'd have to
- * reswizzle the producer of the accumulator value in addition
- * to the consumer (i.e. both MUL and MACH). Just skip this.
- */
- if (reads_accumulator_implicitly())
- return false;
-
- if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
- return false;
-
- /* If this instruction sets anything not referenced by swizzle, then we'd
- * totally break it when we reswizzle.
- */
- if (dst.writemask & ~swizzle_mask)
- return false;
-
- if (mlen > 0)
- return false;
-
- for (int i = 0; i < 3; i++) {
- if (src[i].is_accumulator())
- return false;
- }
-
- return true;
-}
-
-/**
- * For any channels in the swizzle's source that were populated by this
- * instruction, rewrite the instruction to put the appropriate result directly
- * in those channels.
- *
- * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
- */
-void
-vec4_instruction::reswizzle(int dst_writemask, int swizzle)
-{
- /* Destination write mask doesn't correspond to source swizzle for the dot
- * product and pack_bytes instructions.
- */
- if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
- opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
- opcode != VEC4_OPCODE_PACK_BYTES) {
- for (int i = 0; i < 3; i++) {
- if (src[i].file == BAD_FILE)
- continue;
-
- if (src[i].file == IMM) {
- assert(src[i].type != BRW_REGISTER_TYPE_V &&
- src[i].type != BRW_REGISTER_TYPE_UV);
-
- /* Vector immediate types need to be reswizzled. */
- if (src[i].type == BRW_REGISTER_TYPE_VF) {
- const unsigned imm[] = {
- (src[i].ud >> 0) & 0x0ff,
- (src[i].ud >> 8) & 0x0ff,
- (src[i].ud >> 16) & 0x0ff,
- (src[i].ud >> 24) & 0x0ff,
- };
-
- src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
- imm[BRW_GET_SWZ(swizzle, 1)],
- imm[BRW_GET_SWZ(swizzle, 2)],
- imm[BRW_GET_SWZ(swizzle, 3)]);
- }
-
- continue;
- }
-
- src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
- }
- }
-
- /* Apply the specified swizzle and writemask to the original mask of
- * written components.
- */
- dst.writemask = dst_writemask &
- brw_apply_swizzle_to_mask(swizzle, dst.writemask);
-}
-
-/*
- * Tries to reduce extra MOV instructions by taking temporary GRFs that get
- * just written and then MOVed into another reg and making the original write
- * of the GRF write directly to the final destination instead.
- */
-bool
-vec4_visitor::opt_register_coalesce()
-{
- bool progress = false;
- int next_ip = 0;
- const vec4_live_variables &live = live_analysis.require();
-
- foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
- int ip = next_ip;
- next_ip++;
-
- if (inst->opcode != BRW_OPCODE_MOV ||
- (inst->dst.file != VGRF && inst->dst.file != MRF) ||
- inst->predicate ||
- inst->src[0].file != VGRF ||
- inst->dst.type != inst->src[0].type ||
- inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
- continue;
-
- /* Remove no-op MOVs */
- if (inst->dst.file == inst->src[0].file &&
- inst->dst.nr == inst->src[0].nr &&
- inst->dst.offset == inst->src[0].offset) {
- bool is_nop_mov = true;
-
- for (unsigned c = 0; c < 4; c++) {
- if ((inst->dst.writemask & (1 << c)) == 0)
- continue;
-
- if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
- is_nop_mov = false;
- break;
- }
- }
-
- if (is_nop_mov) {
- inst->remove(block);
- progress = true;
- continue;
- }
- }
-
- bool to_mrf = (inst->dst.file == MRF);
-
- /* Can't coalesce this GRF if someone else was going to
- * read it later.
- */
- if (live.var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
- continue;
-
- /* We need to check interference with the final destination between this
- * instruction and the earliest instruction involved in writing the GRF
- * we're eliminating. To do that, keep track of which of our source
- * channels we've seen initialized.
- */
- const unsigned chans_needed =
- brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
- inst->dst.writemask);
- unsigned chans_remaining = chans_needed;
-
- /* Now walk up the instruction stream trying to see if we can rewrite
- * everything writing to the temporary to write into the destination
- * instead.
- */
- vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
- foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
- inst) {
- _scan_inst = scan_inst;
-
- if (regions_overlap(inst->src[0], inst->size_read(0),
- scan_inst->dst, scan_inst->size_written)) {
- /* Found something writing to the reg we want to coalesce away. */
- if (to_mrf) {
- /* SEND instructions can't have MRF as a destination. */
- if (scan_inst->mlen)
- break;
-
- if (devinfo->ver == 6) {
- /* gfx6 math instructions must have the destination be
- * VGRF, so no compute-to-MRF for them.
- */
- if (scan_inst->is_math()) {
- break;
- }
- }
- }
-
- /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
- * instructions, and this optimization pass is not capable of
- * handling that. Bail on these instructions and hope that some
- * later optimization pass can do the right thing after they are
- * expanded.
- */
- if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
- break;
-
- /* This doesn't handle saturation on the instruction we
- * want to coalesce away if the register types do not match.
- * But if scan_inst is a non type-converting 'mov', we can fix
- * the types later.
- */
- if (inst->saturate &&
- inst->dst.type != scan_inst->dst.type &&
- !(scan_inst->opcode == BRW_OPCODE_MOV &&
- scan_inst->dst.type == scan_inst->src[0].type))
- break;
-
- /* Only allow coalescing between registers of the same type size.
- * Otherwise we would need to make the pass aware of the fact that
- * channel sizes are different for single and double precision.
- */
- if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
- break;
-
- /* Check that scan_inst writes the same amount of data as the
- * instruction, otherwise coalescing would lead to writing a
- * different (larger or smaller) region of the destination
- */
- if (scan_inst->size_written != inst->size_written)
- break;
-
- /* If we can't handle the swizzle, bail. */
- if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
- inst->src[0].swizzle,
- chans_needed)) {
- break;
- }
-
- /* This only handles coalescing writes of 8 channels (1 register
- * for single-precision and 2 registers for double-precision)
- * starting at the source offset of the copy instruction.
- */
- if (DIV_ROUND_UP(scan_inst->size_written,
- type_sz(scan_inst->dst.type)) > 8 ||
- scan_inst->dst.offset != inst->src[0].offset)
- break;
-
- /* Mark which channels we found unconditional writes for. */
- if (!scan_inst->predicate)
- chans_remaining &= ~scan_inst->dst.writemask;
-
- if (chans_remaining == 0)
- break;
- }
-
- /* You can't read from an MRF, so if someone else reads our MRF's
- * source GRF that we wanted to rewrite, that stops us. If it's a
- * GRF we're trying to coalesce to, we don't actually handle
- * rewriting sources so bail in that case as well.
- */
- bool interfered = false;
- for (int i = 0; i < 3; i++) {
- if (regions_overlap(inst->src[0], inst->size_read(0),
- scan_inst->src[i], scan_inst->size_read(i)))
- interfered = true;
- }
- if (interfered)
- break;
-
- /* If somebody else writes the same channels of our destination here,
- * we can't coalesce before that.
- */
- if (regions_overlap(inst->dst, inst->size_written,
- scan_inst->dst, scan_inst->size_written) &&
- (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
- break;
- }
-
- /* Check for reads of the register we're trying to coalesce into. We
- * can't go rewriting instructions above that to put some other value
- * in the register instead.
- */
- if (to_mrf && scan_inst->mlen > 0) {
- unsigned start = scan_inst->base_mrf;
- unsigned end = scan_inst->base_mrf + scan_inst->mlen;
-
- if (inst->dst.nr >= start && inst->dst.nr < end) {
- break;
- }
- } else {
- for (int i = 0; i < 3; i++) {
- if (regions_overlap(inst->dst, inst->size_written,
- scan_inst->src[i], scan_inst->size_read(i)))
- interfered = true;
- }
- if (interfered)
- break;
- }
- }
-
- if (chans_remaining == 0) {
- /* If we've made it here, we have an MOV we want to coalesce out, and
- * a scan_inst pointing to the earliest instruction involved in
- * computing the value. Now go rewrite the instruction stream
- * between the two.
- */
- vec4_instruction *scan_inst = _scan_inst;
- while (scan_inst != inst) {
- if (scan_inst->dst.file == VGRF &&
- scan_inst->dst.nr == inst->src[0].nr &&
- scan_inst->dst.offset == inst->src[0].offset) {
- scan_inst->reswizzle(inst->dst.writemask,
- inst->src[0].swizzle);
- scan_inst->dst.file = inst->dst.file;
- scan_inst->dst.nr = inst->dst.nr;
- scan_inst->dst.offset = inst->dst.offset;
- if (inst->saturate &&
- inst->dst.type != scan_inst->dst.type) {
- /* If we have reached this point, scan_inst is a non
- * type-converting 'mov' and we can modify its register types
- * to match the ones in inst. Otherwise, we could have an
- * incorrect saturation result.
- */
- scan_inst->dst.type = inst->dst.type;
- scan_inst->src[0].type = inst->src[0].type;
- }
- scan_inst->saturate |= inst->saturate;
- }
- scan_inst = (vec4_instruction *)scan_inst->next;
- }
- inst->remove(block);
- progress = true;
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
-
- return progress;
-}
-
-/**
- * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
- * flow. We could probably do better here with some form of divergence
- * analysis.
- */
-bool
-vec4_visitor::eliminate_find_live_channel()
-{
- bool progress = false;
- unsigned depth = 0;
-
- if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
- /* The optimization below assumes that channel zero is live on thread
- * dispatch, which may not be the case if the fixed function dispatches
- * threads sparsely.
- */
- return false;
- }
-
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- switch (inst->opcode) {
- case BRW_OPCODE_IF:
- case BRW_OPCODE_DO:
- depth++;
- break;
-
- case BRW_OPCODE_ENDIF:
- case BRW_OPCODE_WHILE:
- depth--;
- break;
-
- case SHADER_OPCODE_FIND_LIVE_CHANNEL:
- if (depth == 0) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0] = brw_imm_d(0);
- inst->force_writemask_all = true;
- progress = true;
- }
- break;
-
- default:
- break;
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
-
- return progress;
-}
-
-/**
- * Splits virtual GRFs requesting more than one contiguous physical register.
- *
- * We initially create large virtual GRFs for temporary structures, arrays,
- * and matrices, so that the visitor functions can add offsets to work their
- * way down to the actual member being accessed. But when it comes to
- * optimization, we'd like to treat each register as individual storage if
- * possible.
- *
- * So far, the only thing that might prevent splitting is a send message from
- * a GRF on IVB.
- */
-void
-vec4_visitor::split_virtual_grfs()
-{
- int num_vars = this->alloc.count;
- int new_virtual_grf[num_vars];
- bool split_grf[num_vars];
-
- memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
-
- /* Try to split anything > 0 sized. */
- for (int i = 0; i < num_vars; i++) {
- split_grf[i] = this->alloc.sizes[i] != 1;
- }
-
- /* Check that the instructions are compatible with the registers we're trying
- * to split.
- */
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- if (inst->dst.file == VGRF && regs_written(inst) > 1)
- split_grf[inst->dst.nr] = false;
-
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
- split_grf[inst->src[i].nr] = false;
- }
- }
-
- /* Allocate new space for split regs. Note that the virtual
- * numbers will be contiguous.
- */
- for (int i = 0; i < num_vars; i++) {
- if (!split_grf[i])
- continue;
-
- new_virtual_grf[i] = alloc.allocate(1);
- for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
- unsigned reg = alloc.allocate(1);
- assert(reg == new_virtual_grf[i] + j - 1);
- (void) reg;
- }
- this->alloc.sizes[i] = 1;
- }
-
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
- inst->dst.offset / REG_SIZE != 0) {
- inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
- inst->dst.offset / REG_SIZE - 1);
- inst->dst.offset %= REG_SIZE;
- }
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
- inst->src[i].offset / REG_SIZE != 0) {
- inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
- inst->src[i].offset / REG_SIZE - 1);
- inst->src[i].offset %= REG_SIZE;
- }
- }
- }
- invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
-}
-
-void
-vec4_visitor::dump_instruction(const backend_instruction *be_inst) const
-{
- dump_instruction(be_inst, stderr);
-}
-
-void
-vec4_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
-{
- const vec4_instruction *inst = (const vec4_instruction *)be_inst;
-
- if (inst->predicate) {
- fprintf(file, "(%cf%d.%d%s) ",
- inst->predicate_inverse ? '-' : '+',
- inst->flag_subreg / 2,
- inst->flag_subreg % 2,
- pred_ctrl_align16[inst->predicate]);
- }
-
- fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
- inst->exec_size);
- if (inst->saturate)
- fprintf(file, ".sat");
- if (inst->conditional_mod) {
- fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
- if (!inst->predicate &&
- (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
- inst->opcode != BRW_OPCODE_CSEL &&
- inst->opcode != BRW_OPCODE_IF &&
- inst->opcode != BRW_OPCODE_WHILE))) {
- fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
- }
- }
- fprintf(file, " ");
-
- switch (inst->dst.file) {
- case VGRF:
- fprintf(file, "vgrf%d", inst->dst.nr);
- break;
- case FIXED_GRF:
- fprintf(file, "g%d", inst->dst.nr);
- break;
- case MRF:
- fprintf(file, "m%d", inst->dst.nr);
- break;
- case ARF:
- switch (inst->dst.nr) {
- case BRW_ARF_NULL:
- fprintf(file, "null");
- break;
- case BRW_ARF_ADDRESS:
- fprintf(file, "a0.%d", inst->dst.subnr);
- break;
- case BRW_ARF_ACCUMULATOR:
- fprintf(file, "acc%d", inst->dst.subnr);
- break;
- case BRW_ARF_FLAG:
- fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
- break;
- default:
- fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
- break;
- }
- break;
- case BAD_FILE:
- fprintf(file, "(null)");
- break;
- case IMM:
- case ATTR:
- case UNIFORM:
- unreachable("not reached");
- }
- if (inst->dst.offset ||
- (inst->dst.file == VGRF &&
- alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
- const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
- fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
- inst->dst.offset % reg_size);
- }
- if (inst->dst.writemask != WRITEMASK_XYZW) {
- fprintf(file, ".");
- if (inst->dst.writemask & 1)
- fprintf(file, "x");
- if (inst->dst.writemask & 2)
- fprintf(file, "y");
- if (inst->dst.writemask & 4)
- fprintf(file, "z");
- if (inst->dst.writemask & 8)
- fprintf(file, "w");
- }
- fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
-
- if (inst->src[0].file != BAD_FILE)
- fprintf(file, ", ");
-
- for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
- if (inst->src[i].negate)
- fprintf(file, "-");
- if (inst->src[i].abs)
- fprintf(file, "|");
- switch (inst->src[i].file) {
- case VGRF:
- fprintf(file, "vgrf%d", inst->src[i].nr);
- break;
- case FIXED_GRF:
- fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
- break;
- case ATTR:
- fprintf(file, "attr%d", inst->src[i].nr);
- break;
- case UNIFORM:
- fprintf(file, "u%d", inst->src[i].nr);
- break;
- case IMM:
- switch (inst->src[i].type) {
- case BRW_REGISTER_TYPE_F:
- fprintf(file, "%fF", inst->src[i].f);
- break;
- case BRW_REGISTER_TYPE_DF:
- fprintf(file, "%fDF", inst->src[i].df);
- break;
- case BRW_REGISTER_TYPE_D:
- fprintf(file, "%dD", inst->src[i].d);
- break;
- case BRW_REGISTER_TYPE_UD:
- fprintf(file, "%uU", inst->src[i].ud);
- break;
- case BRW_REGISTER_TYPE_VF:
- fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
- brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
- brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
- brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
- brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
- break;
- default:
- fprintf(file, "???");
- break;
- }
- break;
- case ARF:
- switch (inst->src[i].nr) {
- case BRW_ARF_NULL:
- fprintf(file, "null");
- break;
- case BRW_ARF_ADDRESS:
- fprintf(file, "a0.%d", inst->src[i].subnr);
- break;
- case BRW_ARF_ACCUMULATOR:
- fprintf(file, "acc%d", inst->src[i].subnr);
- break;
- case BRW_ARF_FLAG:
- fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
- break;
- default:
- fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
- break;
- }
- break;
- case BAD_FILE:
- fprintf(file, "(null)");
- break;
- case MRF:
- unreachable("not reached");
- }
-
- if (inst->src[i].offset ||
- (inst->src[i].file == VGRF &&
- alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
- const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
- fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
- inst->src[i].offset % reg_size);
- }
-
- if (inst->src[i].file != IMM) {
- static const char *chans[4] = {"x", "y", "z", "w"};
- fprintf(file, ".");
- for (int c = 0; c < 4; c++) {
- fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
- }
- }
-
- if (inst->src[i].abs)
- fprintf(file, "|");
-
- if (inst->src[i].file != IMM) {
- fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
- }
-
- if (i < 2 && inst->src[i + 1].file != BAD_FILE)
- fprintf(file, ", ");
- }
-
- if (inst->force_writemask_all)
- fprintf(file, " NoMask");
-
- if (inst->exec_size != 8)
- fprintf(file, " group%d", inst->group);
-
- fprintf(file, "\n");
-}
-
-
-int
-vec4_vs_visitor::setup_attributes(int payload_reg)
-{
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file == ATTR) {
- assert(inst->src[i].offset % REG_SIZE == 0);
- int grf = payload_reg + inst->src[i].nr +
- inst->src[i].offset / REG_SIZE;
-
- struct brw_reg reg = brw_vec8_grf(grf, 0);
- reg.swizzle = inst->src[i].swizzle;
- reg.type = inst->src[i].type;
- reg.abs = inst->src[i].abs;
- reg.negate = inst->src[i].negate;
- inst->src[i] = reg;
- }
- }
- }
-
- return payload_reg + vs_prog_data->nr_attribute_slots;
-}
-
-void
-vec4_visitor::setup_push_ranges()
-{
- /* Only allow 32 registers (256 uniform components) as push constants,
- * which is the limit on gfx6.
- *
- * If changing this value, note the limitation about total_regs in
- * brw_curbe.c.
- */
- const unsigned max_push_length = 32;
-
- push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
- push_length = MIN2(push_length, max_push_length);
-
- /* Shrink UBO push ranges so it all fits in max_push_length */
- for (unsigned i = 0; i < 4; i++) {
- struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
-
- if (push_length + range->length > max_push_length)
- range->length = max_push_length - push_length;
-
- push_length += range->length;
- }
- assert(push_length <= max_push_length);
-}
-
-int
-vec4_visitor::setup_uniforms(int reg)
-{
- /* It's possible that uniform compaction will shrink further than expected
- * so we re-compute the layout and set up our UBO push starts.
- */
- const unsigned old_push_length = push_length;
- push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
- for (unsigned i = 0; i < 4; i++) {
- ubo_push_start[i] = push_length;
- push_length += stage_prog_data->ubo_ranges[i].length;
- }
- assert(push_length <= old_push_length);
- if (push_length < old_push_length)
- assert(compiler->compact_params);
-
- /* The pre-gfx6 VS requires that some push constants get loaded no
- * matter what, or the GPU would hang.
- */
- if (devinfo->ver < 6 && push_length == 0) {
- brw_stage_prog_data_add_params(stage_prog_data, 4);
- for (unsigned int i = 0; i < 4; i++) {
- unsigned int slot = this->uniforms * 4 + i;
- stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
- }
- push_length = 1;
- }
-
- prog_data->base.dispatch_grf_start_reg = reg;
- prog_data->base.curb_read_length = push_length;
-
- return reg + push_length;
-}
-
-void
-vec4_vs_visitor::setup_payload(void)
-{
- int reg = 0;
-
- /* The payload always contains important data in g0, which contains
- * the URB handles that are passed on to the URB write at the end
- * of the thread. So, we always start push constants at g1.
- */
- reg++;
-
- reg = setup_uniforms(reg);
-
- reg = setup_attributes(reg);
-
- this->first_non_payload_grf = reg;
-}
-
-bool
-vec4_visitor::lower_minmax()
-{
- assert(devinfo->ver < 6);
-
- bool progress = false;
-
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- const vec4_builder ibld(this, block, inst);
-
- if (inst->opcode == BRW_OPCODE_SEL &&
- inst->predicate == BRW_PREDICATE_NONE) {
- /* If src1 is an immediate value that is not NaN, then it can't be
- * NaN. In that case, emit CMP because it is much better for cmod
- * propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't
- * support HF or DF, so it is not necessary to check for those.
- */
- if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
- (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
- ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
- inst->conditional_mod);
- } else {
- ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
- inst->conditional_mod);
- }
- inst->predicate = BRW_PREDICATE_NORMAL;
- inst->conditional_mod = BRW_CONDITIONAL_NONE;
-
- progress = true;
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
-
- return progress;
-}
-
-src_reg
-vec4_visitor::get_timestamp()
-{
- assert(devinfo->ver == 7);
-
- src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
- BRW_ARF_TIMESTAMP,
- 0,
- 0,
- 0,
- BRW_REGISTER_TYPE_UD,
- BRW_VERTICAL_STRIDE_0,
- BRW_WIDTH_4,
- BRW_HORIZONTAL_STRIDE_4,
- BRW_SWIZZLE_XYZW,
- WRITEMASK_XYZW));
-
- dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
-
- vec4_instruction *mov = emit(MOV(dst, ts));
- /* We want to read the 3 fields we care about (mostly field 0, but also 2)
- * even if it's not enabled in the dispatch.
- */
- mov->force_writemask_all = true;
-
- return src_reg(dst);
-}
-
-void
-vec4_visitor::emit_shader_time_begin()
-{
- current_annotation = "shader time start";
- shader_start_time = get_timestamp();
-}
-
-void
-vec4_visitor::emit_shader_time_end()
-{
- current_annotation = "shader time end";
- src_reg shader_end_time = get_timestamp();
-
-
- /* Check that there weren't any timestamp reset events (assuming these
- * were the only two timestamp reads that happened).
- */
- src_reg reset_end = shader_end_time;
- reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
- vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
- test->conditional_mod = BRW_CONDITIONAL_Z;
-
- emit(IF(BRW_PREDICATE_NORMAL));
-
- /* Take the current timestamp and get the delta. */
- shader_start_time.negate = true;
- dst_reg diff = dst_reg(this, glsl_type::uint_type);
- emit(ADD(diff, shader_start_time, shader_end_time));
-
- /* If there were no instructions between the two timestamp gets, the diff
- * is 2 cycles. Remove that overhead, so I can forget about that when
- * trying to determine the time taken for single instructions.
- */
- emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
-
- emit_shader_time_write(0, src_reg(diff));
- emit_shader_time_write(1, brw_imm_ud(1u));
- emit(BRW_OPCODE_ELSE);
- emit_shader_time_write(2, brw_imm_ud(1u));
- emit(BRW_OPCODE_ENDIF);
-}
-
-void
-vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
-{
- dst_reg dst =
- dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
-
- dst_reg offset = dst;
- dst_reg time = dst;
- time.offset += REG_SIZE;
-
- offset.type = BRW_REGISTER_TYPE_UD;
- int index = shader_time_index * 3 + shader_time_subindex;
- emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
-
- time.type = BRW_REGISTER_TYPE_UD;
- emit(MOV(time, value));
-
- vec4_instruction *inst =
- emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
- inst->mlen = 2;
-}
-
-static bool
-is_align1_df(vec4_instruction *inst)
-{
- switch (inst->opcode) {
- case VEC4_OPCODE_DOUBLE_TO_F32:
- case VEC4_OPCODE_DOUBLE_TO_D32:
- case VEC4_OPCODE_DOUBLE_TO_U32:
- case VEC4_OPCODE_TO_DOUBLE:
- case VEC4_OPCODE_PICK_LOW_32BIT:
- case VEC4_OPCODE_PICK_HIGH_32BIT:
- case VEC4_OPCODE_SET_LOW_32BIT:
- case VEC4_OPCODE_SET_HIGH_32BIT:
- return true;
- default:
- return false;
- }
-}
-
-/**
- * Three source instruction must have a GRF/MRF destination register.
- * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
- */
-void
-vec4_visitor::fixup_3src_null_dest()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
- if (inst->is_3src(devinfo) && inst->dst.is_null()) {
- const unsigned size_written = type_sz(inst->dst.type);
- const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
-
- inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
- inst->dst.type);
- progress = true;
- }
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
- DEPENDENCY_VARIABLES);
-}
-
-void
-vec4_visitor::convert_to_hw_regs()
-{
- foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
- for (int i = 0; i < 3; i++) {
- class src_reg &src = inst->src[i];
- struct brw_reg reg;
- switch (src.file) {
- case VGRF: {
- reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
- reg.type = src.type;
- reg.abs = src.abs;
- reg.negate = src.negate;
- break;
- }
-
- case UNIFORM: {
- if (src.nr >= UBO_START) {
- reg = byte_offset(brw_vec4_grf(
- prog_data->base.dispatch_grf_start_reg +
- ubo_push_start[src.nr - UBO_START] +
- src.offset / 32, 0),
- src.offset % 32);
- } else {
- reg = byte_offset(brw_vec4_grf(
- prog_data->base.dispatch_grf_start_reg +
- src.nr / 2, src.nr % 2 * 4),
- src.offset);
- }
- reg = stride(reg, 0, 4, 1);
- reg.type = src.type;
- reg.abs = src.abs;
- reg.negate = src.negate;
-
- /* This should have been moved to pull constants. */
- assert(!src.reladdr);
- break;
- }
-
- case FIXED_GRF:
- if (type_sz(src.type) == 8) {
- reg = src.as_brw_reg();
- break;
- }
- FALLTHROUGH;
- case ARF:
- case IMM:
- continue;
-
- case BAD_FILE:
- /* Probably unused. */
- reg = brw_null_reg();
- reg = retype(reg, src.type);
- break;
-
- case MRF:
- case ATTR:
- unreachable("not reached");
- }
-
- apply_logical_swizzle(&reg, inst, i);
- src = reg;
-
- /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
- * Parameters":
- *
- * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
- * to Width * HorzStride."
- *
- * We can break this rule with DF sources on DF align1
- * instructions, because the exec_size would be 4 and width is 4.
- * As we know we are not accessing to next GRF, it is safe to
- * set vstride to the formula given by the rule itself.
- */
- if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
- src.vstride = src.width + src.hstride;
- }
-
- if (inst->is_3src(devinfo)) {
- /* 3-src instructions with scalar sources support arbitrary subnr,
- * but don't actually use swizzles. Convert swizzle into subnr.
- * Skip this for double-precision instructions: RepCtrl=1 is not
- * allowed for them and needs special handling.
- */
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
- type_sz(inst->src[i].type) < 8) {
- assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
- inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
- }
- }
- }
-
- dst_reg &dst = inst->dst;
- struct brw_reg reg;
-
- switch (inst->dst.file) {
- case VGRF:
- reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
- reg.type = dst.type;
- reg.writemask = dst.writemask;
- break;
-
- case MRF:
- reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
- assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->ver));
- reg.type = dst.type;
- reg.writemask = dst.writemask;
- break;
-
- case ARF:
- case FIXED_GRF:
- reg = dst.as_brw_reg();
- break;
-
- case BAD_FILE:
- reg = brw_null_reg();
- reg = retype(reg, dst.type);
- break;
-
- case IMM:
- case ATTR:
- case UNIFORM:
- unreachable("not reached");
- }
-
- dst = reg;
- }
-}
-
-static bool
-stage_uses_interleaved_attributes(unsigned stage,
- enum shader_dispatch_mode dispatch_mode)
-{
- switch (stage) {
- case MESA_SHADER_TESS_EVAL:
- return true;
- case MESA_SHADER_GEOMETRY:
- return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
- default:
- return false;
- }
-}
-
-/**
- * Get the closest native SIMD width supported by the hardware for instruction
- * \p inst. The instruction will be left untouched by
- * vec4_visitor::lower_simd_width() if the returned value matches the
- * instruction's original execution size.
- */
-static unsigned
-get_lowered_simd_width(const struct intel_device_info *devinfo,
- enum shader_dispatch_mode dispatch_mode,
- unsigned stage, const vec4_instruction *inst)
-{
- /* Do not split some instructions that require special handling */
- switch (inst->opcode) {
- case SHADER_OPCODE_GFX4_SCRATCH_READ:
- case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
- return inst->exec_size;
- default:
- break;
- }
-
- unsigned lowered_width = MIN2(16, inst->exec_size);
-
- /* We need to split some cases of double-precision instructions that write
- * 2 registers. We only need to care about this in gfx7 because that is the
- * only hardware that implements fp64 in Align16.
- */
- if (devinfo->ver == 7 && inst->size_written > REG_SIZE) {
- /* Align16 8-wide double-precision SEL does not work well. Verified
- * empirically.
- */
- if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
- lowered_width = MIN2(lowered_width, 4);
-
- /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
- * Register Addressing:
- *
- * "When destination spans two registers, the source MUST span two
- * registers."
- */
- for (unsigned i = 0; i < 3; i++) {
- if (inst->src[i].file == BAD_FILE)
- continue;
- if (inst->size_read(i) <= REG_SIZE)
- lowered_width = MIN2(lowered_width, 4);
-
- /* Interleaved attribute setups use a vertical stride of 0, which
- * makes them hit the associated instruction decompression bug in gfx7.
- * Split them to prevent this.
- */
- if (inst->src[i].file == ATTR &&
- stage_uses_interleaved_attributes(stage, dispatch_mode))
- lowered_width = MIN2(lowered_width, 4);
- }
- }
-
- /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
- * it doesn't support compression in Align16 mode, no matter if it has
- * force_writemask_all enabled or disabled (the latter is affected by the
- * compressed instruction bug in gfx7, which is another reason to enforce
- * this limit).
- */
- if (devinfo->verx10 == 70 &&
- (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
- lowered_width = MIN2(lowered_width, 4);
-
- return lowered_width;
-}
-
-static bool
-dst_src_regions_overlap(vec4_instruction *inst)
-{
- if (inst->size_written == 0)
- return false;
-
- unsigned dst_start = inst->dst.offset;
- unsigned dst_end = dst_start + inst->size_written - 1;
- for (int i = 0; i < 3; i++) {
- if (inst->src[i].file == BAD_FILE)
- continue;
-
- if (inst->dst.file != inst->src[i].file ||
- inst->dst.nr != inst->src[i].nr)
- continue;
-
- unsigned src_start = inst->src[i].offset;
- unsigned src_end = src_start + inst->size_read(i) - 1;
-
- if ((dst_start >= src_start && dst_start <= src_end) ||
- (dst_end >= src_start && dst_end <= src_end) ||
- (dst_start <= src_start && dst_end >= src_end)) {
- return true;
- }
- }
-
- return false;
-}
-
-bool
-vec4_visitor::lower_simd_width()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- const unsigned lowered_width =
- get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
- assert(lowered_width <= inst->exec_size);
- if (lowered_width == inst->exec_size)
- continue;
-
- /* We need to deal with source / destination overlaps when splitting.
- * The hardware supports reading from and writing to the same register
- * in the same instruction, but we need to be careful that each split
- * instruction we produce does not corrupt the source of the next.
- *
- * The easiest way to handle this is to make the split instructions write
- * to temporaries if there is an src/dst overlap and then move from the
- * temporaries to the original destination. We also need to consider
- * instructions that do partial writes via align1 opcodes, in which case
- * we need to make sure that the we initialize the temporary with the
- * value of the instruction's dst.
- */
- bool needs_temp = dst_src_regions_overlap(inst);
- for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
- unsigned channel_offset = lowered_width * n;
-
- unsigned size_written = lowered_width * type_sz(inst->dst.type);
-
- /* Create the split instruction from the original so that we copy all
- * relevant instruction fields, then set the width and calculate the
- * new dst/src regions.
- */
- vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
- linst->exec_size = lowered_width;
- linst->group = channel_offset;
- linst->size_written = size_written;
-
- /* Compute split dst region */
- dst_reg dst;
- if (needs_temp) {
- unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
- dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
- inst->dst.type);
- if (inst->is_align1_partial_write()) {
- vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
- copy->exec_size = lowered_width;
- copy->group = channel_offset;
- copy->size_written = size_written;
- inst->insert_before(block, copy);
- }
- } else {
- dst = horiz_offset(inst->dst, channel_offset);
- }
- linst->dst = dst;
-
- /* Compute split source regions */
- for (int i = 0; i < 3; i++) {
- if (linst->src[i].file == BAD_FILE)
- continue;
-
- bool is_interleaved_attr =
- linst->src[i].file == ATTR &&
- stage_uses_interleaved_attributes(stage,
- prog_data->dispatch_mode);
-
- if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
- linst->src[i] = horiz_offset(linst->src[i], channel_offset);
- }
-
- inst->insert_before(block, linst);
-
- /* If we used a temporary to store the result of the split
- * instruction, copy the result to the original destination
- */
- if (needs_temp) {
- vec4_instruction *mov =
- MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
- mov->exec_size = lowered_width;
- mov->group = channel_offset;
- mov->size_written = size_written;
- mov->predicate = inst->predicate;
- inst->insert_before(block, mov);
- }
- }
-
- inst->remove(block);
- progress = true;
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
-
- return progress;
-}
-
-static brw_predicate
-scalarize_predicate(brw_predicate predicate, unsigned writemask)
-{
- if (predicate != BRW_PREDICATE_NORMAL)
- return predicate;
-
- switch (writemask) {
- case WRITEMASK_X:
- return BRW_PREDICATE_ALIGN16_REPLICATE_X;
- case WRITEMASK_Y:
- return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
- case WRITEMASK_Z:
- return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
- case WRITEMASK_W:
- return BRW_PREDICATE_ALIGN16_REPLICATE_W;
- default:
- unreachable("invalid writemask");
- }
-}
-
-/* Gfx7 has a hardware decompression bug that we can exploit to represent
- * handful of additional swizzles natively.
- */
-static bool
-is_gfx7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
-{
- switch (inst->src[arg].swizzle) {
- case BRW_SWIZZLE_XXXX:
- case BRW_SWIZZLE_YYYY:
- case BRW_SWIZZLE_ZZZZ:
- case BRW_SWIZZLE_WWWW:
- case BRW_SWIZZLE_XYXY:
- case BRW_SWIZZLE_YXYX:
- case BRW_SWIZZLE_ZWZW:
- case BRW_SWIZZLE_WZWZ:
- return true;
- default:
- return false;
- }
-}
-
-/* 64-bit sources use regions with a width of 2. These 2 elements in each row
- * can be addressed using 32-bit swizzles (which is what the hardware supports)
- * but it also means that the swizzle we apply on the first two components of a
- * dvec4 is coupled with the swizzle we use for the last 2. In other words,
- * only some specific swizzle combinations can be natively supported.
- *
- * FIXME: we can go an step further and implement even more swizzle
- * variations using only partial scalarization.
- *
- * For more details see:
- * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
- */
-bool
-vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
-{
- const src_reg &src = inst->src[arg];
- assert(type_sz(src.type) == 8);
-
- /* Uniform regions have a vstride=0. Because we use 2-wide rows with
- * 64-bit regions it means that we cannot access components Z/W, so
- * return false for any such case. Interleaved attributes will also be
- * mapped to GRF registers with a vstride of 0, so apply the same
- * treatment.
- */
- if ((is_uniform(src) ||
- (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
- src.file == ATTR)) &&
- (brw_mask_for_swizzle(src.swizzle) & 12))
- return false;
-
- switch (src.swizzle) {
- case BRW_SWIZZLE_XYZW:
- case BRW_SWIZZLE_XXZZ:
- case BRW_SWIZZLE_YYWW:
- case BRW_SWIZZLE_YXWZ:
- return true;
- default:
- return devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg);
- }
-}
-
-bool
-vec4_visitor::scalarize_df()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- /* Skip DF instructions that operate in Align1 mode */
- if (is_align1_df(inst))
- continue;
-
- /* Check if this is a double-precision instruction */
- bool is_double = type_sz(inst->dst.type) == 8;
- for (int arg = 0; !is_double && arg < 3; arg++) {
- is_double = inst->src[arg].file != BAD_FILE &&
- type_sz(inst->src[arg].type) == 8;
- }
-
- if (!is_double)
- continue;
-
- /* Skip the lowering for specific regioning scenarios that we can
- * support natively.
- */
- bool skip_lowering = true;
-
- /* XY and ZW writemasks operate in 32-bit, which means that they don't
- * have a native 64-bit representation and they should always be split.
- */
- if (inst->dst.writemask == WRITEMASK_XY ||
- inst->dst.writemask == WRITEMASK_ZW) {
- skip_lowering = false;
- } else {
- for (unsigned i = 0; i < 3; i++) {
- if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
- continue;
- skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
- }
- }
-
- if (skip_lowering)
- continue;
-
- /* Generate scalar instructions for each enabled channel */
- for (unsigned chan = 0; chan < 4; chan++) {
- unsigned chan_mask = 1 << chan;
- if (!(inst->dst.writemask & chan_mask))
- continue;
-
- vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
-
- for (unsigned i = 0; i < 3; i++) {
- unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
- scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
- }
-
- scalar_inst->dst.writemask = chan_mask;
-
- if (inst->predicate != BRW_PREDICATE_NONE) {
- scalar_inst->predicate =
- scalarize_predicate(inst->predicate, chan_mask);
- }
-
- inst->insert_before(block, scalar_inst);
- }
-
- inst->remove(block);
- progress = true;
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
-
- return progress;
-}
-
-bool
-vec4_visitor::lower_64bit_mad_to_mul_add()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
- if (inst->opcode != BRW_OPCODE_MAD)
- continue;
-
- if (type_sz(inst->dst.type) != 8)
- continue;
-
- dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
-
- /* Use the copy constructor so we copy all relevant instruction fields
- * from the original mad into the add and mul instructions
- */
- vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
- mul->opcode = BRW_OPCODE_MUL;
- mul->dst = mul_dst;
- mul->src[0] = inst->src[1];
- mul->src[1] = inst->src[2];
- mul->src[2].file = BAD_FILE;
-
- vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
- add->opcode = BRW_OPCODE_ADD;
- add->src[0] = src_reg(mul_dst);
- add->src[1] = inst->src[0];
- add->src[2].file = BAD_FILE;
-
- inst->insert_before(block, mul);
- inst->insert_before(block, add);
- inst->remove(block);
-
- progress = true;
- }
-
- if (progress)
- invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
-
- return progress;
-}
-
-/* The align16 hardware can only do 32-bit swizzle channels, so we need to
- * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
- * to 32-bit swizzle channels in hardware registers.
- *
- * @inst and @arg identify the original vec4 IR source operand we need to
- * translate the swizzle for and @hw_reg is the hardware register where we
- * will write the hardware swizzle to use.
- *
- * This pass assumes that Align16/DF instructions have been fully scalarized
- * previously so there is just one 64-bit swizzle channel to deal with for any
- * given Vec4 IR source.
- */
-void
-vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
- vec4_instruction *inst, int arg)
-{
- src_reg reg = inst->src[arg];
-
- if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
- return;
-
- /* If this is not a 64-bit operand or this is a scalar instruction we don't
- * need to do anything about the swizzles.
- */
- if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
- hw_reg->swizzle = reg.swizzle;
- return;
- }
-
- /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
- assert(brw_is_single_value_swizzle(reg.swizzle) ||
- is_supported_64bit_region(inst, arg));
-
- /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
- * HW can only do 32-bit swizzle channels.
- */
- hw_reg->width = BRW_WIDTH_2;
-
- if (is_supported_64bit_region(inst, arg) &&
- !is_gfx7_supported_64bit_swizzle(inst, arg)) {
- /* Supported 64-bit swizzles are those such that their first two
- * components, when expanded to 32-bit swizzles, match the semantics
- * of the original 64-bit swizzle with 2-wide row regioning.
- */
- unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
- unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
- hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
- swizzle1 * 2, swizzle1 * 2 + 1);
- } else {
- /* If we got here then we have one of the following:
- *
- * 1. An unsupported swizzle, which should be single-value thanks to the
- * scalarization pass.
- *
- * 2. A gfx7 supported swizzle. These can be single-value or double-value
- * swizzles. If the latter, they are never cross-dvec2 channels. For
- * these we always need to activate the gfx7 vstride=0 exploit.
- */
- unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
- unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
- assert((swizzle0 < 2) == (swizzle1 < 2));
-
- /* To gain access to Z/W components we need to select the second half
- * of the register and then use a X/Y swizzle to select Z/W respectively.
- */
- if (swizzle0 >= 2) {
- *hw_reg = suboffset(*hw_reg, 2);
- swizzle0 -= 2;
- swizzle1 -= 2;
- }
-
- /* All gfx7-specific supported swizzles require the vstride=0 exploit */
- if (devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg))
- hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
-
- /* Any 64-bit source with an offset at 16B is intended to address the
- * second half of a register and needs a vertical stride of 0 so we:
- *
- * 1. Don't violate register region restrictions.
- * 2. Activate the gfx7 instruction decompresion bug exploit when
- * execsize > 4
- */
- if (hw_reg->subnr % REG_SIZE == 16) {
- assert(devinfo->ver == 7);
- hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
- }
-
- hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
- swizzle1 * 2, swizzle1 * 2 + 1);
- }
-}
-
-void
-vec4_visitor::invalidate_analysis(brw::analysis_dependency_class c)
-{
- backend_shader::invalidate_analysis(c);
- live_analysis.invalidate(c);
-}
-
-bool
-vec4_visitor::run()
-{
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- setup_push_ranges();
-
- if (prog_data->base.zero_push_reg) {
- /* push_reg_mask_param is in uint32 params and UNIFORM is in vec4s */
- const unsigned mask_param = stage_prog_data->push_reg_mask_param;
- src_reg mask = src_reg(dst_reg(UNIFORM, mask_param / 4));
- assert(mask_param % 2 == 0); /* Should be 64-bit-aligned */
- mask.swizzle = BRW_SWIZZLE4((mask_param + 0) % 4,
- (mask_param + 1) % 4,
- (mask_param + 0) % 4,
- (mask_param + 1) % 4);
-
- emit(VEC4_OPCODE_ZERO_OOB_PUSH_REGS,
- dst_reg(VGRF, alloc.allocate(3)), mask);
- }
-
- emit_prolog();
-
- emit_nir_code();
- if (failed)
- return false;
- base_ir = NULL;
-
- emit_thread_end();
-
- calculate_cfg();
-
- /* Before any optimization, push array accesses out to scratch
- * space where we need them to be. This pass may allocate new
- * virtual GRFs, so we want to do it early. It also makes sure
- * that we have reladdr computations available for CSE, since we'll
- * often do repeated subexpressions for those.
- */
- move_grf_array_access_to_scratch();
- move_uniform_array_access_to_pull_constants();
-
- pack_uniform_registers();
- move_push_constants_to_pull_constants();
- split_virtual_grfs();
-
-#define OPT(pass, args...) ({ \
- pass_num++; \
- bool this_progress = pass(args); \
- \
- if ((INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
- char filename[64]; \
- snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
- stage_abbrev, nir->info.name, iteration, pass_num); \
- \
- backend_shader::dump_instructions(filename); \
- } \
- \
- progress = progress || this_progress; \
- this_progress; \
- })
-
-
- if (INTEL_DEBUG & DEBUG_OPTIMIZER) {
- char filename[64];
- snprintf(filename, 64, "%s-%s-00-00-start",
- stage_abbrev, nir->info.name);
-
- backend_shader::dump_instructions(filename);
- }
-
- bool progress;
- int iteration = 0;
- int pass_num = 0;
- do {
- progress = false;
- pass_num = 0;
- iteration++;
-
- OPT(opt_predicated_break, this);
- OPT(opt_reduce_swizzle);
- OPT(dead_code_eliminate);
- OPT(dead_control_flow_eliminate, this);
- OPT(opt_copy_propagation);
- OPT(opt_cmod_propagation);
- OPT(opt_cse);
- OPT(opt_algebraic);
- OPT(opt_register_coalesce);
- OPT(eliminate_find_live_channel);
- } while (progress);
-
- pass_num = 0;
-
- if (OPT(opt_vector_float)) {
- OPT(opt_cse);
- OPT(opt_copy_propagation, false);
- OPT(opt_copy_propagation, true);
- OPT(dead_code_eliminate);
- }
-
- if (devinfo->ver <= 5 && OPT(lower_minmax)) {
- OPT(opt_cmod_propagation);
- OPT(opt_cse);
- OPT(opt_copy_propagation);
- OPT(dead_code_eliminate);
- }
-
- if (OPT(lower_simd_width)) {
- OPT(opt_copy_propagation);
- OPT(dead_code_eliminate);
- }
-
- if (failed)
- return false;
-
- OPT(lower_64bit_mad_to_mul_add);
-
- /* Run this before payload setup because tesselation shaders
- * rely on it to prevent cross dvec2 regioning on DF attributes
- * that are setup so that XY are on the second half of register and
- * ZW are in the first half of the next.
- */
- OPT(scalarize_df);
-
- setup_payload();
-
- if (INTEL_DEBUG & DEBUG_SPILL_VEC4) {
- /* Debug of register spilling: Go spill everything. */
- const int grf_count = alloc.count;
- float spill_costs[alloc.count];
- bool no_spill[alloc.count];
- evaluate_spill_costs(spill_costs, no_spill);
- for (int i = 0; i < grf_count; i++) {
- if (no_spill[i])
- continue;
- spill_reg(i);
- }
-
- /* We want to run this after spilling because 64-bit (un)spills need to
- * emit code to shuffle 64-bit data for the 32-bit scratch read/write
- * messages that can produce unsupported 64-bit swizzle regions.
- */
- OPT(scalarize_df);
- }
-
- fixup_3src_null_dest();
-
- bool allocated_without_spills = reg_allocate();
-
- if (!allocated_without_spills) {
- brw_shader_perf_log(compiler, log_data,
- "%s shader triggered register spilling. "
- "Try reducing the number of live vec4 values "
- "to improve performance.\n",
- stage_name);
-
- while (!reg_allocate()) {
- if (failed)
- return false;
- }
-
- /* We want to run this after spilling because 64-bit (un)spills need to
- * emit code to shuffle 64-bit data for the 32-bit scratch read/write
- * messages that can produce unsupported 64-bit swizzle regions.
- */
- OPT(scalarize_df);
- }
-
- opt_schedule_instructions();
-
- opt_set_dependency_control();
-
- convert_to_hw_regs();
-
- if (last_scratch > 0) {
- prog_data->base.total_scratch =
- brw_get_scratch_size(last_scratch * REG_SIZE);
- }
-
- return !failed;
-}
-
-} /* namespace brw */
-
-extern "C" {
-
-const unsigned *
-brw_compile_vs(const struct brw_compiler *compiler,
- void *mem_ctx,
- struct brw_compile_vs_params *params)
-{
- struct nir_shader *nir = params->nir;
- const struct brw_vs_prog_key *key = params->key;
- struct brw_vs_prog_data *prog_data = params->prog_data;
- const bool debug_enabled =
- INTEL_DEBUG & (params->debug_flag ? params->debug_flag : DEBUG_VS);
-
- prog_data->base.base.stage = MESA_SHADER_VERTEX;
-
- const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
- brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
-
- const unsigned *assembly = NULL;
-
- prog_data->inputs_read = nir->info.inputs_read;
- prog_data->double_inputs_read = nir->info.vs.double_inputs;
-
- brw_nir_lower_vs_inputs(nir, params->edgeflag_is_last, key->gl_attrib_wa_flags);
- brw_nir_lower_vue_outputs(nir);
- brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
- key->base.robust_buffer_access);
-
- prog_data->base.clip_distance_mask =
- ((1 << nir->info.clip_distance_array_size) - 1);
- prog_data->base.cull_distance_mask =
- ((1 << nir->info.cull_distance_array_size) - 1) <<
- nir->info.clip_distance_array_size;
-
- unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
-
- /* gl_VertexID and gl_InstanceID are system values, but arrive via an
- * incoming vertex attribute. So, add an extra slot.
- */
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
- BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
- BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
- BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID)) {
- nr_attribute_slots++;
- }
-
- /* gl_DrawID and IsIndexedDraw share its very own vec4 */
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID) ||
- BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW)) {
- nr_attribute_slots++;
- }
-
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW))
- prog_data->uses_is_indexed_draw = true;
-
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX))
- prog_data->uses_firstvertex = true;
-
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE))
- prog_data->uses_baseinstance = true;
-
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
- prog_data->uses_vertexid = true;
-
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID))
- prog_data->uses_instanceid = true;
-
- if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
- prog_data->uses_drawid = true;
-
- /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
- * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
- * vec4 mode, the hardware appears to wedge unless we read something.
- */
- if (is_scalar)
- prog_data->base.urb_read_length =
- DIV_ROUND_UP(nr_attribute_slots, 2);
- else
- prog_data->base.urb_read_length =
- DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
-
- prog_data->nr_attribute_slots = nr_attribute_slots;
-
- /* Since vertex shaders reuse the same VUE entry for inputs and outputs
- * (overwriting the original contents), we need to make sure the size is
- * the larger of the two.
- */
- const unsigned vue_entries =
- MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
-
- if (compiler->devinfo->ver == 6) {
- prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
- } else {
- prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
- }
-
- if (unlikely(debug_enabled)) {
- fprintf(stderr, "VS Output ");
- brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_VERTEX);
- }
-
- if (is_scalar) {
- prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
-
- fs_visitor v(compiler, params->log_data, mem_ctx, &key->base,
- &prog_data->base.base, nir, 8,
- params->shader_time ? params->shader_time_index : -1,
- debug_enabled);
- if (!v.run_vs()) {
- params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
- return NULL;
- }
-
- prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
-
- fs_generator g(compiler, params->log_data, mem_ctx,
- &prog_data->base.base, v.runtime_check_aads_emit,
- MESA_SHADER_VERTEX);
- if (unlikely(debug_enabled)) {
- const char *debug_name =
- ralloc_asprintf(mem_ctx, "%s vertex shader %s",
- nir->info.label ? nir->info.label :
- "unnamed",
- nir->info.name);
-
- g.enable_debug(debug_name);
- }
- g.generate_code(v.cfg, 8, v.shader_stats,
- v.performance_analysis.require(), params->stats);
- g.add_const_data(nir->constant_data, nir->constant_data_size);
- assembly = g.get_assembly();
- }
-
- if (!assembly) {
- prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
-
- vec4_vs_visitor v(compiler, params->log_data, key, prog_data,
- nir, mem_ctx,
- params->shader_time ? params->shader_time_index : -1,
- debug_enabled);
- if (!v.run()) {
- params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
- return NULL;
- }
-
- assembly = brw_vec4_generate_assembly(compiler, params->log_data, mem_ctx,
- nir, &prog_data->base,
- v.cfg,
- v.performance_analysis.require(),
- params->stats, debug_enabled);
- }
-
- return assembly;
-}
-
-} /* extern "C" */