summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_instruction_selection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/amd/compiler/aco_instruction_selection.cpp')
-rw-r--r--src/amd/compiler/aco_instruction_selection.cpp7621
1 files changed, 7621 insertions, 0 deletions
diff --git a/src/amd/compiler/aco_instruction_selection.cpp b/src/amd/compiler/aco_instruction_selection.cpp
new file mode 100644
index 00000000000..d52043f3c0d
--- /dev/null
+++ b/src/amd/compiler/aco_instruction_selection.cpp
@@ -0,0 +1,7621 @@
+/*
+ * Copyright © 2018 Valve Corporation
+ * Copyright © 2018 Google
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ */
+
+#include <algorithm>
+#include <map>
+
+#include "aco_ir.h"
+#include "aco_builder.h"
+#include "aco_interface.h"
+#include "aco_instruction_selection_setup.cpp"
+#include "util/fast_idiv_by_const.h"
+
+namespace aco {
+namespace {
+
+class loop_info_RAII {
+ isel_context* ctx;
+ unsigned header_idx_old;
+ Block* exit_old;
+ bool divergent_cont_old;
+ bool divergent_branch_old;
+ bool divergent_if_old;
+
+public:
+ loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
+ : ctx(ctx),
+ header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
+ divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
+ divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
+ divergent_if_old(ctx->cf_info.parent_if.is_divergent)
+ {
+ ctx->cf_info.parent_loop.header_idx = loop_header_idx;
+ ctx->cf_info.parent_loop.exit = loop_exit;
+ ctx->cf_info.parent_loop.has_divergent_continue = false;
+ ctx->cf_info.parent_loop.has_divergent_branch = false;
+ ctx->cf_info.parent_if.is_divergent = false;
+ ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
+ }
+
+ ~loop_info_RAII()
+ {
+ ctx->cf_info.parent_loop.header_idx = header_idx_old;
+ ctx->cf_info.parent_loop.exit = exit_old;
+ ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
+ ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
+ ctx->cf_info.parent_if.is_divergent = divergent_if_old;
+ ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
+ if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
+ ctx->cf_info.exec_potentially_empty = false;
+ }
+};
+
+struct if_context {
+ Temp cond;
+
+ bool divergent_old;
+ bool exec_potentially_empty_old;
+
+ unsigned BB_if_idx;
+ unsigned invert_idx;
+ bool then_branch_divergent;
+ Block BB_invert;
+ Block BB_endif;
+};
+
+static void visit_cf_list(struct isel_context *ctx,
+ struct exec_list *list);
+
+static void add_logical_edge(unsigned pred_idx, Block *succ)
+{
+ succ->logical_preds.emplace_back(pred_idx);
+}
+
+
+static void add_linear_edge(unsigned pred_idx, Block *succ)
+{
+ succ->linear_preds.emplace_back(pred_idx);
+}
+
+static void add_edge(unsigned pred_idx, Block *succ)
+{
+ add_logical_edge(pred_idx, succ);
+ add_linear_edge(pred_idx, succ);
+}
+
+static void append_logical_start(Block *b)
+{
+ Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
+}
+
+static void append_logical_end(Block *b)
+{
+ Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
+}
+
+Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
+{
+ assert(ctx->allocated[def->index].id());
+ return ctx->allocated[def->index];
+}
+
+Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ if (!dst.id())
+ dst = bld.tmp(src.regClass());
+
+ if (ctx->stage != fragment_fs) {
+ if (!dst.id())
+ return src;
+
+ if (src.type() == RegType::vgpr || src.size() > 1)
+ bld.copy(Definition(dst), src);
+ else
+ bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
+ return dst;
+ }
+
+ bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
+ ctx->program->needs_wqm |= program_needs_wqm;
+ return dst;
+}
+
+Temp as_vgpr(isel_context *ctx, Temp val)
+{
+ if (val.type() == RegType::sgpr) {
+ Builder bld(ctx->program, ctx->block);
+ return bld.copy(bld.def(RegType::vgpr, val.size()), val);
+ }
+ assert(val.type() == RegType::vgpr);
+ return val;
+}
+
+//assumes a != 0xffffffff
+void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
+{
+ assert(b != 0);
+ Builder bld(ctx->program, ctx->block);
+
+ if (util_is_power_of_two_or_zero(b)) {
+ bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
+ return;
+ }
+
+ util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
+
+ assert(info.multiplier <= 0xffffffff);
+
+ bool pre_shift = info.pre_shift != 0;
+ bool increment = info.increment != 0;
+ bool multiply = true;
+ bool post_shift = info.post_shift != 0;
+
+ if (!pre_shift && !increment && !multiply && !post_shift) {
+ bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
+ return;
+ }
+
+ Temp pre_shift_dst = a;
+ if (pre_shift) {
+ pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
+ bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
+ }
+
+ Temp increment_dst = pre_shift_dst;
+ if (increment) {
+ increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
+ bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
+ }
+
+ Temp multiply_dst = increment_dst;
+ if (multiply) {
+ multiply_dst = post_shift ? bld.tmp(v1) : dst;
+ bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
+ bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
+ }
+
+ if (post_shift) {
+ bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
+ }
+}
+
+void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
+{
+ Builder bld(ctx->program, ctx->block);
+ bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
+}
+
+
+Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
+{
+ /* no need to extract the whole vector */
+ if (src.regClass() == dst_rc) {
+ assert(idx == 0);
+ return src;
+ }
+ assert(src.size() > idx);
+ Builder bld(ctx->program, ctx->block);
+ auto it = ctx->allocated_vec.find(src.id());
+ /* the size check needs to be early because elements other than 0 may be garbage */
+ if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
+ if (it->second[idx].regClass() == dst_rc) {
+ return it->second[idx];
+ } else {
+ assert(dst_rc.size() == it->second[idx].regClass().size());
+ assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
+ return bld.copy(bld.def(dst_rc), it->second[idx]);
+ }
+ }
+
+ if (src.size() == dst_rc.size()) {
+ assert(idx == 0);
+ return bld.copy(bld.def(dst_rc), src);
+ } else {
+ Temp dst = bld.tmp(dst_rc);
+ emit_extract_vector(ctx, src, idx, dst);
+ return dst;
+ }
+}
+
+void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
+{
+ if (num_components == 1)
+ return;
+ if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
+ return;
+ aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
+ split->operands[0] = Operand(vec_src);
+ std::array<Temp,4> elems;
+ for (unsigned i = 0; i < num_components; i++) {
+ elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
+ split->definitions[i] = Definition(elems[i]);
+ }
+ ctx->block->instructions.emplace_back(std::move(split));
+ ctx->allocated_vec.emplace(vec_src.id(), elems);
+}
+
+/* This vector expansion uses a mask to determine which elements in the new vector
+ * come from the original vector. The other elements are undefined. */
+void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
+{
+ emit_split_vector(ctx, vec_src, util_bitcount(mask));
+
+ if (vec_src == dst)
+ return;
+
+ Builder bld(ctx->program, ctx->block);
+ if (num_components == 1) {
+ if (dst.type() == RegType::sgpr)
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
+ else
+ bld.copy(Definition(dst), vec_src);
+ return;
+ }
+
+ unsigned component_size = dst.size() / num_components;
+ std::array<Temp,4> elems;
+
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
+ vec->definitions[0] = Definition(dst);
+ unsigned k = 0;
+ for (unsigned i = 0; i < num_components; i++) {
+ if (mask & (1 << i)) {
+ Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
+ if (dst.type() == RegType::sgpr)
+ src = bld.as_uniform(src);
+ vec->operands[i] = Operand(src);
+ } else {
+ vec->operands[i] = Operand(0u);
+ }
+ elems[i] = vec->operands[i].getTemp();
+ }
+ ctx->block->instructions.emplace_back(std::move(vec));
+ ctx->allocated_vec.emplace(dst.id(), elems);
+}
+
+Temp as_divergent_bool(isel_context *ctx, Temp val, bool vcc_hint)
+{
+ if (val.regClass() == s2) {
+ return val;
+ } else {
+ assert(val.regClass() == s1);
+ Builder bld(ctx->program, ctx->block);
+ Definition& def = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2),
+ Operand((uint32_t) -1), Operand(0u), bld.scc(val)).def(0);
+ if (vcc_hint)
+ def.setHint(vcc);
+ return def.getTemp();
+ }
+}
+
+Temp as_uniform_bool(isel_context *ctx, Temp val)
+{
+ if (val.regClass() == s1) {
+ return val;
+ } else {
+ assert(val.regClass() == s2);
+ Builder bld(ctx->program, ctx->block);
+ return bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), Operand(0u), Operand(val));
+ }
+}
+
+Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
+{
+ if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
+ return get_ssa_temp(ctx, src.src.ssa);
+
+ if (src.src.ssa->num_components == size) {
+ bool identity_swizzle = true;
+ for (unsigned i = 0; identity_swizzle && i < size; i++) {
+ if (src.swizzle[i] != i)
+ identity_swizzle = false;
+ }
+ if (identity_swizzle)
+ return get_ssa_temp(ctx, src.src.ssa);
+ }
+
+ Temp vec = get_ssa_temp(ctx, src.src.ssa);
+ unsigned elem_size = vec.size() / src.src.ssa->num_components;
+ assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
+ assert(vec.size() % elem_size == 0);
+
+ RegClass elem_rc = RegClass(vec.type(), elem_size);
+ if (size == 1) {
+ return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
+ } else {
+ assert(size <= 4);
+ std::array<Temp,4> elems;
+ aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
+ for (unsigned i = 0; i < size; ++i) {
+ elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
+ vec_instr->operands[i] = Operand{elems[i]};
+ }
+ Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
+ vec_instr->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec_instr));
+ ctx->allocated_vec.emplace(dst.id(), elems);
+ return dst;
+ }
+}
+
+Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
+{
+ if (ptr.size() == 2)
+ return ptr;
+ Builder bld(ctx->program, ctx->block);
+ return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
+ ptr, Operand((unsigned)ctx->options->address32_hi));
+}
+
+void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
+{
+ aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
+ sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
+ sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
+ sop2->definitions[0] = Definition(dst);
+ if (writes_scc)
+ sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
+ ctx->block->instructions.emplace_back(std::move(sop2));
+}
+
+void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
+ Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
+ if (src1.type() == RegType::sgpr) {
+ if (commutative && src0.type() == RegType::vgpr) {
+ Temp t = src0;
+ src0 = src1;
+ src1 = t;
+ } else if (src0.type() == RegType::vgpr &&
+ op != aco_opcode::v_madmk_f32 &&
+ op != aco_opcode::v_madak_f32 &&
+ op != aco_opcode::v_madmk_f16 &&
+ op != aco_opcode::v_madak_f16) {
+ /* If the instruction is not commutative, we emit a VOP3A instruction */
+ bld.vop2_e64(op, Definition(dst), src0, src1);
+ return;
+ } else {
+ src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
+ }
+ }
+ bld.vop2(op, Definition(dst), src0, src1);
+}
+
+void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
+{
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ Temp src2 = get_alu_src(ctx, instr->src[2]);
+
+ /* ensure that the instruction has at most 1 sgpr operand
+ * The optimizer will inline constants for us */
+ if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
+ src0 = as_vgpr(ctx, src0);
+ if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
+ src1 = as_vgpr(ctx, src1);
+ if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
+ src2 = as_vgpr(ctx, src2);
+
+ Builder bld(ctx->program, ctx->block);
+ bld.vop3(op, Definition(dst), src0, src1, src2);
+}
+
+void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
+{
+ Builder bld(ctx->program, ctx->block);
+ bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
+}
+
+void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
+{
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ aco_ptr<Instruction> vopc;
+ if (src1.type() == RegType::sgpr) {
+ if (src0.type() == RegType::vgpr) {
+ /* to swap the operands, we might also have to change the opcode */
+ switch (op) {
+ case aco_opcode::v_cmp_lt_f32:
+ op = aco_opcode::v_cmp_gt_f32;
+ break;
+ case aco_opcode::v_cmp_ge_f32:
+ op = aco_opcode::v_cmp_le_f32;
+ break;
+ case aco_opcode::v_cmp_lt_i32:
+ op = aco_opcode::v_cmp_gt_i32;
+ break;
+ case aco_opcode::v_cmp_ge_i32:
+ op = aco_opcode::v_cmp_le_i32;
+ break;
+ case aco_opcode::v_cmp_lt_u32:
+ op = aco_opcode::v_cmp_gt_u32;
+ break;
+ case aco_opcode::v_cmp_ge_u32:
+ op = aco_opcode::v_cmp_le_u32;
+ break;
+ case aco_opcode::v_cmp_lt_f64:
+ op = aco_opcode::v_cmp_gt_f64;
+ break;
+ case aco_opcode::v_cmp_ge_f64:
+ op = aco_opcode::v_cmp_le_f64;
+ break;
+ case aco_opcode::v_cmp_lt_i64:
+ op = aco_opcode::v_cmp_gt_i64;
+ break;
+ case aco_opcode::v_cmp_ge_i64:
+ op = aco_opcode::v_cmp_le_i64;
+ break;
+ case aco_opcode::v_cmp_lt_u64:
+ op = aco_opcode::v_cmp_gt_u64;
+ break;
+ case aco_opcode::v_cmp_ge_u64:
+ op = aco_opcode::v_cmp_le_u64;
+ break;
+ default: /* eq and ne are commutative */
+ break;
+ }
+ Temp t = src0;
+ src0 = src1;
+ src1 = t;
+ } else {
+ src1 = as_vgpr(ctx, src1);
+ }
+ }
+ Builder bld(ctx->program, ctx->block);
+ bld.vopc(op, Definition(dst), src0, src1).def(0).setHint(vcc);
+}
+
+void emit_comparison(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
+{
+ if (dst.regClass() == s2) {
+ emit_vopc_instruction(ctx, instr, op, dst);
+ if (!ctx->divergent_vals[instr->dest.dest.ssa.index])
+ emit_split_vector(ctx, dst, 2);
+ } else if (dst.regClass() == s1) {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ assert(src0.type() == RegType::sgpr && src1.type() == RegType::sgpr);
+
+ Builder bld(ctx->program, ctx->block);
+ bld.sopc(op, bld.scc(Definition(dst)), src0, src1);
+
+ } else {
+ assert(false);
+ }
+}
+
+void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, aco_opcode op32, aco_opcode op64, Temp dst)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.regClass() == s2) {
+ bld.sop2(op64, Definition(dst), bld.def(s1, scc),
+ as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
+ } else {
+ assert(dst.regClass() == s1);
+ bld.sop2(op32, bld.def(s1), bld.scc(Definition(dst)),
+ as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
+ }
+}
+
+
+void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp cond = get_alu_src(ctx, instr->src[0]);
+ Temp then = get_alu_src(ctx, instr->src[1]);
+ Temp els = get_alu_src(ctx, instr->src[2]);
+
+ if (dst.type() == RegType::vgpr) {
+ cond = as_divergent_bool(ctx, cond, true);
+
+ aco_ptr<Instruction> bcsel;
+ if (dst.size() == 1) {
+ then = as_vgpr(ctx, then);
+ els = as_vgpr(ctx, els);
+
+ bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
+ } else if (dst.size() == 2) {
+ Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
+ Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
+
+ Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
+ Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ return;
+ }
+
+ if (instr->dest.dest.ssa.bit_size != 1) { /* uniform condition and values in sgpr */
+ if (dst.regClass() == s1 || dst.regClass() == s2) {
+ assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
+ aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
+ bld.sop2(op, Definition(dst), then, els, bld.scc(as_uniform_bool(ctx, cond)));
+ } else {
+ fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ return;
+ }
+
+ /* boolean bcsel */
+ assert(instr->dest.dest.ssa.bit_size == 1);
+
+ if (dst.regClass() == s1)
+ cond = as_uniform_bool(ctx, cond);
+
+ if (cond.regClass() == s1) { /* uniform selection */
+ aco_opcode op;
+ if (dst.regClass() == s2) {
+ op = aco_opcode::s_cselect_b64;
+ then = as_divergent_bool(ctx, then, false);
+ els = as_divergent_bool(ctx, els, false);
+ } else {
+ assert(dst.regClass() == s1);
+ op = aco_opcode::s_cselect_b32;
+ then = as_uniform_bool(ctx, then);
+ els = as_uniform_bool(ctx, els);
+ }
+ bld.sop2(op, Definition(dst), then, els, bld.scc(cond));
+ return;
+ }
+
+ /* divergent boolean bcsel
+ * this implements bcsel on bools: dst = s0 ? s1 : s2
+ * are going to be: dst = (s0 & s1) | (~s0 & s2) */
+ assert (dst.regClass() == s2);
+ then = as_divergent_bool(ctx, then, false);
+ els = as_divergent_bool(ctx, els, false);
+
+ if (cond.id() != then.id())
+ then = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), cond, then);
+
+ if (cond.id() == els.id())
+ bld.sop1(aco_opcode::s_mov_b64, Definition(dst), then);
+ else
+ bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), then,
+ bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), els, cond));
+}
+
+void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
+{
+ if (!instr->dest.dest.is_ssa) {
+ fprintf(stderr, "nir alu dst not in ssa: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ abort();
+ }
+ Builder bld(ctx->program, ctx->block);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
+ switch(instr->op) {
+ case nir_op_vec2:
+ case nir_op_vec3:
+ case nir_op_vec4: {
+ std::array<Temp,4> elems;
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
+ for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
+ elems[i] = get_alu_src(ctx, instr->src[i]);
+ vec->operands[i] = Operand{elems[i]};
+ }
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ ctx->allocated_vec.emplace(dst.id(), elems);
+ break;
+ }
+ case nir_op_mov: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ aco_ptr<Instruction> mov;
+ if (dst.type() == RegType::sgpr) {
+ if (src.type() == RegType::vgpr)
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
+ else if (src.regClass() == s1)
+ bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
+ else if (src.regClass() == s2)
+ bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
+ else
+ unreachable("wrong src register class for nir_op_imov");
+ } else if (dst.regClass() == v1) {
+ bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
+ } else if (dst.regClass() == v2) {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
+ } else {
+ nir_print_instr(&instr->instr, stderr);
+ unreachable("Should have been lowered to scalar.");
+ }
+ break;
+ }
+ case nir_op_inot: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ /* uniform booleans */
+ if (instr->dest.dest.ssa.bit_size == 1 && dst.regClass() == s1) {
+ if (src.regClass() == s1) {
+ /* in this case, src is either 1 or 0 */
+ bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.scc(Definition(dst)), Operand(1u), src);
+ } else {
+ /* src is either exec_mask or 0 */
+ assert(src.regClass() == s2);
+ bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(Definition(dst)), Operand(0u), src);
+ }
+ } else if (dst.regClass() == v1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
+ } else if (dst.type() == RegType::sgpr) {
+ aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
+ bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ineg: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.regClass() == v1) {
+ bld.vsub32(Definition(dst), Operand(0u), Operand(src));
+ } else if (dst.regClass() == s1) {
+ bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_iabs: {
+ if (dst.regClass() == s1) {
+ bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
+ } else if (dst.regClass() == v1) {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_isign: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.regClass() == s1) {
+ Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
+ Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
+ bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
+ } else if (dst.regClass() == s2) {
+ Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
+ Temp neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
+ bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, neqz);
+ } else if (dst.regClass() == v1) {
+ Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
+ Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
+ bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
+ } else if (dst.regClass() == v2) {
+ Temp upper = emit_extract_vector(ctx, src, 1, v1);
+ Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
+ Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
+ Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
+ upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imax: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_umax: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imin: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_umin: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ior: {
+ if (instr->dest.dest.ssa.bit_size == 1) {
+ emit_boolean_logic(ctx, instr, aco_opcode::s_or_b32, aco_opcode::s_or_b64, dst);
+ } else if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
+ } else if (dst.regClass() == s2) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_iand: {
+ if (instr->dest.dest.ssa.bit_size == 1) {
+ emit_boolean_logic(ctx, instr, aco_opcode::s_and_b32, aco_opcode::s_and_b64, dst);
+ } else if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
+ } else if (dst.regClass() == s2) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ixor: {
+ if (instr->dest.dest.ssa.bit_size == 1) {
+ emit_boolean_logic(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::s_xor_b64, dst);
+ } else if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
+ } else if (dst.regClass() == s2) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ushr: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
+ } else if (dst.regClass() == v2) {
+ bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
+ get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
+ } else if (dst.regClass() == s2) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ishl: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
+ } else if (dst.regClass() == v2) {
+ bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
+ get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
+ } else if (dst.regClass() == s2) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ishr: {
+ if (dst.regClass() == v1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
+ } else if (dst.regClass() == v2) {
+ bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
+ get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
+ } else if (dst.regClass() == s2) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_find_lsb: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (src.regClass() == s1) {
+ bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
+ } else if (src.regClass() == v1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
+ } else if (src.regClass() == s2) {
+ bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ufind_msb:
+ case nir_op_ifind_msb: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (src.regClass() == s1 || src.regClass() == s2) {
+ aco_opcode op = src.regClass() == s2 ?
+ (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
+ (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
+ Temp msb_rev = bld.sop1(op, bld.def(s1), src);
+
+ Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
+ Operand(src.size() * 32u - 1u), msb_rev);
+ Temp msb = sub.def(0).getTemp();
+ Temp carry = sub.def(1).getTemp();
+
+ bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
+ } else if (src.regClass() == v1) {
+ aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
+ Temp msb_rev = bld.tmp(v1);
+ emit_vop1_instruction(ctx, instr, op, msb_rev);
+ Temp msb = bld.tmp(v1);
+ Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_bitfield_reverse: {
+ if (dst.regClass() == s1) {
+ bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
+ } else if (dst.regClass() == v1) {
+ bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_iadd: {
+ if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
+ break;
+ }
+
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.regClass() == v1) {
+ bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
+ break;
+ }
+
+ assert(src0.size() == 2 && src1.size() == 2);
+ Temp src00 = bld.tmp(src0.type(), 1);
+ Temp src01 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
+ Temp src10 = bld.tmp(src1.type(), 1);
+ Temp src11 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
+
+ if (dst.regClass() == s2) {
+ Temp carry = bld.tmp(s1);
+ Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
+ Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
+ } else if (dst.regClass() == v2) {
+ Temp dst0 = bld.tmp(v1);
+ Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
+ Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_uadd_sat: {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.regClass() == s1) {
+ Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
+ bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
+ src0, src1);
+ bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
+ } else if (dst.regClass() == v1) {
+ if (ctx->options->chip_class >= GFX9) {
+ aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
+ add->operands[0] = Operand(src0);
+ add->operands[1] = Operand(src1);
+ add->definitions[0] = Definition(dst);
+ add->clamp = 1;
+ ctx->block->instructions.emplace_back(std::move(add));
+ } else {
+ if (src1.regClass() != v1)
+ std::swap(src0, src1);
+ assert(src1.regClass() == v1);
+ Temp tmp = bld.tmp(v1);
+ Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
+ }
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_uadd_carry: {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.regClass() == s1) {
+ bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
+ break;
+ }
+ if (dst.regClass() == v1) {
+ Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
+ break;
+ }
+
+ Temp src00 = bld.tmp(src0.type(), 1);
+ Temp src01 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
+ Temp src10 = bld.tmp(src1.type(), 1);
+ Temp src11 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
+ if (dst.regClass() == s2) {
+ Temp carry = bld.tmp(s1);
+ bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
+ carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
+ } else if (dst.regClass() == v2) {
+ Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
+ carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
+ carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_isub: {
+ if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
+ break;
+ }
+
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.regClass() == v1) {
+ bld.vsub32(Definition(dst), src0, src1);
+ break;
+ }
+
+ Temp src00 = bld.tmp(src0.type(), 1);
+ Temp src01 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
+ Temp src10 = bld.tmp(src1.type(), 1);
+ Temp src11 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
+ if (dst.regClass() == s2) {
+ Temp carry = bld.tmp(s1);
+ Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
+ Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
+ } else if (dst.regClass() == v2) {
+ Temp lower = bld.tmp(v1);
+ Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
+ Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_usub_borrow: {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.regClass() == s1) {
+ bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
+ break;
+ } else if (dst.regClass() == v1) {
+ Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
+ break;
+ }
+
+ Temp src00 = bld.tmp(src0.type(), 1);
+ Temp src01 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
+ Temp src10 = bld.tmp(src1.type(), 1);
+ Temp src11 = bld.tmp(dst.type(), 1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
+ if (dst.regClass() == s2) {
+ Temp borrow = bld.tmp(s1);
+ bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
+ borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
+ } else if (dst.regClass() == v2) {
+ Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
+ borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
+ borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imul: {
+ if (dst.regClass() == v1) {
+ bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
+ get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
+ } else if (dst.regClass() == s1) {
+ emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_umul_high: {
+ if (dst.regClass() == v1) {
+ bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
+ } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
+ bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
+ } else if (dst.regClass() == s1) {
+ Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imul_high: {
+ if (dst.regClass() == v1) {
+ bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
+ } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
+ bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
+ } else if (dst.regClass() == s1) {
+ Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmul: {
+ if (dst.size() == 1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
+ } else if (dst.size() == 2) {
+ bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fadd: {
+ if (dst.size() == 1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
+ } else if (dst.size() == 2) {
+ bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fsub: {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ if (dst.size() == 1) {
+ if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
+ else
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
+ } else if (dst.size() == 2) {
+ Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
+ sub->neg[1] = true;
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmod:
+ case nir_op_frem: {
+ if (dst.size() == 1) {
+ Temp rcp = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_alu_src(ctx, instr->src[1]));
+ Temp mul = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), get_alu_src(ctx, instr->src[0]), rcp);
+
+ aco_opcode op = instr->op == nir_op_fmod ? aco_opcode::v_floor_f32 : aco_opcode::v_trunc_f32;
+ Temp floor = bld.vop1(op, bld.def(v1), mul);
+
+ mul = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), get_alu_src(ctx, instr->src[1]), floor);
+ bld.vop2(aco_opcode::v_sub_f32, Definition(dst), get_alu_src(ctx, instr->src[0]), mul);
+ } else if (dst.size() == 2) {
+ Temp rcp = bld.vop1(aco_opcode::v_rcp_f64, bld.def(v2), get_alu_src(ctx, instr->src[1]));
+ Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), get_alu_src(ctx, instr->src[0]), rcp);
+
+ aco_opcode op = instr->op == nir_op_fmod ? aco_opcode::v_floor_f64 : aco_opcode::v_trunc_f64;
+ Temp floor = bld.vop1(op, bld.def(v1), mul);
+
+ mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), get_alu_src(ctx, instr->src[1]), floor);
+ Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]), mul);
+ VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
+ sub->neg[1] = true;
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmax: {
+ if (dst.size() == 1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true);
+ } else if (dst.size() == 2) {
+ bld.vop3(aco_opcode::v_max_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmin: {
+ if (dst.size() == 1) {
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true);
+ } else if (dst.size() == 2) {
+ bld.vop3(aco_opcode::v_min_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmax3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmin3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fmed3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_umax3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_umin3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_umed3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imax3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imin3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_imed3: {
+ if (dst.size() == 1) {
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_cube_face_coord: {
+ Temp in = get_alu_src(ctx, instr->src[0], 3);
+ Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
+ emit_extract_vector(ctx, in, 1, v1),
+ emit_extract_vector(ctx, in, 2, v1) };
+ Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
+ ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
+ Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
+ Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
+ sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
+ tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
+ break;
+ }
+ case nir_op_cube_face_index: {
+ Temp in = get_alu_src(ctx, instr->src[0], 3);
+ Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
+ emit_extract_vector(ctx, in, 1, v1),
+ emit_extract_vector(ctx, in, 2, v1) };
+ bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
+ break;
+ }
+ case nir_op_bcsel: {
+ emit_bcsel(ctx, instr, dst);
+ break;
+ }
+ case nir_op_frsq: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fneg: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.size() == 1) {
+ bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
+ } else if (dst.size() == 2) {
+ Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
+ upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fabs: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.size() == 1) {
+ bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
+ } else if (dst.size() == 2) {
+ Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
+ upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fsat: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.size() == 1) {
+ bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
+ } else if (dst.size() == 2) {
+ Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
+ VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
+ vop3->clamp = true;
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_flog2: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_frcp: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fexp2: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fsqrt: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ffract: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ffloor: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fceil: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ftrunc: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fround_even: {
+ if (dst.size() == 1) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
+ } else if (dst.size() == 2) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fsin:
+ case nir_op_fcos: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ aco_ptr<Instruction> norm;
+ if (dst.size() == 1) {
+ Temp tmp;
+ Operand half_pi(0x3e22f983u);
+ if (src.type() == RegType::sgpr)
+ tmp = bld.vop2_e64(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
+ else
+ tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
+
+ /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
+ if (ctx->options->chip_class < GFX9)
+ tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
+
+ aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
+ bld.vop1(opcode, Definition(dst), tmp);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ldexp: {
+ if (dst.size() == 1) {
+ bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
+ get_alu_src(ctx, instr->src[1]));
+ } else if (dst.size() == 2) {
+ bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
+ get_alu_src(ctx, instr->src[1]));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_frexp_sig: {
+ if (dst.size() == 1) {
+ bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
+ get_alu_src(ctx, instr->src[0]));
+ } else if (dst.size() == 2) {
+ bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_frexp_exp: {
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
+ get_alu_src(ctx, instr->src[0]));
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fsign: {
+ Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
+ if (dst.size() == 1) {
+ Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
+ src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
+ cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
+ bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
+ } else if (dst.size() == 2) {
+ Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
+ Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
+ Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, src, cond);
+
+ cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
+ tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
+ upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_f2f32: {
+ if (instr->src[0].src.ssa->bit_size == 64) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_f2f64: {
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_i2f32: {
+ assert(dst.size() == 1);
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
+ break;
+ }
+ case nir_op_i2f64: {
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ RegClass rc = RegClass(src.type(), 1);
+ Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
+ lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
+ upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
+ upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
+ bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_u2f32: {
+ assert(dst.size() == 1);
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
+ break;
+ }
+ case nir_op_u2f64: {
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ RegClass rc = RegClass(src.type(), 1);
+ Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
+ lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
+ upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
+ upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
+ bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_f2i32: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ if (dst.type() == RegType::vgpr)
+ bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
+ else
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
+ bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
+
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ if (dst.type() == RegType::vgpr)
+ bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
+ else
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
+ bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_f2u32: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ if (dst.type() == RegType::vgpr)
+ bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
+ else
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
+ bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
+
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ if (dst.type() == RegType::vgpr)
+ bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
+ else
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
+ bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_f2i64: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
+ Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
+ exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
+ Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
+ Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
+ mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
+ mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
+ mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
+ Temp new_exponent = bld.tmp(v1);
+ Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
+ mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
+ Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
+ Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
+ lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
+ upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
+ lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
+ upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
+ Temp new_lower = bld.tmp(v1);
+ borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
+ Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
+
+ } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
+ if (src.type() == RegType::vgpr)
+ src = bld.as_uniform(src);
+ Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
+ exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
+ exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
+ exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
+ Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
+ Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
+ mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
+ mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
+ mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
+ exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
+ mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
+ Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
+ Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
+ mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
+ Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
+ lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
+ upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
+ Temp borrow = bld.tmp(s1);
+ lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
+ upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
+ Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
+ Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
+ vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
+ Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
+ Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
+ Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
+ Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
+ if (dst.type() == RegType::sgpr) {
+ lower = bld.as_uniform(lower);
+ upper = bld.as_uniform(upper);
+ }
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_f2u64: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
+ Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
+ Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(64u), exponent);
+ exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
+ Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
+ mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
+ Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
+ Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
+ mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
+ Temp new_exponent = bld.tmp(v1);
+ Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
+ mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
+ Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
+ lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
+ upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
+ lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
+ upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+
+ } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
+ if (src.type() == RegType::vgpr)
+ src = bld.as_uniform(src);
+ Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
+ exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
+ exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
+ Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
+ mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
+ Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
+ Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
+ mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
+ Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
+ mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
+ Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
+ mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
+ Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
+ Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
+ lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
+ upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
+ Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
+ Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
+ vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
+ Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
+ Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
+ Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
+ Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
+ if (dst.type() == RegType::sgpr) {
+ lower = bld.as_uniform(lower);
+ upper = bld.as_uniform(upper);
+ }
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_b2f32: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.regClass() == s1) {
+ src = as_uniform_bool(ctx, src);
+ bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
+ } else if (dst.regClass() == v1) {
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u),
+ as_divergent_bool(ctx, src, true));
+ } else {
+ unreachable("Wrong destination register class for nir_op_b2f32.");
+ }
+ break;
+ }
+ case nir_op_b2f64: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.regClass() == s2) {
+ src = as_uniform_bool(ctx, src);
+ bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
+ } else if (dst.regClass() == v2) {
+ Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
+ Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one,
+ as_divergent_bool(ctx, src, true));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
+ } else {
+ unreachable("Wrong destination register class for nir_op_b2f64.");
+ }
+ break;
+ }
+ case nir_op_i2i32: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 64) {
+ /* we can actually just say dst = src, as it would map the lower register */
+ emit_extract_vector(ctx, src, 0, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_u2u32: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 16) {
+ if (dst.regClass() == s1) {
+ bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
+ } else {
+ // TODO: do better with SDWA
+ bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
+ }
+ } else if (instr->src[0].src.ssa->bit_size == 64) {
+ /* we can actually just say dst = src, as it would map the lower register */
+ emit_extract_vector(ctx, src, 0, dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_i2i64: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_u2u64: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (instr->src[0].src.ssa->bit_size == 32) {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_b2i32: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.regClass() == s1) {
+ if (src.regClass() == s1) {
+ bld.copy(Definition(dst), src);
+ } else {
+ // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
+ assert(src.regClass() == s2);
+ bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(Definition(dst)), Operand(0u), src);
+ }
+ } else {
+ assert(dst.regClass() == v1 && src.regClass() == s2);
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
+ }
+ break;
+ }
+ case nir_op_i2b1: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (dst.regClass() == s2) {
+ assert(src.regClass() == v1 || src.regClass() == v2);
+ bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
+ Definition(dst), Operand(0u), src).def(0).setHint(vcc);
+ } else {
+ assert(src.regClass() == s1 && dst.regClass() == s1);
+ bld.sopc(aco_opcode::s_cmp_lg_u32, bld.scc(Definition(dst)), Operand(0u), src);
+ }
+ break;
+ }
+ case nir_op_pack_64_2x32_split: {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
+ break;
+ }
+ case nir_op_unpack_64_2x32_split_x:
+ bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
+ break;
+ case nir_op_unpack_64_2x32_split_y:
+ bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
+ break;
+ case nir_op_pack_half_2x16: {
+ Temp src = get_alu_src(ctx, instr->src[0], 2);
+
+ if (dst.regClass() == v1) {
+ Temp src0 = bld.tmp(v1);
+ Temp src1 = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
+ bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_unpack_half_2x16_split_x: {
+ if (dst.regClass() == v1) {
+ Builder bld(ctx->program, ctx->block);
+ bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_unpack_half_2x16_split_y: {
+ if (dst.regClass() == v1) {
+ Builder bld(ctx->program, ctx->block);
+ /* TODO: use SDWA here */
+ bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
+ bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_fquantize2f16: {
+ Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), get_alu_src(ctx, instr->src[0]));
+
+ Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
+
+ Temp cmp_res = bld.tmp(s2);
+ bld.vopc_e64(aco_opcode::v_cmp_class_f16, Definition(cmp_res), f16, mask).def(0).setHint(vcc);
+
+ Temp f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
+
+ bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
+ break;
+ }
+ case nir_op_bfm: {
+ Temp bits = get_alu_src(ctx, instr->src[0]);
+ Temp offset = get_alu_src(ctx, instr->src[1]);
+
+ if (dst.regClass() == s1) {
+ bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
+ } else if (dst.regClass() == v1) {
+ bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_bitfield_select: {
+ /* (mask & insert) | (~mask & base) */
+ Temp bitmask = get_alu_src(ctx, instr->src[0]);
+ Temp insert = get_alu_src(ctx, instr->src[1]);
+ Temp base = get_alu_src(ctx, instr->src[2]);
+
+ /* dst = (insert & bitmask) | (base & ~bitmask) */
+ if (dst.regClass() == s1) {
+ aco_ptr<Instruction> sop2;
+ nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
+ nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
+ Operand lhs;
+ if (const_insert && const_bitmask) {
+ lhs = Operand(const_insert->u32 & const_bitmask->u32);
+ } else {
+ insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
+ lhs = Operand(insert);
+ }
+
+ Operand rhs;
+ nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
+ if (const_base && const_bitmask) {
+ rhs = Operand(const_base->u32 & ~const_bitmask->u32);
+ } else {
+ base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
+ rhs = Operand(base);
+ }
+
+ bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
+
+ } else if (dst.regClass() == v1) {
+ if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
+ base = as_vgpr(ctx, base);
+ if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
+ insert = as_vgpr(ctx, insert);
+
+ bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
+
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ubfe:
+ case nir_op_ibfe: {
+ Temp base = get_alu_src(ctx, instr->src[0]);
+ Temp offset = get_alu_src(ctx, instr->src[1]);
+ Temp bits = get_alu_src(ctx, instr->src[2]);
+
+ if (dst.type() == RegType::sgpr) {
+ Operand extract;
+ nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
+ nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
+ if (const_offset && const_bits) {
+ uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
+ extract = Operand(const_extract);
+ } else {
+ Operand width;
+ if (const_bits) {
+ width = Operand(const_bits->u32 << 16);
+ } else {
+ width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
+ }
+ extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
+ }
+
+ aco_opcode opcode;
+ if (dst.regClass() == s1) {
+ if (instr->op == nir_op_ubfe)
+ opcode = aco_opcode::s_bfe_u32;
+ else
+ opcode = aco_opcode::s_bfe_i32;
+ } else if (dst.regClass() == s2) {
+ if (instr->op == nir_op_ubfe)
+ opcode = aco_opcode::s_bfe_u64;
+ else
+ opcode = aco_opcode::s_bfe_i64;
+ } else {
+ unreachable("Unsupported BFE bit size");
+ }
+
+ bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
+
+ } else {
+ aco_opcode opcode;
+ if (dst.regClass() == v1) {
+ if (instr->op == nir_op_ubfe)
+ opcode = aco_opcode::v_bfe_u32;
+ else
+ opcode = aco_opcode::v_bfe_i32;
+ } else {
+ unreachable("Unsupported BFE bit size");
+ }
+
+ emit_vop3a_instruction(ctx, instr, opcode, dst);
+ }
+ break;
+ }
+ case nir_op_bit_count: {
+ Temp src = get_alu_src(ctx, instr->src[0]);
+ if (src.regClass() == s1) {
+ bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
+ } else if (src.regClass() == v1) {
+ bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
+ } else if (src.regClass() == v2) {
+ bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
+ emit_extract_vector(ctx, src, 1, v1),
+ bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
+ emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
+ } else if (src.regClass() == s2) {
+ bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_flt: {
+ if (instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f32, dst);
+ else if (instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f64, dst);
+ break;
+ }
+ case nir_op_fge: {
+ if (instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f32, dst);
+ else if (instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f64, dst);
+ break;
+ }
+ case nir_op_feq: {
+ if (instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f32, dst);
+ else if (instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f64, dst);
+ break;
+ }
+ case nir_op_fne: {
+ if (instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f32, dst);
+ else if (instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f64, dst);
+ break;
+ }
+ case nir_op_ilt: {
+ if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i32, dst);
+ else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_i32, dst);
+ else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i64, dst);
+ break;
+ }
+ case nir_op_ige: {
+ if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i32, dst);
+ else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_i32, dst);
+ else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i64, dst);
+ break;
+ }
+ case nir_op_ieq: {
+ if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i32, dst);
+ } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_i32, dst);
+ } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i64, dst);
+ } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_u64, dst);
+ } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ bld.sopc(aco_opcode::s_cmp_eq_i32, bld.scc(Definition(dst)),
+ as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
+ } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ bld.sop2(aco_opcode::s_xnor_b64, Definition(dst), bld.def(s1, scc),
+ as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ine: {
+ if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i32, dst);
+ } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i64, dst);
+ } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_i32, dst);
+ } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_u64, dst);
+ } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ bld.sopc(aco_opcode::s_cmp_lg_i32, bld.scc(Definition(dst)),
+ as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
+ } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
+ Temp src0 = get_alu_src(ctx, instr->src[0]);
+ Temp src1 = get_alu_src(ctx, instr->src[1]);
+ bld.sop2(aco_opcode::s_xor_b64, Definition(dst), bld.def(s1, scc),
+ as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_op_ult: {
+ if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u32, dst);
+ else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_u32, dst);
+ else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u64, dst);
+ break;
+ }
+ case nir_op_uge: {
+ if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u32, dst);
+ else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
+ emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_u32, dst);
+ else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
+ emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u64, dst);
+ break;
+ }
+ case nir_op_fddx:
+ case nir_op_fddy:
+ case nir_op_fddx_fine:
+ case nir_op_fddy_fine:
+ case nir_op_fddx_coarse:
+ case nir_op_fddy_coarse: {
+ Definition tl = bld.def(v1);
+ uint16_t dpp_ctrl;
+ if (instr->op == nir_op_fddx_fine) {
+ bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 2, 2));
+ dpp_ctrl = dpp_quad_perm(1, 1, 3, 3);
+ } else if (instr->op == nir_op_fddy_fine) {
+ bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 1, 0, 1));
+ dpp_ctrl = dpp_quad_perm(2, 3, 2, 3);
+ } else {
+ bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 0, 0));
+ if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
+ dpp_ctrl = dpp_quad_perm(1, 1, 1, 1);
+ else
+ dpp_ctrl = dpp_quad_perm(2, 2, 2, 2);
+ }
+
+ Definition tmp = bld.def(v1);
+ bld.vop2_dpp(aco_opcode::v_sub_f32, tmp, get_alu_src(ctx, instr->src[0]), tl.getTemp(), dpp_ctrl);
+ emit_wqm(ctx, tmp.getTemp(), dst, true);
+ break;
+ }
+ default:
+ fprintf(stderr, "Unknown NIR ALU instr: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+}
+
+void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
+{
+ Temp dst = get_ssa_temp(ctx, &instr->def);
+
+ // TODO: we really want to have the resulting type as this would allow for 64bit literals
+ // which get truncated the lsb if double and msb if int
+ // for now, we only use s_mov_b64 with 64bit inline constants
+ assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
+ assert(dst.type() == RegType::sgpr);
+
+ if (dst.size() == 1)
+ {
+ Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(instr->value[0].u32));
+ } else {
+ assert(dst.size() != 1);
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
+ if (instr->def.bit_size == 64)
+ for (unsigned i = 0; i < dst.size(); i++)
+ vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
+ else {
+ for (unsigned i = 0; i < dst.size(); i++)
+ vec->operands[i] = Operand{instr->value[i].u32};
+ }
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ }
+}
+
+uint32_t widen_mask(uint32_t mask, unsigned multiplier)
+{
+ uint32_t new_mask = 0;
+ for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
+ if (mask & (1u << i))
+ new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
+ return new_mask;
+}
+
+void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ /* This wouldn't work inside control flow or with indirect offsets but
+ * that doesn't happen because of nir_lower_io_to_temporaries(). */
+
+ unsigned write_mask = nir_intrinsic_write_mask(instr);
+ unsigned component = nir_intrinsic_component(instr);
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ unsigned idx = nir_intrinsic_base(instr) + component;
+
+ nir_instr *off_instr = instr->src[1].ssa->parent_instr;
+ if (off_instr->type != nir_instr_type_load_const) {
+ fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
+ nir_print_instr(off_instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
+
+ if (instr->src[0].ssa->bit_size == 64)
+ write_mask = widen_mask(write_mask, 2);
+
+ for (unsigned i = 0; i < 8; ++i) {
+ if (write_mask & (1 << i)) {
+ ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
+ ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
+ }
+ idx++;
+ }
+}
+
+void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ unsigned write_mask = nir_intrinsic_write_mask(instr);
+ Operand values[4];
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ for (unsigned i = 0; i < 4; ++i) {
+ if (write_mask & (1 << i)) {
+ Temp tmp = emit_extract_vector(ctx, src, i, v1);
+ values[i] = Operand(tmp);
+ } else {
+ values[i] = Operand(v1);
+ }
+ }
+
+ unsigned index = nir_intrinsic_base(instr) / 4;
+ unsigned target, col_format;
+ unsigned enabled_channels = 0xF;
+ aco_opcode compr_op = (aco_opcode)0;
+
+ nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
+ assert(offset && "Non-const offsets on exports not yet supported");
+ index += offset->u32;
+
+ assert(index != FRAG_RESULT_COLOR);
+
+ /* Unlike vertex shader exports, it's fine to use multiple exports to
+ * export separate channels of one target. So shaders which export both
+ * FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
+ * TODO: combine the exports in those cases and create better code
+ */
+
+ if (index == FRAG_RESULT_SAMPLE_MASK) {
+
+ if (ctx->program->info->ps.writes_z) {
+ target = V_008DFC_SQ_EXP_MRTZ;
+ enabled_channels = 0x4;
+ col_format = (unsigned) -1;
+
+ values[2] = values[0];
+ values[0] = Operand(v1);
+ } else {
+ aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
+ exp->valid_mask = false;
+ exp->done = false;
+ exp->compressed = true;
+ exp->dest = V_008DFC_SQ_EXP_MRTZ;
+ exp->enabled_mask = 0xc;
+ for (int i = 0; i < 4; i++)
+ exp->operands[i] = Operand(v1);
+ exp->operands[1] = Operand(values[0]);
+ ctx->block->instructions.emplace_back(std::move(exp));
+ return;
+ }
+
+ } else if (index == FRAG_RESULT_DEPTH) {
+
+ target = V_008DFC_SQ_EXP_MRTZ;
+ enabled_channels = 0x1;
+ col_format = (unsigned) -1;
+
+ } else if (index == FRAG_RESULT_STENCIL) {
+
+ if (ctx->program->info->ps.writes_z) {
+ target = V_008DFC_SQ_EXP_MRTZ;
+ enabled_channels = 0x2;
+ col_format = (unsigned) -1;
+
+ values[1] = values[0];
+ values[0] = Operand(v1);
+ } else {
+ aco_ptr<Instruction> shift{create_instruction<VOP2_instruction>(aco_opcode::v_lshlrev_b32, Format::VOP2, 2, 1)};
+ shift->operands[0] = Operand((uint32_t) 16);
+ shift->operands[1] = values[0];
+ Temp tmp = {ctx->program->allocateId(), v1};
+ shift->definitions[0] = Definition(tmp);
+ ctx->block->instructions.emplace_back(std::move(shift));
+
+ aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
+ exp->valid_mask = false;
+ exp->done = false;
+ exp->compressed = true;
+ exp->dest = V_008DFC_SQ_EXP_MRTZ;
+ exp->enabled_mask = 0x3;
+ exp->operands[0] = Operand(tmp);
+ for (int i = 1; i < 4; i++)
+ exp->operands[i] = Operand(v1);
+ ctx->block->instructions.emplace_back(std::move(exp));
+ return;
+ }
+
+ } else {
+ index -= FRAG_RESULT_DATA0;
+ target = V_008DFC_SQ_EXP_MRT + index;
+ col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
+ }
+ ASSERTED bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
+ ASSERTED bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
+ assert(!is_int8 && !is_int10);
+
+ switch (col_format)
+ {
+ case V_028714_SPI_SHADER_ZERO:
+ enabled_channels = 0; /* writemask */
+ target = V_008DFC_SQ_EXP_NULL;
+ break;
+
+ case V_028714_SPI_SHADER_32_R:
+ enabled_channels = 1;
+ break;
+
+ case V_028714_SPI_SHADER_32_GR:
+ enabled_channels = 0x3;
+ break;
+
+ case V_028714_SPI_SHADER_32_AR:
+ enabled_channels = 0x9;
+ break;
+
+ case V_028714_SPI_SHADER_FP16_ABGR:
+ enabled_channels = 0x5;
+ compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
+ break;
+
+ case V_028714_SPI_SHADER_UNORM16_ABGR:
+ enabled_channels = 0x5;
+ compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
+ break;
+
+ case V_028714_SPI_SHADER_SNORM16_ABGR:
+ enabled_channels = 0x5;
+ compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
+ break;
+
+ case V_028714_SPI_SHADER_UINT16_ABGR:
+ enabled_channels = 0x5;
+ compr_op = aco_opcode::v_cvt_pk_u16_u32;
+ break;
+
+ case V_028714_SPI_SHADER_SINT16_ABGR:
+ enabled_channels = 0x5;
+ compr_op = aco_opcode::v_cvt_pk_i16_i32;
+ break;
+
+ case V_028714_SPI_SHADER_32_ABGR:
+ enabled_channels = 0xF;
+ break;
+
+ default:
+ break;
+ }
+
+ if (target == V_008DFC_SQ_EXP_NULL)
+ return;
+
+ if ((bool)compr_op)
+ {
+ for (int i = 0; i < 2; i++)
+ {
+ /* check if at least one of the values to be compressed is enabled */
+ unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
+ if (enabled) {
+ enabled_channels |= enabled << (i*2);
+ aco_ptr<VOP3A_instruction> compr{create_instruction<VOP3A_instruction>(compr_op, Format::VOP3A, 2, 1)};
+ Temp tmp{ctx->program->allocateId(), v1};
+ compr->operands[0] = values[i*2].isUndefined() ? Operand(0u) : values[i*2];
+ compr->operands[1] = values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1];
+ compr->definitions[0] = Definition(tmp);
+ values[i] = Operand(tmp);
+ ctx->block->instructions.emplace_back(std::move(compr));
+ } else {
+ values[i] = Operand(v1);
+ }
+ }
+ }
+
+ aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
+ exp->valid_mask = false;
+ exp->done = false;
+ exp->compressed = (bool) compr_op;
+ exp->dest = target;
+ exp->enabled_mask = enabled_channels;
+ if ((bool) compr_op) {
+ for (int i = 0; i < 2; i++)
+ exp->operands[i] = enabled_channels & (3 << (i * 2)) ? values[i] : Operand(v1);
+ exp->operands[2] = Operand(v1);
+ exp->operands[3] = Operand(v1);
+ } else {
+ for (int i = 0; i < 4; i++)
+ exp->operands[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
+ }
+
+ ctx->block->instructions.emplace_back(std::move(exp));
+}
+
+void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ if (ctx->stage == vertex_vs) {
+ visit_store_vs_output(ctx, instr);
+ } else if (ctx->stage == fragment_fs) {
+ visit_store_fs_output(ctx, instr);
+ } else {
+ unreachable("Shader stage not implemented");
+ }
+}
+
+void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
+{
+ Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
+ Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
+
+ Builder bld(ctx->program, ctx->block);
+ Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
+ bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
+}
+
+void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
+{
+ aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
+ for (unsigned i = 0; i < num_components; i++)
+ vec->operands[i] = Operand(ctx->fs_inputs[fs_input::frag_pos_0 + i]);
+
+ if (ctx->fs_vgpr_args[fs_input::frag_pos_3]) {
+ assert(num_components == 4);
+ Builder bld(ctx->program, ctx->block);
+ vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ctx->fs_inputs[fs_input::frag_pos_3]);
+ }
+
+ for (Operand& op : vec->operands)
+ op = op.isUndefined() ? Operand(0u) : op;
+
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ emit_split_vector(ctx, dst, num_components);
+ return;
+}
+
+void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
+ unsigned idx = nir_intrinsic_base(instr);
+ unsigned component = nir_intrinsic_component(instr);
+ Temp prim_mask = ctx->prim_mask;
+
+ nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
+ if (offset) {
+ assert(offset->u32 == 0);
+ } else {
+ /* the lower 15bit of the prim_mask contain the offset into LDS
+ * while the upper bits contain the number of prims */
+ Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
+ assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
+ Builder bld(ctx->program, ctx->block);
+ Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
+ stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
+ stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
+ offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
+ prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
+ }
+
+ if (instr->dest.ssa.num_components == 1) {
+ emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
+ } else {
+ aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
+ for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
+ {
+ Temp tmp = {ctx->program->allocateId(), v1};
+ emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
+ vec->operands[i] = Operand(tmp);
+ }
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ }
+}
+
+unsigned get_num_channels_from_data_format(unsigned data_format)
+{
+ switch (data_format) {
+ case V_008F0C_BUF_DATA_FORMAT_8:
+ case V_008F0C_BUF_DATA_FORMAT_16:
+ case V_008F0C_BUF_DATA_FORMAT_32:
+ return 1;
+ case V_008F0C_BUF_DATA_FORMAT_8_8:
+ case V_008F0C_BUF_DATA_FORMAT_16_16:
+ case V_008F0C_BUF_DATA_FORMAT_32_32:
+ return 2;
+ case V_008F0C_BUF_DATA_FORMAT_10_11_11:
+ case V_008F0C_BUF_DATA_FORMAT_11_11_10:
+ case V_008F0C_BUF_DATA_FORMAT_32_32_32:
+ return 3;
+ case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
+ case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
+ case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
+ case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
+ case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
+ return 4;
+ default:
+ break;
+ }
+
+ return 4;
+}
+
+/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
+ * so we may need to fix it up. */
+Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
+ alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
+
+ /* For the integer-like cases, do a natural sign extension.
+ *
+ * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
+ * and happen to contain 0, 1, 2, 3 as the two LSBs of the
+ * exponent.
+ */
+ alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
+ alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
+
+ /* Convert back to the right type. */
+ if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
+ alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
+ Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0xbf800000u), alpha);
+ alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
+ } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
+ alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
+ }
+
+ return alpha;
+}
+
+void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ if (ctx->stage & sw_vs) {
+
+ nir_instr *off_instr = instr->src[0].ssa->parent_instr;
+ if (off_instr->type != nir_instr_type_load_const) {
+ fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
+ nir_print_instr(off_instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
+
+ Temp vertex_buffers = convert_pointer_to_64_bit(ctx, ctx->vertex_buffers);
+
+ unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
+ unsigned component = nir_intrinsic_component(instr);
+ unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
+ uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
+ uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
+ unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
+
+ unsigned dfmt = attrib_format & 0xf;
+
+ unsigned nfmt = (attrib_format >> 4) & 0x7;
+ unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
+ unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
+ unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
+ unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
+ bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
+ if (post_shuffle)
+ num_channels = MAX2(num_channels, 3);
+
+ Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
+
+ Temp index;
+ if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
+ uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
+ if (divisor) {
+ ctx->needs_instance_id = true;
+
+ if (divisor != 1) {
+ Temp divided = bld.tmp(v1);
+ emit_v_div_u32(ctx, divided, as_vgpr(ctx, ctx->instance_id), divisor);
+ index = bld.vadd32(bld.def(v1), ctx->start_instance, divided);
+ } else {
+ index = bld.vadd32(bld.def(v1), ctx->start_instance, ctx->instance_id);
+ }
+ } else {
+ index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), ctx->start_instance);
+ }
+ } else {
+ index = bld.vadd32(bld.def(v1), ctx->base_vertex, ctx->vertex_id);
+ }
+
+ if (attrib_stride != 0 && attrib_offset > attrib_stride) {
+ index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
+ attrib_offset = attrib_offset % attrib_stride;
+ }
+
+ Operand soffset(0u);
+ if (attrib_offset >= 4096) {
+ soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
+ attrib_offset = 0;
+ }
+
+ aco_opcode opcode;
+ switch (num_channels) {
+ case 1:
+ opcode = aco_opcode::tbuffer_load_format_x;
+ break;
+ case 2:
+ opcode = aco_opcode::tbuffer_load_format_xy;
+ break;
+ case 3:
+ opcode = aco_opcode::tbuffer_load_format_xyz;
+ break;
+ case 4:
+ opcode = aco_opcode::tbuffer_load_format_xyzw;
+ break;
+ default:
+ unreachable("Unimplemented load_input vector size");
+ }
+
+ Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
+
+ aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
+ mubuf->operands[0] = Operand(index);
+ mubuf->operands[1] = Operand(list);
+ mubuf->operands[2] = soffset;
+ mubuf->definitions[0] = Definition(tmp);
+ mubuf->idxen = true;
+ mubuf->can_reorder = true;
+ mubuf->dfmt = dfmt;
+ mubuf->nfmt = nfmt;
+ assert(attrib_offset < 4096);
+ mubuf->offset = attrib_offset;
+ ctx->block->instructions.emplace_back(std::move(mubuf));
+
+ emit_split_vector(ctx, tmp, tmp.size());
+
+ if (tmp.id() != dst.id()) {
+ bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
+ nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
+
+ static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
+ static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
+ const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
+
+ aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
+ for (unsigned i = 0; i < dst.size(); i++) {
+ unsigned idx = i + component;
+ if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
+ Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
+ vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
+ } else if (idx < num_channels) {
+ vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
+ } else if (is_float && idx == 3) {
+ vec->operands[i] = Operand(0x3f800000u);
+ } else if (!is_float && idx == 3) {
+ vec->operands[i] = Operand(1u);
+ } else {
+ vec->operands[i] = Operand(0u);
+ }
+ }
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ emit_split_vector(ctx, dst, dst.size());
+ }
+
+ } else if (ctx->stage == fragment_fs) {
+ nir_instr *off_instr = instr->src[0].ssa->parent_instr;
+ if (off_instr->type != nir_instr_type_load_const ||
+ nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
+ fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
+ nir_print_instr(off_instr, stderr);
+ fprintf(stderr, "\n");
+ }
+
+ Temp prim_mask = ctx->prim_mask;
+ nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
+ if (offset) {
+ assert(offset->u32 == 0);
+ } else {
+ /* the lower 15bit of the prim_mask contain the offset into LDS
+ * while the upper bits contain the number of prims */
+ Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
+ assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
+ Builder bld(ctx->program, ctx->block);
+ Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
+ stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
+ stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
+ offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
+ prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
+ }
+
+ unsigned idx = nir_intrinsic_base(instr);
+ unsigned component = nir_intrinsic_component(instr);
+
+ if (dst.size() == 1) {
+ bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
+ } else {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
+ for (unsigned i = 0; i < dst.size(); i++)
+ vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
+ vec->definitions[0] = Definition(dst);
+ bld.insert(std::move(vec));
+ }
+
+ } else {
+ unreachable("Shader stage not implemented");
+ }
+}
+
+Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
+{
+ if (ctx->program->info->need_indirect_descriptor_sets) {
+ Builder bld(ctx->program, ctx->block);
+ Temp ptr64 = convert_pointer_to_64_bit(ctx, ctx->descriptor_sets[0]);
+ return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
+ }
+
+ return ctx->descriptor_sets[desc_set];
+}
+
+
+void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
+ unsigned desc_set = nir_intrinsic_desc_set(instr);
+ unsigned binding = nir_intrinsic_binding(instr);
+
+ Temp desc_ptr;
+ radv_pipeline_layout *pipeline_layout = ctx->options->layout;
+ radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
+ unsigned offset = layout->binding[binding].offset;
+ unsigned stride;
+ if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
+ layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
+ unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
+ desc_ptr = ctx->push_constants;
+ offset = pipeline_layout->push_constant_size + 16 * idx;
+ stride = 16;
+ } else {
+ desc_ptr = load_desc_ptr(ctx, desc_set);
+ stride = layout->binding[binding].size;
+ }
+
+ nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
+ unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
+ if (stride != 1) {
+ if (nir_const_index) {
+ const_index = const_index * stride;
+ } else {
+ index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
+ }
+ }
+ if (offset) {
+ if (nir_const_index) {
+ const_index = const_index + offset;
+ } else {
+ index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
+ }
+ }
+
+ if (nir_const_index && const_index == 0) {
+ index = desc_ptr;
+ } else {
+ index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
+ nir_const_index ? Operand(const_index) : Operand(index),
+ Operand(desc_ptr));
+ }
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.sop1(aco_opcode::s_mov_b32, Definition(dst), index);
+}
+
+void load_buffer(isel_context *ctx, unsigned num_components, Temp dst, Temp rsrc, Temp offset, bool glc=false)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ unsigned num_bytes = dst.size() * 4;
+
+ aco_opcode op;
+ if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
+ if (ctx->options->chip_class < GFX8)
+ offset = as_vgpr(ctx, offset);
+
+ Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
+ Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
+ unsigned const_offset = 0;
+
+ Temp lower = Temp();
+ if (num_bytes > 16) {
+ assert(num_components == 3 || num_components == 4);
+ op = aco_opcode::buffer_load_dwordx4;
+ lower = bld.tmp(v4);
+ aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
+ mubuf->definitions[0] = Definition(lower);
+ mubuf->operands[0] = vaddr;
+ mubuf->operands[1] = Operand(rsrc);
+ mubuf->operands[2] = soffset;
+ mubuf->offen = (offset.type() == RegType::vgpr);
+ mubuf->glc = glc;
+ mubuf->barrier = barrier_buffer;
+ bld.insert(std::move(mubuf));
+ emit_split_vector(ctx, lower, 2);
+ num_bytes -= 16;
+ const_offset = 16;
+ }
+
+ switch (num_bytes) {
+ case 4:
+ op = aco_opcode::buffer_load_dword;
+ break;
+ case 8:
+ op = aco_opcode::buffer_load_dwordx2;
+ break;
+ case 12:
+ op = aco_opcode::buffer_load_dwordx3;
+ break;
+ case 16:
+ op = aco_opcode::buffer_load_dwordx4;
+ break;
+ default:
+ unreachable("Load SSBO not implemented for this size.");
+ }
+ aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
+ mubuf->operands[0] = vaddr;
+ mubuf->operands[1] = Operand(rsrc);
+ mubuf->operands[2] = soffset;
+ mubuf->offen = (offset.type() == RegType::vgpr);
+ mubuf->glc = glc;
+ mubuf->barrier = barrier_buffer;
+ mubuf->offset = const_offset;
+ aco_ptr<Instruction> instr = std::move(mubuf);
+
+ if (dst.size() > 4) {
+ assert(lower != Temp());
+ Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
+ instr->definitions[0] = Definition(upper);
+ bld.insert(std::move(instr));
+ if (dst.size() == 8)
+ emit_split_vector(ctx, upper, 2);
+ instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
+ instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
+ instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
+ instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
+ if (dst.size() == 8)
+ instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
+ }
+
+ if (dst.type() == RegType::sgpr) {
+ Temp vec = bld.tmp(RegType::vgpr, dst.size());
+ instr->definitions[0] = Definition(vec);
+ bld.insert(std::move(instr));
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
+ } else {
+ instr->definitions[0] = Definition(dst);
+ bld.insert(std::move(instr));
+ }
+ } else {
+ switch (num_bytes) {
+ case 4:
+ op = aco_opcode::s_buffer_load_dword;
+ break;
+ case 8:
+ op = aco_opcode::s_buffer_load_dwordx2;
+ break;
+ case 12:
+ case 16:
+ op = aco_opcode::s_buffer_load_dwordx4;
+ break;
+ case 24:
+ case 32:
+ op = aco_opcode::s_buffer_load_dwordx8;
+ break;
+ default:
+ unreachable("Load SSBO not implemented for this size.");
+ }
+ aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
+ load->operands[0] = Operand(rsrc);
+ load->operands[1] = Operand(bld.as_uniform(offset));
+ assert(load->operands[1].getTemp().type() == RegType::sgpr);
+ load->definitions[0] = Definition(dst);
+ load->glc = glc;
+ load->barrier = barrier_buffer;
+ assert(ctx->options->chip_class >= GFX8 || !glc);
+
+ /* trim vector */
+ if (dst.size() == 3) {
+ Temp vec = bld.tmp(s4);
+ load->definitions[0] = Definition(vec);
+ bld.insert(std::move(load));
+ emit_split_vector(ctx, vec, 4);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ emit_extract_vector(ctx, vec, 0, s1),
+ emit_extract_vector(ctx, vec, 1, s1),
+ emit_extract_vector(ctx, vec, 2, s1));
+ } else if (dst.size() == 6) {
+ Temp vec = bld.tmp(s8);
+ load->definitions[0] = Definition(vec);
+ bld.insert(std::move(load));
+ emit_split_vector(ctx, vec, 4);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ emit_extract_vector(ctx, vec, 0, s2),
+ emit_extract_vector(ctx, vec, 1, s2),
+ emit_extract_vector(ctx, vec, 2, s2));
+ } else {
+ bld.insert(std::move(load));
+ }
+
+ }
+ emit_split_vector(ctx, dst, num_components);
+}
+
+void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
+
+ Builder bld(ctx->program, ctx->block);
+
+ nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
+ unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
+ unsigned binding = nir_intrinsic_binding(idx_instr);
+ radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
+
+ if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
+ uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
+ S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
+ S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
+ S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
+ S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
+ S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
+ Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
+ Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
+ Operand(0xFFFFFFFFu),
+ Operand(desc_type));
+ rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
+ rsrc, upper_dwords);
+ } else {
+ rsrc = convert_pointer_to_64_bit(ctx, rsrc);
+ rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
+ }
+
+ load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
+}
+
+void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ unsigned offset = nir_intrinsic_base(instr);
+ nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
+ if (index_cv && instr->dest.ssa.bit_size == 32) {
+
+ unsigned count = instr->dest.ssa.num_components;
+ unsigned start = (offset + index_cv->u32) / 4u;
+ start -= ctx->base_inline_push_consts;
+ if (start + count <= ctx->num_inline_push_consts) {
+ std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
+ for (unsigned i = 0; i < count; ++i) {
+ elems[i] = ctx->inline_push_consts[start + i];
+ vec->operands[i] = Operand{elems[i]};
+ }
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ ctx->allocated_vec.emplace(dst.id(), elems);
+ return;
+ }
+ }
+
+ Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
+ if (offset != 0) // TODO check if index != 0 as well
+ index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
+ Temp ptr = convert_pointer_to_64_bit(ctx, ctx->push_constants);
+ Temp vec = dst;
+ bool trim = false;
+ aco_opcode op;
+
+ switch (dst.size()) {
+ case 1:
+ op = aco_opcode::s_load_dword;
+ break;
+ case 2:
+ op = aco_opcode::s_load_dwordx2;
+ break;
+ case 3:
+ vec = bld.tmp(s4);
+ trim = true;
+ case 4:
+ op = aco_opcode::s_load_dwordx4;
+ break;
+ case 6:
+ vec = bld.tmp(s8);
+ trim = true;
+ case 8:
+ op = aco_opcode::s_load_dwordx8;
+ break;
+ default:
+ unreachable("unimplemented or forbidden load_push_constant.");
+ }
+
+ bld.smem(op, Definition(vec), ptr, index);
+
+ if (trim) {
+ emit_split_vector(ctx, vec, 4);
+ RegClass rc = dst.size() == 3 ? s1 : s2;
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ emit_extract_vector(ctx, vec, 0, rc),
+ emit_extract_vector(ctx, vec, 1, rc),
+ emit_extract_vector(ctx, vec, 2, rc));
+
+ }
+ emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
+}
+
+void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ Builder bld(ctx->program, ctx->block);
+
+ uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
+ S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
+ S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
+ S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
+ if (ctx->options->chip_class >= GFX10) {
+ desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
+ S_008F0C_OOB_SELECT(3) |
+ S_008F0C_RESOURCE_LEVEL(1);
+ } else {
+ desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
+ S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
+ }
+
+ unsigned base = nir_intrinsic_base(instr) + ctx->constant_data_offset;
+ unsigned range = nir_intrinsic_range(instr);
+
+ Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
+ if (base && offset.type() == RegType::sgpr)
+ offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
+ else if (base && offset.type() == RegType::vgpr)
+ offset = bld.vadd32(bld.def(v1), Operand(base), offset);
+
+ Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
+ bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(0u)),
+ Operand(MIN2(range, ctx->shader->constant_data_size - nir_intrinsic_base(instr))),
+ Operand(desc_type));
+
+ load_buffer(ctx, instr->num_components, dst, rsrc, offset);
+}
+
+void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
+ ctx->cf_info.exec_potentially_empty = true;
+
+ ctx->program->needs_exact = true;
+
+ Builder bld(ctx->program, ctx->block);
+ Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
+ src = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
+ bld.pseudo(aco_opcode::p_discard_if, src);
+ ctx->block->kind |= block_kind_uses_discard_if;
+ return;
+}
+
+void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
+ ctx->cf_info.exec_potentially_empty = true;
+
+ bool divergent = ctx->cf_info.parent_if.is_divergent ||
+ ctx->cf_info.parent_loop.has_divergent_continue;
+
+ if (ctx->block->loop_nest_depth &&
+ ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
+ /* we handle discards the same way as jump instructions */
+ append_logical_end(ctx->block);
+
+ /* in loops, discard behaves like break */
+ Block *linear_target = ctx->cf_info.parent_loop.exit;
+ ctx->block->kind |= block_kind_discard;
+
+ if (!divergent) {
+ /* uniform discard - loop ends here */
+ assert(nir_instr_is_last(&instr->instr));
+ ctx->block->kind |= block_kind_uniform;
+ ctx->cf_info.has_branch = true;
+ bld.branch(aco_opcode::p_branch);
+ add_linear_edge(ctx->block->index, linear_target);
+ return;
+ }
+
+ /* we add a break right behind the discard() instructions */
+ ctx->block->kind |= block_kind_break;
+ unsigned idx = ctx->block->index;
+
+ /* remove critical edges from linear CFG */
+ bld.branch(aco_opcode::p_branch);
+ Block* break_block = ctx->program->create_and_insert_block();
+ break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ break_block->kind |= block_kind_uniform;
+ add_linear_edge(idx, break_block);
+ add_linear_edge(break_block->index, linear_target);
+ bld.reset(break_block);
+ bld.branch(aco_opcode::p_branch);
+
+ Block* continue_block = ctx->program->create_and_insert_block();
+ continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ add_linear_edge(idx, continue_block);
+ append_logical_start(continue_block);
+ ctx->block = continue_block;
+
+ return;
+ }
+
+ /* it can currently happen that NIR doesn't remove the unreachable code */
+ if (!nir_instr_is_last(&instr->instr)) {
+ ctx->program->needs_exact = true;
+ /* save exec somewhere temporarily so that it doesn't get
+ * overwritten before the discard from outer exec masks */
+ Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, s2));
+ bld.pseudo(aco_opcode::p_discard_if, cond);
+ ctx->block->kind |= block_kind_uses_discard_if;
+ return;
+ }
+
+ /* This condition is incorrect for uniformly branched discards in a loop
+ * predicated by a divergent condition, but the above code catches that case
+ * and the discard would end up turning into a discard_if.
+ * For example:
+ * if (divergent) {
+ * while (...) {
+ * if (uniform) {
+ * discard;
+ * }
+ * }
+ * }
+ */
+ if (!ctx->cf_info.parent_if.is_divergent) {
+ /* program just ends here */
+ ctx->block->kind |= block_kind_uniform;
+ bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
+ 0 /* enabled mask */, 9 /* dest */,
+ false /* compressed */, true/* done */, true /* valid mask */);
+ bld.sopp(aco_opcode::s_endpgm);
+ // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
+ } else {
+ ctx->block->kind |= block_kind_discard;
+ /* branch and linear edge is added by visit_if() */
+ }
+}
+
+enum aco_descriptor_type {
+ ACO_DESC_IMAGE,
+ ACO_DESC_FMASK,
+ ACO_DESC_SAMPLER,
+ ACO_DESC_BUFFER,
+ ACO_DESC_PLANE_0,
+ ACO_DESC_PLANE_1,
+ ACO_DESC_PLANE_2,
+};
+
+enum aco_image_dim {
+ aco_image_1d,
+ aco_image_2d,
+ aco_image_3d,
+ aco_image_cube, // includes cube arrays
+ aco_image_1darray,
+ aco_image_2darray,
+ aco_image_2dmsaa,
+ aco_image_2darraymsaa,
+};
+
+static enum aco_image_dim
+get_sampler_dim(isel_context *ctx, enum glsl_sampler_dim dim, bool is_array)
+{
+ switch (dim) {
+ case GLSL_SAMPLER_DIM_1D:
+ if (ctx->options->chip_class >= GFX9)
+ return is_array ? aco_image_2darray : aco_image_2d;
+ return is_array ? aco_image_1darray : aco_image_1d;
+ case GLSL_SAMPLER_DIM_2D:
+ case GLSL_SAMPLER_DIM_RECT:
+ case GLSL_SAMPLER_DIM_EXTERNAL:
+ return is_array ? aco_image_2darray : aco_image_2d;
+ case GLSL_SAMPLER_DIM_3D:
+ return aco_image_3d;
+ case GLSL_SAMPLER_DIM_CUBE:
+ return aco_image_cube;
+ case GLSL_SAMPLER_DIM_MS:
+ return is_array ? aco_image_2darraymsaa : aco_image_2dmsaa;
+ case GLSL_SAMPLER_DIM_SUBPASS:
+ return aco_image_2darray;
+ case GLSL_SAMPLER_DIM_SUBPASS_MS:
+ return aco_image_2darraymsaa;
+ default:
+ unreachable("bad sampler dim");
+ }
+}
+
+static bool
+should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
+ if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
+ return false;
+ aco_image_dim dim = get_sampler_dim(ctx, sampler_dim, is_array);
+ return dim == aco_image_cube ||
+ dim == aco_image_1darray ||
+ dim == aco_image_2darray ||
+ dim == aco_image_2darraymsaa;
+}
+
+Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
+ enum aco_descriptor_type desc_type,
+ const nir_tex_instr *tex_instr, bool image, bool write)
+{
+/* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
+ std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
+ if (it != ctx->tex_desc.end())
+ return it->second;
+*/
+ Temp index = Temp();
+ bool index_set = false;
+ unsigned constant_index = 0;
+ unsigned descriptor_set;
+ unsigned base_index;
+ Builder bld(ctx->program, ctx->block);
+
+ if (!deref_instr) {
+ assert(tex_instr && !image);
+ descriptor_set = 0;
+ base_index = tex_instr->sampler_index;
+ } else {
+ while(deref_instr->deref_type != nir_deref_type_var) {
+ unsigned array_size = glsl_get_aoa_size(deref_instr->type);
+ if (!array_size)
+ array_size = 1;
+
+ assert(deref_instr->deref_type == nir_deref_type_array);
+ nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
+ if (const_value) {
+ constant_index += array_size * const_value->u32;
+ } else {
+ Temp indirect = bld.as_uniform(get_ssa_temp(ctx, deref_instr->arr.index.ssa));
+
+ if (array_size != 1)
+ indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
+
+ if (!index_set) {
+ index = indirect;
+ index_set = true;
+ } else {
+ index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
+ }
+ }
+
+ deref_instr = nir_src_as_deref(deref_instr->parent);
+ }
+ descriptor_set = deref_instr->var->data.descriptor_set;
+ base_index = deref_instr->var->data.binding;
+ }
+
+ Temp list = load_desc_ptr(ctx, descriptor_set);
+ list = convert_pointer_to_64_bit(ctx, list);
+
+ struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
+ struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
+ unsigned offset = binding->offset;
+ unsigned stride = binding->size;
+ aco_opcode opcode;
+ RegClass type;
+
+ assert(base_index < layout->binding_count);
+
+ switch (desc_type) {
+ case ACO_DESC_IMAGE:
+ type = s8;
+ opcode = aco_opcode::s_load_dwordx8;
+ break;
+ case ACO_DESC_FMASK:
+ type = s8;
+ opcode = aco_opcode::s_load_dwordx8;
+ offset += 32;
+ break;
+ case ACO_DESC_SAMPLER:
+ type = s4;
+ opcode = aco_opcode::s_load_dwordx4;
+ if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
+ offset += radv_combined_image_descriptor_sampler_offset(binding);
+ break;
+ case ACO_DESC_BUFFER:
+ type = s4;
+ opcode = aco_opcode::s_load_dwordx4;
+ break;
+ case ACO_DESC_PLANE_0:
+ case ACO_DESC_PLANE_1:
+ type = s8;
+ opcode = aco_opcode::s_load_dwordx8;
+ offset += 32 * (desc_type - ACO_DESC_PLANE_0);
+ break;
+ case ACO_DESC_PLANE_2:
+ type = s4;
+ opcode = aco_opcode::s_load_dwordx4;
+ offset += 64;
+ break;
+ default:
+ unreachable("invalid desc_type\n");
+ }
+
+ offset += constant_index * stride;
+
+ if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
+ (!index_set || binding->immutable_samplers_equal)) {
+ if (binding->immutable_samplers_equal)
+ constant_index = 0;
+
+ const uint32_t *samplers = radv_immutable_samplers(layout, binding);
+ return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
+ Operand(samplers[constant_index * 4 + 0]),
+ Operand(samplers[constant_index * 4 + 1]),
+ Operand(samplers[constant_index * 4 + 2]),
+ Operand(samplers[constant_index * 4 + 3]));
+ }
+
+ Operand off;
+ if (!index_set) {
+ off = Operand(offset);
+ } else {
+ off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
+ bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
+ }
+
+ Temp res = bld.smem(opcode, bld.def(type), list, off);
+
+ if (desc_type == ACO_DESC_PLANE_2) {
+ Temp components[8];
+ for (unsigned i = 0; i < 8; i++)
+ components[i] = bld.tmp(s1);
+ bld.pseudo(aco_opcode::p_split_vector,
+ Definition(components[0]),
+ Definition(components[1]),
+ Definition(components[2]),
+ Definition(components[3]),
+ res);
+
+ Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
+ bld.pseudo(aco_opcode::p_split_vector,
+ bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
+ Definition(components[4]),
+ Definition(components[5]),
+ Definition(components[6]),
+ Definition(components[7]),
+ desc2);
+
+ res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
+ components[0], components[1], components[2], components[3],
+ components[4], components[5], components[6], components[7]);
+ }
+
+ return res;
+}
+
+static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
+{
+ switch (dim) {
+ case GLSL_SAMPLER_DIM_BUF:
+ return 1;
+ case GLSL_SAMPLER_DIM_1D:
+ return array ? 2 : 1;
+ case GLSL_SAMPLER_DIM_2D:
+ return array ? 3 : 2;
+ case GLSL_SAMPLER_DIM_MS:
+ return array ? 4 : 3;
+ case GLSL_SAMPLER_DIM_3D:
+ case GLSL_SAMPLER_DIM_CUBE:
+ return 3;
+ case GLSL_SAMPLER_DIM_RECT:
+ case GLSL_SAMPLER_DIM_SUBPASS:
+ return 2;
+ case GLSL_SAMPLER_DIM_SUBPASS_MS:
+ return 3;
+ default:
+ break;
+ }
+ return 0;
+}
+
+
+/* Adjust the sample index according to FMASK.
+ *
+ * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
+ * which is the identity mapping. Each nibble says which physical sample
+ * should be fetched to get that sample.
+ *
+ * For example, 0x11111100 means there are only 2 samples stored and
+ * the second sample covers 3/4 of the pixel. When reading samples 0
+ * and 1, return physical sample 0 (determined by the first two 0s
+ * in FMASK), otherwise return physical sample 1.
+ *
+ * The sample index should be adjusted as follows:
+ * sample_index = (fmask >> (sample_index * 4)) & 0xF;
+ */
+static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp fmask = bld.tmp(v1);
+
+ aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
+ load->operands[0] = Operand(coords);
+ load->operands[1] = Operand(fmask_desc_ptr);
+ load->definitions[0] = Definition(fmask);
+ load->glc = false;
+ load->dmask = 0x1;
+ load->unrm = true;
+ load->da = da;
+ load->can_reorder = true; /* fmask images shouldn't be modified */
+ ctx->block->instructions.emplace_back(std::move(load));
+
+ Operand sample_index4;
+ if (sample_index.isConstant() && sample_index.constantValue() < 16) {
+ sample_index4 = Operand(sample_index.constantValue() << 2);
+ } else if (sample_index.regClass() == s1) {
+ sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
+ } else {
+ assert(sample_index.regClass() == v1);
+ sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
+ }
+
+ Temp final_sample;
+ if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
+ final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
+ else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
+ final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
+ else
+ final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
+
+ /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
+ * resource descriptor is 0 (invalid),
+ */
+ Temp compare = bld.tmp(s2);
+ bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
+ Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
+
+ Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
+
+ /* Replace the MSAA sample index. */
+ return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
+}
+
+static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
+{
+
+ Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
+ enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
+ bool is_array = glsl_sampler_type_is_array(type);
+ ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
+ assert(!add_frag_pos && "Input attachments should be lowered.");
+ bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
+ bool gfx9_1d = ctx->options->chip_class >= GFX9 && dim == GLSL_SAMPLER_DIM_1D;
+ int count = image_type_to_components_count(dim, is_array);
+ std::vector<Operand> coords(count);
+
+ if (is_ms) {
+ Operand sample_index;
+ nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
+ if (sample_cv)
+ sample_index = Operand(sample_cv->u32);
+ else
+ sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
+
+ if (instr->intrinsic == nir_intrinsic_image_deref_load) {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
+ for (unsigned i = 0; i < vec->operands.size(); i++)
+ vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
+ Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
+ vec->definitions[0] = Definition(fmask_load_address);
+ ctx->block->instructions.emplace_back(std::move(vec));
+
+ Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
+ sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
+ }
+ count--;
+ coords[count] = sample_index;
+ }
+
+ if (count == 1 && !gfx9_1d)
+ return emit_extract_vector(ctx, src0, 0, v1);
+
+ if (gfx9_1d) {
+ coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
+ coords.resize(coords.size() + 1);
+ coords[1] = Operand((uint32_t) 0);
+ if (is_array)
+ coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
+ } else {
+ for (int i = 0; i < count; i++)
+ coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
+ }
+
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
+ for (unsigned i = 0; i < coords.size(); i++)
+ vec->operands[i] = coords[i];
+ Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
+ vec->definitions[0] = Definition(res);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ return res;
+}
+
+
+void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
+ const struct glsl_type *type = glsl_without_array(var->type);
+ const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ if (dim == GLSL_SAMPLER_DIM_BUF) {
+ unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
+ unsigned num_channels = util_last_bit(mask);
+ Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
+ Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
+
+ aco_opcode opcode;
+ switch (num_channels) {
+ case 1:
+ opcode = aco_opcode::buffer_load_format_x;
+ break;
+ case 2:
+ opcode = aco_opcode::buffer_load_format_xy;
+ break;
+ case 3:
+ opcode = aco_opcode::buffer_load_format_xyz;
+ break;
+ case 4:
+ opcode = aco_opcode::buffer_load_format_xyzw;
+ break;
+ default:
+ unreachable(">4 channel buffer image load");
+ }
+ aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
+ load->operands[0] = Operand(vindex);
+ load->operands[1] = Operand(rsrc);
+ load->operands[2] = Operand((uint32_t) 0);
+ Temp tmp;
+ if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
+ tmp = dst;
+ else
+ tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
+ load->definitions[0] = Definition(tmp);
+ load->idxen = true;
+ load->barrier = barrier_image;
+ ctx->block->instructions.emplace_back(std::move(load));
+
+ expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
+ return;
+ }
+
+ Temp coords = get_image_coords(ctx, instr, type);
+ Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
+ //aco_image_dim img_dim = get_image_dim(ctx, glsl_get_sampler_dim(type), glsl_sampler_type_is_array(type));
+
+ unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
+ unsigned num_components = util_bitcount(dmask);
+ Temp tmp;
+ if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
+ tmp = dst;
+ else
+ tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
+
+ aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
+ load->operands[0] = Operand(coords);
+ load->operands[1] = Operand(resource);
+ load->definitions[0] = Definition(tmp);
+ load->glc = var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
+ load->dmask = dmask;
+ load->unrm = true;
+ load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
+ load->barrier = barrier_image;
+ ctx->block->instructions.emplace_back(std::move(load));
+
+ expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
+ return;
+}
+
+void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
+ const struct glsl_type *type = glsl_without_array(var->type);
+ const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
+ Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
+
+ bool glc = ctx->options->chip_class == GFX6 || var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
+
+ if (dim == GLSL_SAMPLER_DIM_BUF) {
+ Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
+ Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
+ aco_opcode opcode;
+ switch (data.size()) {
+ case 1:
+ opcode = aco_opcode::buffer_store_format_x;
+ break;
+ case 2:
+ opcode = aco_opcode::buffer_store_format_xy;
+ break;
+ case 3:
+ opcode = aco_opcode::buffer_store_format_xyz;
+ break;
+ case 4:
+ opcode = aco_opcode::buffer_store_format_xyzw;
+ break;
+ default:
+ unreachable(">4 channel buffer image store");
+ }
+ aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
+ store->operands[0] = Operand(vindex);
+ store->operands[1] = Operand(rsrc);
+ store->operands[2] = Operand((uint32_t) 0);
+ store->operands[3] = Operand(data);
+ store->idxen = true;
+ store->glc = glc;
+ store->disable_wqm = true;
+ store->barrier = barrier_image;
+ ctx->program->needs_exact = true;
+ ctx->block->instructions.emplace_back(std::move(store));
+ return;
+ }
+
+ assert(data.type() == RegType::vgpr);
+ Temp coords = get_image_coords(ctx, instr, type);
+ Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
+
+ aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(aco_opcode::image_store, Format::MIMG, 4, 0)};
+ store->operands[0] = Operand(coords);
+ store->operands[1] = Operand(resource);
+ store->operands[2] = Operand(s4);
+ store->operands[3] = Operand(data);
+ store->glc = glc;
+ store->dmask = (1 << data.size()) - 1;
+ store->unrm = true;
+ store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
+ store->disable_wqm = true;
+ store->barrier = barrier_image;
+ ctx->program->needs_exact = true;
+ ctx->block->instructions.emplace_back(std::move(store));
+ return;
+}
+
+void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ /* return the previous value if dest is ever used */
+ bool return_previous = false;
+ nir_foreach_use_safe(use_src, &instr->dest.ssa) {
+ return_previous = true;
+ break;
+ }
+ nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
+ return_previous = true;
+ break;
+ }
+
+ const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
+ const struct glsl_type *type = glsl_without_array(var->type);
+ const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
+ Builder bld(ctx->program, ctx->block);
+
+ Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
+ assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
+
+ if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
+ data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
+
+ aco_opcode buf_op, image_op;
+ switch (instr->intrinsic) {
+ case nir_intrinsic_image_deref_atomic_add:
+ buf_op = aco_opcode::buffer_atomic_add;
+ image_op = aco_opcode::image_atomic_add;
+ break;
+ case nir_intrinsic_image_deref_atomic_umin:
+ buf_op = aco_opcode::buffer_atomic_umin;
+ image_op = aco_opcode::image_atomic_umin;
+ break;
+ case nir_intrinsic_image_deref_atomic_imin:
+ buf_op = aco_opcode::buffer_atomic_smin;
+ image_op = aco_opcode::image_atomic_smin;
+ break;
+ case nir_intrinsic_image_deref_atomic_umax:
+ buf_op = aco_opcode::buffer_atomic_umax;
+ image_op = aco_opcode::image_atomic_umax;
+ break;
+ case nir_intrinsic_image_deref_atomic_imax:
+ buf_op = aco_opcode::buffer_atomic_smax;
+ image_op = aco_opcode::image_atomic_smax;
+ break;
+ case nir_intrinsic_image_deref_atomic_and:
+ buf_op = aco_opcode::buffer_atomic_and;
+ image_op = aco_opcode::image_atomic_and;
+ break;
+ case nir_intrinsic_image_deref_atomic_or:
+ buf_op = aco_opcode::buffer_atomic_or;
+ image_op = aco_opcode::image_atomic_or;
+ break;
+ case nir_intrinsic_image_deref_atomic_xor:
+ buf_op = aco_opcode::buffer_atomic_xor;
+ image_op = aco_opcode::image_atomic_xor;
+ break;
+ case nir_intrinsic_image_deref_atomic_exchange:
+ buf_op = aco_opcode::buffer_atomic_swap;
+ image_op = aco_opcode::image_atomic_swap;
+ break;
+ case nir_intrinsic_image_deref_atomic_comp_swap:
+ buf_op = aco_opcode::buffer_atomic_cmpswap;
+ image_op = aco_opcode::image_atomic_cmpswap;
+ break;
+ default:
+ unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
+ }
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ if (dim == GLSL_SAMPLER_DIM_BUF) {
+ Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
+ Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
+ //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
+ aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
+ mubuf->operands[0] = Operand(vindex);
+ mubuf->operands[1] = Operand(resource);
+ mubuf->operands[2] = Operand((uint32_t)0);
+ mubuf->operands[3] = Operand(data);
+ if (return_previous)
+ mubuf->definitions[0] = Definition(dst);
+ mubuf->offset = 0;
+ mubuf->idxen = true;
+ mubuf->glc = return_previous;
+ mubuf->disable_wqm = true;
+ mubuf->barrier = barrier_image;
+ ctx->program->needs_exact = true;
+ ctx->block->instructions.emplace_back(std::move(mubuf));
+ return;
+ }
+
+ Temp coords = get_image_coords(ctx, instr, type);
+ Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
+ aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
+ mimg->operands[0] = Operand(coords);
+ mimg->operands[1] = Operand(resource);
+ mimg->operands[2] = Operand(s4); /* no sampler */
+ mimg->operands[3] = Operand(data);
+ if (return_previous)
+ mimg->definitions[0] = Definition(dst);
+ mimg->glc = return_previous;
+ mimg->dmask = (1 << data.size()) - 1;
+ mimg->unrm = true;
+ mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
+ mimg->disable_wqm = true;
+ mimg->barrier = barrier_image;
+ ctx->program->needs_exact = true;
+ ctx->block->instructions.emplace_back(std::move(mimg));
+ return;
+}
+
+void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
+{
+ if (in_elements && ctx->options->chip_class == GFX8) {
+ Builder bld(ctx->program, ctx->block);
+
+ Temp stride = emit_extract_vector(ctx, desc, 1, s1);
+ stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
+ stride = bld.vop1(aco_opcode::v_cvt_f32_ubyte0, bld.def(v1), stride);
+ stride = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), stride);
+
+ Temp size = emit_extract_vector(ctx, desc, 2, s1);
+ size = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), size);
+
+ Temp res = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), size, stride);
+ res = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), res);
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
+
+ // TODO: we can probably calculate this faster on the scalar unit to do: size / stride{1,2,4,8,12,16}
+ /* idea
+ * for 1,2,4,8,16, the result is just (stride >> S_FF1_I32_B32)
+ * in case 12 (or 3?), we have to divide by 3:
+ * set v_skip in case it's 12 (if we also have to take care of 3, shift first)
+ * use v_mul_hi_u32 with magic number to divide
+ * we need some pseudo merge opcode to overwrite the original SALU result with readfirstlane
+ * disable v_skip
+ * total: 6 SALU + 2 VALU instructions vs 1 SALU + 6 VALU instructions
+ */
+
+ } else {
+ emit_extract_vector(ctx, desc, 2, dst);
+ }
+}
+
+void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
+ const struct glsl_type *type = glsl_without_array(var->type);
+ Builder bld(ctx->program, ctx->block);
+
+ if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
+ Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
+ return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
+ }
+
+ /* LOD */
+ Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
+
+ /* Resource */
+ Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
+ mimg->operands[0] = Operand(lod);
+ mimg->operands[1] = Operand(resource);
+ unsigned& dmask = mimg->dmask;
+ mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
+ mimg->da = glsl_sampler_type_is_array(type);
+ mimg->can_reorder = true;
+ Definition& def = mimg->definitions[0];
+ ctx->block->instructions.emplace_back(std::move(mimg));
+
+ if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
+ glsl_sampler_type_is_array(type)) {
+
+ assert(instr->dest.ssa.num_components == 3);
+ Temp tmp = {ctx->program->allocateId(), v3};
+ def = Definition(tmp);
+ emit_split_vector(ctx, tmp, 3);
+
+ /* divide 3rd value by 6 by multiplying with magic number */
+ Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
+ Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ emit_extract_vector(ctx, tmp, 0, v1),
+ emit_extract_vector(ctx, tmp, 1, v1),
+ by_6);
+
+ } else if (ctx->options->chip_class >= GFX9 &&
+ glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
+ glsl_sampler_type_is_array(type)) {
+ assert(instr->dest.ssa.num_components == 2);
+ def = Definition(dst);
+ dmask = 0x5;
+ } else {
+ def = Definition(dst);
+ }
+
+ emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
+}
+
+void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ unsigned num_components = instr->num_components;
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
+
+ bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
+ load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc);
+}
+
+void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
+ unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
+ unsigned writemask = nir_intrinsic_write_mask(instr);
+
+ Temp offset;
+ if (ctx->options->chip_class < GFX8)
+ offset = as_vgpr(ctx,get_ssa_temp(ctx, instr->src[2].ssa));
+ else
+ offset = get_ssa_temp(ctx, instr->src[2].ssa);
+
+ Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
+ rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
+
+ bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
+ ctx->options->chip_class >= GFX8;
+ if (smem)
+ offset = bld.as_uniform(offset);
+ bool smem_nonfs = smem && ctx->stage != fragment_fs;
+
+ while (writemask) {
+ int start, count;
+ u_bit_scan_consecutive_range(&writemask, &start, &count);
+ if (count == 3 && smem) {
+ writemask |= 1u << (start + 2);
+ count = 2;
+ }
+ int num_bytes = count * elem_size_bytes;
+
+ if (num_bytes > 16) {
+ assert(elem_size_bytes == 8);
+ writemask |= (((count - 2) << 1) - 1) << (start + 2);
+ count = 2;
+ num_bytes = 16;
+ }
+
+ // TODO: check alignment of sub-dword stores
+ // TODO: split 3 bytes. there is no store instruction for that
+
+ Temp write_data;
+ if (count != instr->num_components) {
+ emit_split_vector(ctx, data, instr->num_components);
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
+ for (int i = 0; i < count; i++) {
+ Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
+ vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
+ }
+ write_data = bld.tmp(smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
+ vec->definitions[0] = Definition(write_data);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ } else if (!smem && data.type() != RegType::vgpr) {
+ assert(num_bytes % 4 == 0);
+ write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
+ } else if (smem_nonfs && data.type() == RegType::vgpr) {
+ assert(num_bytes % 4 == 0);
+ write_data = bld.as_uniform(data);
+ } else {
+ write_data = data;
+ }
+
+ aco_opcode vmem_op, smem_op;
+ switch (num_bytes) {
+ case 4:
+ vmem_op = aco_opcode::buffer_store_dword;
+ smem_op = aco_opcode::s_buffer_store_dword;
+ break;
+ case 8:
+ vmem_op = aco_opcode::buffer_store_dwordx2;
+ smem_op = aco_opcode::s_buffer_store_dwordx2;
+ break;
+ case 12:
+ vmem_op = aco_opcode::buffer_store_dwordx3;
+ smem_op = aco_opcode::last_opcode;
+ assert(!smem);
+ break;
+ case 16:
+ vmem_op = aco_opcode::buffer_store_dwordx4;
+ smem_op = aco_opcode::s_buffer_store_dwordx4;
+ break;
+ default:
+ unreachable("Store SSBO not implemented for this size.");
+ }
+ if (ctx->stage == fragment_fs)
+ smem_op = aco_opcode::p_fs_buffer_store_smem;
+
+ if (smem) {
+ aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
+ store->operands[0] = Operand(rsrc);
+ if (start) {
+ Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
+ offset, Operand(start * elem_size_bytes));
+ store->operands[1] = Operand(off);
+ } else {
+ store->operands[1] = Operand(offset);
+ }
+ if (smem_op != aco_opcode::p_fs_buffer_store_smem)
+ store->operands[1].setFixed(m0);
+ store->operands[2] = Operand(write_data);
+ store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
+ store->disable_wqm = true;
+ store->barrier = barrier_buffer;
+ ctx->block->instructions.emplace_back(std::move(store));
+ ctx->program->wb_smem_l1_on_end = true;
+ if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
+ ctx->block->kind |= block_kind_needs_lowering;
+ ctx->program->needs_exact = true;
+ }
+ } else {
+ aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
+ store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
+ store->operands[1] = Operand(rsrc);
+ store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
+ store->operands[3] = Operand(write_data);
+ store->offset = start * elem_size_bytes;
+ store->offen = (offset.type() == RegType::vgpr);
+ store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
+ store->disable_wqm = true;
+ store->barrier = barrier_buffer;
+ ctx->program->needs_exact = true;
+ ctx->block->instructions.emplace_back(std::move(store));
+ }
+ }
+}
+
+void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ /* return the previous value if dest is ever used */
+ bool return_previous = false;
+ nir_foreach_use_safe(use_src, &instr->dest.ssa) {
+ return_previous = true;
+ break;
+ }
+ nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
+ return_previous = true;
+ break;
+ }
+
+ Builder bld(ctx->program, ctx->block);
+ Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
+
+ if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
+ data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
+ get_ssa_temp(ctx, instr->src[3].ssa), data);
+
+ Temp offset;
+ if (ctx->options->chip_class < GFX8)
+ offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
+ else
+ offset = get_ssa_temp(ctx, instr->src[1].ssa);
+
+ Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ aco_opcode op32, op64;
+ switch (instr->intrinsic) {
+ case nir_intrinsic_ssbo_atomic_add:
+ op32 = aco_opcode::buffer_atomic_add;
+ op64 = aco_opcode::buffer_atomic_add_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_imin:
+ op32 = aco_opcode::buffer_atomic_smin;
+ op64 = aco_opcode::buffer_atomic_smin_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_umin:
+ op32 = aco_opcode::buffer_atomic_umin;
+ op64 = aco_opcode::buffer_atomic_umin_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_imax:
+ op32 = aco_opcode::buffer_atomic_smax;
+ op64 = aco_opcode::buffer_atomic_smax_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_umax:
+ op32 = aco_opcode::buffer_atomic_umax;
+ op64 = aco_opcode::buffer_atomic_umax_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_and:
+ op32 = aco_opcode::buffer_atomic_and;
+ op64 = aco_opcode::buffer_atomic_and_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_or:
+ op32 = aco_opcode::buffer_atomic_or;
+ op64 = aco_opcode::buffer_atomic_or_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_xor:
+ op32 = aco_opcode::buffer_atomic_xor;
+ op64 = aco_opcode::buffer_atomic_xor_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_exchange:
+ op32 = aco_opcode::buffer_atomic_swap;
+ op64 = aco_opcode::buffer_atomic_swap_x2;
+ break;
+ case nir_intrinsic_ssbo_atomic_comp_swap:
+ op32 = aco_opcode::buffer_atomic_cmpswap;
+ op64 = aco_opcode::buffer_atomic_cmpswap_x2;
+ break;
+ default:
+ unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
+ }
+ aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
+ aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
+ mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
+ mubuf->operands[1] = Operand(rsrc);
+ mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
+ mubuf->operands[3] = Operand(data);
+ if (return_previous)
+ mubuf->definitions[0] = Definition(dst);
+ mubuf->offset = 0;
+ mubuf->offen = (offset.type() == RegType::vgpr);
+ mubuf->glc = return_previous;
+ mubuf->disable_wqm = true;
+ mubuf->barrier = barrier_buffer;
+ ctx->program->needs_exact = true;
+ ctx->block->instructions.emplace_back(std::move(mubuf));
+}
+
+void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
+
+ Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ Builder bld(ctx->program, ctx->block);
+ Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
+ get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
+}
+
+void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ unsigned num_components = instr->num_components;
+ unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
+
+ bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
+ aco_opcode op;
+ if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
+ bool global = ctx->options->chip_class >= GFX9;
+ aco_opcode op;
+ switch (num_bytes) {
+ case 4:
+ op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
+ break;
+ case 8:
+ op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
+ break;
+ case 12:
+ op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
+ break;
+ case 16:
+ op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
+ break;
+ default:
+ unreachable("load_global not implemented for this size.");
+ }
+ aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
+ flat->operands[0] = Operand(addr);
+ flat->operands[1] = Operand(s1);
+ flat->glc = glc;
+
+ if (dst.type() == RegType::sgpr) {
+ Temp vec = bld.tmp(RegType::vgpr, dst.size());
+ flat->definitions[0] = Definition(vec);
+ ctx->block->instructions.emplace_back(std::move(flat));
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
+ } else {
+ flat->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(flat));
+ }
+ emit_split_vector(ctx, dst, num_components);
+ } else {
+ switch (num_bytes) {
+ case 4:
+ op = aco_opcode::s_load_dword;
+ break;
+ case 8:
+ op = aco_opcode::s_load_dwordx2;
+ break;
+ case 12:
+ case 16:
+ op = aco_opcode::s_load_dwordx4;
+ break;
+ default:
+ unreachable("load_global not implemented for this size.");
+ }
+ aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
+ load->operands[0] = Operand(addr);
+ load->operands[1] = Operand(0u);
+ load->definitions[0] = Definition(dst);
+ load->glc = glc;
+ load->barrier = barrier_buffer;
+ assert(ctx->options->chip_class >= GFX8 || !glc);
+
+ if (dst.size() == 3) {
+ /* trim vector */
+ Temp vec = bld.tmp(s4);
+ load->definitions[0] = Definition(vec);
+ ctx->block->instructions.emplace_back(std::move(load));
+ emit_split_vector(ctx, vec, 4);
+
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ emit_extract_vector(ctx, vec, 0, s1),
+ emit_extract_vector(ctx, vec, 1, s1),
+ emit_extract_vector(ctx, vec, 2, s1));
+ } else {
+ ctx->block->instructions.emplace_back(std::move(load));
+ }
+ }
+}
+
+void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
+
+ Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
+
+ unsigned writemask = nir_intrinsic_write_mask(instr);
+ while (writemask) {
+ int start, count;
+ u_bit_scan_consecutive_range(&writemask, &start, &count);
+ unsigned num_bytes = count * elem_size_bytes;
+
+ Temp write_data = data;
+ if (count != instr->num_components) {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
+ for (int i = 0; i < count; i++)
+ vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
+ write_data = bld.tmp(RegType::vgpr, count);
+ vec->definitions[0] = Definition(write_data);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ }
+
+ unsigned offset = start * elem_size_bytes;
+ if (offset > 0 && ctx->options->chip_class < GFX9) {
+ Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
+ Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
+ Temp carry = bld.tmp(s2);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
+
+ bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
+ Operand(offset), addr0);
+ bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(s2),
+ Operand(0u), addr1,
+ carry).def(1).setHint(vcc);
+
+ addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
+
+ offset = 0;
+ }
+
+ bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
+ bool global = ctx->options->chip_class >= GFX9;
+ aco_opcode op;
+ switch (num_bytes) {
+ case 4:
+ op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
+ break;
+ case 8:
+ op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
+ break;
+ case 12:
+ op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
+ break;
+ case 16:
+ op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
+ break;
+ default:
+ unreachable("store_global not implemented for this size.");
+ }
+ aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
+ flat->operands[0] = Operand(addr);
+ flat->operands[1] = Operand(s1);
+ flat->operands[2] = Operand(data);
+ flat->glc = glc;
+ flat->offset = offset;
+ ctx->block->instructions.emplace_back(std::move(flat));
+ }
+}
+
+void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
+ Builder bld(ctx->program, ctx->block);
+ switch(instr->intrinsic) {
+ case nir_intrinsic_group_memory_barrier:
+ case nir_intrinsic_memory_barrier:
+ bld.barrier(aco_opcode::p_memory_barrier_all);
+ break;
+ case nir_intrinsic_memory_barrier_atomic_counter:
+ bld.barrier(aco_opcode::p_memory_barrier_atomic);
+ break;
+ case nir_intrinsic_memory_barrier_buffer:
+ bld.barrier(aco_opcode::p_memory_barrier_buffer);
+ break;
+ case nir_intrinsic_memory_barrier_image:
+ bld.barrier(aco_opcode::p_memory_barrier_image);
+ break;
+ case nir_intrinsic_memory_barrier_shared:
+ bld.barrier(aco_opcode::p_memory_barrier_shared);
+ break;
+ default:
+ unreachable("Unimplemented memory barrier intrinsic");
+ break;
+ }
+}
+
+Operand load_lds_size_m0(isel_context *ctx)
+{
+ /* TODO: m0 does not need to be initialized on GFX9+ */
+ Builder bld(ctx->program, ctx->block);
+ return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
+}
+
+
+void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
+ Operand m = load_lds_size_m0(ctx);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
+ Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ Builder bld(ctx->program, ctx->block);
+
+ unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
+ unsigned bytes_read = 0;
+ unsigned result_size = 0;
+ unsigned total_bytes = instr->num_components * elem_size_bytes;
+ unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : instr->dest.ssa.bit_size / 8;
+ std::array<Temp, 4> result;
+
+ while (bytes_read < total_bytes) {
+ unsigned todo = total_bytes - bytes_read;
+ bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
+ bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
+
+ aco_opcode op = aco_opcode::last_opcode;
+ if (todo >= 16 && aligned16) {
+ op = aco_opcode::ds_read_b128;
+ todo = 16;
+ } else if (todo >= 12 && aligned16) {
+ op = aco_opcode::ds_read_b96;
+ todo = 12;
+ } else if (todo >= 8) {
+ op = aligned8 ? aco_opcode::ds_read_b64 : aco_opcode::ds_read2_b32;
+ todo = 8;
+ } else if (todo >= 4) {
+ op = aco_opcode::ds_read_b32;
+ todo = 4;
+ } else {
+ assert(false);
+ }
+ assert(todo % elem_size_bytes == 0);
+ unsigned num_elements = todo / elem_size_bytes;
+ unsigned offset = nir_intrinsic_base(instr) + bytes_read;
+ unsigned max_offset = op == aco_opcode::ds_read2_b32 ? 1019 : 65535;
+
+ Temp address_offset = address;
+ if (offset > max_offset) {
+ address_offset = bld.vadd32(bld.def(v1), Operand((uint32_t)nir_intrinsic_base(instr)), address_offset);
+ offset = bytes_read;
+ }
+ assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
+
+ Temp res;
+ if (instr->num_components == 1 && dst.type() == RegType::vgpr)
+ res = dst;
+ else
+ res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
+
+ if (op == aco_opcode::ds_read2_b32)
+ res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
+ else
+ res = bld.ds(op, Definition(res), address_offset, m, offset);
+
+ if (instr->num_components == 1) {
+ assert(todo == total_bytes);
+ if (dst.type() == RegType::sgpr)
+ bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
+ return;
+ }
+
+ if (dst.type() == RegType::sgpr)
+ res = bld.as_uniform(res);
+
+ if (num_elements == 1) {
+ result[result_size++] = res;
+ } else {
+ assert(res != dst && res.size() % num_elements == 0);
+ aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
+ split->operands[0] = Operand(res);
+ for (unsigned i = 0; i < num_elements; i++)
+ split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
+ ctx->block->instructions.emplace_back(std::move(split));
+ }
+
+ bytes_read += todo;
+ }
+
+ assert(result_size == instr->num_components && result_size > 1);
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
+ for (unsigned i = 0; i < result_size; i++)
+ vec->operands[i] = Operand(result[i]);
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ ctx->allocated_vec.emplace(dst.id(), result);
+}
+
+void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned offset0, unsigned offset1, unsigned align)
+{
+ Builder bld(ctx->program, ctx->block);
+ unsigned bytes_written = 0;
+ while (bytes_written < data.size() * 4) {
+ unsigned todo = data.size() * 4 - bytes_written;
+ bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
+ bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
+
+ aco_opcode op = aco_opcode::last_opcode;
+ unsigned size = 0;
+ if (todo >= 16 && aligned16) {
+ op = aco_opcode::ds_write_b128;
+ size = 4;
+ } else if (todo >= 12 && aligned16) {
+ op = aco_opcode::ds_write_b96;
+ size = 3;
+ } else if (todo >= 8) {
+ op = aligned8 ? aco_opcode::ds_write_b64 : aco_opcode::ds_write2_b32;
+ size = 2;
+ } else if (todo >= 4) {
+ op = aco_opcode::ds_write_b32;
+ size = 1;
+ } else {
+ assert(false);
+ }
+
+ bool write2 = op == aco_opcode::ds_write2_b32;
+ unsigned offset = offset0 + offset1 + bytes_written;
+ unsigned max_offset = write2 ? 1020 : 65535;
+ Temp address_offset = address;
+ if (offset > max_offset) {
+ address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
+ offset = offset1 + bytes_written;
+ }
+ assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
+
+ if (write2) {
+ Temp val0 = emit_extract_vector(ctx, data, bytes_written >> 2, v1);
+ Temp val1 = emit_extract_vector(ctx, data, (bytes_written >> 2) + 1, v1);
+ bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
+ } else {
+ Temp val = emit_extract_vector(ctx, data, bytes_written >> 2, RegClass(RegType::vgpr, size));
+ bld.ds(op, address_offset, val, m, offset);
+ }
+
+ bytes_written += size * 4;
+ }
+}
+
+void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ unsigned offset = nir_intrinsic_base(instr);
+ unsigned writemask = nir_intrinsic_write_mask(instr);
+ Operand m = load_lds_size_m0(ctx);
+ Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
+ Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
+ unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
+ assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
+
+ /* we need at most two stores for 32bit variables */
+ int start[2], count[2];
+ u_bit_scan_consecutive_range(&writemask, &start[0], &count[0]);
+ u_bit_scan_consecutive_range(&writemask, &start[1], &count[1]);
+ assert(writemask == 0);
+
+ /* one combined store is sufficient */
+ if (count[0] == count[1]) {
+ Builder bld(ctx->program, ctx->block);
+
+ Temp address_offset = address;
+ if ((offset >> 2) + start[1] > 255) {
+ address_offset = bld.vadd32(bld.def(v1), Operand(offset), address_offset);
+ offset = 0;
+ }
+
+ assert(count[0] == 1);
+ Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
+ Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
+ aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
+ offset = offset / elem_size_bytes;
+ bld.ds(op, address_offset, val0, val1, m,
+ offset + start[0], offset + start[1]);
+ return;
+ }
+
+ unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
+ for (unsigned i = 0; i < 2; i++) {
+ if (count[i] == 0)
+ continue;
+
+ Temp write_data = emit_extract_vector(ctx, data, start[i], RegClass(RegType::vgpr, count[i] * elem_size_bytes / 4));
+ ds_write_helper(ctx, m, address, write_data, offset, start[i] * elem_size_bytes, align);
+ }
+ return;
+}
+
+void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ unsigned offset = nir_intrinsic_base(instr);
+ Operand m = load_lds_size_m0(ctx);
+ Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
+ Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+
+ unsigned num_operands = 3;
+ aco_opcode op32, op64, op32_rtn, op64_rtn;
+ switch(instr->intrinsic) {
+ case nir_intrinsic_shared_atomic_add:
+ op32 = aco_opcode::ds_add_u32;
+ op64 = aco_opcode::ds_add_u64;
+ op32_rtn = aco_opcode::ds_add_rtn_u32;
+ op64_rtn = aco_opcode::ds_add_rtn_u64;
+ break;
+ case nir_intrinsic_shared_atomic_imin:
+ op32 = aco_opcode::ds_min_i32;
+ op64 = aco_opcode::ds_min_i64;
+ op32_rtn = aco_opcode::ds_min_rtn_i32;
+ op64_rtn = aco_opcode::ds_min_rtn_i64;
+ break;
+ case nir_intrinsic_shared_atomic_umin:
+ op32 = aco_opcode::ds_min_u32;
+ op64 = aco_opcode::ds_min_u64;
+ op32_rtn = aco_opcode::ds_min_rtn_u32;
+ op64_rtn = aco_opcode::ds_min_rtn_u64;
+ break;
+ case nir_intrinsic_shared_atomic_imax:
+ op32 = aco_opcode::ds_max_i32;
+ op64 = aco_opcode::ds_max_i64;
+ op32_rtn = aco_opcode::ds_max_rtn_i32;
+ op64_rtn = aco_opcode::ds_max_rtn_i64;
+ break;
+ case nir_intrinsic_shared_atomic_umax:
+ op32 = aco_opcode::ds_max_u32;
+ op64 = aco_opcode::ds_max_u64;
+ op32_rtn = aco_opcode::ds_max_rtn_u32;
+ op64_rtn = aco_opcode::ds_max_rtn_u64;
+ break;
+ case nir_intrinsic_shared_atomic_and:
+ op32 = aco_opcode::ds_and_b32;
+ op64 = aco_opcode::ds_and_b64;
+ op32_rtn = aco_opcode::ds_and_rtn_b32;
+ op64_rtn = aco_opcode::ds_and_rtn_b64;
+ break;
+ case nir_intrinsic_shared_atomic_or:
+ op32 = aco_opcode::ds_or_b32;
+ op64 = aco_opcode::ds_or_b64;
+ op32_rtn = aco_opcode::ds_or_rtn_b32;
+ op64_rtn = aco_opcode::ds_or_rtn_b64;
+ break;
+ case nir_intrinsic_shared_atomic_xor:
+ op32 = aco_opcode::ds_xor_b32;
+ op64 = aco_opcode::ds_xor_b64;
+ op32_rtn = aco_opcode::ds_xor_rtn_b32;
+ op64_rtn = aco_opcode::ds_xor_rtn_b64;
+ break;
+ case nir_intrinsic_shared_atomic_exchange:
+ op32 = aco_opcode::ds_write_b32;
+ op64 = aco_opcode::ds_write_b64;
+ op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
+ op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
+ break;
+ case nir_intrinsic_shared_atomic_comp_swap:
+ op32 = aco_opcode::ds_cmpst_b32;
+ op64 = aco_opcode::ds_cmpst_b64;
+ op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
+ op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
+ num_operands = 4;
+ break;
+ default:
+ unreachable("Unhandled shared atomic intrinsic");
+ }
+
+ /* return the previous value if dest is ever used */
+ bool return_previous = false;
+ nir_foreach_use_safe(use_src, &instr->dest.ssa) {
+ return_previous = true;
+ break;
+ }
+ nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
+ return_previous = true;
+ break;
+ }
+
+ aco_opcode op;
+ if (data.size() == 1) {
+ assert(instr->dest.ssa.bit_size == 32);
+ op = return_previous ? op32_rtn : op32;
+ } else {
+ assert(instr->dest.ssa.bit_size == 64);
+ op = return_previous ? op64_rtn : op64;
+ }
+
+ if (offset > 65535) {
+ Builder bld(ctx->program, ctx->block);
+ address = bld.vadd32(bld.def(v1), Operand(offset), address);
+ offset = 0;
+ }
+
+ aco_ptr<DS_instruction> ds;
+ ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
+ ds->operands[0] = Operand(address);
+ ds->operands[1] = Operand(data);
+ if (num_operands == 4)
+ ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
+ ds->operands[num_operands - 1] = m;
+ ds->offset0 = offset;
+ if (return_previous)
+ ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
+ ctx->block->instructions.emplace_back(std::move(ds));
+}
+
+void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
+ assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
+ Builder bld(ctx->program, ctx->block);
+ Temp scratch_addr = ctx->private_segment_buffer;
+ if (ctx->stage != MESA_SHADER_COMPUTE)
+ scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
+ uint32_t rsrc_conf;
+ /* older generations need element size = 16 bytes */
+ if (ctx->program->chip_class >= GFX9)
+ rsrc_conf = 0x00E00000u;
+ else
+ rsrc_conf = 0x00F80000u;
+ /* buffer res = addr + num_records = -1, index_stride = 64, add_tid_enable = true */
+ Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
+ Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ aco_opcode op;
+ switch (dst.size()) {
+ case 1:
+ op = aco_opcode::buffer_load_dword;
+ break;
+ case 2:
+ op = aco_opcode::buffer_load_dwordx2;
+ break;
+ case 3:
+ op = aco_opcode::buffer_load_dwordx3;
+ break;
+ case 4:
+ op = aco_opcode::buffer_load_dwordx4;
+ break;
+ case 6:
+ case 8: {
+ std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
+ Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
+ bld.def(v4), offset, rsrc,
+ ctx->scratch_offset, 0, true);
+ Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
+ aco_opcode::buffer_load_dwordx4,
+ dst.size() == 6 ? bld.def(v2) : bld.def(v4),
+ offset, rsrc, ctx->scratch_offset, 16, true);
+ emit_split_vector(ctx, lower, 2);
+ elems[0] = emit_extract_vector(ctx, lower, 0, v2);
+ elems[1] = emit_extract_vector(ctx, lower, 1, v2);
+ if (dst.size() == 8) {
+ emit_split_vector(ctx, upper, 2);
+ elems[2] = emit_extract_vector(ctx, upper, 0, v2);
+ elems[3] = emit_extract_vector(ctx, upper, 1, v2);
+ } else {
+ elems[2] = upper;
+ }
+
+ aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
+ Format::PSEUDO, dst.size() / 2, 1)};
+ for (unsigned i = 0; i < dst.size() / 2; i++)
+ vec->operands[i] = Operand(elems[i]);
+ vec->definitions[0] = Definition(dst);
+ bld.insert(std::move(vec));
+ ctx->allocated_vec.emplace(dst.id(), elems);
+ return;
+ }
+ default:
+ unreachable("Wrong dst size for nir_intrinsic_load_scratch");
+ }
+
+ bld.mubuf(op, Definition(dst), offset, rsrc, ctx->scratch_offset, 0, true);
+ emit_split_vector(ctx, dst, instr->num_components);
+}
+
+void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
+ assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
+ Builder bld(ctx->program, ctx->block);
+ Temp scratch_addr = ctx->private_segment_buffer;
+ if (ctx->stage != MESA_SHADER_COMPUTE)
+ scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
+ uint32_t rsrc_conf;
+ /* older generations need element size = 16 bytes */
+ if (ctx->program->chip_class >= GFX9)
+ rsrc_conf = 0x00E00000u;
+ else
+ rsrc_conf = 0x00F80000u;
+ /* buffer res = addr + num_records = -1, index_stride = 64, add_tid_enable = true */
+ Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
+ Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
+
+ unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
+ unsigned writemask = nir_intrinsic_write_mask(instr);
+
+ while (writemask) {
+ int start, count;
+ u_bit_scan_consecutive_range(&writemask, &start, &count);
+ int num_bytes = count * elem_size_bytes;
+
+ if (num_bytes > 16) {
+ assert(elem_size_bytes == 8);
+ writemask |= (((count - 2) << 1) - 1) << (start + 2);
+ count = 2;
+ num_bytes = 16;
+ }
+
+ // TODO: check alignment of sub-dword stores
+ // TODO: split 3 bytes. there is no store instruction for that
+
+ Temp write_data;
+ if (count != instr->num_components) {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
+ for (int i = 0; i < count; i++) {
+ Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
+ vec->operands[i] = Operand(elem);
+ }
+ write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
+ vec->definitions[0] = Definition(write_data);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ } else {
+ write_data = data;
+ }
+
+ aco_opcode op;
+ switch (num_bytes) {
+ case 4:
+ op = aco_opcode::buffer_store_dword;
+ break;
+ case 8:
+ op = aco_opcode::buffer_store_dwordx2;
+ break;
+ case 12:
+ op = aco_opcode::buffer_store_dwordx3;
+ break;
+ case 16:
+ op = aco_opcode::buffer_store_dwordx4;
+ break;
+ default:
+ unreachable("Invalid data size for nir_intrinsic_store_scratch.");
+ }
+
+ bld.mubuf(op, offset, rsrc, ctx->scratch_offset, write_data, start * elem_size_bytes, true);
+ }
+}
+
+void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
+ uint8_t log2_ps_iter_samples;
+ if (ctx->program->info->ps.force_persample) {
+ log2_ps_iter_samples =
+ util_logbase2(ctx->options->key.fs.num_samples);
+ } else {
+ log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
+ }
+
+ /* The bit pattern matches that used by fixed function fragment
+ * processing. */
+ static const unsigned ps_iter_masks[] = {
+ 0xffff, /* not used */
+ 0x5555,
+ 0x1111,
+ 0x0101,
+ 0x0001,
+ };
+ assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
+
+ Builder bld(ctx->program, ctx->block);
+
+ Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), ctx->fs_inputs[fs_input::ancillary], Operand(8u), Operand(4u));
+ Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
+ Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, ctx->fs_inputs[fs_input::sample_coverage]);
+}
+
+Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ if (cluster_size == 1) {
+ return src;
+ } if (op == nir_op_iand && cluster_size == 4) {
+ //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
+ Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
+ return bld.sop1(aco_opcode::s_not_b64, bld.def(s2), bld.def(s1, scc),
+ bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc), tmp));
+ } else if (op == nir_op_ior && cluster_size == 4) {
+ //subgroupClusteredOr(val, 4) -> wqm(val & exec)
+ return bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc),
+ bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)));
+ } else if (op == nir_op_iand && cluster_size == 64) {
+ //subgroupAnd(val) -> (exec & ~val) == 0
+ Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src).def(1).getTemp();
+ return bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), tmp, Operand(0u));
+ } else if (op == nir_op_ior && cluster_size == 64) {
+ //subgroupOr(val) -> (val & exec) != 0
+ return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)).def(1).getTemp();
+ } else if (op == nir_op_ixor && cluster_size == 64) {
+ //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
+ Temp tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
+ tmp = bld.sop1(aco_opcode::s_bcnt1_i32_b64, bld.def(s2), bld.def(s1, scc), tmp);
+ return bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
+ } else {
+ //subgroupClustered{And,Or,Xor}(val, n) ->
+ //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0))
+ //cluster_offset = ~(n - 1) & lane_id
+ //cluster_mask = ((1 << n) - 1)
+ //subgroupClusteredAnd():
+ // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
+ //subgroupClusteredOr():
+ // return ((val & exec) >> cluster_offset) & cluster_mask != 0
+ //subgroupClusteredXor():
+ // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
+ Temp lane_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
+ bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
+ Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
+
+ Temp tmp;
+ if (op == nir_op_iand)
+ tmp = bld.sop2(aco_opcode::s_orn2_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
+ else
+ tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
+
+ uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
+ tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
+ tmp = emit_extract_vector(ctx, tmp, 0, v1);
+ if (cluster_mask != 0xffffffff)
+ tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
+
+ Definition cmp_def = Definition();
+ if (op == nir_op_iand) {
+ cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(cluster_mask), tmp).def(0);
+ } else if (op == nir_op_ior) {
+ cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
+ } else if (op == nir_op_ixor) {
+ tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
+ bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
+ cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
+ }
+ cmp_def.setHint(vcc);
+ return cmp_def.getTemp();
+ }
+}
+
+Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
+ //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
+ //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
+ Temp tmp;
+ if (op == nir_op_iand)
+ tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
+ else
+ tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
+
+ Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
+ Temp lo = lohi.def(0).getTemp();
+ Temp hi = lohi.def(1).getTemp();
+ Temp mbcnt = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), hi,
+ bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), lo, Operand(0u)));
+
+ Definition cmp_def = Definition();
+ if (op == nir_op_iand)
+ cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
+ else if (op == nir_op_ior)
+ cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
+ else if (op == nir_op_ixor)
+ cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u),
+ bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
+ cmp_def.setHint(vcc);
+ return cmp_def.getTemp();
+}
+
+Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
+ //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
+ //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
+ Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
+ if (op == nir_op_iand)
+ return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
+ else if (op == nir_op_ior)
+ return bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
+ else if (op == nir_op_ixor)
+ return bld.sop2(aco_opcode::s_xor_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
+
+ assert(false);
+ return Temp();
+}
+
+void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
+{
+ Builder bld(ctx->program, ctx->block);
+ Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
+ if (src.regClass().type() == RegType::vgpr) {
+ bld.pseudo(aco_opcode::p_as_uniform, dst, src);
+ } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
+ bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(dst), Operand(0u), Operand(src));
+ } else if (src.regClass() == s1) {
+ bld.sop1(aco_opcode::s_mov_b32, dst, src);
+ } else if (src.regClass() == s2) {
+ bld.sop1(aco_opcode::s_mov_b64, dst, src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+}
+
+void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp p1 = ctx->fs_inputs[fs_input::persp_center_p1];
+ Temp p2 = ctx->fs_inputs[fs_input::persp_center_p2];
+
+ /* Build DD X/Y */
+ Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_quad_perm(0, 0, 0, 0));
+ Temp ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(1, 1, 1, 1));
+ Temp ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(2, 2, 2, 2));
+ Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_quad_perm(0, 0, 0, 0));
+ Temp ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(1, 1, 1, 1));
+ Temp ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(2, 2, 2, 2));
+
+ /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
+ Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
+ Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
+ tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
+ tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
+ Temp wqm1 = bld.tmp(v1);
+ emit_wqm(ctx, tmp1, wqm1, true);
+ Temp wqm2 = bld.tmp(v1);
+ emit_wqm(ctx, tmp2, wqm2, true);
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
+ return;
+}
+
+void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ switch(instr->intrinsic) {
+ case nir_intrinsic_load_barycentric_sample:
+ case nir_intrinsic_load_barycentric_pixel:
+ case nir_intrinsic_load_barycentric_centroid: {
+ glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
+ fs_input input = get_interp_input(instr->intrinsic, mode);
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ if (input == fs_input::max_inputs) {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ Operand(0u), Operand(0u));
+ } else {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ ctx->fs_inputs[input],
+ ctx->fs_inputs[input + 1]);
+ }
+ emit_split_vector(ctx, dst, 2);
+ break;
+ }
+ case nir_intrinsic_load_barycentric_at_sample: {
+ uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
+ switch (ctx->options->key.fs.num_samples) {
+ case 2: sample_pos_offset += 1 << 3; break;
+ case 4: sample_pos_offset += 3 << 3; break;
+ case 8: sample_pos_offset += 7 << 3; break;
+ default: break;
+ }
+ Temp sample_pos;
+ Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
+ nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
+ if (addr.type() == RegType::sgpr) {
+ Operand offset;
+ if (const_addr) {
+ sample_pos_offset += const_addr->u32 << 3;
+ offset = Operand(sample_pos_offset);
+ } else if (ctx->options->chip_class >= GFX9) {
+ offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
+ } else {
+ offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
+ offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
+ }
+ addr = ctx->private_segment_buffer;
+ sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand(offset));
+
+ } else if (ctx->options->chip_class >= GFX9) {
+ addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
+ sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, ctx->private_segment_buffer, sample_pos_offset);
+ } else {
+ /* addr += ctx->private_segment_buffer + sample_pos_offset */
+ Temp tmp0 = bld.tmp(s1);
+ Temp tmp1 = bld.tmp(s1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), ctx->private_segment_buffer);
+ Definition scc_tmp = bld.def(s1, scc);
+ tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
+ tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), scc_tmp.getTemp());
+ addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
+ Temp pck0 = bld.tmp(v1);
+ Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
+ tmp1 = as_vgpr(ctx, tmp1);
+ Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(s2)), tmp1, Operand(0u), carry);
+ addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
+
+ /* sample_pos = flat_load_dwordx2 addr */
+ sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
+ }
+
+ /* sample_pos -= 0.5 */
+ Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
+ Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
+ bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
+ pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
+ pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
+
+ emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
+ break;
+ }
+ case nir_intrinsic_load_barycentric_at_offset: {
+ Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
+ RegClass rc = RegClass(offset.type(), 1);
+ Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
+ emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
+ break;
+ }
+ case nir_intrinsic_load_front_face: {
+ bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
+ Operand(0u), ctx->fs_inputs[fs_input::front_face]).def(0).setHint(vcc);
+ break;
+ }
+ case nir_intrinsic_load_view_index:
+ case nir_intrinsic_load_layer_id: {
+ if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.copy(Definition(dst), Operand(ctx->view_index));
+ break;
+ }
+
+ unsigned idx = nir_intrinsic_base(instr);
+ bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
+ Operand(2u), bld.m0(ctx->prim_mask), idx, 0);
+ break;
+ }
+ case nir_intrinsic_load_frag_coord: {
+ emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
+ break;
+ }
+ case nir_intrinsic_load_sample_pos: {
+ Temp posx = ctx->fs_inputs[fs_input::frag_pos_0];
+ Temp posy = ctx->fs_inputs[fs_input::frag_pos_1];
+ bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
+ posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
+ posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
+ break;
+ }
+ case nir_intrinsic_load_interpolated_input:
+ visit_load_interpolated_input(ctx, instr);
+ break;
+ case nir_intrinsic_store_output:
+ visit_store_output(ctx, instr);
+ break;
+ case nir_intrinsic_load_input:
+ visit_load_input(ctx, instr);
+ break;
+ case nir_intrinsic_load_ubo:
+ visit_load_ubo(ctx, instr);
+ break;
+ case nir_intrinsic_load_push_constant:
+ visit_load_push_constant(ctx, instr);
+ break;
+ case nir_intrinsic_load_constant:
+ visit_load_constant(ctx, instr);
+ break;
+ case nir_intrinsic_vulkan_resource_index:
+ visit_load_resource(ctx, instr);
+ break;
+ case nir_intrinsic_discard:
+ visit_discard(ctx, instr);
+ break;
+ case nir_intrinsic_discard_if:
+ visit_discard_if(ctx, instr);
+ break;
+ case nir_intrinsic_load_shared:
+ visit_load_shared(ctx, instr);
+ break;
+ case nir_intrinsic_store_shared:
+ visit_store_shared(ctx, instr);
+ break;
+ case nir_intrinsic_shared_atomic_add:
+ case nir_intrinsic_shared_atomic_imin:
+ case nir_intrinsic_shared_atomic_umin:
+ case nir_intrinsic_shared_atomic_imax:
+ case nir_intrinsic_shared_atomic_umax:
+ case nir_intrinsic_shared_atomic_and:
+ case nir_intrinsic_shared_atomic_or:
+ case nir_intrinsic_shared_atomic_xor:
+ case nir_intrinsic_shared_atomic_exchange:
+ case nir_intrinsic_shared_atomic_comp_swap:
+ visit_shared_atomic(ctx, instr);
+ break;
+ case nir_intrinsic_image_deref_load:
+ visit_image_load(ctx, instr);
+ break;
+ case nir_intrinsic_image_deref_store:
+ visit_image_store(ctx, instr);
+ break;
+ case nir_intrinsic_image_deref_atomic_add:
+ case nir_intrinsic_image_deref_atomic_umin:
+ case nir_intrinsic_image_deref_atomic_imin:
+ case nir_intrinsic_image_deref_atomic_umax:
+ case nir_intrinsic_image_deref_atomic_imax:
+ case nir_intrinsic_image_deref_atomic_and:
+ case nir_intrinsic_image_deref_atomic_or:
+ case nir_intrinsic_image_deref_atomic_xor:
+ case nir_intrinsic_image_deref_atomic_exchange:
+ case nir_intrinsic_image_deref_atomic_comp_swap:
+ visit_image_atomic(ctx, instr);
+ break;
+ case nir_intrinsic_image_deref_size:
+ visit_image_size(ctx, instr);
+ break;
+ case nir_intrinsic_load_ssbo:
+ visit_load_ssbo(ctx, instr);
+ break;
+ case nir_intrinsic_store_ssbo:
+ visit_store_ssbo(ctx, instr);
+ break;
+ case nir_intrinsic_load_global:
+ visit_load_global(ctx, instr);
+ break;
+ case nir_intrinsic_store_global:
+ visit_store_global(ctx, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_add:
+ case nir_intrinsic_ssbo_atomic_imin:
+ case nir_intrinsic_ssbo_atomic_umin:
+ case nir_intrinsic_ssbo_atomic_imax:
+ case nir_intrinsic_ssbo_atomic_umax:
+ case nir_intrinsic_ssbo_atomic_and:
+ case nir_intrinsic_ssbo_atomic_or:
+ case nir_intrinsic_ssbo_atomic_xor:
+ case nir_intrinsic_ssbo_atomic_exchange:
+ case nir_intrinsic_ssbo_atomic_comp_swap:
+ visit_atomic_ssbo(ctx, instr);
+ break;
+ case nir_intrinsic_load_scratch:
+ visit_load_scratch(ctx, instr);
+ break;
+ case nir_intrinsic_store_scratch:
+ visit_store_scratch(ctx, instr);
+ break;
+ case nir_intrinsic_get_buffer_size:
+ visit_get_buffer_size(ctx, instr);
+ break;
+ case nir_intrinsic_barrier: {
+ unsigned* bsize = ctx->program->info->cs.block_size;
+ unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
+ if (workgroup_size > 64)
+ bld.sopp(aco_opcode::s_barrier);
+ break;
+ }
+ case nir_intrinsic_group_memory_barrier:
+ case nir_intrinsic_memory_barrier:
+ case nir_intrinsic_memory_barrier_atomic_counter:
+ case nir_intrinsic_memory_barrier_buffer:
+ case nir_intrinsic_memory_barrier_image:
+ case nir_intrinsic_memory_barrier_shared:
+ emit_memory_barrier(ctx, instr);
+ break;
+ case nir_intrinsic_load_num_work_groups:
+ case nir_intrinsic_load_work_group_id:
+ case nir_intrinsic_load_local_invocation_id: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp* ids;
+ if (instr->intrinsic == nir_intrinsic_load_num_work_groups)
+ ids = ctx->num_workgroups;
+ else if (instr->intrinsic == nir_intrinsic_load_work_group_id)
+ ids = ctx->workgroup_ids;
+ else
+ ids = ctx->local_invocation_ids;
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
+ ids[0].id() ? Operand(ids[0]) : Operand(1u),
+ ids[1].id() ? Operand(ids[1]) : Operand(1u),
+ ids[2].id() ? Operand(ids[2]) : Operand(1u));
+ emit_split_vector(ctx, dst, 3);
+ break;
+ }
+ case nir_intrinsic_load_local_invocation_index: {
+ Temp id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
+ bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
+ Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
+ bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
+ break;
+ }
+ case nir_intrinsic_load_subgroup_id: {
+ if (ctx->stage == compute_cs) {
+ Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
+ bld.sop2(aco_opcode::s_lshr_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), tg_num, Operand(0x6u));
+ } else {
+ bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
+ }
+ break;
+ }
+ case nir_intrinsic_load_subgroup_invocation: {
+ bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand((uint32_t) -1),
+ bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
+ break;
+ }
+ case nir_intrinsic_load_num_subgroups: {
+ if (ctx->stage == compute_cs)
+ bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu), ctx->tg_size);
+ else
+ bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
+ break;
+ }
+ case nir_intrinsic_ballot: {
+ Definition tmp = bld.def(s2);
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s2) {
+ bld.sop2(aco_opcode::s_and_b64, tmp, bld.def(s1, scc), Operand(exec, s2), src);
+ } else if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s1) {
+ bld.sop2(aco_opcode::s_cselect_b64, tmp, Operand(exec, s2), Operand(0u), bld.scc(src));
+ } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
+ bld.vopc(aco_opcode::v_cmp_lg_u32, tmp, Operand(0u), src);
+ } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
+ bld.vopc(aco_opcode::v_cmp_lg_u64, tmp, Operand(0u), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ emit_wqm(ctx, tmp.getTemp(), get_ssa_temp(ctx, &instr->dest.ssa));
+ break;
+ }
+ case nir_intrinsic_shuffle: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ if (!ctx->divergent_vals[instr->dest.ssa.index]) {
+ emit_uniform_subgroup(ctx, instr, src);
+ } else {
+ Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
+ assert(tid.regClass() == v1);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ if (src.regClass() == v1) {
+ tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
+ emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, src), dst);
+ } else if (src.regClass() == v2) {
+ tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
+
+ Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
+ lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, lo));
+ hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, hi));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
+ Temp tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
+ tmp = emit_extract_vector(ctx, tmp, 0, v1);
+ tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
+ emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp), dst);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ }
+ break;
+ }
+ case nir_intrinsic_load_sample_id: {
+ bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
+ ctx->fs_inputs[ancillary], Operand(8u), Operand(4u));
+ break;
+ }
+ case nir_intrinsic_load_sample_mask_in: {
+ visit_load_sample_mask_in(ctx, instr);
+ break;
+ }
+ case nir_intrinsic_read_first_invocation: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ if (src.regClass() == v1) {
+ emit_wqm(ctx,
+ bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
+ dst);
+ } else if (src.regClass() == v2) {
+ Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
+ lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
+ hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
+ emit_wqm(ctx,
+ bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src,
+ bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2))),
+ dst);
+ } else if (src.regClass() == s1) {
+ bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
+ } else if (src.regClass() == s2) {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_intrinsic_read_invocation: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ Temp lane = get_ssa_temp(ctx, instr->src[1].ssa);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ assert(lane.regClass() == s1);
+ if (src.regClass() == v1) {
+ emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), src, lane), dst);
+ } else if (src.regClass() == v2) {
+ Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
+ lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), lo, lane));
+ hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), hi, lane));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
+ emit_wqm(ctx, bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src, lane), dst);
+ } else if (src.regClass() == s1) {
+ bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
+ } else if (src.regClass() == s2) {
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_intrinsic_vote_all: {
+ Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ assert(src.regClass() == s2);
+ assert(dst.regClass() == s1);
+
+ Definition tmp = bld.def(s1);
+ bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(tmp),
+ bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)),
+ Operand(exec, s2));
+ emit_wqm(ctx, tmp.getTemp(), dst);
+ break;
+ }
+ case nir_intrinsic_vote_any: {
+ Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ assert(src.regClass() == s2);
+ assert(dst.regClass() == s1);
+
+ Definition tmp = bld.def(s1);
+ bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.scc(tmp), src, Operand(exec, s2));
+ emit_wqm(ctx, tmp.getTemp(), dst);
+ break;
+ }
+ case nir_intrinsic_reduce:
+ case nir_intrinsic_inclusive_scan:
+ case nir_intrinsic_exclusive_scan: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
+ unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
+ nir_intrinsic_cluster_size(instr) : 0;
+ cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : 64, 64));
+
+ if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
+ emit_uniform_subgroup(ctx, instr, src);
+ } else if (instr->dest.ssa.bit_size == 1) {
+ if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
+ op = nir_op_iand;
+ else if (op == nir_op_iadd)
+ op = nir_op_ixor;
+ else if (op == nir_op_umax || op == nir_op_imax)
+ op = nir_op_ior;
+ assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_reduce:
+ emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
+ break;
+ case nir_intrinsic_exclusive_scan:
+ emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
+ break;
+ case nir_intrinsic_inclusive_scan:
+ emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
+ break;
+ default:
+ assert(false);
+ }
+ } else if (cluster_size == 1) {
+ bld.copy(Definition(dst), src);
+ } else {
+ src = as_vgpr(ctx, src);
+
+ ReduceOp reduce_op;
+ switch (op) {
+ #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
+ CASE(iadd)
+ CASE(imul)
+ CASE(fadd)
+ CASE(fmul)
+ CASE(imin)
+ CASE(umin)
+ CASE(fmin)
+ CASE(imax)
+ CASE(umax)
+ CASE(fmax)
+ CASE(iand)
+ CASE(ior)
+ CASE(ixor)
+ default:
+ unreachable("unknown reduction op");
+ #undef CASE
+ }
+
+ aco_opcode aco_op;
+ switch (instr->intrinsic) {
+ case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
+ case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
+ case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
+ default:
+ unreachable("unknown reduce intrinsic");
+ }
+
+ aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
+ reduce->operands[0] = Operand(src);
+ // filled in by aco_reduce_assign.cpp, used internally as part of the
+ // reduce sequence
+ assert(dst.size() == 1 || dst.size() == 2);
+ reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
+ reduce->operands[2] = Operand(v1.as_linear());
+
+ Temp tmp_dst = bld.tmp(dst.regClass());
+ reduce->definitions[0] = Definition(tmp_dst);
+ reduce->definitions[1] = bld.def(s2); // used internally
+ reduce->definitions[2] = Definition();
+ reduce->definitions[3] = Definition(scc, s1);
+ reduce->definitions[4] = Definition();
+ reduce->reduce_op = reduce_op;
+ reduce->cluster_size = cluster_size;
+ ctx->block->instructions.emplace_back(std::move(reduce));
+
+ emit_wqm(ctx, tmp_dst, dst);
+ }
+ break;
+ }
+ case nir_intrinsic_quad_broadcast: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ if (!ctx->divergent_vals[instr->dest.ssa.index]) {
+ emit_uniform_subgroup(ctx, instr, src);
+ } else {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
+ if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
+ uint32_t half_mask = 0x11111111u << lane;
+ Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
+ Temp tmp = bld.tmp(s2);
+ bld.sop1(aco_opcode::s_wqm_b64, Definition(tmp),
+ bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), mask_tmp,
+ bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2))));
+ emit_wqm(ctx, tmp, dst);
+ } else if (instr->dest.ssa.bit_size == 32) {
+ emit_wqm(ctx,
+ bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src,
+ dpp_quad_perm(lane, lane, lane, lane)),
+ dst);
+ } else if (instr->dest.ssa.bit_size == 64) {
+ Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
+ lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_quad_perm(lane, lane, lane, lane)));
+ hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_quad_perm(lane, lane, lane, lane)));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ }
+ break;
+ }
+ case nir_intrinsic_quad_swap_horizontal:
+ case nir_intrinsic_quad_swap_vertical:
+ case nir_intrinsic_quad_swap_diagonal:
+ case nir_intrinsic_quad_swizzle_amd: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ if (!ctx->divergent_vals[instr->dest.ssa.index]) {
+ emit_uniform_subgroup(ctx, instr, src);
+ break;
+ }
+ uint16_t dpp_ctrl = 0;
+ switch (instr->intrinsic) {
+ case nir_intrinsic_quad_swap_horizontal:
+ dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
+ break;
+ case nir_intrinsic_quad_swap_vertical:
+ dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
+ break;
+ case nir_intrinsic_quad_swap_diagonal:
+ dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
+ break;
+ case nir_intrinsic_quad_swizzle_amd: {
+ dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
+ break;
+ }
+ default:
+ break;
+ }
+
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
+ src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
+ src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
+ Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), src);
+ emit_wqm(ctx, tmp, dst);
+ } else if (instr->dest.ssa.bit_size == 32) {
+ Temp tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
+ emit_wqm(ctx, tmp, dst);
+ } else if (instr->dest.ssa.bit_size == 64) {
+ Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
+ lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
+ hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_intrinsic_masked_swizzle_amd: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ if (!ctx->divergent_vals[instr->dest.ssa.index]) {
+ emit_uniform_subgroup(ctx, instr, src);
+ break;
+ }
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ uint32_t mask = nir_intrinsic_swizzle_mask(instr);
+ if (dst.regClass() == v1) {
+ emit_wqm(ctx,
+ bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
+ dst);
+ } else if (dst.regClass() == v2) {
+ Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
+ lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
+ hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_intrinsic_write_invocation_amd: {
+ Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
+ Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
+ Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ if (dst.regClass() == v1) {
+ /* src2 is ignored for writelane. RA assigns the same reg for dst */
+ emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val, lane, src), dst);
+ } else if (dst.regClass() == v2) {
+ Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
+ Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
+ Temp lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_lo, lane, src_hi));
+ Temp hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_hi, lane, src_hi));
+ bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
+ emit_split_vector(ctx, dst, 2);
+ } else {
+ fprintf(stderr, "Unimplemented NIR instr bit size: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ }
+ break;
+ }
+ case nir_intrinsic_mbcnt_amd: {
+ Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
+ RegClass rc = RegClass(src.type(), 1);
+ Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
+ bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
+ Temp tmp = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, Operand(0u));
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp wqm_tmp = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), mask_hi, tmp);
+ emit_wqm(ctx, wqm_tmp, dst);
+ break;
+ }
+ case nir_intrinsic_load_helper_invocation: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
+ ctx->block->kind |= block_kind_needs_lowering;
+ ctx->program->needs_exact = true;
+ break;
+ }
+ case nir_intrinsic_is_helper_invocation: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
+ ctx->block->kind |= block_kind_needs_lowering;
+ ctx->program->needs_exact = true;
+ break;
+ }
+ case nir_intrinsic_demote:
+ bld.pseudo(aco_opcode::p_demote_to_helper);
+ ctx->block->kind |= block_kind_needs_lowering;
+ ctx->program->needs_exact = true;
+ break;
+ case nir_intrinsic_demote_if: {
+ Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc),
+ as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false),
+ Operand(exec, s2));
+ bld.pseudo(aco_opcode::p_demote_to_helper, cond);
+ ctx->block->kind |= block_kind_needs_lowering;
+ ctx->program->needs_exact = true;
+ break;
+ }
+ case nir_intrinsic_first_invocation: {
+ emit_wqm(ctx, bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2)),
+ get_ssa_temp(ctx, &instr->dest.ssa));
+ break;
+ }
+ case nir_intrinsic_shader_clock:
+ bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
+ break;
+ case nir_intrinsic_load_vertex_id_zero_base: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.copy(Definition(dst), ctx->vertex_id);
+ break;
+ }
+ case nir_intrinsic_load_first_vertex: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.copy(Definition(dst), ctx->base_vertex);
+ break;
+ }
+ case nir_intrinsic_load_base_instance: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.copy(Definition(dst), ctx->start_instance);
+ break;
+ }
+ case nir_intrinsic_load_instance_id: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.copy(Definition(dst), ctx->instance_id);
+ break;
+ }
+ case nir_intrinsic_load_draw_id: {
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ bld.copy(Definition(dst), ctx->draw_id);
+ break;
+ }
+ default:
+ fprintf(stderr, "Unimplemented intrinsic instr: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ abort();
+
+ break;
+ }
+}
+
+
+void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
+ Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
+ enum glsl_base_type *stype)
+{
+ nir_deref_instr *texture_deref_instr = NULL;
+ nir_deref_instr *sampler_deref_instr = NULL;
+ int plane = -1;
+
+ for (unsigned i = 0; i < instr->num_srcs; i++) {
+ switch (instr->src[i].src_type) {
+ case nir_tex_src_texture_deref:
+ texture_deref_instr = nir_src_as_deref(instr->src[i].src);
+ break;
+ case nir_tex_src_sampler_deref:
+ sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
+ break;
+ case nir_tex_src_plane:
+ plane = nir_src_as_int(instr->src[i].src);
+ break;
+ default:
+ break;
+ }
+ }
+
+ *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
+
+ if (!sampler_deref_instr)
+ sampler_deref_instr = texture_deref_instr;
+
+ if (plane >= 0) {
+ assert(instr->op != nir_texop_txf_ms &&
+ instr->op != nir_texop_samples_identical);
+ assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
+ *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
+ } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
+ *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
+ } else {
+ *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
+ }
+ if (samp_ptr) {
+ *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
+ if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
+ fprintf(stderr, "Unimplemented sampler descriptor: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ abort();
+ // TODO: build samp_ptr = and(samp_ptr, res_ptr)
+ }
+ }
+ if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
+ instr->op == nir_texop_samples_identical))
+ *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
+}
+
+void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
+ Temp *out_ma, Temp *out_sc, Temp *out_tc)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
+ Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
+ Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
+
+ Operand neg_one(0xbf800000u);
+ Operand one(0x3f800000u);
+ Operand two(0x40000000u);
+ Operand four(0x40800000u);
+
+ Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), ma);
+ Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
+ Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
+
+ Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), four, id);
+ Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(s2), two, id);
+ is_ma_y = bld.sop2(aco_opcode::s_andn2_b64, bld.hint_vcc(bld.def(s2)), is_ma_y, is_ma_z);
+ Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), is_ma_z, is_ma_y);
+
+ // select sc
+ Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
+ Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
+ bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
+ one, is_ma_y);
+ *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
+
+ // select tc
+ tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
+ sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
+ *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
+
+ // select ma
+ tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
+ bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
+ deriv_z, is_ma_z);
+ tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
+ *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
+}
+
+void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
+{
+ Builder bld(ctx->program, ctx->block);
+ Temp coord_args[4], ma, tc, sc, id;
+ for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
+ coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
+
+ if (is_array) {
+ coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
+
+ // see comment in ac_prepare_cube_coords()
+ if (ctx->options->chip_class <= GFX8)
+ coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
+ }
+
+ ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
+
+ aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
+ vop3a->operands[0] = Operand(ma);
+ vop3a->abs[0] = true;
+ Temp invma = bld.tmp(v1);
+ vop3a->definitions[0] = Definition(invma);
+ ctx->block->instructions.emplace_back(std::move(vop3a));
+
+ sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
+ if (!is_deriv)
+ sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
+
+ tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
+ if (!is_deriv)
+ tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
+
+ id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
+
+ if (is_deriv) {
+ sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
+ tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
+
+ for (unsigned i = 0; i < 2; i++) {
+ // see comment in ac_prepare_cube_coords()
+ Temp deriv_ma;
+ Temp deriv_sc, deriv_tc;
+ build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
+ &deriv_ma, &deriv_sc, &deriv_tc);
+
+ deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
+
+ Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
+ bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
+ bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
+ Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
+ bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
+ bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
+ *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
+ }
+
+ sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
+ tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
+ }
+
+ if (is_array)
+ id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
+ *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
+
+}
+
+Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
+{
+ Temp coord_vec[3];
+ for (unsigned i = 0; i < coords.size(); i++)
+ coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
+
+ Builder bld(ctx->program, ctx->block);
+ coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
+
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
+ for (unsigned i = 0; i < coords.size(); i++)
+ vec->operands[i] = Operand(coord_vec[i]);
+ Temp res = bld.tmp(RegType::vgpr, coords.size());
+ vec->definitions[0] = Definition(res);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ return res;
+}
+
+void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
+{
+ if (vec->parent_instr->type != nir_instr_type_alu)
+ return;
+ nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
+ if (vec_instr->op != nir_op_vec(vec->num_components))
+ return;
+
+ for (unsigned i = 0; i < vec->num_components; i++) {
+ cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
+ nir_src_as_const_value(vec_instr->src[i].src) : NULL;
+ }
+}
+
+void visit_tex(isel_context *ctx, nir_tex_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
+ has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
+ Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
+ lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
+ nir_const_value *sample_index_cv = NULL;
+ nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
+ enum glsl_base_type stype;
+ tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
+
+ bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
+ (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
+ bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
+ instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
+
+ for (unsigned i = 0; i < instr->num_srcs; i++) {
+ switch (instr->src[i].src_type) {
+ case nir_tex_src_coord:
+ coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
+ break;
+ case nir_tex_src_bias:
+ if (instr->op == nir_texop_txb) {
+ bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ has_bias = true;
+ }
+ break;
+ case nir_tex_src_lod: {
+ nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
+
+ if (val && val->f32 <= 0.0) {
+ level_zero = true;
+ } else {
+ lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ has_lod = true;
+ }
+ break;
+ }
+ case nir_tex_src_comparator:
+ if (instr->is_shadow) {
+ compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ has_compare = true;
+ }
+ break;
+ case nir_tex_src_offset:
+ offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ get_const_vec(instr->src[i].src.ssa, const_offset);
+ has_offset = true;
+ break;
+ case nir_tex_src_ddx:
+ ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ has_ddx = true;
+ break;
+ case nir_tex_src_ddy:
+ ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ has_ddy = true;
+ break;
+ case nir_tex_src_ms_index:
+ sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
+ sample_index_cv = nir_src_as_const_value(instr->src[i].src);
+ has_sample_index = true;
+ break;
+ case nir_tex_src_texture_offset:
+ case nir_tex_src_sampler_offset:
+ default:
+ break;
+ }
+ }
+// TODO: all other cases: structure taken from ac_nir_to_llvm.c
+ if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
+ return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
+
+ if (instr->op == nir_texop_texture_samples) {
+ Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
+
+ Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
+ Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
+ Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
+ Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
+
+ bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
+ samples, Operand(1u), bld.scc(is_msaa));
+ return;
+ }
+
+ if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
+ aco_ptr<Instruction> tmp_instr;
+ Temp acc, pack = Temp();
+
+ uint32_t pack_const = 0;
+ for (unsigned i = 0; i < offset.size(); i++) {
+ if (!const_offset[i])
+ continue;
+ pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
+ }
+
+ if (offset.type() == RegType::sgpr) {
+ for (unsigned i = 0; i < offset.size(); i++) {
+ if (const_offset[i])
+ continue;
+
+ acc = emit_extract_vector(ctx, offset, i, s1);
+ acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
+
+ if (i) {
+ acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
+ }
+
+ if (pack == Temp()) {
+ pack = acc;
+ } else {
+ pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
+ }
+ }
+
+ if (pack_const && pack != Temp())
+ pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
+ } else {
+ for (unsigned i = 0; i < offset.size(); i++) {
+ if (const_offset[i])
+ continue;
+
+ acc = emit_extract_vector(ctx, offset, i, v1);
+ acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
+
+ if (i) {
+ acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
+ }
+
+ if (pack == Temp()) {
+ pack = acc;
+ } else {
+ pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
+ }
+ }
+
+ if (pack_const && pack != Temp())
+ pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
+ }
+ if (pack_const && pack == Temp())
+ offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
+ else if (pack == Temp())
+ has_offset = false;
+ else
+ offset = pack;
+ }
+
+ if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
+ prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
+
+ /* pack derivatives */
+ if (has_ddx || has_ddy) {
+ if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class >= GFX9) {
+ derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
+ ddx, Operand(0u), ddy, Operand(0u));
+ } else {
+ derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
+ }
+ has_derivs = true;
+ }
+
+ if (instr->coord_components > 1 &&
+ instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
+ instr->is_array &&
+ instr->op != nir_texop_txf)
+ coords = apply_round_slice(ctx, coords, 1);
+
+ if (instr->coord_components > 2 &&
+ (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
+ instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
+ instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
+ instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
+ instr->is_array &&
+ instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms)
+ coords = apply_round_slice(ctx, coords, 2);
+
+ if (ctx->options->chip_class >= GFX9 &&
+ instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
+ instr->op != nir_texop_lod && instr->coord_components) {
+ assert(coords.size() > 0 && coords.size() < 3);
+
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
+ vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
+ vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
+ if (coords.size() > 1)
+ vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
+ coords = bld.tmp(RegType::vgpr, coords.size() + 1);
+ vec->definitions[0] = Definition(coords);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ }
+
+ bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
+
+ if (instr->op == nir_texop_samples_identical)
+ resource = fmask_ptr;
+
+ else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
+ instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
+ instr->op != nir_texop_txs) {
+ assert(has_sample_index);
+ Operand op(sample_index);
+ if (sample_index_cv)
+ op = Operand(sample_index_cv->u32);
+ sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
+ }
+
+ if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
+ Temp split_coords[coords.size()];
+ emit_split_vector(ctx, coords, coords.size());
+ for (unsigned i = 0; i < coords.size(); i++)
+ split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
+
+ unsigned i = 0;
+ for (; i < std::min(offset.size(), instr->coord_components); i++) {
+ Temp off = emit_extract_vector(ctx, offset, i, v1);
+ split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
+ }
+
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
+ for (unsigned i = 0; i < coords.size(); i++)
+ vec->operands[i] = Operand(split_coords[i]);
+ coords = bld.tmp(coords.regClass());
+ vec->definitions[0] = Definition(coords);
+ ctx->block->instructions.emplace_back(std::move(vec));
+
+ has_offset = false;
+ }
+
+ /* Build tex instruction */
+ unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+ Temp tmp_dst = dst;
+
+ /* gather4 selects the component by dmask and always returns vec4 */
+ if (instr->op == nir_texop_tg4) {
+ assert(instr->dest.ssa.num_components == 4);
+ if (instr->is_shadow)
+ dmask = 1;
+ else
+ dmask = 1 << instr->component;
+ if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
+ tmp_dst = bld.tmp(v4);
+ } else if (instr->op == nir_texop_samples_identical) {
+ tmp_dst = bld.tmp(v1);
+ } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
+ tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
+ }
+
+ aco_ptr<MIMG_instruction> tex;
+ if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
+ if (!has_lod)
+ lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
+
+ bool div_by_6 = instr->op == nir_texop_txs &&
+ instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
+ instr->is_array &&
+ (dmask & (1 << 2));
+ if (tmp_dst.id() == dst.id() && div_by_6)
+ tmp_dst = bld.tmp(tmp_dst.regClass());
+
+ tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
+ tex->operands[0] = Operand(as_vgpr(ctx,lod));
+ tex->operands[1] = Operand(resource);
+ if (ctx->options->chip_class >= GFX9 &&
+ instr->op == nir_texop_txs &&
+ instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
+ instr->is_array) {
+ tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
+ } else if (instr->op == nir_texop_query_levels) {
+ tex->dmask = 1 << 3;
+ } else {
+ tex->dmask = dmask;
+ }
+ tex->da = da;
+ tex->definitions[0] = Definition(tmp_dst);
+ tex->can_reorder = true;
+ ctx->block->instructions.emplace_back(std::move(tex));
+
+ if (div_by_6) {
+ /* divide 3rd value by 6 by multiplying with magic number */
+ emit_split_vector(ctx, tmp_dst, tmp_dst.size());
+ Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
+ Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
+ assert(instr->dest.ssa.num_components == 3);
+ Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
+ tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
+ emit_extract_vector(ctx, tmp_dst, 0, v1),
+ emit_extract_vector(ctx, tmp_dst, 1, v1),
+ by_6);
+
+ }
+
+ expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
+ return;
+ }
+
+ Temp tg4_compare_cube_wa64 = Temp();
+
+ if (tg4_integer_workarounds) {
+ tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
+ tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
+ tex->operands[1] = Operand(resource);
+ tex->dmask = 0x3;
+ tex->da = da;
+ Temp size = bld.tmp(v2);
+ tex->definitions[0] = Definition(size);
+ tex->can_reorder = true;
+ ctx->block->instructions.emplace_back(std::move(tex));
+ emit_split_vector(ctx, size, size.size());
+
+ Temp half_texel[2];
+ for (unsigned i = 0; i < 2; i++) {
+ half_texel[i] = emit_extract_vector(ctx, size, i, v1);
+ half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
+ half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
+ half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
+ }
+
+ Temp orig_coords[2] = {
+ emit_extract_vector(ctx, coords, 0, v1),
+ emit_extract_vector(ctx, coords, 1, v1)};
+ Temp new_coords[2] = {
+ bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
+ bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
+ };
+
+ if (tg4_integer_cube_workaround) {
+ // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
+ Temp desc[resource.size()];
+ aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
+ Format::PSEUDO, 1, resource.size())};
+ split->operands[0] = Operand(resource);
+ for (unsigned i = 0; i < resource.size(); i++) {
+ desc[i] = bld.tmp(s1);
+ split->definitions[i] = Definition(desc[i]);
+ }
+ ctx->block->instructions.emplace_back(std::move(split));
+
+ Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
+ Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
+ Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
+
+ Temp nfmt;
+ if (stype == GLSL_TYPE_UINT) {
+ nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
+ Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
+ Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
+ bld.scc(compare_cube_wa));
+ } else {
+ nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
+ Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
+ Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
+ bld.scc(compare_cube_wa));
+ }
+ tg4_compare_cube_wa64 = as_divergent_bool(ctx, compare_cube_wa, true);
+ nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
+
+ desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
+ Operand((uint32_t)C_008F14_NUM_FORMAT));
+ desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
+
+ aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
+ Format::PSEUDO, resource.size(), 1)};
+ for (unsigned i = 0; i < resource.size(); i++)
+ vec->operands[i] = Operand(desc[i]);
+ resource = bld.tmp(resource.regClass());
+ vec->definitions[0] = Definition(resource);
+ ctx->block->instructions.emplace_back(std::move(vec));
+
+ new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
+ new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
+ new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
+ new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
+ }
+
+ if (coords.size() == 3) {
+ coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
+ new_coords[0], new_coords[1],
+ emit_extract_vector(ctx, coords, 2, v1));
+ } else {
+ assert(coords.size() == 2);
+ coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
+ new_coords[0], new_coords[1]);
+ }
+ }
+
+ if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
+ instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
+ instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
+ coords = emit_wqm(ctx, coords, bld.tmp(coords.regClass()), true);
+
+ std::vector<Operand> args;
+ if (has_offset)
+ args.emplace_back(Operand(offset));
+ if (has_bias)
+ args.emplace_back(Operand(bias));
+ if (has_compare)
+ args.emplace_back(Operand(compare));
+ if (has_derivs)
+ args.emplace_back(Operand(derivs));
+ args.emplace_back(Operand(coords));
+ if (has_sample_index)
+ args.emplace_back(Operand(sample_index));
+ if (has_lod)
+ args.emplace_back(lod);
+
+ Operand arg;
+ if (args.size() > 1) {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
+ unsigned size = 0;
+ for (unsigned i = 0; i < args.size(); i++) {
+ size += args[i].size();
+ vec->operands[i] = args[i];
+ }
+ RegClass rc = RegClass(RegType::vgpr, size);
+ Temp tmp = bld.tmp(rc);
+ vec->definitions[0] = Definition(tmp);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ arg = Operand(tmp);
+ } else {
+ assert(args[0].isTemp());
+ arg = Operand(as_vgpr(ctx, args[0].getTemp()));
+ }
+
+ if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
+ //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
+
+ assert(coords.size() == 1);
+ unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
+ aco_opcode op;
+ switch (last_bit) {
+ case 1:
+ op = aco_opcode::buffer_load_format_x; break;
+ case 2:
+ op = aco_opcode::buffer_load_format_xy; break;
+ case 3:
+ op = aco_opcode::buffer_load_format_xyz; break;
+ case 4:
+ op = aco_opcode::buffer_load_format_xyzw; break;
+ default:
+ unreachable("Tex instruction loads more than 4 components.");
+ }
+
+ /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
+ if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
+ tmp_dst = dst;
+ else
+ tmp_dst = bld.tmp(RegType::vgpr, last_bit);
+
+ aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
+ mubuf->operands[0] = Operand(coords);
+ mubuf->operands[1] = Operand(resource);
+ mubuf->operands[2] = Operand((uint32_t) 0);
+ mubuf->definitions[0] = Definition(tmp_dst);
+ mubuf->idxen = true;
+ mubuf->can_reorder = true;
+ ctx->block->instructions.emplace_back(std::move(mubuf));
+
+ expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
+ return;
+ }
+
+
+ if (instr->op == nir_texop_txf ||
+ instr->op == nir_texop_txf_ms ||
+ instr->op == nir_texop_samples_identical) {
+ aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
+ tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
+ tex->operands[0] = Operand(arg);
+ tex->operands[1] = Operand(resource);
+ tex->dmask = dmask;
+ tex->unrm = true;
+ tex->da = da;
+ tex->definitions[0] = Definition(tmp_dst);
+ tex->can_reorder = true;
+ ctx->block->instructions.emplace_back(std::move(tex));
+
+ if (instr->op == nir_texop_samples_identical) {
+ assert(dmask == 1 && dst.regClass() == v1);
+ assert(dst.id() != tmp_dst.id());
+
+ Temp tmp = bld.tmp(s2);
+ bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
+ bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
+
+ } else {
+ expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
+ }
+ return;
+ }
+
+ // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
+ aco_opcode opcode = aco_opcode::image_sample;
+ if (has_offset) { /* image_sample_*_o */
+ if (has_compare) {
+ opcode = aco_opcode::image_sample_c_o;
+ if (has_derivs)
+ opcode = aco_opcode::image_sample_c_d_o;
+ if (has_bias)
+ opcode = aco_opcode::image_sample_c_b_o;
+ if (level_zero)
+ opcode = aco_opcode::image_sample_c_lz_o;
+ if (has_lod)
+ opcode = aco_opcode::image_sample_c_l_o;
+ } else {
+ opcode = aco_opcode::image_sample_o;
+ if (has_derivs)
+ opcode = aco_opcode::image_sample_d_o;
+ if (has_bias)
+ opcode = aco_opcode::image_sample_b_o;
+ if (level_zero)
+ opcode = aco_opcode::image_sample_lz_o;
+ if (has_lod)
+ opcode = aco_opcode::image_sample_l_o;
+ }
+ } else { /* no offset */
+ if (has_compare) {
+ opcode = aco_opcode::image_sample_c;
+ if (has_derivs)
+ opcode = aco_opcode::image_sample_c_d;
+ if (has_bias)
+ opcode = aco_opcode::image_sample_c_b;
+ if (level_zero)
+ opcode = aco_opcode::image_sample_c_lz;
+ if (has_lod)
+ opcode = aco_opcode::image_sample_c_l;
+ } else {
+ opcode = aco_opcode::image_sample;
+ if (has_derivs)
+ opcode = aco_opcode::image_sample_d;
+ if (has_bias)
+ opcode = aco_opcode::image_sample_b;
+ if (level_zero)
+ opcode = aco_opcode::image_sample_lz;
+ if (has_lod)
+ opcode = aco_opcode::image_sample_l;
+ }
+ }
+
+ if (instr->op == nir_texop_tg4) {
+ if (has_offset) {
+ opcode = aco_opcode::image_gather4_lz_o;
+ if (has_compare)
+ opcode = aco_opcode::image_gather4_c_lz_o;
+ } else {
+ opcode = aco_opcode::image_gather4_lz;
+ if (has_compare)
+ opcode = aco_opcode::image_gather4_c_lz;
+ }
+ } else if (instr->op == nir_texop_lod) {
+ opcode = aco_opcode::image_get_lod;
+ }
+
+ tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
+ tex->operands[0] = arg;
+ tex->operands[1] = Operand(resource);
+ tex->operands[2] = Operand(sampler);
+ tex->dmask = dmask;
+ tex->da = da;
+ tex->definitions[0] = Definition(tmp_dst);
+ tex->can_reorder = true;
+ ctx->block->instructions.emplace_back(std::move(tex));
+
+ if (tg4_integer_cube_workaround) {
+ assert(tmp_dst.id() != dst.id());
+ assert(tmp_dst.size() == dst.size() && dst.size() == 4);
+
+ emit_split_vector(ctx, tmp_dst, tmp_dst.size());
+ Temp val[4];
+ for (unsigned i = 0; i < dst.size(); i++) {
+ val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
+ Temp cvt_val;
+ if (stype == GLSL_TYPE_UINT)
+ cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
+ else
+ cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
+ val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
+ }
+ Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
+ tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
+ val[0], val[1], val[2], val[3]);
+ }
+ unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
+ expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
+
+}
+
+
+Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
+{
+ Temp tmp = get_ssa_temp(ctx, ssa);
+ if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
+ return Operand(tmp.regClass());
+ else
+ return Operand(tmp);
+}
+
+void visit_phi(isel_context *ctx, nir_phi_instr *instr)
+{
+ aco_ptr<Pseudo_instruction> phi;
+ unsigned num_src = exec_list_length(&instr->srcs);
+ Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
+
+ aco_opcode opcode = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index] ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
+
+ std::map<unsigned, nir_ssa_def*> phi_src;
+ bool all_undef = true;
+ nir_foreach_phi_src(src, instr) {
+ phi_src[src->pred->index] = src->src.ssa;
+ if (src->src.ssa->parent_instr->type != nir_instr_type_ssa_undef)
+ all_undef = false;
+ }
+ if (all_undef) {
+ Builder bld(ctx->program, ctx->block);
+ if (dst.regClass() == s1) {
+ bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
+ } else if (dst.regClass() == v1) {
+ bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
+ } else {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
+ for (unsigned i = 0; i < dst.size(); i++)
+ vec->operands[i] = Operand(0u);
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ }
+ return;
+ }
+
+ /* try to scalarize vector phis */
+ if (dst.size() > 1) {
+ // TODO: scalarize linear phis on divergent ifs
+ bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
+ std::array<Temp, 4> new_vec;
+ for (std::pair<const unsigned, nir_ssa_def*>& pair : phi_src) {
+ Operand src = get_phi_operand(ctx, pair.second);
+ if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end()) {
+ can_scalarize = false;
+ break;
+ }
+ }
+ if (can_scalarize) {
+ unsigned num_components = instr->dest.ssa.num_components;
+ assert(dst.size() % num_components == 0);
+ RegClass rc = RegClass(dst.type(), dst.size() / num_components);
+
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
+ for (unsigned k = 0; k < num_components; k++) {
+ phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src, 1));
+ std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
+ for (unsigned i = 0; i < num_src; i++) {
+ Operand src = get_phi_operand(ctx, it->second);
+ phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
+ ++it;
+ }
+ Temp phi_dst = {ctx->program->allocateId(), rc};
+ phi->definitions[0] = Definition(phi_dst);
+ ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
+ new_vec[k] = phi_dst;
+ vec->operands[k] = Operand(phi_dst);
+ }
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ ctx->allocated_vec.emplace(dst.id(), new_vec);
+ return;
+ }
+ }
+
+ unsigned extra_src = 0;
+ if (opcode == aco_opcode::p_linear_phi && (ctx->block->kind & block_kind_loop_exit) &&
+ ctx->program->blocks[ctx->block->index-2].kind & block_kind_continue_or_break) {
+ extra_src++;
+ }
+
+ phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src + extra_src, 1));
+
+ /* if we have a linear phi on a divergent if, we know that one src is undef */
+ if (opcode == aco_opcode::p_linear_phi && ctx->block->kind & block_kind_merge) {
+ assert(extra_src == 0);
+ Block* block;
+ /* we place the phi either in the invert-block or in the current block */
+ if (phi_src.begin()->second->parent_instr->type != nir_instr_type_ssa_undef) {
+ assert((++phi_src.begin())->second->parent_instr->type == nir_instr_type_ssa_undef);
+ Block& linear_else = ctx->program->blocks[ctx->block->linear_preds[1]];
+ block = &ctx->program->blocks[linear_else.linear_preds[0]];
+ assert(block->kind & block_kind_invert);
+ phi->operands[0] = get_phi_operand(ctx, phi_src.begin()->second);
+ } else {
+ assert((++phi_src.begin())->second->parent_instr->type != nir_instr_type_ssa_undef);
+ block = ctx->block;
+ phi->operands[0] = get_phi_operand(ctx, (++phi_src.begin())->second);
+ }
+ phi->operands[1] = Operand(dst.regClass());
+ phi->definitions[0] = Definition(dst);
+ block->instructions.emplace(block->instructions.begin(), std::move(phi));
+ return;
+ }
+
+ std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
+ for (unsigned i = 0; i < num_src; i++) {
+ phi->operands[i] = get_phi_operand(ctx, it->second);
+ ++it;
+ }
+ for (unsigned i = 0; i < extra_src; i++)
+ phi->operands[num_src + i] = Operand(dst.regClass());
+ phi->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
+}
+
+
+void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
+{
+ Temp dst = get_ssa_temp(ctx, &instr->def);
+
+ assert(dst.type() == RegType::sgpr);
+
+ if (dst.size() == 1) {
+ Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
+ } else {
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
+ for (unsigned i = 0; i < dst.size(); i++)
+ vec->operands[i] = Operand(0u);
+ vec->definitions[0] = Definition(dst);
+ ctx->block->instructions.emplace_back(std::move(vec));
+ }
+}
+
+void visit_jump(isel_context *ctx, nir_jump_instr *instr)
+{
+ Builder bld(ctx->program, ctx->block);
+ Block *logical_target;
+ append_logical_end(ctx->block);
+ unsigned idx = ctx->block->index;
+
+ switch (instr->type) {
+ case nir_jump_break:
+ logical_target = ctx->cf_info.parent_loop.exit;
+ add_logical_edge(idx, logical_target);
+ ctx->block->kind |= block_kind_break;
+
+ if (!ctx->cf_info.parent_if.is_divergent &&
+ !ctx->cf_info.parent_loop.has_divergent_continue) {
+ /* uniform break - directly jump out of the loop */
+ ctx->block->kind |= block_kind_uniform;
+ ctx->cf_info.has_branch = true;
+ bld.branch(aco_opcode::p_branch);
+ add_linear_edge(idx, logical_target);
+ return;
+ }
+ ctx->cf_info.parent_loop.has_divergent_branch = true;
+ break;
+ case nir_jump_continue:
+ logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
+ add_logical_edge(idx, logical_target);
+ ctx->block->kind |= block_kind_continue;
+
+ if (ctx->cf_info.parent_if.is_divergent) {
+ /* for potential uniform breaks after this continue,
+ we must ensure that they are handled correctly */
+ ctx->cf_info.parent_loop.has_divergent_continue = true;
+ ctx->cf_info.parent_loop.has_divergent_branch = true;
+ } else {
+ /* uniform continue - directly jump to the loop header */
+ ctx->block->kind |= block_kind_uniform;
+ ctx->cf_info.has_branch = true;
+ bld.branch(aco_opcode::p_branch);
+ add_linear_edge(idx, logical_target);
+ return;
+ }
+ break;
+ default:
+ fprintf(stderr, "Unknown NIR jump instr: ");
+ nir_print_instr(&instr->instr, stderr);
+ fprintf(stderr, "\n");
+ abort();
+ }
+
+ /* remove critical edges from linear CFG */
+ bld.branch(aco_opcode::p_branch);
+ Block* break_block = ctx->program->create_and_insert_block();
+ break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ break_block->kind |= block_kind_uniform;
+ add_linear_edge(idx, break_block);
+ /* the loop_header pointer might be invalidated by this point */
+ if (instr->type == nir_jump_continue)
+ logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
+ add_linear_edge(break_block->index, logical_target);
+ bld.reset(break_block);
+ bld.branch(aco_opcode::p_branch);
+
+ Block* continue_block = ctx->program->create_and_insert_block();
+ continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ add_linear_edge(idx, continue_block);
+ append_logical_start(continue_block);
+ ctx->block = continue_block;
+ return;
+}
+
+void visit_block(isel_context *ctx, nir_block *block)
+{
+ nir_foreach_instr(instr, block) {
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ visit_alu_instr(ctx, nir_instr_as_alu(instr));
+ break;
+ case nir_instr_type_load_const:
+ visit_load_const(ctx, nir_instr_as_load_const(instr));
+ break;
+ case nir_instr_type_intrinsic:
+ visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
+ break;
+ case nir_instr_type_tex:
+ visit_tex(ctx, nir_instr_as_tex(instr));
+ break;
+ case nir_instr_type_phi:
+ visit_phi(ctx, nir_instr_as_phi(instr));
+ break;
+ case nir_instr_type_ssa_undef:
+ visit_undef(ctx, nir_instr_as_ssa_undef(instr));
+ break;
+ case nir_instr_type_deref:
+ break;
+ case nir_instr_type_jump:
+ visit_jump(ctx, nir_instr_as_jump(instr));
+ break;
+ default:
+ fprintf(stderr, "Unknown NIR instr type: ");
+ nir_print_instr(instr, stderr);
+ fprintf(stderr, "\n");
+ //abort();
+ }
+ }
+}
+
+
+
+static void visit_loop(isel_context *ctx, nir_loop *loop)
+{
+ append_logical_end(ctx->block);
+ ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
+ Builder bld(ctx->program, ctx->block);
+ bld.branch(aco_opcode::p_branch);
+ unsigned loop_preheader_idx = ctx->block->index;
+
+ Block loop_exit = Block();
+ loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
+
+ Block* loop_header = ctx->program->create_and_insert_block();
+ loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
+ loop_header->kind |= block_kind_loop_header;
+ add_edge(loop_preheader_idx, loop_header);
+ ctx->block = loop_header;
+
+ /* emit loop body */
+ unsigned loop_header_idx = loop_header->index;
+ loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
+ append_logical_start(ctx->block);
+ visit_cf_list(ctx, &loop->body);
+
+ //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
+ if (!ctx->cf_info.has_branch) {
+ append_logical_end(ctx->block);
+ if (ctx->cf_info.exec_potentially_empty) {
+ /* Discards can result in code running with an empty exec mask.
+ * This would result in divergent breaks not ever being taken. As a
+ * workaround, break the loop when the loop mask is empty instead of
+ * always continuing. */
+ ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
+
+ /* create "loop_almost_exit" to avoid critical edges */
+ unsigned block_idx = ctx->block->index;
+ Block *loop_almost_exit = ctx->program->create_and_insert_block();
+ loop_almost_exit->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ loop_almost_exit->kind = block_kind_uniform;
+ bld.reset(loop_almost_exit);
+ bld.branch(aco_opcode::p_branch);
+
+ add_linear_edge(block_idx, loop_almost_exit);
+ add_linear_edge(loop_almost_exit->index, &loop_exit);
+
+ ctx->block = &ctx->program->blocks[block_idx];
+ } else {
+ ctx->block->kind |= (block_kind_continue | block_kind_uniform);
+ }
+ if (!ctx->cf_info.parent_loop.has_divergent_branch)
+ add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
+ else
+ add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
+ bld.reset(ctx->block);
+ bld.branch(aco_opcode::p_branch);
+ }
+
+ /* fixup phis in loop header from unreachable blocks */
+ if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
+ bool linear = ctx->cf_info.has_branch;
+ bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
+ for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
+ if ((logical && instr->opcode == aco_opcode::p_phi) ||
+ (linear && instr->opcode == aco_opcode::p_linear_phi)) {
+ /* the last operand should be the one that needs to be removed */
+ instr->operands.pop_back();
+ } else if (!is_phi(instr)) {
+ break;
+ }
+ }
+ }
+
+ ctx->cf_info.has_branch = false;
+
+ // TODO: if the loop has not a single exit, we must add one °°
+ /* emit loop successor block */
+ ctx->block = ctx->program->insert_block(std::move(loop_exit));
+ append_logical_start(ctx->block);
+
+ #if 0
+ // TODO: check if it is beneficial to not branch on continues
+ /* trim linear phis in loop header */
+ for (auto&& instr : loop_entry->instructions) {
+ if (instr->opcode == aco_opcode::p_linear_phi) {
+ aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
+ new_phi->definitions[0] = instr->definitions[0];
+ for (unsigned i = 0; i < new_phi->operands.size(); i++)
+ new_phi->operands[i] = instr->operands[i];
+ /* check that the remaining operands are all the same */
+ for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
+ assert(instr->operands[i].tempId() == instr->operands.back().tempId());
+ instr.swap(new_phi);
+ } else if (instr->opcode == aco_opcode::p_phi) {
+ continue;
+ } else {
+ break;
+ }
+ }
+ #endif
+}
+
+static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
+{
+ ic->cond = cond;
+
+ append_logical_end(ctx->block);
+ ctx->block->kind |= block_kind_branch;
+
+ /* branch to linear then block */
+ assert(cond.regClass() == s2);
+ aco_ptr<Pseudo_branch_instruction> branch;
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
+ branch->operands[0] = Operand(cond);
+ ctx->block->instructions.push_back(std::move(branch));
+
+ ic->BB_if_idx = ctx->block->index;
+ ic->BB_invert = Block();
+ ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ /* Invert blocks are intentionally not marked as top level because they
+ * are not part of the logical cfg. */
+ ic->BB_invert.kind |= block_kind_invert;
+ ic->BB_endif = Block();
+ ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
+
+ ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
+ ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
+ ctx->cf_info.parent_if.is_divergent = true;
+ ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
+
+ /** emit logical then block */
+ Block* BB_then_logical = ctx->program->create_and_insert_block();
+ BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ add_edge(ic->BB_if_idx, BB_then_logical);
+ ctx->block = BB_then_logical;
+ append_logical_start(BB_then_logical);
+}
+
+static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
+{
+ Block *BB_then_logical = ctx->block;
+ append_logical_end(BB_then_logical);
+ /* branch from logical then block to invert block */
+ aco_ptr<Pseudo_branch_instruction> branch;
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
+ BB_then_logical->instructions.emplace_back(std::move(branch));
+ add_linear_edge(BB_then_logical->index, &ic->BB_invert);
+ if (!ctx->cf_info.parent_loop.has_divergent_branch)
+ add_logical_edge(BB_then_logical->index, &ic->BB_endif);
+ BB_then_logical->kind |= block_kind_uniform;
+ assert(!ctx->cf_info.has_branch);
+ ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
+ ctx->cf_info.parent_loop.has_divergent_branch = false;
+
+ /** emit linear then block */
+ Block* BB_then_linear = ctx->program->create_and_insert_block();
+ BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ BB_then_linear->kind |= block_kind_uniform;
+ add_linear_edge(ic->BB_if_idx, BB_then_linear);
+ /* branch from linear then block to invert block */
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
+ BB_then_linear->instructions.emplace_back(std::move(branch));
+ add_linear_edge(BB_then_linear->index, &ic->BB_invert);
+
+ /** emit invert merge block */
+ ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
+ ic->invert_idx = ctx->block->index;
+
+ /* branch to linear else block (skip else) */
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
+ branch->operands[0] = Operand(ic->cond);
+ ctx->block->instructions.push_back(std::move(branch));
+
+ ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
+ ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
+
+ /** emit logical else block */
+ Block* BB_else_logical = ctx->program->create_and_insert_block();
+ BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ add_logical_edge(ic->BB_if_idx, BB_else_logical);
+ add_linear_edge(ic->invert_idx, BB_else_logical);
+ ctx->block = BB_else_logical;
+ append_logical_start(BB_else_logical);
+}
+
+static void end_divergent_if(isel_context *ctx, if_context *ic)
+{
+ Block *BB_else_logical = ctx->block;
+ append_logical_end(BB_else_logical);
+
+ /* branch from logical else block to endif block */
+ aco_ptr<Pseudo_branch_instruction> branch;
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
+ BB_else_logical->instructions.emplace_back(std::move(branch));
+ add_linear_edge(BB_else_logical->index, &ic->BB_endif);
+ if (!ctx->cf_info.parent_loop.has_divergent_branch)
+ add_logical_edge(BB_else_logical->index, &ic->BB_endif);
+ BB_else_logical->kind |= block_kind_uniform;
+
+ assert(!ctx->cf_info.has_branch);
+ ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
+
+
+ /** emit linear else block */
+ Block* BB_else_linear = ctx->program->create_and_insert_block();
+ BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ BB_else_linear->kind |= block_kind_uniform;
+ add_linear_edge(ic->invert_idx, BB_else_linear);
+
+ /* branch from linear else block to endif block */
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
+ BB_else_linear->instructions.emplace_back(std::move(branch));
+ add_linear_edge(BB_else_linear->index, &ic->BB_endif);
+
+
+ /** emit endif merge block */
+ ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
+ append_logical_start(ctx->block);
+
+
+ ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
+ ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
+ /* uniform control flow never has an empty exec-mask */
+ if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
+ ctx->cf_info.exec_potentially_empty = false;
+}
+
+static void visit_if(isel_context *ctx, nir_if *if_stmt)
+{
+ Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
+ Builder bld(ctx->program, ctx->block);
+ aco_ptr<Pseudo_branch_instruction> branch;
+
+ if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
+ /**
+ * Uniform conditionals are represented in the following way*) :
+ *
+ * The linear and logical CFG:
+ * BB_IF
+ * / \
+ * BB_THEN (logical) BB_ELSE (logical)
+ * \ /
+ * BB_ENDIF
+ *
+ * *) Exceptions may be due to break and continue statements within loops
+ * If a break/continue happens within uniform control flow, it branches
+ * to the loop exit/entry block. Otherwise, it branches to the next
+ * merge block.
+ **/
+ append_logical_end(ctx->block);
+ ctx->block->kind |= block_kind_uniform;
+
+ /* emit branch */
+ if (cond.regClass() == s2) {
+ // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
+ cond = as_uniform_bool(ctx, cond);
+ }
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
+ branch->operands[0] = Operand(cond);
+ branch->operands[0].setFixed(scc);
+ ctx->block->instructions.emplace_back(std::move(branch));
+
+ unsigned BB_if_idx = ctx->block->index;
+ Block BB_endif = Block();
+ BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ BB_endif.kind |= ctx->block->kind & block_kind_top_level;
+
+ /** emit then block */
+ Block* BB_then = ctx->program->create_and_insert_block();
+ BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ add_edge(BB_if_idx, BB_then);
+ append_logical_start(BB_then);
+ ctx->block = BB_then;
+ visit_cf_list(ctx, &if_stmt->then_list);
+ BB_then = ctx->block;
+ bool then_branch = ctx->cf_info.has_branch;
+ bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
+
+ if (!then_branch) {
+ append_logical_end(BB_then);
+ /* branch from then block to endif block */
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
+ BB_then->instructions.emplace_back(std::move(branch));
+ add_linear_edge(BB_then->index, &BB_endif);
+ if (!then_branch_divergent)
+ add_logical_edge(BB_then->index, &BB_endif);
+ BB_then->kind |= block_kind_uniform;
+ }
+
+ ctx->cf_info.has_branch = false;
+ ctx->cf_info.parent_loop.has_divergent_branch = false;
+
+ /** emit else block */
+ Block* BB_else = ctx->program->create_and_insert_block();
+ BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
+ add_edge(BB_if_idx, BB_else);
+ append_logical_start(BB_else);
+ ctx->block = BB_else;
+ visit_cf_list(ctx, &if_stmt->else_list);
+ BB_else = ctx->block;
+
+ if (!ctx->cf_info.has_branch) {
+ append_logical_end(BB_else);
+ /* branch from then block to endif block */
+ branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
+ BB_else->instructions.emplace_back(std::move(branch));
+ add_linear_edge(BB_else->index, &BB_endif);
+ if (!ctx->cf_info.parent_loop.has_divergent_branch)
+ add_logical_edge(BB_else->index, &BB_endif);
+ BB_else->kind |= block_kind_uniform;
+ }
+
+ ctx->cf_info.has_branch &= then_branch;
+ ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
+
+ /** emit endif merge block */
+ if (!ctx->cf_info.has_branch) {
+ ctx->block = ctx->program->insert_block(std::move(BB_endif));
+ append_logical_start(ctx->block);
+ }
+ } else { /* non-uniform condition */
+ /**
+ * To maintain a logical and linear CFG without critical edges,
+ * non-uniform conditionals are represented in the following way*) :
+ *
+ * The linear CFG:
+ * BB_IF
+ * / \
+ * BB_THEN (logical) BB_THEN (linear)
+ * \ /
+ * BB_INVERT (linear)
+ * / \
+ * BB_ELSE (logical) BB_ELSE (linear)
+ * \ /
+ * BB_ENDIF
+ *
+ * The logical CFG:
+ * BB_IF
+ * / \
+ * BB_THEN (logical) BB_ELSE (logical)
+ * \ /
+ * BB_ENDIF
+ *
+ * *) Exceptions may be due to break and continue statements within loops
+ **/
+
+ if_context ic;
+
+ begin_divergent_if_then(ctx, &ic, cond);
+ visit_cf_list(ctx, &if_stmt->then_list);
+
+ begin_divergent_if_else(ctx, &ic);
+ visit_cf_list(ctx, &if_stmt->else_list);
+
+ end_divergent_if(ctx, &ic);
+ }
+}
+
+static void visit_cf_list(isel_context *ctx,
+ struct exec_list *list)
+{
+ foreach_list_typed(nir_cf_node, node, node, list) {
+ switch (node->type) {
+ case nir_cf_node_block:
+ visit_block(ctx, nir_cf_node_as_block(node));
+ break;
+ case nir_cf_node_if:
+ visit_if(ctx, nir_cf_node_as_if(node));
+ break;
+ case nir_cf_node_loop:
+ visit_loop(ctx, nir_cf_node_as_loop(node));
+ break;
+ default:
+ unreachable("unimplemented cf list type");
+ }
+ }
+}
+
+static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
+{
+ int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
+ uint64_t mask = ctx->vs_output.mask[slot];
+ if (!is_pos && !mask)
+ return;
+ if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
+ return;
+ aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
+ exp->enabled_mask = mask;
+ for (unsigned i = 0; i < 4; ++i) {
+ if (mask & (1 << i))
+ exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
+ else
+ exp->operands[i] = Operand(v1);
+ }
+ exp->valid_mask = false;
+ exp->done = false;
+ exp->compressed = false;
+ if (is_pos)
+ exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
+ else
+ exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
+ ctx->block->instructions.emplace_back(std::move(exp));
+}
+
+static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
+{
+ aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
+ exp->enabled_mask = 0;
+ for (unsigned i = 0; i < 4; ++i)
+ exp->operands[i] = Operand(v1);
+ if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
+ exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
+ exp->enabled_mask |= 0x1;
+ }
+ if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
+ exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
+ exp->enabled_mask |= 0x4;
+ }
+ if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
+ if (ctx->options->chip_class < GFX9) {
+ exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
+ exp->enabled_mask |= 0x8;
+ } else {
+ Builder bld(ctx->program, ctx->block);
+
+ Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
+ Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
+ if (exp->operands[2].isTemp())
+ out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
+
+ exp->operands[2] = Operand(out);
+ exp->enabled_mask |= 0x4;
+ }
+ }
+ exp->valid_mask = false;
+ exp->done = false;
+ exp->compressed = false;
+ exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
+ ctx->block->instructions.emplace_back(std::move(exp));
+}
+
+static void create_vs_exports(isel_context *ctx)
+{
+ radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
+
+ if (outinfo->export_prim_id) {
+ ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
+ ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = ctx->vs_prim_id;
+ }
+
+ if (ctx->options->key.has_multiview_view_index) {
+ ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
+ ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, ctx->view_index);
+ }
+
+ /* the order these position exports are created is important */
+ int next_pos = 0;
+ export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
+ if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
+ export_vs_psiz_layer_viewport(ctx, &next_pos);
+ }
+ if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
+ export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
+ if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
+ export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
+
+ if (ctx->options->key.vs_common_out.export_clip_dists) {
+ if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
+ export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
+ if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
+ export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
+ }
+
+ for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
+ if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
+ i != VARYING_SLOT_PRIMITIVE_ID)
+ continue;
+
+ export_vs_varying(ctx, i, false, NULL);
+ }
+}
+
+static void emit_stream_output(isel_context *ctx,
+ Temp const *so_buffers,
+ Temp const *so_write_offset,
+ const struct radv_stream_output *output)
+{
+ unsigned num_comps = util_bitcount(output->component_mask);
+ unsigned loc = output->location;
+ unsigned buf = output->buffer;
+ unsigned offset = output->offset;
+
+ assert(num_comps && num_comps <= 4);
+ if (!num_comps || num_comps > 4)
+ return;
+
+ unsigned start = ffs(output->component_mask) - 1;
+
+ Temp out[4];
+ bool all_undef = true;
+ assert(ctx->stage == vertex_vs);
+ for (unsigned i = 0; i < num_comps; i++) {
+ out[i] = ctx->vs_output.outputs[loc][start + i];
+ all_undef = all_undef && !out[i].id();
+ }
+ if (all_undef)
+ return;
+
+ Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_comps)};
+ aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_comps, 1)};
+ for (unsigned i = 0; i < num_comps; ++i)
+ vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << i) ? Operand(out[i]) : Operand(0u);
+ vec->definitions[0] = Definition(write_data);
+ ctx->block->instructions.emplace_back(std::move(vec));
+
+ aco_opcode opcode;
+ switch (num_comps) {
+ case 1:
+ opcode = aco_opcode::buffer_store_dword;
+ break;
+ case 2:
+ opcode = aco_opcode::buffer_store_dwordx2;
+ break;
+ case 3:
+ opcode = aco_opcode::buffer_store_dwordx3;
+ break;
+ case 4:
+ opcode = aco_opcode::buffer_store_dwordx4;
+ break;
+ }
+
+ aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
+ store->operands[0] = Operand(so_write_offset[buf]);
+ store->operands[1] = Operand(so_buffers[buf]);
+ store->operands[2] = Operand((uint32_t) 0);
+ store->operands[3] = Operand(write_data);
+ if (offset > 4095) {
+ /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
+ Builder bld(ctx->program, ctx->block);
+ store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
+ } else {
+ store->offset = offset;
+ }
+ store->offen = true;
+ store->glc = true;
+ store->slc = true;
+ store->can_reorder = true;
+ ctx->block->instructions.emplace_back(std::move(store));
+}
+
+static void emit_streamout(isel_context *ctx, unsigned stream)
+{
+ Builder bld(ctx->program, ctx->block);
+
+ Temp so_buffers[4];
+ Temp buf_ptr = convert_pointer_to_64_bit(ctx, ctx->streamout_buffers);
+ for (unsigned i = 0; i < 4; i++) {
+ unsigned stride = ctx->program->info->so.strides[i];
+ if (!stride)
+ continue;
+
+ so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
+ }
+
+ Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
+ ctx->streamout_config, Operand(0x70010u));
+
+ Temp tid = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
+ bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
+
+ Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(s2), so_vtx_count, tid);
+
+ if_context ic;
+ begin_divergent_if_then(ctx, &ic, can_emit);
+
+ bld.reset(ctx->block);
+
+ Temp so_write_index = bld.vadd32(bld.def(v1), ctx->streamout_write_idx, tid);
+
+ Temp so_write_offset[4];
+
+ for (unsigned i = 0; i < 4; i++) {
+ unsigned stride = ctx->program->info->so.strides[i];
+ if (!stride)
+ continue;
+
+ if (stride == 1) {
+ Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
+ ctx->streamout_write_idx, ctx->streamout_offset[i]);
+ Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
+
+ so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
+ } else {
+ Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
+ Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u), ctx->streamout_offset[i]);
+ so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
+ }
+ }
+
+ for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
+ struct radv_stream_output *output =
+ &ctx->program->info->so.outputs[i];
+ if (stream != output->stream)
+ continue;
+
+ emit_stream_output(ctx, so_buffers, so_write_offset, output);
+ }
+
+ begin_divergent_if_else(ctx, &ic);
+ end_divergent_if(ctx, &ic);
+}
+
+} /* end namespace */
+
+void handle_bc_optimize(isel_context *ctx)
+{
+ /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
+ Builder bld(ctx->program, ctx->block);
+ uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
+ bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
+ bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
+ if (uses_center && uses_centroid) {
+ Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(s2)), ctx->prim_mask, Operand(0u));
+
+ if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
+ for (unsigned i = 0; i < 2; i++) {
+ Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
+ ctx->fs_inputs[fs_input::persp_centroid_p1 + i],
+ ctx->fs_inputs[fs_input::persp_center_p1 + i],
+ sel);
+ ctx->fs_inputs[fs_input::persp_centroid_p1 + i] = new_coord;
+ }
+ }
+
+ if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
+ for (unsigned i = 0; i < 2; i++) {
+ Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
+ ctx->fs_inputs[fs_input::linear_centroid_p1 + i],
+ ctx->fs_inputs[fs_input::linear_center_p1 + i],
+ sel);
+ ctx->fs_inputs[fs_input::linear_centroid_p1 + i] = new_coord;
+ }
+ }
+ }
+}
+
+void select_program(Program *program,
+ unsigned shader_count,
+ struct nir_shader *const *shaders,
+ ac_shader_config* config,
+ struct radv_shader_info *info,
+ struct radv_nir_compiler_options *options)
+{
+ isel_context ctx = setup_isel_context(program, shader_count, shaders, config, info, options);
+
+ for (unsigned i = 0; i < shader_count; i++) {
+ nir_shader *nir = shaders[i];
+ init_context(&ctx, nir);
+
+ if (!i) {
+ add_startpgm(&ctx); /* needs to be after init_context() for FS */
+ append_logical_start(ctx.block);
+ }
+
+ if_context ic;
+ if (shader_count >= 2) {
+ Builder bld(ctx.program, ctx.block);
+ Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
+ Temp thread_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
+ bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
+ Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(s2)), count, thread_id);
+
+ begin_divergent_if_then(&ctx, &ic, cond);
+ }
+
+ if (i) {
+ Builder bld(ctx.program, ctx.block);
+ bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
+ bld.sopp(aco_opcode::s_barrier);
+ }
+
+ if (ctx.stage == fragment_fs)
+ handle_bc_optimize(&ctx);
+
+ nir_function_impl *func = nir_shader_get_entrypoint(nir);
+ visit_cf_list(&ctx, &func->body);
+
+ if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
+ emit_streamout(&ctx, 0);
+
+ if (ctx.stage == vertex_vs)
+ create_vs_exports(&ctx);
+
+ if (shader_count >= 2) {
+ begin_divergent_if_else(&ctx, &ic);
+ end_divergent_if(&ctx, &ic);
+ }
+
+ ralloc_free(ctx.divergent_vals);
+ }
+
+ append_logical_end(ctx.block);
+ ctx.block->kind |= block_kind_uniform;
+ Builder bld(ctx.program, ctx.block);
+ if (ctx.program->wb_smem_l1_on_end)
+ bld.smem(aco_opcode::s_dcache_wb, false);
+ bld.sopp(aco_opcode::s_endpgm);
+
+ /* cleanup CFG */
+ for (Block& BB : program->blocks) {
+ for (unsigned idx : BB.linear_preds)
+ program->blocks[idx].linear_succs.emplace_back(BB.index);
+ for (unsigned idx : BB.logical_preds)
+ program->blocks[idx].logical_succs.emplace_back(BB.index);
+ }
+}
+}