summaryrefslogtreecommitdiff
path: root/src/compiler
diff options
context:
space:
mode:
authorBas Nieuwenhuizen <bas@basnieuwenhuizen.nl>2021-02-16 02:37:40 +0100
committerMarge Bot <eric+marge@anholt.net>2021-06-21 21:23:51 +0000
commit8dfb240b1f063307aa5e53fb1bd0865105eef986 (patch)
tree287df9026062c83942e60ce47831cbdb53cc1e4f /src/compiler
parent02c5dc8035b8b03d1abc74074767303951fd0a5b (diff)
nir: Add raytracing shader call lowering pass.
Really copying Jason's pass. Changes: - Instead of all the intel lowering introduce rt_{execute_callable,trace_ray,resume} - Add the ability to use scratch intrinsics directly. Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/10339>
Diffstat (limited to 'src/compiler')
-rw-r--r--src/compiler/Makefile.sources1
-rw-r--r--src/compiler/nir/meson.build1
-rw-r--r--src/compiler/nir/nir.h8
-rw-r--r--src/compiler/nir/nir_lower_shader_calls.c1121
4 files changed, 1131 insertions, 0 deletions
diff --git a/src/compiler/Makefile.sources b/src/compiler/Makefile.sources
index 6a758e725a2..69561c99c14 100644
--- a/src/compiler/Makefile.sources
+++ b/src/compiler/Makefile.sources
@@ -298,6 +298,7 @@ NIR_FILES = \
nir/nir_lower_returns.c \
nir/nir_lower_samplers.c \
nir/nir_lower_scratch.c \
+ nir/nir_lower_shader_calls.c \
nir/nir_lower_ssbo.c \
nir/nir_lower_subgroups.c \
nir/nir_lower_system_values.c \
diff --git a/src/compiler/nir/meson.build b/src/compiler/nir/meson.build
index 8209516d732..229dacdb59d 100644
--- a/src/compiler/nir/meson.build
+++ b/src/compiler/nir/meson.build
@@ -186,6 +186,7 @@ files_libnir = files(
'nir_lower_returns.c',
'nir_lower_samplers.c',
'nir_lower_scratch.c',
+ 'nir_lower_shader_calls.c',
'nir_lower_ssbo.c',
'nir_lower_subgroups.c',
'nir_lower_system_values.c',
diff --git a/src/compiler/nir/nir.h b/src/compiler/nir/nir.h
index ca123a51a61..6f7732fd8e6 100644
--- a/src/compiler/nir/nir.h
+++ b/src/compiler/nir/nir.h
@@ -4626,6 +4626,14 @@ bool nir_lower_explicit_io(nir_shader *shader,
nir_variable_mode modes,
nir_address_format);
+bool
+nir_lower_shader_calls(nir_shader *shader,
+ nir_address_format address_format,
+ unsigned stack_alignment,
+ nir_shader ***resume_shaders_out,
+ uint32_t *num_resume_shaders_out,
+ void *mem_ctx);
+
nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
diff --git a/src/compiler/nir/nir_lower_shader_calls.c b/src/compiler/nir/nir_lower_shader_calls.c
new file mode 100644
index 00000000000..cc0f5aa7859
--- /dev/null
+++ b/src/compiler/nir/nir_lower_shader_calls.c
@@ -0,0 +1,1121 @@
+/*
+ * Copyright © 2020 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "nir.h"
+#include "nir_builder.h"
+#include "nir_phi_builder.h"
+#include "util/u_math.h"
+
+static bool
+move_system_values_to_top(nir_shader *shader)
+{
+ nir_function_impl *impl = nir_shader_get_entrypoint(shader);
+
+ bool progress = false;
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ /* These intrinsics not only can't be re-materialized but aren't
+ * preserved when moving to the continuation shader. We have to move
+ * them to the top to ensure they get spilled as needed.
+ */
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+ switch (intrin->intrinsic) {
+ case nir_intrinsic_load_shader_record_ptr:
+ case nir_intrinsic_load_btd_local_arg_addr_intel:
+ nir_instr_remove(instr);
+ nir_instr_insert(nir_before_cf_list(&impl->body), instr);
+ progress = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+
+ if (progress) {
+ nir_metadata_preserve(impl, nir_metadata_block_index |
+ nir_metadata_dominance);
+ } else {
+ nir_metadata_preserve(impl, nir_metadata_all);
+ }
+
+ return progress;
+}
+
+static bool
+instr_is_shader_call(nir_instr *instr)
+{
+ if (instr->type != nir_instr_type_intrinsic)
+ return false;
+
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+ return intrin->intrinsic == nir_intrinsic_trace_ray ||
+ intrin->intrinsic == nir_intrinsic_report_ray_intersection ||
+ intrin->intrinsic == nir_intrinsic_execute_callable;
+}
+
+struct bitset {
+ BITSET_WORD *set;
+ unsigned size;
+};
+
+static struct bitset
+bitset_create(void *mem_ctx, unsigned size)
+{
+ return (struct bitset) {
+ .set = rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(size)),
+ .size = size,
+ };
+}
+
+static bool
+src_is_in_bitset(nir_src *src, void *_set)
+{
+ struct bitset *set = _set;
+ assert(src->is_ssa);
+
+ /* Any SSA values which were added after we generated liveness information
+ * are things generated by this pass and, while most of it is arithmetic
+ * which we could re-materialize, we don't need to because it's only used
+ * for a single load/store and so shouldn't cross any shader calls.
+ */
+ if (src->ssa->index >= set->size)
+ return false;
+
+ return BITSET_TEST(set->set, src->ssa->index);
+}
+
+static void
+add_ssa_def_to_bitset(nir_ssa_def *def, struct bitset *set)
+{
+ if (def->index >= set->size)
+ return;
+
+ BITSET_SET(set->set, def->index);
+}
+
+static bool
+can_remat_instr(nir_instr *instr, struct bitset *remat)
+{
+ /* Set of all values which are trivially re-materializable and we shouldn't
+ * ever spill them. This includes:
+ *
+ * - Undef values
+ * - Constants
+ * - Uniforms (UBO or push constant)
+ * - ALU combinations of any of the above
+ * - Derefs which are either complete or casts of any of the above
+ *
+ * Because this pass rewrites things in-order and phis are always turned
+ * into register writes, We can use "is it SSA?" to answer the question
+ * "can my source be re-materialized?".
+ */
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ if (!nir_instr_as_alu(instr)->dest.dest.is_ssa)
+ return false;
+
+ return nir_foreach_src(instr, src_is_in_bitset, remat);
+
+ case nir_instr_type_deref:
+ return nir_foreach_src(instr, src_is_in_bitset, remat);
+
+ case nir_instr_type_intrinsic: {
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+ switch (intrin->intrinsic) {
+ case nir_intrinsic_load_ubo:
+ case nir_intrinsic_vulkan_resource_index:
+ case nir_intrinsic_vulkan_resource_reindex:
+ case nir_intrinsic_load_vulkan_descriptor:
+ case nir_intrinsic_load_push_constant:
+ /* These intrinsics don't need to be spilled as long as they don't
+ * depend on any spilled values.
+ */
+ return nir_foreach_src(instr, src_is_in_bitset, remat);
+
+ case nir_intrinsic_load_scratch_base_ptr:
+ case nir_intrinsic_load_ray_launch_id:
+ case nir_intrinsic_load_btd_dss_id_intel:
+ case nir_intrinsic_load_btd_global_arg_addr_intel:
+ case nir_intrinsic_load_btd_resume_sbt_addr_intel:
+ case nir_intrinsic_load_ray_base_mem_addr_intel:
+ case nir_intrinsic_load_ray_hw_stack_size_intel:
+ case nir_intrinsic_load_ray_sw_stack_size_intel:
+ case nir_intrinsic_load_ray_num_dss_rt_stacks_intel:
+ case nir_intrinsic_load_ray_hit_sbt_addr_intel:
+ case nir_intrinsic_load_ray_hit_sbt_stride_intel:
+ case nir_intrinsic_load_ray_miss_sbt_addr_intel:
+ case nir_intrinsic_load_ray_miss_sbt_stride_intel:
+ case nir_intrinsic_load_callable_sbt_addr_intel:
+ case nir_intrinsic_load_callable_sbt_stride_intel:
+ /* Notably missing from the above list is btd_local_arg_addr_intel.
+ * This is because the resume shader will have a different local
+ * argument pointer because it has a different BSR. Any access of
+ * the original shader's local arguments needs to be preserved so
+ * that pointer has to be saved on the stack.
+ *
+ * TODO: There may be some system values we want to avoid
+ * re-materializing as well but we have to be very careful
+ * to ensure that it's a system value which cannot change
+ * across a shader call.
+ */
+ return true;
+
+ default:
+ return false;
+ }
+ }
+
+ case nir_instr_type_ssa_undef:
+ case nir_instr_type_load_const:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool
+can_remat_ssa_def(nir_ssa_def *def, struct bitset *remat)
+{
+ return can_remat_instr(def->parent_instr, remat);
+}
+
+static nir_ssa_def *
+remat_ssa_def(nir_builder *b, nir_ssa_def *def)
+{
+ nir_instr *clone = nir_instr_clone(b->shader, def->parent_instr);
+ nir_builder_instr_insert(b, clone);
+ return nir_instr_ssa_def(clone);
+}
+
+struct pbv_array {
+ struct nir_phi_builder_value **arr;
+ unsigned len;
+};
+
+static struct nir_phi_builder_value *
+get_phi_builder_value_for_def(nir_ssa_def *def,
+ struct pbv_array *pbv_arr)
+{
+ if (def->index >= pbv_arr->len)
+ return NULL;
+
+ return pbv_arr->arr[def->index];
+}
+
+static nir_ssa_def *
+get_phi_builder_def_for_src(nir_src *src, struct pbv_array *pbv_arr,
+ nir_block *block)
+{
+ assert(src->is_ssa);
+
+ struct nir_phi_builder_value *pbv =
+ get_phi_builder_value_for_def(src->ssa, pbv_arr);
+ if (pbv == NULL)
+ return NULL;
+
+ return nir_phi_builder_value_get_block_def(pbv, block);
+}
+
+static bool
+rewrite_instr_src_from_phi_builder(nir_src *src, void *_pbv_arr)
+{
+ nir_block *block;
+ if (src->parent_instr->type == nir_instr_type_phi) {
+ nir_phi_src *phi_src = exec_node_data(nir_phi_src, src, src);
+ block = phi_src->pred;
+ } else {
+ block = src->parent_instr->block;
+ }
+
+ nir_ssa_def *new_def = get_phi_builder_def_for_src(src, _pbv_arr, block);
+ if (new_def != NULL)
+ nir_instr_rewrite_src(src->parent_instr, src, nir_src_for_ssa(new_def));
+ return true;
+}
+
+static nir_ssa_def *
+spill_fill(nir_builder *before, nir_builder *after, nir_ssa_def *def, unsigned offset,
+ nir_address_format address_format, unsigned stack_alignment)
+{
+ const unsigned comp_size = def->bit_size / 8;
+
+ switch(address_format) {
+ case nir_address_format_32bit_offset:
+ nir_store_scratch(before, def, nir_imm_int(before, offset),
+ .align_mul = MIN2(comp_size, stack_alignment), .write_mask = ~0);
+ def = nir_load_scratch(after, def->num_components, def->bit_size,
+ nir_imm_int(after, offset), .align_mul = MIN2(comp_size, stack_alignment));
+ break;
+ case nir_address_format_64bit_global: {
+ nir_ssa_def *addr = nir_iadd_imm(before, nir_load_scratch_base_ptr(before, 1, 64, 1), offset);
+ nir_store_global(before, addr, MIN2(comp_size, stack_alignment), def, ~0);
+ addr = nir_iadd_imm(after, nir_load_scratch_base_ptr(after, 1, 64, 1), offset);
+ def = nir_load_global(after, addr, MIN2(comp_size, stack_alignment),
+ def->num_components, def->bit_size);
+ break;
+ }
+ default:
+ unreachable("Unimplemented address format");
+ }
+ return def;
+}
+
+static void
+spill_ssa_defs_and_lower_shader_calls(nir_shader *shader, uint32_t num_calls,
+ nir_address_format address_format,
+ unsigned stack_alignment)
+{
+ /* TODO: If a SSA def is filled more than once, we probably want to just
+ * spill it at the LCM of the fill sites so we avoid unnecessary
+ * extra spills
+ *
+ * TODO: If a SSA def is defined outside a loop but live through some call
+ * inside the loop, we probably want to spill outside the loop. We
+ * may also want to fill outside the loop if it's not used in the
+ * loop.
+ *
+ * TODO: Right now, we only re-materialize things if their immediate
+ * sources are things which we filled. We probably want to expand
+ * that to re-materialize things whose sources are things we can
+ * re-materialize from things we filled. We may want some DAG depth
+ * heuristic on this.
+ */
+
+ /* This happens per-shader rather than per-impl because we mess with
+ * nir_shader::scratch_size.
+ */
+ nir_function_impl *impl = nir_shader_get_entrypoint(shader);
+
+ nir_metadata_require(impl, nir_metadata_live_ssa_defs |
+ nir_metadata_dominance |
+ nir_metadata_block_index);
+
+ void *mem_ctx = ralloc_context(shader);
+
+ const unsigned num_ssa_defs = impl->ssa_alloc;
+ const unsigned live_words = BITSET_WORDS(num_ssa_defs);
+ struct bitset trivial_remat = bitset_create(mem_ctx, num_ssa_defs);
+
+ /* Array of all live SSA defs which are spill candidates */
+ nir_ssa_def **spill_defs =
+ rzalloc_array(mem_ctx, nir_ssa_def *, num_ssa_defs);
+
+ /* For each spill candidate, an array of every time it's defined by a fill,
+ * indexed by call instruction index.
+ */
+ nir_ssa_def ***fill_defs =
+ rzalloc_array(mem_ctx, nir_ssa_def **, num_ssa_defs);
+
+ /* For each call instruction, the liveness set at the call */
+ const BITSET_WORD **call_live =
+ rzalloc_array(mem_ctx, const BITSET_WORD *, num_calls);
+
+ /* For each call instruction, the block index of the block it lives in */
+ uint32_t *call_block_indices = rzalloc_array(mem_ctx, uint32_t, num_calls);
+
+ /* Walk the call instructions and fetch the liveness set and block index
+ * for each one. We need to do this before we start modifying the shader
+ * so that liveness doesn't complain that it's been invalidated. Don't
+ * worry, we'll be very careful with our live sets. :-)
+ */
+ unsigned call_idx = 0;
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr(instr, block) {
+ if (!instr_is_shader_call(instr))
+ continue;
+
+ call_block_indices[call_idx] = block->index;
+
+ /* The objective here is to preserve values around shader call
+ * instructions. Therefore, we use the live set after the
+ * instruction as the set of things we want to preserve. Because
+ * none of our shader call intrinsics return anything, we don't have
+ * to worry about spilling over a return value.
+ *
+ * TODO: This isn't quite true for report_intersection.
+ */
+ call_live[call_idx] =
+ nir_get_live_ssa_defs(nir_after_instr(instr), mem_ctx);
+
+ call_idx++;
+ }
+ }
+
+ nir_builder before, after;
+ nir_builder_init(&before, impl);
+ nir_builder_init(&after, impl);
+
+ call_idx = 0;
+ unsigned max_scratch_size = shader->scratch_size;
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ nir_ssa_def *def = nir_instr_ssa_def(instr);
+ if (def != NULL) {
+ if (can_remat_ssa_def(def, &trivial_remat)) {
+ add_ssa_def_to_bitset(def, &trivial_remat);
+ } else {
+ spill_defs[def->index] = def;
+ }
+ }
+
+ if (!instr_is_shader_call(instr))
+ continue;
+
+ const BITSET_WORD *live = call_live[call_idx];
+
+ /* Make a copy of trivial_remat that we'll update as we crawl through
+ * the live SSA defs and unspill them.
+ */
+ struct bitset remat = bitset_create(mem_ctx, num_ssa_defs);
+ memcpy(remat.set, trivial_remat.set, live_words * sizeof(BITSET_WORD));
+
+ /* Before the two builders are always separated by the call
+ * instruction, it won't break anything to have two of them.
+ */
+ before.cursor = nir_before_instr(instr);
+ after.cursor = nir_after_instr(instr);
+
+ unsigned offset = shader->scratch_size;
+ for (unsigned w = 0; w < live_words; w++) {
+ BITSET_WORD spill_mask = live[w] & ~trivial_remat.set[w];
+ while (spill_mask) {
+ int i = u_bit_scan(&spill_mask);
+ assert(i >= 0);
+ unsigned index = w * BITSET_WORDBITS + i;
+ assert(index < num_ssa_defs);
+
+ nir_ssa_def *def = spill_defs[index];
+ if (can_remat_ssa_def(def, &remat)) {
+ /* If this SSA def is re-materializable or based on other
+ * things we've already spilled, re-materialize it rather
+ * than spilling and filling. Anything which is trivially
+ * re-materializable won't even get here because we take
+ * those into account in spill_mask above.
+ */
+ def = remat_ssa_def(&after, def);
+ } else {
+ bool is_bool = def->bit_size == 1;
+ if (is_bool)
+ def = nir_b2b32(&before, def);
+
+ const unsigned comp_size = def->bit_size / 8;
+ offset = ALIGN(offset, comp_size);
+
+ def = spill_fill(&before, &after, def, offset,
+ address_format,stack_alignment);
+
+ if (is_bool)
+ def = nir_b2b1(&after, def);
+
+ offset += def->num_components * comp_size;
+ }
+
+ /* Mark this SSA def as available in the remat set so that, if
+ * some other SSA def we need is computed based on it, we can
+ * just re-compute instead of fetching from memory.
+ */
+ BITSET_SET(remat.set, index);
+
+ /* For now, we just make a note of this new SSA def. We'll
+ * fix things up with the phi builder as a second pass.
+ */
+ if (fill_defs[index] == NULL) {
+ fill_defs[index] =
+ rzalloc_array(mem_ctx, nir_ssa_def *, num_calls);
+ }
+ fill_defs[index][call_idx] = def;
+ }
+ }
+
+ nir_builder *b = &before;
+
+ max_scratch_size = MAX2(max_scratch_size, offset);
+
+ /* First thing on the called shader's stack is the resume address
+ * followed by a pointer to the payload.
+ */
+ nir_intrinsic_instr *call = nir_instr_as_intrinsic(instr);
+
+ /* Lower to generic intrinsics with information about the stack & resume shader. */
+ switch (call->intrinsic) {
+ case nir_intrinsic_trace_ray: {
+ nir_rt_trace_ray(b, call->src[0].ssa, call->src[1].ssa,
+ call->src[2].ssa, call->src[3].ssa,
+ call->src[4].ssa, call->src[5].ssa,
+ call->src[6].ssa, call->src[7].ssa,
+ call->src[8].ssa, call->src[9].ssa,
+ call->src[10].ssa,
+ .call_idx = call_idx, .stack_size = offset);
+ break;
+ }
+
+ case nir_intrinsic_report_ray_intersection:
+ unreachable("Any-hit shaders must be inlined");
+
+ case nir_intrinsic_execute_callable: {
+ nir_rt_execute_callable(b, call->src[0].ssa, call->src[1].ssa, .call_idx = call_idx, .stack_size = offset);
+ break;
+ }
+
+ default:
+ unreachable("Invalid shader call instruction");
+ }
+
+ nir_rt_resume(b, .call_idx = call_idx, .stack_size = offset);
+
+ nir_instr_remove(&call->instr);
+
+ call_idx++;
+ }
+ }
+ assert(call_idx == num_calls);
+ shader->scratch_size = max_scratch_size;
+
+ struct nir_phi_builder *pb = nir_phi_builder_create(impl);
+ struct pbv_array pbv_arr = {
+ .arr = rzalloc_array(mem_ctx, struct nir_phi_builder_value *,
+ num_ssa_defs),
+ .len = num_ssa_defs,
+ };
+
+ const unsigned block_words = BITSET_WORDS(impl->num_blocks);
+ BITSET_WORD *def_blocks = ralloc_array(mem_ctx, BITSET_WORD, block_words);
+
+ /* Go through and set up phi builder values for each spillable value which
+ * we ever needed to spill at any point.
+ */
+ for (unsigned index = 0; index < num_ssa_defs; index++) {
+ if (fill_defs[index] == NULL)
+ continue;
+
+ nir_ssa_def *def = spill_defs[index];
+
+ memset(def_blocks, 0, block_words * sizeof(BITSET_WORD));
+ BITSET_SET(def_blocks, def->parent_instr->block->index);
+ for (unsigned call_idx = 0; call_idx < num_calls; call_idx++) {
+ if (fill_defs[index][call_idx] != NULL)
+ BITSET_SET(def_blocks, call_block_indices[call_idx]);
+ }
+
+ pbv_arr.arr[index] = nir_phi_builder_add_value(pb, def->num_components,
+ def->bit_size, def_blocks);
+ }
+
+ /* Walk the shader one more time and rewrite SSA defs as needed using the
+ * phi builder.
+ */
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ nir_ssa_def *def = nir_instr_ssa_def(instr);
+ if (def != NULL) {
+ struct nir_phi_builder_value *pbv =
+ get_phi_builder_value_for_def(def, &pbv_arr);
+ if (pbv != NULL)
+ nir_phi_builder_value_set_block_def(pbv, block, def);
+ }
+
+ if (instr->type == nir_instr_type_phi)
+ continue;
+
+ nir_foreach_src(instr, rewrite_instr_src_from_phi_builder, &pbv_arr);
+
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ nir_intrinsic_instr *resume = nir_instr_as_intrinsic(instr);
+ if (resume->intrinsic != nir_intrinsic_rt_resume)
+ continue;
+
+ call_idx = nir_intrinsic_call_idx(resume);
+
+ /* Technically, this is the wrong place to add the fill defs to the
+ * phi builder values because we haven't seen any of the load_scratch
+ * instructions for this call yet. However, we know based on how we
+ * emitted them that no value ever gets used until after the load
+ * instruction has been emitted so this should be safe. If we ever
+ * fail validation due this it likely means a bug in our spilling
+ * code and not the phi re-construction code here.
+ */
+ for (unsigned index = 0; index < num_ssa_defs; index++) {
+ if (fill_defs[index] && fill_defs[index][call_idx]) {
+ nir_phi_builder_value_set_block_def(pbv_arr.arr[index], block,
+ fill_defs[index][call_idx]);
+ }
+ }
+ }
+
+ nir_if *following_if = nir_block_get_following_if(block);
+ if (following_if) {
+ nir_ssa_def *new_def =
+ get_phi_builder_def_for_src(&following_if->condition,
+ &pbv_arr, block);
+ if (new_def != NULL)
+ nir_if_rewrite_condition(following_if, nir_src_for_ssa(new_def));
+ }
+
+ /* Handle phi sources that source from this block. We have to do this
+ * as a separate pass because the phi builder assumes that uses and
+ * defs are processed in an order that respects dominance. When we have
+ * loops, a phi source may be a back-edge so we have to handle it as if
+ * it were one of the last instructions in the predecessor block.
+ */
+ nir_foreach_phi_src_leaving_block(block,
+ rewrite_instr_src_from_phi_builder,
+ &pbv_arr);
+ }
+
+ nir_phi_builder_finish(pb);
+
+ ralloc_free(mem_ctx);
+
+ nir_metadata_preserve(impl, nir_metadata_block_index |
+ nir_metadata_dominance);
+}
+
+static nir_instr *
+find_resume_instr(nir_function_impl *impl, unsigned call_idx)
+{
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr(instr, block) {
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ nir_intrinsic_instr *resume = nir_instr_as_intrinsic(instr);
+ if (resume->intrinsic != nir_intrinsic_rt_resume)
+ continue;
+
+ if (nir_intrinsic_call_idx(resume) == call_idx)
+ return &resume->instr;
+ }
+ }
+ unreachable("Couldn't find resume instruction");
+}
+
+/* Walk the CF tree and duplicate the contents of every loop, one half runs on
+ * resume and the other half is for any post-resume loop iterations. We are
+ * careful in our duplication to ensure that resume_instr is in the resume
+ * half of the loop though a copy of resume_instr will remain in the other
+ * half as well in case the same shader call happens twice.
+ */
+static bool
+duplicate_loop_bodies(nir_function_impl *impl, nir_instr *resume_instr)
+{
+ nir_register *resume_reg = NULL;
+ for (nir_cf_node *node = resume_instr->block->cf_node.parent;
+ node->type != nir_cf_node_function; node = node->parent) {
+ if (node->type != nir_cf_node_loop)
+ continue;
+
+ nir_loop *loop = nir_cf_node_as_loop(node);
+
+ if (resume_reg == NULL) {
+ /* We only create resume_reg if we encounter a loop. This way we can
+ * avoid re-validating the shader and calling ssa_to_regs in the case
+ * where it's just if-ladders.
+ */
+ resume_reg = nir_local_reg_create(impl);
+ resume_reg->num_components = 1;
+ resume_reg->bit_size = 1;
+
+ nir_builder b;
+ nir_builder_init(&b, impl);
+
+ /* Initialize resume to true */
+ b.cursor = nir_before_cf_list(&impl->body);
+ nir_store_reg(&b, resume_reg, nir_imm_true(&b), 1);
+
+ /* Set resume to false right after the resume instruction */
+ b.cursor = nir_after_instr(resume_instr);
+ nir_store_reg(&b, resume_reg, nir_imm_false(&b), 1);
+ }
+
+ /* Before we go any further, make sure that everything which exits the
+ * loop or continues around to the top of the loop does so through
+ * registers. We're about to duplicate the loop body and we'll have
+ * serious trouble if we don't do this.
+ */
+ nir_convert_loop_to_lcssa(loop);
+ nir_lower_phis_to_regs_block(nir_loop_first_block(loop));
+ nir_lower_phis_to_regs_block(
+ nir_cf_node_as_block(nir_cf_node_next(&loop->cf_node)));
+
+ nir_cf_list cf_list;
+ nir_cf_list_extract(&cf_list, &loop->body);
+
+ nir_if *_if = nir_if_create(impl->function->shader);
+ _if->condition = nir_src_for_reg(resume_reg);
+ nir_cf_node_insert(nir_after_cf_list(&loop->body), &_if->cf_node);
+
+ nir_cf_list clone;
+ nir_cf_list_clone(&clone, &cf_list, &loop->cf_node, NULL);
+
+ /* Insert the clone in the else and the original in the then so that
+ * the resume_instr remains valid even after the duplication.
+ */
+ nir_cf_reinsert(&cf_list, nir_before_cf_list(&_if->then_list));
+ nir_cf_reinsert(&clone, nir_before_cf_list(&_if->else_list));
+ }
+
+ if (resume_reg != NULL)
+ nir_metadata_preserve(impl, nir_metadata_none);
+
+ return resume_reg != NULL;
+}
+
+static bool
+cf_node_contains_instr(nir_cf_node *node, nir_instr *instr)
+{
+ for (nir_cf_node *n = &instr->block->cf_node; n != NULL; n = n->parent) {
+ if (n == node)
+ return true;
+ }
+
+ return false;
+}
+
+static void
+rewrite_phis_to_pred(nir_block *block, nir_block *pred)
+{
+ nir_foreach_instr(instr, block) {
+ if (instr->type != nir_instr_type_phi)
+ break;
+
+ nir_phi_instr *phi = nir_instr_as_phi(instr);
+
+ ASSERTED bool found = false;
+ nir_foreach_phi_src(phi_src, phi) {
+ if (phi_src->pred == pred) {
+ found = true;
+ assert(phi_src->src.is_ssa);
+ nir_ssa_def_rewrite_uses(&phi->dest.ssa, phi_src->src.ssa);
+ break;
+ }
+ }
+ assert(found);
+ }
+}
+
+/** Flattens if ladders leading up to a resume
+ *
+ * Given a resume_instr, this function flattens any if ladders leading to the
+ * resume instruction and deletes any code that cannot be encountered on a
+ * direct path to the resume instruction. This way we get, for the most part,
+ * straight-line control-flow up to the resume instruction.
+ *
+ * While we do this flattening, we also move any code which is in the remat
+ * set up to the top of the function or to the top of the resume portion of
+ * the current loop. We don't worry about control-flow as we do this because
+ * phis will never be in the remat set (see can_remat_instr) and so nothing
+ * control-dependent will ever need to be re-materialized. It is possible
+ * that this algorithm will preserve too many instructions by moving them to
+ * the top but we leave that for DCE to clean up. Any code not in the remat
+ * set is deleted because it's either unused in the continuation or else
+ * unspilled from a previous continuation and the unspill code is after the
+ * resume instruction.
+ *
+ * If, for instance, we have something like this:
+ *
+ * // block 0
+ * if (cond1) {
+ * // block 1
+ * } else {
+ * // block 2
+ * if (cond2) {
+ * // block 3
+ * resume;
+ * if (cond3) {
+ * // block 4
+ * }
+ * } else {
+ * // block 5
+ * }
+ * }
+ *
+ * then we know, because we know the resume instruction had to be encoutered,
+ * that cond1 = false and cond2 = true and we lower as follows:
+ *
+ * // block 0
+ * // block 2
+ * // block 3
+ * resume;
+ * if (cond3) {
+ * // block 4
+ * }
+ *
+ * As you can see, the code in blocks 1 and 5 was removed because there is no
+ * path from the start of the shader to the resume instruction which execute
+ * blocks 1 or 5. Any remat code from blocks 0, 2, and 3 is preserved and
+ * moved to the top. If the resume instruction is inside a loop then we know
+ * a priori that it is of the form
+ *
+ * loop {
+ * if (resume) {
+ * // Contents containing resume_instr
+ * } else {
+ * // Second copy of contents
+ * }
+ * }
+ *
+ * In this case, we only descend into the first half of the loop. The second
+ * half is left alone as that portion is only ever executed after the resume
+ * instruction.
+ */
+static bool
+flatten_resume_if_ladder(nir_function_impl *impl,
+ nir_instr *cursor,
+ struct exec_list *child_list,
+ bool child_list_contains_cursor,
+ nir_instr *resume_instr,
+ struct bitset *remat)
+{
+ nir_shader *shader = impl->function->shader;
+ nir_cf_list cf_list;
+
+ /* If our child list contains the cursor instruction then we start out
+ * before the cursor instruction. We need to know this so that we can skip
+ * moving instructions which are already before the cursor.
+ */
+ bool before_cursor = child_list_contains_cursor;
+
+ nir_cf_node *resume_node = NULL;
+ foreach_list_typed_safe(nir_cf_node, child, node, child_list) {
+ switch (child->type) {
+ case nir_cf_node_block: {
+ nir_block *block = nir_cf_node_as_block(child);
+ nir_foreach_instr_safe(instr, block) {
+ if (instr == cursor) {
+ assert(nir_cf_node_is_first(&block->cf_node));
+ assert(before_cursor);
+ before_cursor = false;
+ continue;
+ }
+
+ if (instr == resume_instr)
+ goto found_resume;
+
+ if (!before_cursor && can_remat_instr(instr, remat)) {
+ nir_instr_remove(instr);
+ nir_instr_insert(nir_before_instr(cursor), instr);
+
+ nir_ssa_def *def = nir_instr_ssa_def(instr);
+ BITSET_SET(remat->set, def->index);
+ }
+ }
+ break;
+ }
+
+ case nir_cf_node_if: {
+ assert(!before_cursor);
+ nir_if *_if = nir_cf_node_as_if(child);
+ if (flatten_resume_if_ladder(impl, cursor, &_if->then_list,
+ false, resume_instr, remat)) {
+ resume_node = child;
+ rewrite_phis_to_pred(nir_cf_node_as_block(nir_cf_node_next(child)),
+ nir_if_last_then_block(_if));
+ goto found_resume;
+ }
+
+ if (flatten_resume_if_ladder(impl, cursor, &_if->else_list,
+ false, resume_instr, remat)) {
+ resume_node = child;
+ rewrite_phis_to_pred(nir_cf_node_as_block(nir_cf_node_next(child)),
+ nir_if_last_else_block(_if));
+ goto found_resume;
+ }
+ break;
+ }
+
+ case nir_cf_node_loop: {
+ assert(!before_cursor);
+ nir_loop *loop = nir_cf_node_as_loop(child);
+
+ if (cf_node_contains_instr(&loop->cf_node, resume_instr)) {
+ /* Thanks to our loop body duplication pass, every level of loop
+ * containing the resume instruction contains exactly three nodes:
+ * two blocks and an if. We don't want to lower away this if
+ * because it's the resume selection if. The resume half is
+ * always the then_list so that's what we want to flatten.
+ */
+ nir_block *header = nir_loop_first_block(loop);
+ nir_if *_if = nir_cf_node_as_if(nir_cf_node_next(&header->cf_node));
+
+ /* We want to place anything re-materialized from inside the loop
+ * at the top of the resume half of the loop.
+ */
+ nir_instr *loop_cursor =
+ &nir_intrinsic_instr_create(shader, nir_intrinsic_nop)->instr;
+ nir_instr_insert(nir_before_cf_list(&_if->then_list), loop_cursor);
+
+ ASSERTED bool found =
+ flatten_resume_if_ladder(impl, loop_cursor, &_if->then_list,
+ true, resume_instr, remat);
+ assert(found);
+ resume_node = child;
+ goto found_resume;
+ } else {
+ ASSERTED bool found =
+ flatten_resume_if_ladder(impl, cursor, &loop->body,
+ false, resume_instr, remat);
+ assert(!found);
+ }
+ break;
+ }
+
+ case nir_cf_node_function:
+ unreachable("Unsupported CF node type");
+ }
+ }
+ assert(!before_cursor);
+
+ /* If we got here, we didn't find the resume node or instruction. */
+ return false;
+
+found_resume:
+ /* If we got here then we found either the resume node or the resume
+ * instruction in this CF list.
+ */
+ if (resume_node) {
+ /* If the resume instruction is buried in side one of our children CF
+ * nodes, resume_node now points to that child.
+ */
+ if (resume_node->type == nir_cf_node_if) {
+ /* Thanks to the recursive call, all of the interesting contents of
+ * resume_node have been copied before the cursor. We just need to
+ * copy the stuff after resume_node.
+ */
+ nir_cf_extract(&cf_list, nir_after_cf_node(resume_node),
+ nir_after_cf_list(child_list));
+ } else {
+ /* The loop contains its own cursor and still has useful stuff in it.
+ * We want to move everything after and including the loop to before
+ * the cursor.
+ */
+ assert(resume_node->type == nir_cf_node_loop);
+ nir_cf_extract(&cf_list, nir_before_cf_node(resume_node),
+ nir_after_cf_list(child_list));
+ }
+ } else {
+ /* If we found the resume instruction in one of our blocks, grab
+ * everything after it in the entire list (not just the one block), and
+ * place it before the cursor instr.
+ */
+ nir_cf_extract(&cf_list, nir_after_instr(resume_instr),
+ nir_after_cf_list(child_list));
+ }
+ nir_cf_reinsert(&cf_list, nir_before_instr(cursor));
+
+ if (!resume_node) {
+ /* We want the resume to be the first "interesting" instruction */
+ nir_instr_remove(resume_instr);
+ nir_instr_insert(nir_before_cf_list(&impl->body), resume_instr);
+ }
+
+ /* We've copied everything interesting out of this CF list to before the
+ * cursor. Delete everything else.
+ */
+ if (child_list_contains_cursor) {
+ nir_cf_extract(&cf_list, nir_after_instr(cursor),
+ nir_after_cf_list(child_list));
+ } else {
+ nir_cf_list_extract(&cf_list, child_list);
+ }
+ nir_cf_delete(&cf_list);
+
+ return true;
+}
+
+static nir_instr *
+lower_resume(nir_shader *shader, int call_idx)
+{
+ nir_function_impl *impl = nir_shader_get_entrypoint(shader);
+
+ nir_instr *resume_instr = find_resume_instr(impl, call_idx);
+
+ if (duplicate_loop_bodies(impl, resume_instr)) {
+ nir_validate_shader(shader, "after duplicate_loop_bodies in "
+ "brw_nir_lower_shader_calls");
+ /* If we duplicated the bodies of any loops, run regs_to_ssa to get rid
+ * of all those pesky registers we just added.
+ */
+ NIR_PASS_V(shader, nir_lower_regs_to_ssa);
+ }
+
+ /* Re-index nir_ssa_def::index. We don't care about actual liveness in
+ * this pass but, so we can use the same helpers as the spilling pass, we
+ * need to make sure that live_index is something sane. It's used
+ * constantly for determining if an SSA value has been added since the
+ * start of the pass.
+ */
+ nir_index_ssa_defs(impl);
+
+ void *mem_ctx = ralloc_context(shader);
+
+ /* Used to track which things may have been assumed to be re-materialized
+ * by the spilling pass and which we shouldn't delete.
+ */
+ struct bitset remat = bitset_create(mem_ctx, impl->ssa_alloc);
+
+ /* Create a nop instruction to use as a cursor as we extract and re-insert
+ * stuff into the CFG.
+ */
+ nir_instr *cursor =
+ &nir_intrinsic_instr_create(shader, nir_intrinsic_nop)->instr;
+ nir_instr_insert(nir_before_cf_list(&impl->body), cursor);
+
+ ASSERTED bool found =
+ flatten_resume_if_ladder(impl, cursor, &impl->body,
+ true, resume_instr, &remat);
+ assert(found);
+
+ ralloc_free(mem_ctx);
+
+ nir_validate_shader(shader, "after flatten_resume_if_ladder in "
+ "brw_nir_lower_shader_calls");
+
+ nir_metadata_preserve(impl, nir_metadata_none);
+
+ return resume_instr;
+}
+
+static void
+replace_resume_with_halt(nir_shader *shader, nir_instr *keep)
+{
+ nir_function_impl *impl = nir_shader_get_entrypoint(shader);
+
+ nir_builder b;
+ nir_builder_init(&b, impl);
+
+ nir_foreach_block_safe(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr == keep)
+ continue;
+
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ nir_intrinsic_instr *resume = nir_instr_as_intrinsic(instr);
+ if (resume->intrinsic != nir_intrinsic_rt_resume)
+ continue;
+
+ /* If this is some other resume, then we've kicked off a ray or
+ * bindless thread and we don't want to go any further in this
+ * shader. Insert a halt so that NIR will delete any instructions
+ * dominated by this call instruction including the scratch_load
+ * instructions we inserted.
+ */
+ nir_cf_list cf_list;
+ nir_cf_extract(&cf_list, nir_after_instr(&resume->instr),
+ nir_after_block(block));
+ nir_cf_delete(&cf_list);
+ b.cursor = nir_instr_remove(&resume->instr);
+ nir_jump(&b, nir_jump_halt);
+ break;
+ }
+ }
+}
+
+/** Lower shader call instructions to split shaders.
+ *
+ * Shader calls can be split into an initial shader and a series of "resume"
+ * shaders. When the shader is first invoked, it is the initial shader which
+ * is executed. At any point in the initial shader or any one of the resume
+ * shaders, a shader call operation may be performed. The possible shader call
+ * operations are:
+ *
+ * - trace_ray
+ * - report_ray_intersection
+ * - execute_callable
+ *
+ * When a shader call operation is performed, we push all live values to the
+ * stack,call rt_trace_ray/rt_execute_callable and then kill the shader. Once
+ * the operation we invoked is complete, a callee shader will return execution
+ * to the respective resume shader. The resume shader pops the contents off
+ * the stack and picks up where the calling shader left off.
+ *
+ * Stack management is assumed to be done after this pass. Call
+ * instructions and their resumes get annotated with stack information that
+ * should be enough for the backend to implement proper stack management.
+ */
+bool
+nir_lower_shader_calls(nir_shader *shader,
+ nir_address_format address_format,
+ unsigned stack_alignment,
+ nir_shader ***resume_shaders_out,
+ uint32_t *num_resume_shaders_out,
+ void *mem_ctx)
+{
+ nir_function_impl *impl = nir_shader_get_entrypoint(shader);
+
+ nir_builder b;
+ nir_builder_init(&b, impl);
+
+ int num_calls = 0;
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr_is_shader_call(instr))
+ num_calls++;
+ }
+ }
+
+ if (num_calls == 0) {
+ nir_shader_preserve_all_metadata(shader);
+ *num_resume_shaders_out = 0;
+ return false;
+ }
+
+ /* Some intrinsics not only can't be re-materialized but aren't preserved
+ * when moving to the continuation shader. We have to move them to the top
+ * to ensure they get spilled as needed.
+ */
+ {
+ bool progress = false;
+ NIR_PASS(progress, shader, move_system_values_to_top);
+ if (progress)
+ NIR_PASS(progress, shader, nir_opt_cse);
+ }
+
+ NIR_PASS_V(shader, spill_ssa_defs_and_lower_shader_calls,
+ num_calls, address_format, stack_alignment);
+
+ /* Make N copies of our shader */
+ nir_shader **resume_shaders = ralloc_array(mem_ctx, nir_shader *, num_calls);
+ for (unsigned i = 0; i < num_calls; i++)
+ resume_shaders[i] = nir_shader_clone(mem_ctx, shader);
+
+ replace_resume_with_halt(shader, NULL);
+ for (unsigned i = 0; i < num_calls; i++) {
+ nir_instr *resume_instr = lower_resume(resume_shaders[i], i);
+ replace_resume_with_halt(resume_shaders[i], resume_instr);
+ }
+
+ *resume_shaders_out = resume_shaders;
+ *num_resume_shaders_out = num_calls;
+
+ return true;
+}