summaryrefslogtreecommitdiff
path: root/src/panfrost/bifrost/bifrost_compile.c
blob: 44bf2334565757f47f2791e566600a8a6ca6d455 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
/*
 * Copyright (C) 2020 Collabora Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors (Collabora):
 *      Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
 */

#include "main/mtypes.h"
#include "compiler/glsl/glsl_to_nir.h"
#include "compiler/nir_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_debug.h"

#include "disassemble.h"
#include "bifrost_compile.h"
#include "compiler.h"
#include "bi_quirks.h"
#include "bi_builder.h"
#include "bifrost_nir.h"

static const struct debug_named_value bifrost_debug_options[] = {
        {"msgs",      BIFROST_DBG_MSGS,		"Print debug messages"},
        {"shaders",   BIFROST_DBG_SHADERS,	"Dump shaders in NIR and MIR"},
        {"shaderdb",  BIFROST_DBG_SHADERDB,	"Print statistics"},
        {"verbose",   BIFROST_DBG_VERBOSE,	"Disassemble verbosely"},
        {"internal",  BIFROST_DBG_INTERNAL,	"Dump even internal shaders"},
        {"nosched",   BIFROST_DBG_NOSCHED, 	"Force trivial bundling"},
        {"inorder",   BIFROST_DBG_INORDER, 	"Force in-order bundling"},
        {"novalidate",BIFROST_DBG_NOVALIDATE,   "Skip IR validation"},
        {"noopt",     BIFROST_DBG_NOOPT,        "Skip optimization passes"},
        DEBUG_NAMED_VALUE_END
};

DEBUG_GET_ONCE_FLAGS_OPTION(bifrost_debug, "BIFROST_MESA_DEBUG", bifrost_debug_options, 0)

/* How many bytes are prefetched by the Bifrost shader core. From the final
 * clause of the shader, this range must be valid instructions or zero. */
#define BIFROST_SHADER_PREFETCH 128

int bifrost_debug = 0;

#define DBG(fmt, ...) \
		do { if (bifrost_debug & BIFROST_DBG_MSGS) \
			fprintf(stderr, "%s:%d: "fmt, \
				__FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)

static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);

static void
bi_block_add_successor(bi_block *block, bi_block *successor)
{
        assert(block != NULL && successor != NULL);

        /* Cull impossible edges */
        if (block->unconditional_jumps)
                return;

        for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
                if (block->successors[i]) {
                       if (block->successors[i] == successor)
                               return;
                       else
                               continue;
                }

                block->successors[i] = successor;
                _mesa_set_add(successor->predecessors, block);
                return;
        }

        unreachable("Too many successors");
}

static void
bi_emit_jump(bi_builder *b, nir_jump_instr *instr)
{
        bi_instr *branch = bi_jump(b, bi_zero());

        switch (instr->type) {
        case nir_jump_break:
                branch->branch_target = b->shader->break_block;
                break;
        case nir_jump_continue:
                branch->branch_target = b->shader->continue_block;
                break;
        default:
                unreachable("Unhandled jump type");
        }

        bi_block_add_successor(b->shader->current_block, branch->branch_target);
        b->shader->current_block->unconditional_jumps = true;
}

static bi_index
bi_varying_src0_for_barycentric(bi_builder *b, nir_intrinsic_instr *intr)
{
        switch (intr->intrinsic) {
        case nir_intrinsic_load_barycentric_centroid:
        case nir_intrinsic_load_barycentric_sample:
                return bi_register(61);

        /* Need to put the sample ID in the top 16-bits */
        case nir_intrinsic_load_barycentric_at_sample:
                return bi_mkvec_v2i16(b, bi_half(bi_dontcare(), false),
                                bi_half(bi_src_index(&intr->src[0]), false));

        /* Interpret as 8:8 signed fixed point positions in pixels along X and
         * Y axes respectively, relative to top-left of pixel. In NIR, (0, 0)
         * is the center of the pixel so we first fixup and then convert. For
         * fp16 input:
         *
         * f2i16(((x, y) + (0.5, 0.5)) * 2**8) =
         * f2i16((256 * (x, y)) + (128, 128)) =
         * V2F16_TO_V2S16(FMA.v2f16((x, y), #256, #128))
         *
         * For fp32 input, that lacks enough precision for MSAA 16x, but the
         * idea is the same. FIXME: still doesn't pass
         */
        case nir_intrinsic_load_barycentric_at_offset: {
                bi_index offset = bi_src_index(&intr->src[0]);
                bi_index f16 = bi_null();
                unsigned sz = nir_src_bit_size(intr->src[0]);

                if (sz == 16) {
                        f16 = bi_fma_v2f16(b, offset, bi_imm_f16(256.0),
                                        bi_imm_f16(128.0), BI_ROUND_NONE);
                } else {
                        assert(sz == 32);
                        bi_index f[2];
                        for (unsigned i = 0; i < 2; ++i) {
                                f[i] = bi_fadd_rscale_f32(b,
                                                bi_word(offset, i),
                                                bi_imm_f32(0.5), bi_imm_u32(8),
                                                BI_ROUND_NONE, BI_SPECIAL_NONE);
                        }

                        f16 = bi_v2f32_to_v2f16(b, f[0], f[1], BI_ROUND_NONE);
                }

                return bi_v2f16_to_v2s16(b, f16, BI_ROUND_RTZ);
        }

        case nir_intrinsic_load_barycentric_pixel:
        default:
                return bi_dontcare();
        }
}

static enum bi_sample
bi_interp_for_intrinsic(nir_intrinsic_op op)
{
        switch (op) {
        case nir_intrinsic_load_barycentric_centroid:
                return BI_SAMPLE_CENTROID;
        case nir_intrinsic_load_barycentric_sample:
        case nir_intrinsic_load_barycentric_at_sample:
                return BI_SAMPLE_SAMPLE;
        case nir_intrinsic_load_barycentric_at_offset:
                return BI_SAMPLE_EXPLICIT;
        case nir_intrinsic_load_barycentric_pixel:
        default:
                return BI_SAMPLE_CENTER;
        }
}

/* auto, 64-bit omitted */
static enum bi_register_format
bi_reg_fmt_for_nir(nir_alu_type T)
{
        switch (T) {
        case nir_type_float16: return BI_REGISTER_FORMAT_F16;
        case nir_type_float32: return BI_REGISTER_FORMAT_F32;
        case nir_type_int16:   return BI_REGISTER_FORMAT_S16;
        case nir_type_uint16:  return BI_REGISTER_FORMAT_U16;
        case nir_type_int32:   return BI_REGISTER_FORMAT_S32;
        case nir_type_uint32:  return BI_REGISTER_FORMAT_U32;
        default: unreachable("Invalid type for register format");
        }
}

/* Checks if the _IMM variant of an intrinsic can be used, returning in imm the
 * immediate to be used (which applies even if _IMM can't be used) */

static bool
bi_is_intr_immediate(nir_intrinsic_instr *instr, unsigned *immediate, unsigned max)
{
        nir_src *offset = nir_get_io_offset_src(instr);

        if (!nir_src_is_const(*offset))
                return false;

        *immediate = nir_intrinsic_base(instr) + nir_src_as_uint(*offset);
        return (*immediate) < max;
}

static void
bi_make_vec_to(bi_builder *b, bi_index final_dst,
                bi_index *src,
                unsigned *channel,
                unsigned count,
                unsigned bitsize);

/* Bifrost's load instructions lack a component offset despite operating in
 * terms of vec4 slots. Usually I/O vectorization avoids nonzero components,
 * but they may be unavoidable with separate shaders in use. To solve this, we
 * lower to a larger load and an explicit copy of the desired components. */

static void
bi_copy_component(bi_builder *b, nir_intrinsic_instr *instr, bi_index tmp)
{
        unsigned component = nir_intrinsic_component(instr);

        if (component == 0)
                return;

        bi_index srcs[] = { tmp, tmp, tmp, tmp };
        unsigned channels[] = { component, component + 1, component + 2 };

        bi_make_vec_to(b,
                        bi_dest_index(&instr->dest),
                        srcs, channels, instr->num_components,
                        nir_dest_bit_size(instr->dest));
} 

static void
bi_emit_load_attr(bi_builder *b, nir_intrinsic_instr *instr)
{
        nir_alu_type T = nir_intrinsic_dest_type(instr);
        enum bi_register_format regfmt = bi_reg_fmt_for_nir(T);
        nir_src *offset = nir_get_io_offset_src(instr);
        unsigned component = nir_intrinsic_component(instr);
        enum bi_vecsize vecsize = (instr->num_components + component - 1);
        unsigned imm_index = 0;
        unsigned base = nir_intrinsic_base(instr);
        bool constant = nir_src_is_const(*offset);
        bool immediate = bi_is_intr_immediate(instr, &imm_index, 16);
        bi_index dest = (component == 0) ? bi_dest_index(&instr->dest) : bi_temp(b->shader);

        if (immediate) {
                bi_ld_attr_imm_to(b, dest, bi_register(61), bi_register(62),
                                regfmt, vecsize, imm_index);
        } else {
                bi_index idx = bi_src_index(&instr->src[0]);

                if (constant)
                        idx = bi_imm_u32(imm_index);
                else if (base != 0)
                        idx = bi_iadd_u32(b, idx, bi_imm_u32(base), false);

                bi_ld_attr_to(b, dest, bi_register(61), bi_register(62),
                                idx, regfmt, vecsize);
        }

        bi_copy_component(b, instr, dest);
}

static void
bi_emit_load_vary(bi_builder *b, nir_intrinsic_instr *instr)
{
        enum bi_sample sample = BI_SAMPLE_CENTER;
        enum bi_update update = BI_UPDATE_STORE;
        enum bi_register_format regfmt = BI_REGISTER_FORMAT_AUTO;
        bool smooth = instr->intrinsic == nir_intrinsic_load_interpolated_input;
        bi_index src0 = bi_null();

        unsigned component = nir_intrinsic_component(instr);
        enum bi_vecsize vecsize = (instr->num_components + component - 1);
        bi_index dest = (component == 0) ? bi_dest_index(&instr->dest) : bi_temp(b->shader);

        unsigned sz = nir_dest_bit_size(instr->dest);

        if (smooth) {
                nir_intrinsic_instr *parent = nir_src_as_intrinsic(instr->src[0]);
                assert(parent);

                sample = bi_interp_for_intrinsic(parent->intrinsic);
                src0 = bi_varying_src0_for_barycentric(b, parent);

                assert(sz == 16 || sz == 32);
                regfmt = (sz == 16) ? BI_REGISTER_FORMAT_F16
                        : BI_REGISTER_FORMAT_F32;
        } else {
                assert(sz == 32);
                regfmt = BI_REGISTER_FORMAT_U32;
        }

        nir_src *offset = nir_get_io_offset_src(instr);
        unsigned imm_index = 0;
        bool immediate = bi_is_intr_immediate(instr, &imm_index, 20);

        if (immediate && smooth) {
                bi_ld_var_imm_to(b, dest, src0, regfmt, sample, update,
                                vecsize, imm_index);
        } else if (immediate && !smooth) {
                bi_ld_var_flat_imm_to(b, dest, BI_FUNCTION_NONE, regfmt,
                                vecsize, imm_index);
        } else {
                bi_index idx = bi_src_index(offset);
                unsigned base = nir_intrinsic_base(instr);

                if (base != 0)
                        idx = bi_iadd_u32(b, idx, bi_imm_u32(base), false);

                if (smooth) {
                        bi_ld_var_to(b, dest, src0, idx, regfmt, sample,
                                        update, vecsize);
                } else {
                        bi_ld_var_flat_to(b, dest, idx, BI_FUNCTION_NONE,
                                        regfmt, vecsize);
                }
        }

        bi_copy_component(b, instr, dest);
}

static void
bi_make_vec16_to(bi_builder *b, bi_index dst, bi_index *src,
                unsigned *channel, unsigned count)
{
        for (unsigned i = 0; i < count; i += 2) {
                bool next = (i + 1) < count;

                unsigned chan = channel ? channel[i] : 0;
                unsigned nextc = next && channel ? channel[i + 1] : 0;

                bi_index w0 = bi_word(src[i], chan >> 1);
                bi_index w1 = next ? bi_word(src[i + 1], nextc >> 1) : bi_zero();

                bi_index h0 = bi_half(w0, chan & 1);
                bi_index h1 = bi_half(w1, nextc & 1);

                bi_index to = bi_word(dst, i >> 1);

                if (bi_is_word_equiv(w0, w1) && (chan & 1) == 0 && ((nextc & 1) == 1))
                        bi_mov_i32_to(b, to, w0);
                else if (bi_is_word_equiv(w0, w1))
                        bi_swz_v2i16_to(b, to, bi_swz_16(w0, chan & 1, nextc & 1));
                else
                        bi_mkvec_v2i16_to(b, to, h0, h1);
        }
}

static void
bi_make_vec_to(bi_builder *b, bi_index final_dst,
                bi_index *src,
                unsigned *channel,
                unsigned count,
                unsigned bitsize)
{
        /* If we reads our own output, we need a temporary move to allow for
         * swapping. TODO: Could do a bit better for pairwise swaps of 16-bit
         * vectors */
        bool reads_self = false;

        for (unsigned i = 0; i < count; ++i)
                reads_self |= bi_is_equiv(final_dst, src[i]);

        /* SSA can't read itself */
        assert(!reads_self || final_dst.reg);

        bi_index dst = reads_self ? bi_temp(b->shader) : final_dst;

        if (bitsize == 32) {
                for (unsigned i = 0; i < count; ++i) {
                        bi_mov_i32_to(b, bi_word(dst, i),
                                        bi_word(src[i], channel ? channel[i] : 0));
                }
        } else if (bitsize == 16) {
                bi_make_vec16_to(b, dst, src, channel, count);
        } else if (bitsize == 8 && count == 1) {
                bi_swz_v4i8_to(b, dst, bi_byte(
                                        bi_word(src[0], channel[0] >> 2),
                                        channel[0] & 3));
        } else {
                unreachable("8-bit mkvec not yet supported");
        }

        /* Emit an explicit copy if needed */
        if (!bi_is_equiv(dst, final_dst)) {
                unsigned shift = (bitsize == 8) ? 2 : (bitsize == 16) ? 1 : 0;
                unsigned vec = (1 << shift);

                for (unsigned i = 0; i < count; i += vec) {
                        bi_mov_i32_to(b, bi_word(final_dst, i >> shift),
                                        bi_word(dst, i >> shift));
                }
        }
}

static bi_instr *
bi_load_sysval_to(bi_builder *b, bi_index dest, int sysval,
                unsigned nr_components, unsigned offset)
{
        unsigned sysval_ubo =
                MAX2(b->shader->inputs->sysval_ubo, b->shader->nir->info.num_ubos);
        unsigned uniform =
                pan_lookup_sysval(b->shader->sysval_to_id,
                                  &b->shader->info->sysvals,
                                  sysval);
        unsigned idx = (uniform * 16) + offset;

        return bi_load_to(b, nr_components * 32, dest,
                        bi_imm_u32(idx),
                        bi_imm_u32(sysval_ubo), BI_SEG_UBO);
}

static void
bi_load_sysval_nir(bi_builder *b, nir_intrinsic_instr *intr,
                unsigned nr_components, unsigned offset)
{
        bi_load_sysval_to(b, bi_dest_index(&intr->dest),
                        panfrost_sysval_for_instr(&intr->instr, NULL),
                        nr_components, offset);
}

static bi_index
bi_load_sysval(bi_builder *b, int sysval,
                unsigned nr_components, unsigned offset)
{
        bi_index tmp = bi_temp(b->shader);
        bi_load_sysval_to(b, tmp, sysval, nr_components, offset);
        return tmp;
}

static void
bi_load_sample_id_to(bi_builder *b, bi_index dst)
{
        /* r61[16:23] contains the sampleID, mask it out. Upper bits
         * seem to read garbage (despite being architecturally defined
         * as zero), so use a 5-bit mask instead of 8-bits */

        bi_rshift_and_i32_to(b, dst, bi_register(61), bi_imm_u32(0x1f),
                                bi_imm_u8(16));
}

static bi_index
bi_load_sample_id(bi_builder *b)
{
        bi_index sample_id = bi_temp(b->shader);
        bi_load_sample_id_to(b, sample_id);
        return sample_id;
}

static bi_index
bi_pixel_indices(bi_builder *b, unsigned rt)
{
        /* We want to load the current pixel. */
        struct bifrost_pixel_indices pix = {
                .y = BIFROST_CURRENT_PIXEL,
                .rt = rt
        };

        uint32_t indices_u32 = 0;
        memcpy(&indices_u32, &pix, sizeof(indices_u32));
        bi_index indices = bi_imm_u32(indices_u32);

        /* Sample index above is left as zero. For multisampling, we need to
         * fill in the actual sample ID in the lower byte */

        if (b->shader->inputs->blend.nr_samples > 1)
                indices = bi_iadd_u32(b, indices, bi_load_sample_id(b), false);

        return indices;
}

static void
bi_emit_load_blend_input(bi_builder *b, nir_intrinsic_instr *instr)
{
        ASSERTED nir_io_semantics sem = nir_intrinsic_io_semantics(instr);

        /* Source color is passed through r0-r3, or r4-r7 for the second
         * source when dual-source blending.  TODO: Precolour instead */
        bi_index srcs[] = {
                bi_register(0), bi_register(1), bi_register(2), bi_register(3)
        };
        bi_index srcs2[] = {
                bi_register(4), bi_register(5), bi_register(6), bi_register(7)
        };

        bool second_source = (sem.location == VARYING_SLOT_VAR0);

        bi_make_vec_to(b, bi_dest_index(&instr->dest),
                       second_source ? srcs2 : srcs,
                       NULL, 4, 32);
}

static void
bi_emit_blend_op(bi_builder *b, bi_index rgba, nir_alu_type T, unsigned rt)
{
        /* Reads 2 or 4 staging registers to cover the input */
        unsigned size = nir_alu_type_get_type_size(T);
        unsigned sr_count = (size <= 16) ? 2 : 4;
        const struct panfrost_compile_inputs *inputs = b->shader->inputs;
        uint64_t blend_desc = inputs->blend.bifrost_blend_desc;

        if (inputs->is_blend && inputs->blend.nr_samples > 1) {
                /* Conversion descriptor comes from the compile inputs, pixel
                 * indices derived at run time based on sample ID */
                bi_st_tile(b, rgba, bi_pixel_indices(b, rt), bi_register(60),
                                bi_imm_u32(blend_desc >> 32), BI_VECSIZE_V4);
        } else if (b->shader->inputs->is_blend) {
                /* Blend descriptor comes from the compile inputs */
                /* Put the result in r0 */
                bi_blend_to(b, bi_register(0), rgba,
                                bi_register(60),
                                bi_imm_u32(blend_desc & 0xffffffff),
                                bi_imm_u32(blend_desc >> 32), sr_count);
        } else {
                /* Blend descriptor comes from the FAU RAM. By convention, the
                 * return address is stored in r48 and will be used by the
                 * blend shader to jump back to the fragment shader after */
                bi_blend_to(b, bi_register(48), rgba,
                                bi_register(60),
                                bi_fau(BIR_FAU_BLEND_0 + rt, false),
                                bi_fau(BIR_FAU_BLEND_0 + rt, true), sr_count);
        }

        assert(rt < 8);
        b->shader->info->bifrost.blend[rt].type = T;
}

/* Blend shaders do not need to run ATEST since they are dependent on a
 * fragment shader that runs it. Blit shaders may not need to run ATEST, since
 * ATEST is not needed if early-z is forced, alpha-to-coverage is disabled, and
 * there are no writes to the coverage mask. The latter two are satisfied for
 * all blit shaders, so we just care about early-z, which blit shaders force
 * iff they do not write depth or stencil */

static bool
bi_skip_atest(bi_context *ctx, bool emit_zs)
{
        return (ctx->inputs->is_blit && !emit_zs) || ctx->inputs->is_blend;
}

static void
bi_emit_atest(bi_builder *b, bi_index alpha)
{
        bi_index coverage = bi_register(60);
        bi_instr *atest = bi_atest_to(b, coverage, coverage, alpha);
        b->shader->emitted_atest = true;

        /* Pseudo-source to encode in the tuple */
        atest->src[2] = bi_fau(BIR_FAU_ATEST_PARAM, false);
}

static void
bi_emit_fragment_out(bi_builder *b, nir_intrinsic_instr *instr)
{
        bool combined = instr->intrinsic ==
                nir_intrinsic_store_combined_output_pan;

        unsigned writeout = combined ? nir_intrinsic_component(instr) :
                PAN_WRITEOUT_C;

        bool emit_blend = writeout & (PAN_WRITEOUT_C);
        bool emit_zs = writeout & (PAN_WRITEOUT_Z | PAN_WRITEOUT_S);

        const nir_variable *var =
                nir_find_variable_with_driver_location(b->shader->nir,
                                nir_var_shader_out, nir_intrinsic_base(instr));
        assert(var);

        unsigned loc = var->data.location;
        bi_index src0 = bi_src_index(&instr->src[0]);

        /* By ISA convention, the coverage mask is stored in R60. The store
         * itself will be handled by a subsequent ATEST instruction */
        if (loc == FRAG_RESULT_SAMPLE_MASK) {
                bi_index orig = bi_register(60);
                bi_index msaa = bi_load_sysval(b, PAN_SYSVAL_MULTISAMPLED, 1, 0);
                bi_index new = bi_lshift_and_i32(b, orig, src0, bi_imm_u8(0));
                bi_mux_i32_to(b, orig, orig, new, msaa, BI_MUX_INT_ZERO);
                return;
        }


        /* Dual-source blending is implemented by putting the color in
         * registers r4-r7. */
        if (var->data.index) {
                unsigned count = nir_src_num_components(instr->src[0]);

                for (unsigned i = 0; i < count; ++i)
                        bi_mov_i32_to(b, bi_register(4 + i), bi_word(src0, i));

                b->shader->info->bifrost.blend_src1_type =
                        nir_intrinsic_src_type(instr);

                return;
        }

        /* Emit ATEST if we have to, note ATEST requires a floating-point alpha
         * value, but render target #0 might not be floating point. However the
         * alpha value is only used for alpha-to-coverage, a stage which is
         * skipped for pure integer framebuffers, so the issue is moot. */

        if (!b->shader->emitted_atest && !bi_skip_atest(b->shader, emit_zs)) {
                nir_alu_type T = nir_intrinsic_src_type(instr);

                bi_index rgba = bi_src_index(&instr->src[0]);
                bi_index alpha =
                        (T == nir_type_float16) ? bi_half(bi_word(rgba, 1), true) :
                        (T == nir_type_float32) ? bi_word(rgba, 3) :
                        bi_dontcare();

                /* Don't read out-of-bounds */
                if (nir_src_num_components(instr->src[0]) < 4)
                        alpha = bi_imm_f32(1.0);

                bi_emit_atest(b, alpha);
        }

        if (emit_zs) {
                bi_index z = { 0 }, s = { 0 };

                if (writeout & PAN_WRITEOUT_Z)
                        z = bi_src_index(&instr->src[2]);

                if (writeout & PAN_WRITEOUT_S)
                        s = bi_src_index(&instr->src[3]);

                bi_zs_emit_to(b, bi_register(60), z, s, bi_register(60),
                                writeout & PAN_WRITEOUT_S,
                                writeout & PAN_WRITEOUT_Z);
        }

        if (emit_blend) {
                assert(loc >= FRAG_RESULT_DATA0);

                unsigned rt = (loc - FRAG_RESULT_DATA0);
                bi_index color = bi_src_index(&instr->src[0]);

                /* Explicit copy since BLEND inputs are precoloured to R0-R3,
                 * TODO: maybe schedule around this or implement in RA as a
                 * spill */
                bool has_mrt = false;

                nir_foreach_shader_out_variable(var, b->shader->nir)
                        has_mrt |= (var->data.location > FRAG_RESULT_DATA0);

                if (has_mrt) {
                        bi_index srcs[4] = { color, color, color, color };
                        unsigned channels[4] = { 0, 1, 2, 3 };
                        color = bi_temp(b->shader);
                        bi_make_vec_to(b, color, srcs, channels,
                                       nir_src_num_components(instr->src[0]),
                                       nir_alu_type_get_type_size(nir_intrinsic_src_type(instr)));
                }

                bi_emit_blend_op(b, color, nir_intrinsic_src_type(instr), rt);
        }

        if (b->shader->inputs->is_blend) {
                /* Jump back to the fragment shader, return address is stored
                 * in r48 (see above).
                 */
                bi_jump(b, bi_register(48));
        }
}

static void
bi_emit_store_vary(bi_builder *b, nir_intrinsic_instr *instr)
{
        /* In principle we can do better for 16-bit. At the moment we require
         * 32-bit to permit the use of .auto, in order to force .u32 for flat
         * varyings, to handle internal TGSI shaders that set flat in the VS
         * but smooth in the FS */

        ASSERTED nir_alu_type T = nir_intrinsic_src_type(instr);
        assert(nir_alu_type_get_type_size(T) == 32);
        enum bi_register_format regfmt = BI_REGISTER_FORMAT_AUTO;

        unsigned imm_index = 0;
        bool immediate = bi_is_intr_immediate(instr, &imm_index, 16);

        bi_index address;
        if (immediate) {
                address = bi_lea_attr_imm(b,
                                          bi_register(61), bi_register(62),
                                          regfmt, imm_index);
        } else {
                bi_index idx =
                        bi_iadd_u32(b,
                                    bi_src_index(nir_get_io_offset_src(instr)),
                                    bi_imm_u32(nir_intrinsic_base(instr)),
                                    false);
                address = bi_lea_attr(b,
                                      bi_register(61), bi_register(62),
                                      idx, regfmt);
        }

        /* Only look at the total components needed. In effect, we fill in all
         * the intermediate "holes" in the write mask, since we can't mask off
         * stores. Since nir_lower_io_to_temporaries ensures each varying is
         * written at most once, anything that's masked out is undefined, so it
         * doesn't matter what we write there. So we may as well do the
         * simplest thing possible. */
        unsigned nr = util_last_bit(nir_intrinsic_write_mask(instr));
        assert(nr > 0 && nr <= nir_intrinsic_src_components(instr, 0));

        bi_st_cvt(b, bi_src_index(&instr->src[0]), address,
                        bi_word(address, 1), bi_word(address, 2),
                        regfmt, nr - 1);
}

static void
bi_emit_load_ubo(bi_builder *b, nir_intrinsic_instr *instr)
{
        nir_src *offset = nir_get_io_offset_src(instr);

        bool offset_is_const = nir_src_is_const(*offset);
        bi_index dyn_offset = bi_src_index(offset);
        uint32_t const_offset = offset_is_const ? nir_src_as_uint(*offset) : 0;
        bool kernel_input = (instr->intrinsic == nir_intrinsic_load_kernel_input);

        bi_load_to(b, instr->num_components * nir_dest_bit_size(instr->dest),
                        bi_dest_index(&instr->dest), offset_is_const ?
                        bi_imm_u32(const_offset) : dyn_offset,
                        kernel_input ? bi_zero() : bi_src_index(&instr->src[0]),
                        BI_SEG_UBO);
}

static bi_index
bi_addr_high(nir_src *src)
{
	return (nir_src_bit_size(*src) == 64) ?
		bi_word(bi_src_index(src), 1) : bi_zero();
}

static void
bi_emit_load(bi_builder *b, nir_intrinsic_instr *instr, enum bi_seg seg)
{
        bi_load_to(b, instr->num_components * nir_dest_bit_size(instr->dest),
                   bi_dest_index(&instr->dest),
                   bi_src_index(&instr->src[0]), bi_addr_high(&instr->src[0]),
                   seg);
}

static void
bi_emit_store(bi_builder *b, nir_intrinsic_instr *instr, enum bi_seg seg)
{
        /* Require contiguous masks, gauranteed by nir_lower_wrmasks */
        assert(nir_intrinsic_write_mask(instr) ==
                        BITFIELD_MASK(instr->num_components));

        bi_store(b, instr->num_components * nir_src_bit_size(instr->src[0]),
                    bi_src_index(&instr->src[0]),
                    bi_src_index(&instr->src[1]), bi_addr_high(&instr->src[1]),
                    seg);
}

/* Exchanges the staging register with memory */

static void
bi_emit_axchg_to(bi_builder *b, bi_index dst, bi_index addr, nir_src *arg, enum bi_seg seg)
{
        assert(seg == BI_SEG_NONE || seg == BI_SEG_WLS);

        unsigned sz = nir_src_bit_size(*arg);
        assert(sz == 32 || sz == 64);

        bi_index data = bi_src_index(arg);

        bi_index data_words[] = {
                bi_word(data, 0),
                bi_word(data, 1),
        };

        bi_index inout = bi_temp_reg(b->shader);
        bi_make_vec_to(b, inout, data_words, NULL, sz / 32, 32);

        bi_axchg_to(b, sz, inout, inout,
                        bi_word(addr, 0),
                        (seg == BI_SEG_NONE) ? bi_word(addr, 1) : bi_zero(),
                        seg);

        bi_index inout_words[] = {
                bi_word(inout, 0),
                bi_word(inout, 1),
        };

        bi_make_vec_to(b, dst, inout_words, NULL, sz / 32, 32);
}

/* Exchanges the second staging register with memory if comparison with first
 * staging register passes */

static void
bi_emit_acmpxchg_to(bi_builder *b, bi_index dst, bi_index addr, nir_src *arg_1, nir_src *arg_2, enum bi_seg seg)
{
        assert(seg == BI_SEG_NONE || seg == BI_SEG_WLS);

        /* hardware is swapped from NIR */
        bi_index src0 = bi_src_index(arg_2);
        bi_index src1 = bi_src_index(arg_1);

        unsigned sz = nir_src_bit_size(*arg_1);
        assert(sz == 32 || sz == 64);

        bi_index data_words[] = {
                bi_word(src0, 0),
                sz == 32 ? bi_word(src1, 0) : bi_word(src0, 1),

                /* 64-bit */
                bi_word(src1, 0),
                bi_word(src1, 1),
        };

        bi_index inout = bi_temp_reg(b->shader);
        bi_make_vec_to(b, inout, data_words, NULL, 2 * (sz / 32), 32);

        bi_acmpxchg_to(b, sz, inout, inout,
                        bi_word(addr, 0),
                        (seg == BI_SEG_NONE) ? bi_word(addr, 1) : bi_zero(),
                        seg);

        bi_index inout_words[] = {
                bi_word(inout, 0),
                bi_word(inout, 1),
        };

        bi_make_vec_to(b, dst, inout_words, NULL, sz / 32, 32);
}

/* Extracts an atomic opcode */

static enum bi_atom_opc
bi_atom_opc_for_nir(nir_intrinsic_op op)
{
        switch (op) {
        case nir_intrinsic_global_atomic_add:
        case nir_intrinsic_shared_atomic_add:
        case nir_intrinsic_image_atomic_add:
                return BI_ATOM_OPC_AADD;

        case nir_intrinsic_global_atomic_imin:
        case nir_intrinsic_shared_atomic_imin:
        case nir_intrinsic_image_atomic_imin:
                return BI_ATOM_OPC_ASMIN;

        case nir_intrinsic_global_atomic_umin:
        case nir_intrinsic_shared_atomic_umin:
        case nir_intrinsic_image_atomic_umin:
                return BI_ATOM_OPC_AUMIN;

        case nir_intrinsic_global_atomic_imax:
        case nir_intrinsic_shared_atomic_imax:
        case nir_intrinsic_image_atomic_imax:
                return BI_ATOM_OPC_ASMAX;

        case nir_intrinsic_global_atomic_umax:
        case nir_intrinsic_shared_atomic_umax:
        case nir_intrinsic_image_atomic_umax:
                return BI_ATOM_OPC_AUMAX;

        case nir_intrinsic_global_atomic_and:
        case nir_intrinsic_shared_atomic_and:
        case nir_intrinsic_image_atomic_and:
                return BI_ATOM_OPC_AAND;

        case nir_intrinsic_global_atomic_or:
        case nir_intrinsic_shared_atomic_or:
        case nir_intrinsic_image_atomic_or:
                return BI_ATOM_OPC_AOR;

        case nir_intrinsic_global_atomic_xor:
        case nir_intrinsic_shared_atomic_xor:
        case nir_intrinsic_image_atomic_xor:
                return BI_ATOM_OPC_AXOR;

        default:
                unreachable("Unexpected computational atomic");
        }
}

/* Optimized unary atomics are available with an implied #1 argument */

static bool
bi_promote_atom_c1(enum bi_atom_opc op, bi_index arg, enum bi_atom_opc *out)
{
        /* Check we have a compatible constant */
        if (arg.type != BI_INDEX_CONSTANT)
                return false;

        if (!(arg.value == 1 || (arg.value == -1 && op == BI_ATOM_OPC_AADD)))
                return false;

        /* Check for a compatible operation */
        switch (op) {
        case BI_ATOM_OPC_AADD:
                *out = (arg.value == 1) ? BI_ATOM_OPC_AINC : BI_ATOM_OPC_ADEC;
                return true;
        case BI_ATOM_OPC_ASMAX:
                *out = BI_ATOM_OPC_ASMAX1;
                return true;
        case BI_ATOM_OPC_AUMAX:
                *out = BI_ATOM_OPC_AUMAX1;
                return true;
        case BI_ATOM_OPC_AOR:
                *out = BI_ATOM_OPC_AOR1;
                return true;
        default:
                return false;
        }
}

/* Coordinates are 16-bit integers in Bifrost but 32-bit in NIR */

static bi_index
bi_emit_image_coord(bi_builder *b, bi_index coord, unsigned src_idx,
                    unsigned coord_comps, bool is_array)
{
        assert(coord_comps > 0 && coord_comps <= 3);

        if (src_idx == 0) {
                if (coord_comps == 1 || (coord_comps == 2 && is_array))
                        return bi_word(coord, 0);
                else
                        return bi_mkvec_v2i16(b,
                                              bi_half(bi_word(coord, 0), false),
                                              bi_half(bi_word(coord, 1), false));
        } else {
                if (coord_comps == 3)
                        return bi_word(coord, 2);
                else if (coord_comps == 2 && is_array)
                        return bi_word(coord, 1);
                else
                        return bi_zero();
        }
}

static bi_index
bi_emit_image_index(bi_builder *b, nir_intrinsic_instr *instr)
{
        nir_src src = instr->src[0];
        bi_index index = bi_src_index(&src);
        bi_context *ctx = b->shader;

        /* Images come after vertex attributes, so handle an explicit offset */
        unsigned offset = (ctx->stage == MESA_SHADER_VERTEX) ?
                util_bitcount64(ctx->nir->info.inputs_read) : 0;

        if (offset == 0)
                return index;
        else if (nir_src_is_const(src))
                return bi_imm_u32(nir_src_as_uint(src) + offset);
        else
                return bi_iadd_u32(b, index, bi_imm_u32(offset), false);
}

static void
bi_emit_image_load(bi_builder *b, nir_intrinsic_instr *instr)
{
        enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
        unsigned coord_comps = nir_image_intrinsic_coord_components(instr);
        bool array = nir_intrinsic_image_array(instr);
        ASSERTED unsigned nr_dim = glsl_get_sampler_dim_coordinate_components(dim);

        bi_index coords = bi_src_index(&instr->src[1]);
        /* TODO: MSAA */
        assert(nr_dim != GLSL_SAMPLER_DIM_MS && "MSAA'd images not supported");

        bi_ld_attr_tex_to(b, bi_dest_index(&instr->dest),
                          bi_emit_image_coord(b, coords, 0, coord_comps, array),
                          bi_emit_image_coord(b, coords, 1, coord_comps, array),
                          bi_emit_image_index(b, instr),
                          bi_reg_fmt_for_nir(nir_intrinsic_dest_type(instr)),
                          instr->num_components - 1);
}

static bi_index
bi_emit_lea_image(bi_builder *b, nir_intrinsic_instr *instr)
{
        enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
        bool array = nir_intrinsic_image_array(instr);
        ASSERTED unsigned nr_dim = glsl_get_sampler_dim_coordinate_components(dim);
        unsigned coord_comps = nir_image_intrinsic_coord_components(instr);

        /* TODO: MSAA */
        assert(nr_dim != GLSL_SAMPLER_DIM_MS && "MSAA'd images not supported");

        enum bi_register_format type = (instr->intrinsic == nir_intrinsic_image_store) ?
                bi_reg_fmt_for_nir(nir_intrinsic_src_type(instr)) :
                BI_REGISTER_FORMAT_AUTO;

        bi_index coords = bi_src_index(&instr->src[1]);
        bi_index xy = bi_emit_image_coord(b, coords, 0, coord_comps, array);
        bi_index zw = bi_emit_image_coord(b, coords, 1, coord_comps, array);

        bi_instr *I = bi_lea_attr_tex_to(b, bi_temp(b->shader), xy, zw,
                        bi_emit_image_index(b, instr), type);

        /* LEA_ATTR_TEX defaults to the secondary attribute table, but our ABI
         * has all images in the primary attribute table */
        I->table = BI_TABLE_ATTRIBUTE_1;

        return I->dest[0];
}

static void
bi_emit_image_store(bi_builder *b, nir_intrinsic_instr *instr)
{
        bi_index addr = bi_emit_lea_image(b, instr);

        bi_st_cvt(b, bi_src_index(&instr->src[3]),
                     addr, bi_word(addr, 1), bi_word(addr, 2),
                     bi_reg_fmt_for_nir(nir_intrinsic_src_type(instr)),
                     instr->num_components - 1);
}

static void
bi_emit_atomic_i32_to(bi_builder *b, bi_index dst,
                bi_index addr, bi_index arg, nir_intrinsic_op intrinsic)
{
        /* ATOM_C.i32 takes a vector with {arg, coalesced}, ATOM_C1.i32 doesn't
         * take any vector but can still output in RETURN mode */
        bi_index sr = bi_temp_reg(b->shader);

        enum bi_atom_opc opc = bi_atom_opc_for_nir(intrinsic);
        enum bi_atom_opc post_opc = opc;

        /* Generate either ATOM_C or ATOM_C1 as required */
        if (bi_promote_atom_c1(opc, arg, &opc)) {
                bi_patom_c1_i32_to(b, sr, bi_word(addr, 0),
                                bi_word(addr, 1), opc, 2);
        } else {
                bi_mov_i32_to(b, sr, arg);
                bi_patom_c_i32_to(b, sr, sr, bi_word(addr, 0),
                                bi_word(addr, 1), opc, 2);
        }

        /* Post-process it */
        bi_atom_post_i32_to(b, dst, bi_word(sr, 0), bi_word(sr, 1), post_opc);
}

/* gl_FragCoord.xy = u16_to_f32(R59.xy) + 0.5
 * gl_FragCoord.z = ld_vary(fragz)
 * gl_FragCoord.w = ld_vary(fragw)
 */

static void
bi_emit_load_frag_coord(bi_builder *b, nir_intrinsic_instr *instr)
{
        bi_index src[4] = {};

        for (unsigned i = 0; i < 2; ++i) {
                src[i] = bi_fadd_f32(b,
                                bi_u16_to_f32(b, bi_half(bi_register(59), i)),
                                bi_imm_f32(0.5f), BI_ROUND_NONE);
        }

        for (unsigned i = 0; i < 2; ++i) {
                src[2 + i] = bi_ld_var_special(b, bi_zero(),
                                BI_REGISTER_FORMAT_F32, BI_SAMPLE_CENTER,
                                BI_UPDATE_CLOBBER,
                                (i == 0) ? BI_VARYING_NAME_FRAG_Z :
                                        BI_VARYING_NAME_FRAG_W,
                                BI_VECSIZE_NONE);
        }

        bi_make_vec_to(b, bi_dest_index(&instr->dest), src, NULL, 4, 32);
}

static void
bi_emit_ld_tile(bi_builder *b, nir_intrinsic_instr *instr)
{
        unsigned rt = b->shader->inputs->blend.rt;
        unsigned size = nir_dest_bit_size(instr->dest);

        /* Get the render target */
        if (!b->shader->inputs->is_blend) {
                const nir_variable *var =
                        nir_find_variable_with_driver_location(b->shader->nir,
                                        nir_var_shader_out, nir_intrinsic_base(instr));
                unsigned loc = var->data.location;
                assert(loc >= FRAG_RESULT_DATA0);
                rt = (loc - FRAG_RESULT_DATA0);
        }

        bi_index desc = b->shader->inputs->is_blend ?
                bi_imm_u32(b->shader->inputs->blend.bifrost_blend_desc >> 32) :
                b->shader->inputs->bifrost.static_rt_conv ?
                bi_imm_u32(b->shader->inputs->bifrost.rt_conv[rt]) :
                bi_load_sysval(b, PAN_SYSVAL(RT_CONVERSION, rt | (size << 4)), 1, 0);

        bi_ld_tile_to(b, bi_dest_index(&instr->dest), bi_pixel_indices(b, rt),
                        bi_register(60), desc, (instr->num_components - 1));
}

static void
bi_emit_intrinsic(bi_builder *b, nir_intrinsic_instr *instr)
{
        bi_index dst = nir_intrinsic_infos[instr->intrinsic].has_dest ?
                bi_dest_index(&instr->dest) : bi_null();
        gl_shader_stage stage = b->shader->stage;

        switch (instr->intrinsic) {
        case nir_intrinsic_load_barycentric_pixel:
        case nir_intrinsic_load_barycentric_centroid:
        case nir_intrinsic_load_barycentric_sample:
        case nir_intrinsic_load_barycentric_at_sample:
        case nir_intrinsic_load_barycentric_at_offset:
                /* handled later via load_vary */
                break;
        case nir_intrinsic_load_interpolated_input:
        case nir_intrinsic_load_input:
                if (b->shader->inputs->is_blend)
                        bi_emit_load_blend_input(b, instr);
                else if (stage == MESA_SHADER_FRAGMENT)
                        bi_emit_load_vary(b, instr);
                else if (stage == MESA_SHADER_VERTEX)
                        bi_emit_load_attr(b, instr);
                else
                        unreachable("Unsupported shader stage");
                break;

        case nir_intrinsic_store_output:
                if (stage == MESA_SHADER_FRAGMENT)
                        bi_emit_fragment_out(b, instr);
                else if (stage == MESA_SHADER_VERTEX)
                        bi_emit_store_vary(b, instr);
                else
                        unreachable("Unsupported shader stage");
                break;

        case nir_intrinsic_store_combined_output_pan:
                assert(stage == MESA_SHADER_FRAGMENT);
                bi_emit_fragment_out(b, instr);
                break;

        case nir_intrinsic_load_ubo:
        case nir_intrinsic_load_kernel_input:
                bi_emit_load_ubo(b, instr);
                break;

        case nir_intrinsic_load_global:
        case nir_intrinsic_load_global_constant:
                bi_emit_load(b, instr, BI_SEG_NONE);
                break;

        case nir_intrinsic_store_global:
                bi_emit_store(b, instr, BI_SEG_NONE);
                break;

        case nir_intrinsic_load_scratch:
                bi_emit_load(b, instr, BI_SEG_TL);
                break;

        case nir_intrinsic_store_scratch:
                bi_emit_store(b, instr, BI_SEG_TL);
                break;

        case nir_intrinsic_load_shared:
                bi_emit_load(b, instr, BI_SEG_WLS);
                break;

        case nir_intrinsic_store_shared:
                bi_emit_store(b, instr, BI_SEG_WLS);
                break;

        /* Blob doesn't seem to do anything for memory barriers, note +BARRIER
         * is illegal in fragment shaders */
        case nir_intrinsic_memory_barrier:
        case nir_intrinsic_memory_barrier_buffer:
        case nir_intrinsic_memory_barrier_image:
        case nir_intrinsic_memory_barrier_shared:
        case nir_intrinsic_group_memory_barrier:
                break;

        case nir_intrinsic_control_barrier:
                assert(b->shader->stage != MESA_SHADER_FRAGMENT);
                bi_barrier(b);
                break;

        case nir_intrinsic_shared_atomic_add:
        case nir_intrinsic_shared_atomic_imin:
        case nir_intrinsic_shared_atomic_umin:
        case nir_intrinsic_shared_atomic_imax:
        case nir_intrinsic_shared_atomic_umax:
        case nir_intrinsic_shared_atomic_and:
        case nir_intrinsic_shared_atomic_or:
        case nir_intrinsic_shared_atomic_xor: {
                assert(nir_src_bit_size(instr->src[1]) == 32);

                bi_index addr = bi_seg_add_i64(b, bi_src_index(&instr->src[0]),
                                bi_zero(), false, BI_SEG_WLS);

                bi_emit_atomic_i32_to(b, dst, addr, bi_src_index(&instr->src[1]),
                                instr->intrinsic);
                break;
        }

        case nir_intrinsic_image_atomic_add:
        case nir_intrinsic_image_atomic_imin:
        case nir_intrinsic_image_atomic_umin:
        case nir_intrinsic_image_atomic_imax:
        case nir_intrinsic_image_atomic_umax:
        case nir_intrinsic_image_atomic_and:
        case nir_intrinsic_image_atomic_or:
        case nir_intrinsic_image_atomic_xor:
                assert(nir_src_bit_size(instr->src[3]) == 32);

                bi_emit_atomic_i32_to(b, dst,
                                bi_emit_lea_image(b, instr),
                                bi_src_index(&instr->src[3]),
                                instr->intrinsic);
                break;

        case nir_intrinsic_global_atomic_add:
        case nir_intrinsic_global_atomic_imin:
        case nir_intrinsic_global_atomic_umin:
        case nir_intrinsic_global_atomic_imax:
        case nir_intrinsic_global_atomic_umax:
        case nir_intrinsic_global_atomic_and:
        case nir_intrinsic_global_atomic_or:
        case nir_intrinsic_global_atomic_xor:
                assert(nir_src_bit_size(instr->src[1]) == 32);

                bi_emit_atomic_i32_to(b, dst,
                                bi_src_index(&instr->src[0]),
                                bi_src_index(&instr->src[1]),
                                instr->intrinsic);
                break;

        case nir_intrinsic_image_load:
                bi_emit_image_load(b, instr);
                break;

        case nir_intrinsic_image_store:
                bi_emit_image_store(b, instr);
                break;

        case nir_intrinsic_global_atomic_exchange:
                bi_emit_axchg_to(b, dst, bi_src_index(&instr->src[0]),
                                &instr->src[1], BI_SEG_NONE);
                break;

        case nir_intrinsic_image_atomic_exchange:
                bi_emit_axchg_to(b, dst, bi_emit_lea_image(b, instr),
                                &instr->src[3], BI_SEG_NONE);
                break;

        case nir_intrinsic_shared_atomic_exchange:
                bi_emit_axchg_to(b, dst, bi_src_index(&instr->src[0]),
                                &instr->src[1], BI_SEG_WLS);
                break;

        case nir_intrinsic_global_atomic_comp_swap:
                bi_emit_acmpxchg_to(b, dst, bi_src_index(&instr->src[0]),
                                &instr->src[1], &instr->src[2], BI_SEG_NONE);
                break;

        case nir_intrinsic_image_atomic_comp_swap:
                bi_emit_acmpxchg_to(b, dst, bi_emit_lea_image(b, instr),
                                &instr->src[3], &instr->src[4], BI_SEG_NONE);
                break;

        case nir_intrinsic_shared_atomic_comp_swap:
                bi_emit_acmpxchg_to(b, dst, bi_src_index(&instr->src[0]),
                                &instr->src[1], &instr->src[2], BI_SEG_WLS);
                break;

        case nir_intrinsic_load_frag_coord:
                bi_emit_load_frag_coord(b, instr);
                break;

        case nir_intrinsic_load_output:
                bi_emit_ld_tile(b, instr);
                break;

        case nir_intrinsic_discard_if: {
                bi_index src = bi_src_index(&instr->src[0]);
                assert(nir_src_bit_size(instr->src[0]) == 1);
                bi_discard_b32(b, bi_half(src, false));
                break;
        }

        case nir_intrinsic_discard:
                bi_discard_f32(b, bi_zero(), bi_zero(), BI_CMPF_EQ);
                break;

        case nir_intrinsic_load_ssbo_address:
                bi_load_sysval_nir(b, instr, 2, 0);
                break;

        case nir_intrinsic_load_work_dim:
                bi_load_sysval_nir(b, instr, 1, 0);
                break;

        case nir_intrinsic_load_first_vertex:
                bi_load_sysval_nir(b, instr, 1, 0);
                break;

        case nir_intrinsic_load_base_vertex:
                bi_load_sysval_nir(b, instr, 1, 4);
                break;

        case nir_intrinsic_load_base_instance:
                bi_load_sysval_nir(b, instr, 1, 8);
                break;

        case nir_intrinsic_load_draw_id:
                bi_load_sysval_nir(b, instr, 1, 0);
                break;

        case nir_intrinsic_get_ssbo_size:
                bi_load_sysval_nir(b, instr, 1, 8);
                break;

        case nir_intrinsic_load_viewport_scale:
        case nir_intrinsic_load_viewport_offset:
        case nir_intrinsic_load_num_workgroups:
        case nir_intrinsic_load_workgroup_size:
                bi_load_sysval_nir(b, instr, 3, 0);
                break;

        case nir_intrinsic_image_size:
                bi_load_sysval_nir(b, instr,
                                nir_dest_num_components(instr->dest), 0);
                break;

        case nir_intrinsic_load_blend_const_color_rgba:
                bi_load_sysval_nir(b, instr,
                                   nir_dest_num_components(instr->dest), 0);
                break;

	case nir_intrinsic_load_sample_positions_pan:
                bi_mov_i32_to(b, bi_word(dst, 0),
                                bi_fau(BIR_FAU_SAMPLE_POS_ARRAY, false));
                bi_mov_i32_to(b, bi_word(dst, 1),
                                bi_fau(BIR_FAU_SAMPLE_POS_ARRAY, true));
                break;

	case nir_intrinsic_load_sample_mask_in:
                /* r61[0:15] contains the coverage bitmap */
                bi_u16_to_u32_to(b, dst, bi_half(bi_register(61), false));
                break;

        case nir_intrinsic_load_sample_id:
                bi_load_sample_id_to(b, dst);
                break;

	case nir_intrinsic_load_front_face:
                /* r58 == 0 means primitive is front facing */
                bi_icmp_i32_to(b, dst, bi_register(58), bi_zero(), BI_CMPF_EQ,
                                BI_RESULT_TYPE_M1);
                break;

        case nir_intrinsic_load_point_coord:
                bi_ld_var_special_to(b, dst, bi_zero(), BI_REGISTER_FORMAT_F32,
                                BI_SAMPLE_CENTER, BI_UPDATE_CLOBBER,
                                BI_VARYING_NAME_POINT, BI_VECSIZE_V2);
                break;

        case nir_intrinsic_load_vertex_id_zero_base:
                bi_mov_i32_to(b, dst, bi_register(61));
                break;

        case nir_intrinsic_load_instance_id:
                bi_mov_i32_to(b, dst, bi_register(62));
                break;

        case nir_intrinsic_load_subgroup_invocation:
                bi_mov_i32_to(b, dst, bi_fau(BIR_FAU_LANE_ID, false));
                break;

        case nir_intrinsic_load_local_invocation_id:
                for (unsigned i = 0; i < 3; ++i)
                        bi_u16_to_u32_to(b, bi_word(dst, i),
                                         bi_half(bi_register(55 + i / 2), i % 2));
                break;

        case nir_intrinsic_load_workgroup_id:
                for (unsigned i = 0; i < 3; ++i)
                        bi_mov_i32_to(b, bi_word(dst, i), bi_register(57 + i));
                break;

        case nir_intrinsic_load_global_invocation_id:
        case nir_intrinsic_load_global_invocation_id_zero_base:
                for (unsigned i = 0; i < 3; ++i)
                        bi_mov_i32_to(b, bi_word(dst, i), bi_register(60 + i));
                break;

        case nir_intrinsic_shader_clock:
                bi_ld_gclk_u64_to(b, dst, BI_SOURCE_CYCLE_COUNTER);
                break;

        default:
                fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
                assert(0);
        }
}

static void
bi_emit_load_const(bi_builder *b, nir_load_const_instr *instr)
{
        /* Make sure we've been lowered */
        assert(instr->def.num_components <= (32 / instr->def.bit_size));

        /* Accumulate all the channels of the constant, as if we did an
         * implicit SEL over them */
        uint32_t acc = 0;

        for (unsigned i = 0; i < instr->def.num_components; ++i) {
                unsigned v = nir_const_value_as_uint(instr->value[i], instr->def.bit_size);
                acc |= (v << (i * instr->def.bit_size));
        }

        bi_mov_i32_to(b, bi_get_index(instr->def.index, false, 0), bi_imm_u32(acc));
}

static bi_index
bi_alu_src_index(nir_alu_src src, unsigned comps)
{
        /* we don't lower modifiers until the backend */
        assert(!(src.negate || src.abs));

        unsigned bitsize = nir_src_bit_size(src.src);

        /* TODO: Do we need to do something more clever with 1-bit bools? */
        if (bitsize == 1)
                bitsize = 16;

        /* the bi_index carries the 32-bit (word) offset separate from the
         * subword swizzle, first handle the offset */

        unsigned offset = 0;

        assert(bitsize == 8 || bitsize == 16 || bitsize == 32);
        unsigned subword_shift = (bitsize == 32) ? 0 : (bitsize == 16) ? 1 : 2;

        for (unsigned i = 0; i < comps; ++i) {
                unsigned new_offset = (src.swizzle[i] >> subword_shift);

                if (i > 0)
                        assert(offset == new_offset && "wrong vectorization");

                offset = new_offset;
        }

        bi_index idx = bi_word(bi_src_index(&src.src), offset);

        /* Compose the subword swizzle with existing (identity) swizzle */
        assert(idx.swizzle == BI_SWIZZLE_H01);

        /* Bigger vectors should have been lowered */
        assert(comps <= (1 << subword_shift));

        if (bitsize == 16) {
                unsigned c0 = src.swizzle[0] & 1;
                unsigned c1 = (comps > 1) ? src.swizzle[1] & 1 : c0;
                idx.swizzle = BI_SWIZZLE_H00 + c1 + (c0 << 1);
        } else if (bitsize == 8) {
                /* 8-bit vectors not yet supported */
                assert(comps == 1 && "8-bit vectors not supported");
                assert(src.swizzle[0] < 4 && "8-bit vectors not supported");
                idx.swizzle = BI_SWIZZLE_B0000 + src.swizzle[0];
        }

        return idx;
}

static enum bi_round
bi_nir_round(nir_op op)
{
        switch (op) {
        case nir_op_fround_even: return BI_ROUND_NONE;
        case nir_op_ftrunc: return BI_ROUND_RTZ;
        case nir_op_fceil: return BI_ROUND_RTP;
        case nir_op_ffloor: return BI_ROUND_RTN;
        default: unreachable("invalid nir round op");
        }
}

/* Convenience for lowered transcendentals */

static bi_index
bi_fmul_f32(bi_builder *b, bi_index s0, bi_index s1)
{
        return bi_fma_f32(b, s0, s1, bi_imm_f32(-0.0f), BI_ROUND_NONE);
}

/* Approximate with FRCP_APPROX.f32 and apply a single iteration of
 * Newton-Raphson to improve precision */

static void
bi_lower_frcp_32(bi_builder *b, bi_index dst, bi_index s0)
{
        bi_index x1 = bi_frcp_approx_f32(b, s0);
        bi_index m  = bi_frexpm_f32(b, s0, false, false);
        bi_index e  = bi_frexpe_f32(b, bi_neg(s0), false, false);
        bi_index t1 = bi_fma_rscale_f32(b, m, bi_neg(x1), bi_imm_f32(1.0),
                        bi_zero(), BI_ROUND_NONE, BI_SPECIAL_N);
        bi_fma_rscale_f32_to(b, dst, t1, x1, x1, e,
                        BI_ROUND_NONE, BI_SPECIAL_NONE);
}

static void
bi_lower_frsq_32(bi_builder *b, bi_index dst, bi_index s0)
{
        bi_index x1 = bi_frsq_approx_f32(b, s0);
        bi_index m  = bi_frexpm_f32(b, s0, false, true);
        bi_index e  = bi_frexpe_f32(b, bi_neg(s0), false, true);
        bi_index t1 = bi_fmul_f32(b, x1, x1);
        bi_index t2 = bi_fma_rscale_f32(b, m, bi_neg(t1), bi_imm_f32(1.0),
                        bi_imm_u32(-1), BI_ROUND_NONE, BI_SPECIAL_N);
        bi_fma_rscale_f32_to(b, dst, t2, x1, x1, e,
                        BI_ROUND_NONE, BI_SPECIAL_N);
}

/* More complex transcendentals, see
 * https://gitlab.freedesktop.org/panfrost/mali-isa-docs/-/blob/master/Bifrost.adoc
 * for documentation */

static void
bi_lower_fexp2_32(bi_builder *b, bi_index dst, bi_index s0)
{
        bi_index t1 = bi_temp(b->shader);
        bi_instr *t1_instr = bi_fadd_f32_to(b, t1,
                        s0, bi_imm_u32(0x49400000), BI_ROUND_NONE);
        t1_instr->clamp = BI_CLAMP_CLAMP_0_INF;

        bi_index t2 = bi_fadd_f32(b, t1, bi_imm_u32(0xc9400000), BI_ROUND_NONE);

        bi_instr *a2 = bi_fadd_f32_to(b, bi_temp(b->shader),
                        s0, bi_neg(t2), BI_ROUND_NONE);
        a2->clamp = BI_CLAMP_CLAMP_M1_1;

        bi_index a1t = bi_fexp_table_u4(b, t1, BI_ADJ_NONE);
        bi_index t3 = bi_isub_u32(b, t1, bi_imm_u32(0x49400000), false);
        bi_index a1i = bi_arshift_i32(b, t3, bi_null(), bi_imm_u8(4));
        bi_index p1 = bi_fma_f32(b, a2->dest[0], bi_imm_u32(0x3d635635),
                        bi_imm_u32(0x3e75fffa), BI_ROUND_NONE);
        bi_index p2 = bi_fma_f32(b, p1, a2->dest[0],
                        bi_imm_u32(0x3f317218), BI_ROUND_NONE);
        bi_index p3 = bi_fmul_f32(b, a2->dest[0], p2);
        bi_instr *x = bi_fma_rscale_f32_to(b, bi_temp(b->shader),
                        p3, a1t, a1t, a1i, BI_ROUND_NONE, BI_SPECIAL_NONE);
        x->clamp = BI_CLAMP_CLAMP_0_INF;

        bi_instr *max = bi_fmax_f32_to(b, dst, x->dest[0], s0);
        max->sem = BI_SEM_NAN_PROPAGATE;
}

static void
bi_fexp_32(bi_builder *b, bi_index dst, bi_index s0, bi_index log2_base)
{
        /* Scale by base, Multiply by 2*24 and convert to integer to get a 8:24
         * fixed-point input */
        bi_index scale = bi_fma_rscale_f32(b, s0, log2_base, bi_negzero(),
                        bi_imm_u32(24), BI_ROUND_NONE, BI_SPECIAL_NONE);
        bi_index fixed_pt = bi_f32_to_s32(b, scale, BI_ROUND_NONE);

        /* Compute the result for the fixed-point input, but pass along
         * the floating-point scale for correct NaN propagation */
        bi_fexp_f32_to(b, dst, fixed_pt, scale);
}

static void
bi_lower_flog2_32(bi_builder *b, bi_index dst, bi_index s0)
{
        /* s0 = a1 * 2^e, with a1 in [0.75, 1.5) */
        bi_index a1 = bi_frexpm_f32(b, s0, true, false);
        bi_index ei = bi_frexpe_f32(b, s0, true, false);
        bi_index ef = bi_s32_to_f32(b, ei, BI_ROUND_RTZ);

        /* xt estimates -log(r1), a coarse approximation of log(a1) */
        bi_index r1 = bi_flog_table_f32(b, s0, BI_MODE_RED, BI_PRECISION_NONE);
        bi_index xt = bi_flog_table_f32(b, s0, BI_MODE_BASE2, BI_PRECISION_NONE);

        /* log(s0) = log(a1 * 2^e) = e + log(a1) = e + log(a1 * r1) -
         * log(r1), so let x1 = e - log(r1) ~= e + xt and x2 = log(a1 * r1),
         * and then log(s0) = x1 + x2 */
        bi_index x1 = bi_fadd_f32(b, ef, xt, BI_ROUND_NONE);

        /* Since a1 * r1 is close to 1, x2 = log(a1 * r1) may be computed by
         * polynomial approximation around 1. The series is expressed around
         * 1, so set y = (a1 * r1) - 1.0 */
        bi_index y = bi_fma_f32(b, a1, r1, bi_imm_f32(-1.0), BI_ROUND_NONE);

        /* x2 = log_2(1 + y) = log_e(1 + y) * (1/log_e(2)), so approximate
         * log_e(1 + y) by the Taylor series (lower precision than the blob):
         * y - y^2/2 + O(y^3) = y(1 - y/2) + O(y^3) */
        bi_index loge = bi_fmul_f32(b, y,
                bi_fma_f32(b, y, bi_imm_f32(-0.5), bi_imm_f32(1.0), BI_ROUND_NONE));

        bi_index x2 = bi_fmul_f32(b, loge, bi_imm_f32(1.0 / logf(2.0)));

        /* log(s0) = x1 + x2 */
        bi_fadd_f32_to(b, dst, x1, x2, BI_ROUND_NONE);
}

static void
bi_flog2_32(bi_builder *b, bi_index dst, bi_index s0)
{
        bi_index frexp = bi_frexpe_f32(b, s0, true, false);
        bi_index frexpi = bi_s32_to_f32(b, frexp, BI_ROUND_RTZ);
        bi_index add = bi_fadd_lscale_f32(b, bi_imm_f32(-1.0f), s0);
        bi_fma_f32_to(b, dst, bi_flogd_f32(b, s0), add, frexpi,
                        BI_ROUND_NONE);
}

static void
bi_lower_fpow_32(bi_builder *b, bi_index dst, bi_index base, bi_index exp)
{
        bi_index log2_base = bi_null();

        if (base.type == BI_INDEX_CONSTANT) {
                log2_base = bi_imm_f32(log2f(uif(base.value)));
        } else {
                log2_base = bi_temp(b->shader);
                bi_lower_flog2_32(b, log2_base, base);
        }

        return bi_lower_fexp2_32(b, dst, bi_fmul_f32(b, exp, log2_base));
}

static void
bi_fpow_32(bi_builder *b, bi_index dst, bi_index base, bi_index exp)
{
        bi_index log2_base = bi_null();

        if (base.type == BI_INDEX_CONSTANT) {
                log2_base = bi_imm_f32(log2f(uif(base.value)));
        } else {
                log2_base = bi_temp(b->shader);
                bi_flog2_32(b, log2_base, base);
        }

        return bi_fexp_32(b, dst, exp, log2_base);
}

/* Bifrost has extremely coarse tables for approximating sin/cos, accessible as
 * FSIN/COS_TABLE.u6, which multiplies the bottom 6-bits by pi/32 and
 * calculates the results. We use them to calculate sin/cos via a Taylor
 * approximation:
 *
 * f(x + e) = f(x) + e f'(x) + (e^2)/2 f''(x)
 * sin(x + e) = sin(x) + e cos(x) - (e^2)/2 sin(x)
 * cos(x + e) = cos(x) - e sin(x) - (e^2)/2 cos(x)
 */

#define TWO_OVER_PI  bi_imm_f32(2.0f / 3.14159f)
#define MPI_OVER_TWO bi_imm_f32(-3.14159f / 2.0)
#define SINCOS_BIAS  bi_imm_u32(0x49400000)

static void
bi_lower_fsincos_32(bi_builder *b, bi_index dst, bi_index s0, bool cos)
{
        /* bottom 6-bits of result times pi/32 approximately s0 mod 2pi */
        bi_index x_u6 = bi_fma_f32(b, s0, TWO_OVER_PI, SINCOS_BIAS, BI_ROUND_NONE);

        /* Approximate domain error (small) */
        bi_index e = bi_fma_f32(b, bi_fadd_f32(b, x_u6, bi_neg(SINCOS_BIAS),
                                BI_ROUND_NONE),
                        MPI_OVER_TWO, s0, BI_ROUND_NONE);

        /* Lookup sin(x), cos(x) */
        bi_index sinx = bi_fsin_table_u6(b, x_u6, false);
        bi_index cosx = bi_fcos_table_u6(b, x_u6, false);

        /* e^2 / 2 */
        bi_index e2_over_2 = bi_fma_rscale_f32(b, e, e, bi_negzero(),
                        bi_imm_u32(-1), BI_ROUND_NONE, BI_SPECIAL_NONE);

        /* (-e^2)/2 f''(x) */
        bi_index quadratic = bi_fma_f32(b, bi_neg(e2_over_2),
                        cos ? cosx : sinx,
                        bi_negzero(),  BI_ROUND_NONE);

        /* e f'(x) - (e^2/2) f''(x) */
        bi_instr *I = bi_fma_f32_to(b, bi_temp(b->shader), e,
                        cos ? bi_neg(sinx) : cosx,
                        quadratic, BI_ROUND_NONE);
        I->clamp = BI_CLAMP_CLAMP_M1_1;

        /* f(x) + e f'(x) - (e^2/2) f''(x) */
        bi_fadd_f32_to(b, dst, I->dest[0], cos ? cosx : sinx, BI_ROUND_NONE);
}

/* The XOR lane op is useful for derivative calculation, but was added in v7.
 * Add a safe helper that will do the appropriate lowering on v6 */

static bi_index
bi_clper_xor(bi_builder *b, bi_index s0, bi_index s1)
{
        if (b->shader->arch >= 7) {
                return bi_clper_i32(b, s0, s1,
                                BI_INACTIVE_RESULT_ZERO, BI_LANE_OP_XOR,
                                BI_SUBGROUP_SUBGROUP4);
        }

        bi_index lane_id = bi_fau(BIR_FAU_LANE_ID, false);
        bi_index lane = bi_lshift_xor_i32(b, lane_id, s1, bi_imm_u8(0));
        return bi_clper_v6_i32(b, s0, lane);
}

static bi_instr *
bi_emit_alu_bool(bi_builder *b, unsigned sz, nir_op op,
      bi_index dst, bi_index s0, bi_index s1, bi_index s2)
{
        /* Handle 1-bit bools as 0/~0 by default and let the optimizer deal
         * with the bit patterns later. 0/~0 has the nice property of being
         * independent of replicated vectorization. */
        if (sz == 1) sz = 16;
        bi_index f = bi_zero();
        bi_index t = bi_imm_u16(0xFFFF);

        switch (op) {
        case nir_op_feq:
                return bi_fcmp_to(b, sz, dst, s0, s1, BI_CMPF_EQ, BI_RESULT_TYPE_M1);
        case nir_op_flt:
                return bi_fcmp_to(b, sz, dst, s0, s1, BI_CMPF_LT, BI_RESULT_TYPE_M1);
        case nir_op_fge:
                return bi_fcmp_to(b, sz, dst, s0, s1, BI_CMPF_GE, BI_RESULT_TYPE_M1);
        case nir_op_fneu:
                return bi_fcmp_to(b, sz, dst, s0, s1, BI_CMPF_NE, BI_RESULT_TYPE_M1);

        case nir_op_ieq:
                return bi_icmp_to(b, nir_type_int, sz, dst, s0, s1, BI_CMPF_EQ, BI_RESULT_TYPE_M1);
        case nir_op_ine:
                return bi_icmp_to(b, nir_type_int, sz, dst, s0, s1, BI_CMPF_NE, BI_RESULT_TYPE_M1);
        case nir_op_ilt:
                return bi_icmp_to(b, nir_type_int, sz, dst, s0, s1, BI_CMPF_LT, BI_RESULT_TYPE_M1);
        case nir_op_ige:
                return bi_icmp_to(b, nir_type_int, sz, dst, s0, s1, BI_CMPF_GE, BI_RESULT_TYPE_M1);
        case nir_op_ult:
                return bi_icmp_to(b, nir_type_uint, sz, dst, s0, s1, BI_CMPF_LT, BI_RESULT_TYPE_M1);
        case nir_op_uge:
                return bi_icmp_to(b, nir_type_uint, sz, dst, s0, s1, BI_CMPF_GE, BI_RESULT_TYPE_M1);

        case nir_op_iand:
                return bi_lshift_and_to(b, sz, dst, s0, s1, bi_imm_u8(0));
        case nir_op_ior:
                return bi_lshift_or_to(b, sz, dst, s0, s1, bi_imm_u8(0));
        case nir_op_ixor:
                return bi_lshift_xor_to(b, sz, dst, s0, s1, bi_imm_u8(0));
        case nir_op_inot:
                return bi_lshift_or_to(b, sz, dst, bi_zero(), bi_not(s0), bi_imm_u8(0));

        case nir_op_f2b1:
                return bi_csel_to(b, nir_type_int, sz, dst, s0, f, f, t, BI_CMPF_EQ);
        case nir_op_i2b1:
                return bi_csel_to(b, nir_type_int, sz, dst, s0, f, f, t, BI_CMPF_EQ);
        case nir_op_b2b1:
                return bi_csel_to(b, nir_type_int, sz, dst, s0, f, f, t, BI_CMPF_EQ);

        case nir_op_bcsel:
                return bi_csel_to(b, nir_type_int, sz, dst, s0, f, s1, s2, BI_CMPF_NE);

        default:
                fprintf(stderr, "Unhandled ALU op %s\n", nir_op_infos[op].name);
                unreachable("Unhandled boolean ALU instruction");
        }
}

static void
bi_emit_alu(bi_builder *b, nir_alu_instr *instr)
{
        bi_index dst = bi_dest_index(&instr->dest.dest);
        unsigned srcs = nir_op_infos[instr->op].num_inputs;
        unsigned sz = nir_dest_bit_size(instr->dest.dest);
        unsigned comps = nir_dest_num_components(instr->dest.dest);
        unsigned src_sz = srcs > 0 ? nir_src_bit_size(instr->src[0].src) : 0;
        unsigned src1_sz = srcs > 1 ? nir_src_bit_size(instr->src[1].src) : 0;
        bool is_bool = (sz == 1);

        /* TODO: Anything else? */
        if (sz == 1)
                sz = 16;

        /* Indicate scalarness */
        if (sz == 16 && comps == 1)
                dst.swizzle = BI_SWIZZLE_H00;

        if (!instr->dest.dest.is_ssa) {
                for (unsigned i = 0; i < comps; ++i)
                        assert(instr->dest.write_mask);
        }

        /* First, match against the various moves in NIR. These are
         * special-cased because they can operate on vectors even after
         * lowering ALU to scalar. For Bifrost, bi_alu_src_index assumes the
         * instruction is no "bigger" than SIMD-within-a-register. These moves
         * are the exceptions that need to handle swizzles specially. */

        switch (instr->op) {
        case nir_op_pack_32_2x16:
        case nir_op_vec2:
        case nir_op_vec3:
        case nir_op_vec4: {
                bi_index unoffset_srcs[4] = {
                        srcs > 0 ? bi_src_index(&instr->src[0].src) : bi_null(),
                        srcs > 1 ? bi_src_index(&instr->src[1].src) : bi_null(),
                        srcs > 2 ? bi_src_index(&instr->src[2].src) : bi_null(),
                        srcs > 3 ? bi_src_index(&instr->src[3].src) : bi_null(),
                };

                unsigned channels[4] = {
                        instr->src[0].swizzle[0],
                        instr->src[1].swizzle[0],
                        srcs > 2 ? instr->src[2].swizzle[0] : 0,
                        srcs > 3 ? instr->src[3].swizzle[0] : 0,
                };

                bi_make_vec_to(b, dst, unoffset_srcs, channels, srcs, sz);
                return;
        }

        case nir_op_vec8:
        case nir_op_vec16:
                unreachable("should've been lowered");

        case nir_op_unpack_32_2x16:
        case nir_op_unpack_64_2x32_split_x:
                bi_mov_i32_to(b, dst, bi_src_index(&instr->src[0].src));
                return;

        case nir_op_unpack_64_2x32_split_y:
                bi_mov_i32_to(b, dst, bi_word(bi_src_index(&instr->src[0].src), 1));
                return;

        case nir_op_pack_64_2x32_split:
                bi_mov_i32_to(b, bi_word(dst, 0), bi_src_index(&instr->src[0].src));
                bi_mov_i32_to(b, bi_word(dst, 1), bi_src_index(&instr->src[1].src));
                return;

        case nir_op_pack_64_2x32:
                bi_mov_i32_to(b, bi_word(dst, 0), bi_word(bi_src_index(&instr->src[0].src), 0));
                bi_mov_i32_to(b, bi_word(dst, 1), bi_word(bi_src_index(&instr->src[0].src), 1));
                return;

        case nir_op_mov: {
                bi_index idx = bi_src_index(&instr->src[0].src);
                bi_index unoffset_srcs[4] = { idx, idx, idx, idx };

                unsigned channels[4] = {
                        comps > 0 ? instr->src[0].swizzle[0] : 0,
                        comps > 1 ? instr->src[0].swizzle[1] : 0,
                        comps > 2 ? instr->src[0].swizzle[2] : 0,
                        comps > 3 ? instr->src[0].swizzle[3] : 0,
                };

                if (sz == 1) sz = 16;
                bi_make_vec_to(b, dst, unoffset_srcs, channels, comps, sz);
                return;
        }

        case nir_op_f2f16:
                assert(src_sz == 32);
                bi_index idx = bi_src_index(&instr->src[0].src);
                bi_index s0 = bi_word(idx, instr->src[0].swizzle[0]);
                bi_index s1 = comps > 1 ?
                        bi_word(idx, instr->src[0].swizzle[1]) : s0;

                bi_v2f32_to_v2f16_to(b, dst, s0, s1, BI_ROUND_NONE);
                return;

        /* Vectorized downcasts */
        case nir_op_u2u16:
        case nir_op_i2i16: {
                if (!(src_sz == 32 && comps == 2))
                        break;

                bi_index idx = bi_src_index(&instr->src[0].src);
                bi_index s0 = bi_word(idx, instr->src[0].swizzle[0]);
                bi_index s1 = bi_word(idx, instr->src[0].swizzle[1]);

                bi_mkvec_v2i16_to(b, dst,
                                bi_half(s0, false), bi_half(s1, false));
                return;
        }

        case nir_op_i2i8:
        case nir_op_u2u8:
        {
                /* Acts like an 8-bit swizzle */
                bi_index idx = bi_src_index(&instr->src[0].src);
                unsigned factor = src_sz / 8;
                unsigned chan[4] = { 0 };

                for (unsigned i = 0; i < comps; ++i)
                        chan[i] = instr->src[0].swizzle[i] * factor;

                bi_make_vec_to(b, dst, &idx, chan, comps, 8);
                return;
        }

        default:
                break;
        }

        bi_index s0 = srcs > 0 ? bi_alu_src_index(instr->src[0], comps) : bi_null();
        bi_index s1 = srcs > 1 ? bi_alu_src_index(instr->src[1], comps) : bi_null();
        bi_index s2 = srcs > 2 ? bi_alu_src_index(instr->src[2], comps) : bi_null();

        if (is_bool) {
                bi_emit_alu_bool(b, src_sz, instr->op, dst, s0, s1, s2);
                return;
        }

        switch (instr->op) {
        case nir_op_ffma:
                bi_fma_to(b, sz, dst, s0, s1, s2, BI_ROUND_NONE);
                break;

        case nir_op_fmul:
                bi_fma_to(b, sz, dst, s0, s1, bi_negzero(), BI_ROUND_NONE);
                break;

        case nir_op_fsub:
                s1 = bi_neg(s1);
                FALLTHROUGH;
        case nir_op_fadd:
                bi_fadd_to(b, sz, dst, s0, s1, BI_ROUND_NONE);
                break;

        case nir_op_fsat: {
                bi_instr *I = bi_fclamp_to(b, sz, dst, s0);
                I->clamp = BI_CLAMP_CLAMP_0_1;
                break;
        }

        case nir_op_fsat_signed_mali: {
                bi_instr *I = bi_fclamp_to(b, sz, dst, s0);
                I->clamp = BI_CLAMP_CLAMP_M1_1;
                break;
        }

        case nir_op_fclamp_pos_mali: {
                bi_instr *I = bi_fclamp_to(b, sz, dst, s0);
                I->clamp = BI_CLAMP_CLAMP_0_INF;
                break;
        }

        case nir_op_fneg:
                bi_fabsneg_to(b, sz, dst, bi_neg(s0));
                break;

        case nir_op_fabs:
                bi_fabsneg_to(b, sz, dst, bi_abs(s0));
                break;

        case nir_op_fsin:
                bi_lower_fsincos_32(b, dst, s0, false);
                break;

        case nir_op_fcos:
                bi_lower_fsincos_32(b, dst, s0, true);
                break;

        case nir_op_fexp2:
                assert(sz == 32); /* should've been lowered */

                if (b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
                        bi_lower_fexp2_32(b, dst, s0);
                else
                        bi_fexp_32(b, dst, s0, bi_imm_f32(1.0f));

                break;

        case nir_op_flog2:
                assert(sz == 32); /* should've been lowered */

                if (b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
                        bi_lower_flog2_32(b, dst, s0);
                else
                        bi_flog2_32(b, dst, s0);

                break;

        case nir_op_fpow:
                assert(sz == 32); /* should've been lowered */

                if (b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
                        bi_lower_fpow_32(b, dst, s0, s1);
                else
                        bi_fpow_32(b, dst, s0, s1);

                break;

        case nir_op_bcsel:
                if (src1_sz == 8)
                        bi_mux_v4i8_to(b, dst, s2, s1, s0, BI_MUX_INT_ZERO);
                else
                        bi_csel_to(b, nir_type_int, src1_sz,
                                        dst, s0, bi_zero(), s1, s2, BI_CMPF_NE);
                break;

        case nir_op_ishl:
                bi_lshift_or_to(b, sz, dst, s0, bi_zero(), bi_byte(s1, 0));
                break;
        case nir_op_ushr:
                bi_rshift_or_to(b, sz, dst, s0, bi_zero(), bi_byte(s1, 0));
                break;

        case nir_op_ishr:
                bi_arshift_to(b, sz, dst, s0, bi_null(), bi_byte(s1, 0));
                break;

        case nir_op_imin:
        case nir_op_umin:
                bi_csel_to(b, nir_op_infos[instr->op].input_types[0], sz, dst,
                                s0, s1, s0, s1, BI_CMPF_LT);
                break;

        case nir_op_imax:
        case nir_op_umax:
                bi_csel_to(b, nir_op_infos[instr->op].input_types[0], sz, dst,
                                s0, s1, s0, s1, BI_CMPF_GT);
                break;

        case nir_op_fddx_must_abs_mali:
        case nir_op_fddy_must_abs_mali: {
                bi_index bit = bi_imm_u32(instr->op == nir_op_fddx_must_abs_mali ? 1 : 2);
                bi_index adjacent = bi_clper_xor(b, s0, bit);
                bi_fadd_to(b, sz, dst, adjacent, bi_neg(s0), BI_ROUND_NONE);
                break;
        }

        case nir_op_fddx:
        case nir_op_fddy: {
                bi_index lane1 = bi_lshift_and_i32(b,
                                bi_fau(BIR_FAU_LANE_ID, false),
                                bi_imm_u32(instr->op == nir_op_fddx ? 2 : 1),
                                bi_imm_u8(0));

                bi_index lane2 = bi_iadd_u32(b, lane1,
                                bi_imm_u32(instr->op == nir_op_fddx ? 1 : 2),
                                false);

                bi_index left, right;

                if (b->shader->quirks & BIFROST_LIMITED_CLPER) {
                        left = bi_clper_v6_i32(b, s0, lane1);
                        right = bi_clper_v6_i32(b, s0, lane2);
                } else {
                        left = bi_clper_i32(b, s0, lane1,
                                        BI_INACTIVE_RESULT_ZERO, BI_LANE_OP_NONE,
                                        BI_SUBGROUP_SUBGROUP4);

                        right = bi_clper_i32(b, s0, lane2,
                                        BI_INACTIVE_RESULT_ZERO, BI_LANE_OP_NONE,
                                        BI_SUBGROUP_SUBGROUP4);
                }

                bi_fadd_to(b, sz, dst, right, bi_neg(left), BI_ROUND_NONE);
                break;
        }

        case nir_op_f2f32:
                bi_f16_to_f32_to(b, dst, s0);
                break;

        case nir_op_f2i32:
                if (src_sz == 32)
                        bi_f32_to_s32_to(b, dst, s0, BI_ROUND_RTZ);
                else
                        bi_f16_to_s32_to(b, dst, s0, BI_ROUND_RTZ);
                break;

        /* Note 32-bit sources => no vectorization, so 32-bit works */
        case nir_op_f2u16:
                if (src_sz == 32)
                        bi_f32_to_u32_to(b, dst, s0, BI_ROUND_RTZ);
                else
                        bi_v2f16_to_v2u16_to(b, dst, s0, BI_ROUND_RTZ);
                break;

        case nir_op_f2i16:
                if (src_sz == 32)
                        bi_f32_to_s32_to(b, dst, s0, BI_ROUND_RTZ);
                else
                        bi_v2f16_to_v2s16_to(b, dst, s0, BI_ROUND_RTZ);
                break;

        case nir_op_f2u32:
                if (src_sz == 32)
                        bi_f32_to_u32_to(b, dst, s0, BI_ROUND_RTZ);
                else
                        bi_f16_to_u32_to(b, dst, s0, BI_ROUND_RTZ);
                break;

        case nir_op_u2f16:
                if (src_sz == 32)
                        bi_v2u16_to_v2f16_to(b, dst, bi_half(s0, false), BI_ROUND_RTZ);
                else if (src_sz == 16)
                        bi_v2u16_to_v2f16_to(b, dst, s0, BI_ROUND_RTZ);
                else if (src_sz == 8)
                        bi_v2u8_to_v2f16_to(b, dst, s0);
                break;

        case nir_op_u2f32:
                if (src_sz == 32)
                        bi_u32_to_f32_to(b, dst, s0, BI_ROUND_RTZ);
                else if (src_sz == 16)
                        bi_u16_to_f32_to(b, dst, s0);
                else
                        bi_u8_to_f32_to(b, dst, s0);
                break;

        case nir_op_i2f16:
                if (src_sz == 32)
                        bi_v2s16_to_v2f16_to(b, dst, bi_half(s0, false), BI_ROUND_RTZ);
                else if (src_sz == 16)
                        bi_v2s16_to_v2f16_to(b, dst, s0, BI_ROUND_RTZ);
                else if (src_sz == 8)
                        bi_v2s8_to_v2f16_to(b, dst, s0);
                break;

        case nir_op_i2f32:
                if (src_sz == 32)
                        bi_s32_to_f32_to(b, dst, s0, BI_ROUND_RTZ);
                else if (src_sz == 16)
                        bi_s16_to_f32_to(b, dst, s0);
                else if (src_sz == 8)
                        bi_s8_to_f32_to(b, dst, s0);
                break;

        case nir_op_i2i32:
                if (src_sz == 16)
                        bi_s16_to_s32_to(b, dst, s0);
                else
                        bi_s8_to_s32_to(b, dst, s0);
                break;

        case nir_op_u2u32:
                if (src_sz == 16)
                        bi_u16_to_u32_to(b, dst, s0);
                else
                        bi_u8_to_u32_to(b, dst, s0);
                break;

        case nir_op_i2i16:
                assert(src_sz == 8 || src_sz == 32);

                if (src_sz == 8)
                        bi_v2s8_to_v2s16_to(b, dst, s0);
                else
                        bi_mov_i32_to(b, dst, s0);
                break;

        case nir_op_u2u16:
                assert(src_sz == 8 || src_sz == 32);

                if (src_sz == 8)
                        bi_v2u8_to_v2u16_to(b, dst, s0);
                else
                        bi_mov_i32_to(b, dst, s0);
                break;

        case nir_op_b2f16:
        case nir_op_b2f32:
                bi_csel_to(b, nir_type_int, sz, dst, s0, bi_zero(),
                                (sz == 16) ? bi_imm_f16(1.0) : bi_imm_f32(1.0),
                                (sz == 16) ? bi_imm_f16(0.0) : bi_imm_f32(0.0),
                                BI_CMPF_NE);
                break;

        case nir_op_b2b32:
                bi_csel_to(b, nir_type_int, sz, dst, s0, bi_zero(),
                                bi_imm_u32(~0), bi_zero(), BI_CMPF_NE);
                break;

        case nir_op_b2i8:
        case nir_op_b2i16:
        case nir_op_b2i32:
                bi_lshift_and_to(b, sz, dst, s0, bi_imm_uintN(1, sz), bi_imm_u8(0));
                break;

        case nir_op_fround_even:
        case nir_op_fceil:
        case nir_op_ffloor:
        case nir_op_ftrunc:
                bi_fround_to(b, sz, dst, s0, bi_nir_round(instr->op));
                break;

        case nir_op_fmin:
                bi_fmin_to(b, sz, dst, s0, s1);
                break;

        case nir_op_fmax:
                bi_fmax_to(b, sz, dst, s0, s1);
                break;

        case nir_op_iadd:
                bi_iadd_to(b, nir_type_int, sz, dst, s0, s1, false);
                break;

        case nir_op_iadd_sat:
                bi_iadd_to(b, nir_type_int, sz, dst, s0, s1, true);
                break;

        case nir_op_uadd_sat:
                bi_iadd_to(b, nir_type_uint, sz, dst, s0, s1, true);
                break;

        case nir_op_ihadd:
                bi_hadd_to(b, nir_type_int, sz, dst, s0, s1, BI_ROUND_RTN);
                break;

        case nir_op_irhadd:
                bi_hadd_to(b, nir_type_int, sz, dst, s0, s1, BI_ROUND_RTP);
                break;

        case nir_op_ineg:
                bi_isub_to(b, nir_type_int, sz, dst, bi_zero(), s0, false);
                break;

        case nir_op_isub:
                bi_isub_to(b, nir_type_int, sz, dst, s0, s1, false);
                break;

        case nir_op_isub_sat:
                bi_isub_to(b, nir_type_int, sz, dst, s0, s1, true);
                break;

        case nir_op_usub_sat:
                bi_isub_to(b, nir_type_uint, sz, dst, s0, s1, true);
                break;

        case nir_op_imul:
                bi_imul_to(b, sz, dst, s0, s1);
                break;

        case nir_op_iabs:
                bi_iabs_to(b, sz, dst, s0);
                break;

        case nir_op_iand:
                bi_lshift_and_to(b, sz, dst, s0, s1, bi_imm_u8(0));
                break;

        case nir_op_ior:
                bi_lshift_or_to(b, sz, dst, s0, s1, bi_imm_u8(0));
                break;

        case nir_op_ixor:
                bi_lshift_xor_to(b, sz, dst, s0, s1, bi_imm_u8(0));
                break;

        case nir_op_inot:
                bi_lshift_or_to(b, sz, dst, bi_zero(), bi_not(s0), bi_imm_u8(0));
                break;

        case nir_op_frsq:
                if (sz == 32 && b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
                        bi_lower_frsq_32(b, dst, s0);
                else
                        bi_frsq_to(b, sz, dst, s0);
                break;

        case nir_op_frcp:
                if (sz == 32 && b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
                        bi_lower_frcp_32(b, dst, s0);
                else
                        bi_frcp_to(b, sz, dst, s0);
                break;

        case nir_op_uclz:
                bi_clz_to(b, sz, dst, s0, false);
                break;

        case nir_op_bit_count:
                bi_popcount_i32_to(b, dst, s0);
                break;

        case nir_op_bitfield_reverse:
                bi_bitrev_i32_to(b, dst, s0);
                break;

        case nir_op_ufind_msb: {
                bi_index clz = bi_clz(b, src_sz, s0, false);

                if (sz == 8)
                        clz = bi_byte(clz, 0);
                else if (sz == 16)
                        clz = bi_half(clz, false);

                bi_isub_u32_to(b, dst, bi_imm_u32(src_sz - 1), clz, false);
                break;
        }

        default:
                fprintf(stderr, "Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
                unreachable("Unknown ALU op");
        }
}

/* Returns dimension with 0 special casing cubemaps. Shamelessly copied from Midgard */
static unsigned
bifrost_tex_format(enum glsl_sampler_dim dim)
{
        switch (dim) {
        case GLSL_SAMPLER_DIM_1D:
        case GLSL_SAMPLER_DIM_BUF:
                return 1;

        case GLSL_SAMPLER_DIM_2D:
        case GLSL_SAMPLER_DIM_MS:
        case GLSL_SAMPLER_DIM_EXTERNAL:
        case GLSL_SAMPLER_DIM_RECT:
                return 2;

        case GLSL_SAMPLER_DIM_3D:
                return 3;

        case GLSL_SAMPLER_DIM_CUBE:
                return 0;

        default:
                DBG("Unknown sampler dim type\n");
                assert(0);
                return 0;
        }
}

static enum bifrost_texture_format_full
bi_texture_format(nir_alu_type T, enum bi_clamp clamp)
{
        switch (T) {
        case nir_type_float16: return BIFROST_TEXTURE_FORMAT_F16 + clamp;
        case nir_type_float32: return BIFROST_TEXTURE_FORMAT_F32 + clamp;
        case nir_type_uint16:  return BIFROST_TEXTURE_FORMAT_U16;
        case nir_type_int16:   return BIFROST_TEXTURE_FORMAT_S16;
        case nir_type_uint32:  return BIFROST_TEXTURE_FORMAT_U32;
        case nir_type_int32:   return BIFROST_TEXTURE_FORMAT_S32;
        default:              unreachable("Invalid type for texturing");
        }
}

/* Array indices are specified as 32-bit uints, need to convert. In .z component from NIR */
static bi_index
bi_emit_texc_array_index(bi_builder *b, bi_index idx, nir_alu_type T)
{
        /* For (u)int we can just passthrough */
        nir_alu_type base = nir_alu_type_get_base_type(T);
        if (base == nir_type_int || base == nir_type_uint)
                return idx;

        /* Otherwise we convert */
        assert(T == nir_type_float32);

        /* OpenGL ES 3.2 specification section 8.14.2 ("Coordinate Wrapping and
         * Texel Selection") defines the layer to be taken from clamp(RNE(r),
         * 0, dt - 1). So we use round RTE, clamping is handled at the data
         * structure level */

        return bi_f32_to_u32(b, idx, BI_ROUND_NONE);
}

/* TEXC's explicit and bias LOD modes requires the LOD to be transformed to a
 * 16-bit 8:8 fixed-point format. We lower as:
 *
 * F32_TO_S32(clamp(x, -16.0, +16.0) * 256.0) & 0xFFFF =
 * MKVEC(F32_TO_S32(clamp(x * 1.0/16.0, -1.0, 1.0) * (16.0 * 256.0)), #0)
 */

static bi_index
bi_emit_texc_lod_88(bi_builder *b, bi_index lod, bool fp16)
{
        /* Precompute for constant LODs to avoid general constant folding */
        if (lod.type == BI_INDEX_CONSTANT) {
                uint32_t raw = lod.value;
                float x = fp16 ? _mesa_half_to_float(raw) : uif(raw);
                int32_t s32 = CLAMP(x, -16.0f, 16.0f) * 256.0f;
                return bi_imm_u32(s32 & 0xFFFF);
        }

        /* Sort of arbitrary. Must be less than 128.0, greater than or equal to
         * the max LOD (16 since we cap at 2^16 texture dimensions), and
         * preferably small to minimize precision loss */
        const float max_lod = 16.0;

        bi_instr *fsat = bi_fma_f32_to(b, bi_temp(b->shader),
                        fp16 ? bi_half(lod, false) : lod,
                        bi_imm_f32(1.0f / max_lod), bi_negzero(), BI_ROUND_NONE);

        fsat->clamp = BI_CLAMP_CLAMP_M1_1;

        bi_index fmul = bi_fma_f32(b, fsat->dest[0], bi_imm_f32(max_lod * 256.0f),
                        bi_negzero(), BI_ROUND_NONE);

        return bi_mkvec_v2i16(b,
                        bi_half(bi_f32_to_s32(b, fmul, BI_ROUND_RTZ), false),
                        bi_imm_u16(0));
}

/* FETCH takes a 32-bit staging register containing the LOD as an integer in
 * the bottom 16-bits and (if present) the cube face index in the top 16-bits.
 * TODO: Cube face.
 */

static bi_index
bi_emit_texc_lod_cube(bi_builder *b, bi_index lod)
{
        return bi_lshift_or_i32(b, lod, bi_zero(), bi_imm_u8(8));
}

/* The hardware specifies texel offsets and multisample indices together as a
 * u8vec4 <offset, ms index>. By default all are zero, so if have either a
 * nonzero texel offset or a nonzero multisample index, we build a u8vec4 with
 * the bits we need and return that to be passed as a staging register. Else we
 * return 0 to avoid allocating a data register when everything is zero. */

static bi_index
bi_emit_texc_offset_ms_index(bi_builder *b, nir_tex_instr *instr)
{
        bi_index dest = bi_zero();

        int offs_idx = nir_tex_instr_src_index(instr, nir_tex_src_offset);
        if (offs_idx >= 0 &&
            (!nir_src_is_const(instr->src[offs_idx].src) ||
             nir_src_as_uint(instr->src[offs_idx].src) != 0)) {
                unsigned nr = nir_src_num_components(instr->src[offs_idx].src);
                bi_index idx = bi_src_index(&instr->src[offs_idx].src);
                dest = bi_mkvec_v4i8(b, 
                                (nr > 0) ? bi_byte(bi_word(idx, 0), 0) : bi_imm_u8(0),
                                (nr > 1) ? bi_byte(bi_word(idx, 1), 0) : bi_imm_u8(0),
                                (nr > 2) ? bi_byte(bi_word(idx, 2), 0) : bi_imm_u8(0),
                                bi_imm_u8(0));
        }

        int ms_idx = nir_tex_instr_src_index(instr, nir_tex_src_ms_index);
        if (ms_idx >= 0 &&
            (!nir_src_is_const(instr->src[ms_idx].src) ||
             nir_src_as_uint(instr->src[ms_idx].src) != 0)) {
                dest = bi_lshift_or_i32(b,
                                bi_src_index(&instr->src[ms_idx].src), dest,
                                bi_imm_u8(24));
        }

        return dest;
}

static void
bi_emit_cube_coord(bi_builder *b, bi_index coord,
                    bi_index *face, bi_index *s, bi_index *t)
{
        /* Compute max { |x|, |y|, |z| } */
        bi_instr *cubeface = bi_cubeface_to(b, bi_temp(b->shader),
                        bi_temp(b->shader), coord,
                        bi_word(coord, 1), bi_word(coord, 2));

        /* Select coordinates */

        bi_index ssel = bi_cube_ssel(b, bi_word(coord, 2), coord,
                        cubeface->dest[1]);

        bi_index tsel = bi_cube_tsel(b, bi_word(coord, 1), bi_word(coord, 2),
                        cubeface->dest[1]);

        /* The OpenGL ES specification requires us to transform an input vector
         * (x, y, z) to the coordinate, given the selected S/T:
         *
         * (1/2 ((s / max{x,y,z}) + 1), 1/2 ((t / max{x, y, z}) + 1))
         *
         * We implement (s shown, t similar) in a form friendlier to FMA
         * instructions, and clamp coordinates at the end for correct
         * NaN/infinity handling:
         *
         * fsat(s * (0.5 * (1 / max{x, y, z})) + 0.5)
         *
         * Take the reciprocal of max{x, y, z}
         */

        bi_index rcp = bi_frcp_f32(b, cubeface->dest[0]);

        /* Calculate 0.5 * (1.0 / max{x, y, z}) */
        bi_index fma1 = bi_fma_f32(b, rcp, bi_imm_f32(0.5f), bi_negzero(),
                        BI_ROUND_NONE);

        /* Transform the coordinates */
        *s = bi_temp(b->shader);
        *t = bi_temp(b->shader);

        bi_instr *S = bi_fma_f32_to(b, *s, fma1, ssel, bi_imm_f32(0.5f),
                        BI_ROUND_NONE);
        bi_instr *T = bi_fma_f32_to(b, *t, fma1, tsel, bi_imm_f32(0.5f),
                        BI_ROUND_NONE);

        S->clamp = BI_CLAMP_CLAMP_0_1;
        T->clamp = BI_CLAMP_CLAMP_0_1;

        /* Face index at bit[29:31], matching the cube map descriptor */
        *face = cubeface->dest[1];
}

/* Emits a cube map descriptor, returning lower 32-bits and putting upper
 * 32-bits in passed pointer t. The packing of the face with the S coordinate
 * exploits the redundancy of floating points with the range restriction of
 * CUBEFACE output.
 *
 *     struct cube_map_descriptor {
 *         float s : 29;
 *         unsigned face : 3;
 *         float t : 32;
 *     }
 *
 * Since the cube face index is preshifted, this is easy to pack with a bitwise
 * MUX.i32 and a fixed mask, selecting the lower bits 29 from s and the upper 3
 * bits from face.
 */

static bi_index
bi_emit_texc_cube_coord(bi_builder *b, bi_index coord, bi_index *t)
{
        bi_index face, s;
        bi_emit_cube_coord(b, coord, &face, &s, t);
        bi_index mask = bi_imm_u32(BITFIELD_MASK(29));
        return bi_mux_i32(b, s, face, mask, BI_MUX_BIT);
}

/* Map to the main texture op used. Some of these (txd in particular) will
 * lower to multiple texture ops with different opcodes (GRDESC_DER + TEX in
 * sequence). We assume that lowering is handled elsewhere.
 */

static enum bifrost_tex_op
bi_tex_op(nir_texop op)
{
        switch (op) {
        case nir_texop_tex:
        case nir_texop_txb:
        case nir_texop_txl:
        case nir_texop_txd:
        case nir_texop_tex_prefetch:
                return BIFROST_TEX_OP_TEX;
        case nir_texop_txf:
        case nir_texop_txf_ms:
        case nir_texop_txf_ms_fb:
        case nir_texop_tg4:
                return BIFROST_TEX_OP_FETCH;
        case nir_texop_txs:
        case nir_texop_lod:
        case nir_texop_query_levels:
        case nir_texop_texture_samples:
        case nir_texop_samples_identical:
                unreachable("should've been lowered");
        default:
                unreachable("unsupported tex op");
        }
}

/* Data registers required by texturing in the order they appear. All are
 * optional, the texture operation descriptor determines which are present.
 * Note since 3D arrays are not permitted at an API level, Z_COORD and
 * ARRAY/SHADOW are exlusive, so TEXC in practice reads at most 8 registers */

enum bifrost_tex_dreg {
        BIFROST_TEX_DREG_Z_COORD = 0,
        BIFROST_TEX_DREG_Y_DELTAS = 1,
        BIFROST_TEX_DREG_LOD = 2,
        BIFROST_TEX_DREG_GRDESC_HI = 3,
        BIFROST_TEX_DREG_SHADOW = 4,
        BIFROST_TEX_DREG_ARRAY = 5,
        BIFROST_TEX_DREG_OFFSETMS = 6,
        BIFROST_TEX_DREG_SAMPLER = 7,
        BIFROST_TEX_DREG_TEXTURE = 8,
        BIFROST_TEX_DREG_COUNT,
};

static void
bi_emit_texc(bi_builder *b, nir_tex_instr *instr)
{
        bool computed_lod = false;

        struct bifrost_texture_operation desc = {
                .op = bi_tex_op(instr->op),
                .offset_or_bias_disable = false, /* TODO */
                .shadow_or_clamp_disable = instr->is_shadow,
                .array = instr->is_array,
                .dimension = bifrost_tex_format(instr->sampler_dim),
                .format = bi_texture_format(instr->dest_type | nir_dest_bit_size(instr->dest), BI_CLAMP_NONE), /* TODO */
                .mask = 0xF,
        };

        switch (desc.op) {
        case BIFROST_TEX_OP_TEX:
                desc.lod_or_fetch = BIFROST_LOD_MODE_COMPUTE;
                computed_lod = true;
                break;
        case BIFROST_TEX_OP_FETCH:
                desc.lod_or_fetch = (enum bifrost_lod_mode)
                   (instr->op == nir_texop_tg4 ?
                        BIFROST_TEXTURE_FETCH_GATHER4_R + instr->component :
                        BIFROST_TEXTURE_FETCH_TEXEL);
                break;
        default:
                unreachable("texture op unsupported");
        }

        /* 32-bit indices to be allocated as consecutive staging registers */
        bi_index dregs[BIFROST_TEX_DREG_COUNT] = { };
        bi_index cx = bi_null(), cy = bi_null();

        for (unsigned i = 0; i < instr->num_srcs; ++i) {
                bi_index index = bi_src_index(&instr->src[i].src);
                unsigned sz = nir_src_bit_size(instr->src[i].src);
                ASSERTED nir_alu_type base = nir_tex_instr_src_type(instr, i);
                nir_alu_type T = base | sz;

                switch (instr->src[i].src_type) {
                case nir_tex_src_coord:
                        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
                                cx = bi_emit_texc_cube_coord(b, index, &cy);
			} else {
                                unsigned components = nir_src_num_components(instr->src[i].src);

                                /* Copy XY (for 2D+) or XX (for 1D) */
                                cx = index;
                                cy = bi_word(index, MIN2(1, components - 1));

                                assert(components >= 1 && components <= 3);

                                if (components < 3) {
                                        /* nothing to do */
                                } else if (desc.array) {
                                        /* 2D array */
                                        dregs[BIFROST_TEX_DREG_ARRAY] =
                                                bi_emit_texc_array_index(b,
                                                                bi_word(index, 2), T);
                                } else {
                                        /* 3D */
                                        dregs[BIFROST_TEX_DREG_Z_COORD] =
                                                bi_word(index, 2);
                                }
                        }
                        break;

                case nir_tex_src_lod:
                        if (desc.op == BIFROST_TEX_OP_TEX &&
                            nir_src_is_const(instr->src[i].src) &&
                            nir_src_as_uint(instr->src[i].src) == 0) {
                                desc.lod_or_fetch = BIFROST_LOD_MODE_ZERO;
                        } else if (desc.op == BIFROST_TEX_OP_TEX) {
                                assert(base == nir_type_float);

                                assert(sz == 16 || sz == 32);
                                dregs[BIFROST_TEX_DREG_LOD] =
                                        bi_emit_texc_lod_88(b, index, sz == 16);
                                desc.lod_or_fetch = BIFROST_LOD_MODE_EXPLICIT;
                        } else {
                                assert(desc.op == BIFROST_TEX_OP_FETCH);
                                assert(base == nir_type_uint || base == nir_type_int);
                                assert(sz == 16 || sz == 32);

                                dregs[BIFROST_TEX_DREG_LOD] =
                                        bi_emit_texc_lod_cube(b, index);
                        }

                        break;

                case nir_tex_src_bias:
                        /* Upper 16-bits interpreted as a clamp, leave zero */
                        assert(desc.op == BIFROST_TEX_OP_TEX);
                        assert(base == nir_type_float);
                        assert(sz == 16 || sz == 32);
                        dregs[BIFROST_TEX_DREG_LOD] =
                                bi_emit_texc_lod_88(b, index, sz == 16);
                        desc.lod_or_fetch = BIFROST_LOD_MODE_BIAS;
                        computed_lod = true;
                        break;

                case nir_tex_src_ms_index:
                case nir_tex_src_offset:
                        if (desc.offset_or_bias_disable)
                                break;

                        dregs[BIFROST_TEX_DREG_OFFSETMS] =
	                        bi_emit_texc_offset_ms_index(b, instr);
                        if (!bi_is_equiv(dregs[BIFROST_TEX_DREG_OFFSETMS], bi_zero()))
                                desc.offset_or_bias_disable = true;
                        break;

                case nir_tex_src_comparator:
                        dregs[BIFROST_TEX_DREG_SHADOW] = index;
                        break;

                case nir_tex_src_texture_offset:
                        assert(instr->texture_index == 0);
                        dregs[BIFROST_TEX_DREG_TEXTURE] = index;
                        break;

                case nir_tex_src_sampler_offset:
                        assert(instr->sampler_index == 0);
                        dregs[BIFROST_TEX_DREG_SAMPLER] = index;
                        break;

                default:
                        unreachable("Unhandled src type in texc emit");
                }
        }

        if (desc.op == BIFROST_TEX_OP_FETCH && bi_is_null(dregs[BIFROST_TEX_DREG_LOD])) {
                dregs[BIFROST_TEX_DREG_LOD] =
                        bi_emit_texc_lod_cube(b, bi_zero());
        }

        /* Choose an index mode */

        bool direct_tex = bi_is_null(dregs[BIFROST_TEX_DREG_TEXTURE]);
        bool direct_samp = bi_is_null(dregs[BIFROST_TEX_DREG_SAMPLER]);
        bool direct = direct_tex && direct_samp;

        desc.immediate_indices = direct && (instr->sampler_index < 16);

        if (desc.immediate_indices) {
                desc.sampler_index_or_mode = instr->sampler_index;
                desc.index = instr->texture_index;
        } else {
                enum bifrost_index mode = 0;

                if (direct && instr->sampler_index == instr->texture_index) {
                        mode = BIFROST_INDEX_IMMEDIATE_SHARED;
                        desc.index = instr->texture_index;
                } else if (direct) {
                        mode = BIFROST_INDEX_IMMEDIATE_SAMPLER;
                        desc.index = instr->sampler_index;
                        dregs[BIFROST_TEX_DREG_TEXTURE] = bi_mov_i32(b,
                                        bi_imm_u32(instr->texture_index));
                } else if (direct_tex) {
                        assert(!direct_samp);
                        mode = BIFROST_INDEX_IMMEDIATE_TEXTURE;
                        desc.index = instr->texture_index;
                } else if (direct_samp) {
                        assert(!direct_tex);
                        mode = BIFROST_INDEX_IMMEDIATE_SAMPLER;
                        desc.index = instr->sampler_index;
                } else {
                        mode = BIFROST_INDEX_REGISTER;
                }

                desc.sampler_index_or_mode = mode | (0x3 << 2);
        }

        /* Allocate staging registers contiguously by compacting the array.
         * Index is not SSA (tied operands) */

        unsigned sr_count = 0;

        for (unsigned i = 0; i < ARRAY_SIZE(dregs); ++i) {
                if (!bi_is_null(dregs[i]))
                        dregs[sr_count++] = dregs[i];
        }

        bi_index idx = sr_count ? bi_temp_reg(b->shader) : bi_null();

        if (sr_count)
                bi_make_vec_to(b, idx, dregs, NULL, sr_count, 32);

        uint32_t desc_u = 0;
        memcpy(&desc_u, &desc, sizeof(desc_u));
        bi_texc_to(b, sr_count ? idx : bi_dest_index(&instr->dest),
                        idx, cx, cy, bi_imm_u32(desc_u), !computed_lod,
                        sr_count);

        /* Explicit copy to facilitate tied operands */
        if (sr_count) {
                bi_index srcs[4] = { idx, idx, idx, idx };
                unsigned channels[4] = { 0, 1, 2, 3 };
                bi_make_vec_to(b, bi_dest_index(&instr->dest), srcs, channels, 4, 32);
        }
}

/* Simple textures ops correspond to NIR tex or txl with LOD = 0 on 2D/cube
 * textures with sufficiently small immediate indices. Anything else
 * needs a complete texture op. */

static void
bi_emit_texs(bi_builder *b, nir_tex_instr *instr)
{
        int coord_idx = nir_tex_instr_src_index(instr, nir_tex_src_coord);
        assert(coord_idx >= 0);
        bi_index coords = bi_src_index(&instr->src[coord_idx].src);

        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
                bi_index face, s, t;
                bi_emit_cube_coord(b, coords, &face, &s, &t);

                bi_texs_cube_to(b, nir_dest_bit_size(instr->dest),
                                bi_dest_index(&instr->dest),
                                s, t, face,
                                instr->sampler_index, instr->texture_index);
        } else {
                bi_texs_2d_to(b, nir_dest_bit_size(instr->dest),
                                bi_dest_index(&instr->dest),
                                coords, bi_word(coords, 1),
                                instr->op != nir_texop_tex, /* zero LOD */
                                instr->sampler_index, instr->texture_index);
        }
}

static bool
bi_is_simple_tex(nir_tex_instr *instr)
{
        if (instr->op != nir_texop_tex && instr->op != nir_texop_txl)
                return false;

        if (instr->dest_type != nir_type_float32 &&
            instr->dest_type != nir_type_float16)
                return false;

        if (instr->is_shadow || instr->is_array)
                return false;

        switch (instr->sampler_dim) {
        case GLSL_SAMPLER_DIM_2D:
        case GLSL_SAMPLER_DIM_EXTERNAL:
        case GLSL_SAMPLER_DIM_RECT:
                break;

        case GLSL_SAMPLER_DIM_CUBE:
                /* LOD can't be specified with TEXS_CUBE */
                if (instr->op == nir_texop_txl)
                        return false;
                break;

        default:
                return false;
        }

        for (unsigned i = 0; i < instr->num_srcs; ++i) {
                if (instr->src[i].src_type != nir_tex_src_lod &&
                    instr->src[i].src_type != nir_tex_src_coord)
                        return false;
        }

        /* Indices need to fit in provided bits */
        unsigned idx_bits = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE ? 2 : 3;
        if (MAX2(instr->sampler_index, instr->texture_index) >= (1 << idx_bits))
                return false;

        int lod_idx = nir_tex_instr_src_index(instr, nir_tex_src_lod);
        if (lod_idx < 0)
                return true;

        nir_src lod = instr->src[lod_idx].src;
        return nir_src_is_const(lod) && nir_src_as_uint(lod) == 0;
}

static void
bi_emit_tex(bi_builder *b, nir_tex_instr *instr)
{
        switch (instr->op) {
        case nir_texop_txs:
                bi_load_sysval_to(b, bi_dest_index(&instr->dest),
                                panfrost_sysval_for_instr(&instr->instr, NULL),
                                4, 0);
                return;
        case nir_texop_tex:
        case nir_texop_txl:
        case nir_texop_txb:
        case nir_texop_txf:
        case nir_texop_txf_ms:
        case nir_texop_tg4:
                break;
        default:
                unreachable("Invalid texture operation");
        }

        if (bi_is_simple_tex(instr))
                bi_emit_texs(b, instr);
        else
                bi_emit_texc(b, instr);
}

static void
bi_emit_instr(bi_builder *b, struct nir_instr *instr)
{
        switch (instr->type) {
        case nir_instr_type_load_const:
                bi_emit_load_const(b, nir_instr_as_load_const(instr));
                break;

        case nir_instr_type_intrinsic:
                bi_emit_intrinsic(b, nir_instr_as_intrinsic(instr));
                break;

        case nir_instr_type_alu:
                bi_emit_alu(b, nir_instr_as_alu(instr));
                break;

        case nir_instr_type_tex:
                bi_emit_tex(b, nir_instr_as_tex(instr));
                break;

        case nir_instr_type_jump:
                bi_emit_jump(b, nir_instr_as_jump(instr));
                break;

        default:
                unreachable("should've been lowered");
        }
}

static bi_block *
create_empty_block(bi_context *ctx)
{
        bi_block *blk = rzalloc(ctx, bi_block);

        blk->predecessors = _mesa_set_create(blk,
                        _mesa_hash_pointer,
                        _mesa_key_pointer_equal);

        return blk;
}

static bi_block *
emit_block(bi_context *ctx, nir_block *block)
{
        if (ctx->after_block) {
                ctx->current_block = ctx->after_block;
                ctx->after_block = NULL;
        } else {
                ctx->current_block = create_empty_block(ctx);
        }

        list_addtail(&ctx->current_block->link, &ctx->blocks);
        list_inithead(&ctx->current_block->instructions);

        bi_builder _b = bi_init_builder(ctx, bi_after_block(ctx->current_block));

        nir_foreach_instr(instr, block) {
                bi_emit_instr(&_b, instr);
                ++ctx->instruction_count;
        }

        return ctx->current_block;
}

static void
emit_if(bi_context *ctx, nir_if *nif)
{
        bi_block *before_block = ctx->current_block;

        /* Speculatively emit the branch, but we can't fill it in until later */
        bi_builder _b = bi_init_builder(ctx, bi_after_block(ctx->current_block));
        bi_instr *then_branch = bi_branchz_i16(&_b,
                        bi_half(bi_src_index(&nif->condition), false),
                        bi_zero(), BI_CMPF_EQ);

        /* Emit the two subblocks. */
        bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
        bi_block *end_then_block = ctx->current_block;

        /* Emit second block, and check if it's empty */

        int count_in = ctx->instruction_count;
        bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
        bi_block *end_else_block = ctx->current_block;
        ctx->after_block = create_empty_block(ctx);

        /* Now that we have the subblocks emitted, fix up the branches */

        assert(then_block);
        assert(else_block);

        if (ctx->instruction_count == count_in) {
                then_branch->branch_target = ctx->after_block;
                bi_block_add_successor(end_then_block, ctx->after_block); /* fallthrough */
        } else {
                then_branch->branch_target = else_block;

                /* Emit a jump from the end of the then block to the end of the else */
                _b.cursor = bi_after_block(end_then_block);
                bi_instr *then_exit = bi_jump(&_b, bi_zero());
                then_exit->branch_target = ctx->after_block;

                bi_block_add_successor(end_then_block, then_exit->branch_target);
                bi_block_add_successor(end_else_block, ctx->after_block); /* fallthrough */
        }

        bi_block_add_successor(before_block, then_branch->branch_target); /* then_branch */
        bi_block_add_successor(before_block, then_block); /* fallthrough */
}

static void
emit_loop(bi_context *ctx, nir_loop *nloop)
{
        /* Remember where we are */
        bi_block *start_block = ctx->current_block;

        bi_block *saved_break = ctx->break_block;
        bi_block *saved_continue = ctx->continue_block;

        ctx->continue_block = create_empty_block(ctx);
        ctx->break_block = create_empty_block(ctx);
        ctx->after_block = ctx->continue_block;

        /* Emit the body itself */
        emit_cf_list(ctx, &nloop->body);

        /* Branch back to loop back */
        bi_builder _b = bi_init_builder(ctx, bi_after_block(ctx->current_block));
        bi_instr *I = bi_jump(&_b, bi_zero());
        I->branch_target = ctx->continue_block;
        bi_block_add_successor(start_block, ctx->continue_block);
        bi_block_add_successor(ctx->current_block, ctx->continue_block);

        ctx->after_block = ctx->break_block;

        /* Pop off */
        ctx->break_block = saved_break;
        ctx->continue_block = saved_continue;
        ++ctx->loop_count;
}

static bi_block *
emit_cf_list(bi_context *ctx, struct exec_list *list)
{
        bi_block *start_block = NULL;

        foreach_list_typed(nir_cf_node, node, node, list) {
                switch (node->type) {
                case nir_cf_node_block: {
                        bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));

                        if (!start_block)
                                start_block = block;

                        break;
                }

                case nir_cf_node_if:
                        emit_if(ctx, nir_cf_node_as_if(node));
                        break;

                case nir_cf_node_loop:
                        emit_loop(ctx, nir_cf_node_as_loop(node));
                        break;

                default:
                        unreachable("Unknown control flow");
                }
        }

        return start_block;
}

/* shader-db stuff */

struct bi_stats {
        unsigned nr_clauses, nr_tuples, nr_ins;
        unsigned nr_arith, nr_texture, nr_varying, nr_ldst;
};

static void
bi_count_tuple_stats(bi_clause *clause, bi_tuple *tuple, struct bi_stats *stats)
{
        /* Count instructions */
        stats->nr_ins += (tuple->fma ? 1 : 0) + (tuple->add ? 1 : 0);

        /* Non-message passing tuples are always arithmetic */
        if (tuple->add != clause->message) {
                stats->nr_arith++;
                return;
        }

        /* Message + FMA we'll count as arithmetic _and_ message */
        if (tuple->fma)
                stats->nr_arith++;

        switch (clause->message_type) {
        case BIFROST_MESSAGE_VARYING:
                /* Check components interpolated */
                stats->nr_varying += (clause->message->vecsize + 1) *
                        (bi_is_regfmt_16(clause->message->register_format) ? 1 : 2);
                break;

        case BIFROST_MESSAGE_VARTEX:
                /* 2 coordinates, fp32 each */
                stats->nr_varying += (2 * 2);
                FALLTHROUGH;
        case BIFROST_MESSAGE_TEX:
                stats->nr_texture++;
                break;

        case BIFROST_MESSAGE_ATTRIBUTE:
        case BIFROST_MESSAGE_LOAD:
        case BIFROST_MESSAGE_STORE:
        case BIFROST_MESSAGE_ATOMIC:
                stats->nr_ldst++;
                break;

        case BIFROST_MESSAGE_NONE:
        case BIFROST_MESSAGE_BARRIER:
        case BIFROST_MESSAGE_BLEND:
        case BIFROST_MESSAGE_TILE:
        case BIFROST_MESSAGE_Z_STENCIL:
        case BIFROST_MESSAGE_ATEST:
        case BIFROST_MESSAGE_JOB:
        case BIFROST_MESSAGE_64BIT:
                /* Nothing to do */
                break;
        };

}

static void
bi_print_stats(bi_context *ctx, unsigned size, FILE *fp)
{
        struct bi_stats stats = { 0 };

        /* Count instructions, clauses, and tuples. Also attempt to construct
         * normalized execution engine cycle counts, using the following ratio:
         *
         * 24 arith tuples/cycle
         * 2 texture messages/cycle
         * 16 x 16-bit varying channels interpolated/cycle
         * 1 load store message/cycle
         *
         * These numbers seem to match Arm Mobile Studio's heuristic. The real
         * cycle counts are surely more complicated.
         */

        bi_foreach_block(ctx, block) {
                bi_foreach_clause_in_block(block, clause) {
                        stats.nr_clauses++;
                        stats.nr_tuples += clause->tuple_count;

                        for (unsigned i = 0; i < clause->tuple_count; ++i)
                                bi_count_tuple_stats(clause, &clause->tuples[i], &stats);
                }
        }

        float cycles_arith = ((float) stats.nr_arith) / 24.0;
        float cycles_texture = ((float) stats.nr_texture) / 2.0;
        float cycles_varying = ((float) stats.nr_varying) / 16.0;
        float cycles_ldst = ((float) stats.nr_ldst) / 1.0;

        float cycles_message = MAX3(cycles_texture, cycles_varying, cycles_ldst);
        float cycles_bound = MAX2(cycles_arith, cycles_message);

        /* Thread count and register pressure are traded off only on v7 */
        bool full_threads = (ctx->arch == 7 && ctx->info->work_reg_count <= 32);
        unsigned nr_threads = full_threads ? 2 : 1;

        /* Dump stats */

        fprintf(stderr, "%s - %s shader: "
                        "%u inst, %u tuples, %u clauses, "
                        "%f cycles, %f arith, %f texture, %f vary, %f ldst, "
                        "%u quadwords, %u threads, %u loops, "
                        "%u:%u spills:fills\n",
                        ctx->nir->info.label ?: "",
                        ctx->inputs->is_blend ? "PAN_SHADER_BLEND" :
                        gl_shader_stage_name(ctx->stage),
                        stats.nr_ins, stats.nr_tuples, stats.nr_clauses,
                        cycles_bound, cycles_arith, cycles_texture,
                        cycles_varying, cycles_ldst,
                        size / 16, nr_threads,
                        ctx->loop_count,
                        ctx->spills, ctx->fills);
}

static int
glsl_type_size(const struct glsl_type *type, bool bindless)
{
        return glsl_count_attribute_slots(type, false);
}

/* Split stores to memory. We don't split stores to vertex outputs, since
 * nir_lower_io_to_temporaries will ensure there's only a single write.
 */

static bool
should_split_wrmask(const nir_instr *instr, UNUSED const void *data)
{
        nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);

        switch (intr->intrinsic) {
        case nir_intrinsic_store_ssbo:
        case nir_intrinsic_store_shared:
        case nir_intrinsic_store_global:
        case nir_intrinsic_store_scratch:
                return true;
        default:
                return false;
        }
}

/* Bifrost wants transcendentals as FP32 */

static unsigned
bi_lower_bit_size(const nir_instr *instr, UNUSED void *data)
{
        if (instr->type != nir_instr_type_alu)
                return 0;

        nir_alu_instr *alu = nir_instr_as_alu(instr);

        switch (alu->op) {
        case nir_op_fexp2:
        case nir_op_flog2:
        case nir_op_fpow:
        case nir_op_fsin:
        case nir_op_fcos:
                return (nir_dest_bit_size(alu->dest.dest) == 32) ? 0 : 32;
        default:
                return 0;
        }
}

/* Although Bifrost generally supports packed 16-bit vec2 and 8-bit vec4,
 * transcendentals are an exception. Also shifts because of lane size mismatch
 * (8-bit in Bifrost, 32-bit in NIR TODO - workaround!). Some conversions need
 * to be scalarized due to type size. */

static bool
bi_vectorize_filter(const nir_instr *instr, void *data)
{
        /* Defaults work for everything else */
        if (instr->type != nir_instr_type_alu)
                return true;

        const nir_alu_instr *alu = nir_instr_as_alu(instr);

        switch (alu->op) {
        case nir_op_frcp:
        case nir_op_frsq:
        case nir_op_ishl:
        case nir_op_ishr:
        case nir_op_ushr:
        case nir_op_f2i16:
        case nir_op_f2u16:
        case nir_op_i2f16:
        case nir_op_u2f16:
                return false;
        default:
                return true;
        }
}

/* XXX: This is a kludge to workaround NIR's lack of divergence metadata. If we
 * keep divergence info around after we consume it for indirect lowering,
 * nir_convert_from_ssa will regress code quality since it will avoid
 * coalescing divergent with non-divergent nodes. */

static bool
nir_invalidate_divergence_ssa(nir_ssa_def *ssa, UNUSED void *data)
{
        ssa->divergent = false;
        return true;
}

static bool
nir_invalidate_divergence(struct nir_builder *b, nir_instr *instr,
                UNUSED void *data)
{
        return nir_foreach_ssa_def(instr, nir_invalidate_divergence_ssa, NULL);
}

/* Ensure we write exactly 4 components */
static nir_ssa_def *
bifrost_nir_valid_channel(nir_builder *b, nir_ssa_def *in,
                          unsigned channel, unsigned first, unsigned mask)
{
        if (!(mask & BITFIELD_BIT(channel)))
                channel = first;

        return nir_channel(b, in, channel);
}

/* Lower fragment store_output instructions to always write 4 components,
 * matching the hardware semantic. This may require additional moves. Skipping
 * these moves is possible in theory, but invokes undefined behaviour in the
 * compiler. The DDK inserts these moves, so we will as well. */

static bool
bifrost_nir_lower_blend_components(struct nir_builder *b,
                                   nir_instr *instr, void *data)
{
        if (instr->type != nir_instr_type_intrinsic)
                return false;

        nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);

        if (intr->intrinsic != nir_intrinsic_store_output)
                return false;

        nir_ssa_def *in = intr->src[0].ssa;
        unsigned first = nir_intrinsic_component(intr);
        unsigned mask = nir_intrinsic_write_mask(intr);

        assert(first == 0 && "shouldn't get nonzero components");

        /* Nothing to do */
        if (mask == BITFIELD_MASK(4))
                return false;

        b->cursor = nir_before_instr(&intr->instr);

        /* Replicate the first valid component instead */
        nir_ssa_def *replicated =
                nir_vec4(b, bifrost_nir_valid_channel(b, in, 0, first, mask),
                            bifrost_nir_valid_channel(b, in, 1, first, mask),
                            bifrost_nir_valid_channel(b, in, 2, first, mask),
                            bifrost_nir_valid_channel(b, in, 3, first, mask));

        /* Rewrite to use our replicated version */
        nir_instr_rewrite_src_ssa(instr, &intr->src[0], replicated);
        nir_intrinsic_set_component(intr, 0);
        nir_intrinsic_set_write_mask(intr, 0xF);
        intr->num_components = 4;

        return true;
}

static void
bi_optimize_nir(nir_shader *nir, unsigned gpu_id, bool is_blend)
{
        bool progress;
        unsigned lower_flrp = 16 | 32 | 64;

        NIR_PASS(progress, nir, nir_lower_regs_to_ssa);

        nir_lower_tex_options lower_tex_options = {
                .lower_txs_lod = true,
                .lower_txp = ~0,
                .lower_tg4_broadcom_swizzle = true,
                .lower_txd = true,
        };

        NIR_PASS(progress, nir, pan_nir_lower_64bit_intrin);
        NIR_PASS(progress, nir, pan_lower_helper_invocation);

        NIR_PASS(progress, nir, nir_lower_int64);

        nir_lower_idiv_options idiv_options = {
                .imprecise_32bit_lowering = true,
                .allow_fp16 = true,
        };
        NIR_PASS(progress, nir, nir_lower_idiv, &idiv_options);

        NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
        NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
        NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);

        do {
                progress = false;

                NIR_PASS(progress, nir, nir_lower_var_copies);
                NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
                NIR_PASS(progress, nir, nir_lower_wrmasks, should_split_wrmask, NULL);

                NIR_PASS(progress, nir, nir_copy_prop);
                NIR_PASS(progress, nir, nir_opt_remove_phis);
                NIR_PASS(progress, nir, nir_opt_dce);
                NIR_PASS(progress, nir, nir_opt_dead_cf);
                NIR_PASS(progress, nir, nir_opt_cse);
                NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
                NIR_PASS(progress, nir, nir_opt_algebraic);
                NIR_PASS(progress, nir, nir_opt_constant_folding);

                NIR_PASS(progress, nir, nir_lower_alu);

                if (lower_flrp != 0) {
                        bool lower_flrp_progress = false;
                        NIR_PASS(lower_flrp_progress,
                                 nir,
                                 nir_lower_flrp,
                                 lower_flrp,
                                 false /* always_precise */);
                        if (lower_flrp_progress) {
                                NIR_PASS(progress, nir,
                                         nir_opt_constant_folding);
                                progress = true;
                        }

                        /* Nothing should rematerialize any flrps, so we only
                         * need to do this lowering once.
                         */
                        lower_flrp = 0;
                }

                NIR_PASS(progress, nir, nir_opt_undef);
                NIR_PASS(progress, nir, nir_lower_undef_to_zero);

                NIR_PASS(progress, nir, nir_opt_loop_unroll);
        } while (progress);

        /* TODO: Why is 64-bit getting rematerialized?
         * KHR-GLES31.core.shader_image_load_store.basic-allTargets-atomicFS */
        NIR_PASS(progress, nir, nir_lower_int64);

        /* We need to cleanup after each iteration of late algebraic
         * optimizations, since otherwise NIR can produce weird edge cases
         * (like fneg of a constant) which we don't handle */
        bool late_algebraic = true;
        while (late_algebraic) {
                late_algebraic = false;
                NIR_PASS(late_algebraic, nir, nir_opt_algebraic_late);
                NIR_PASS(progress, nir, nir_opt_constant_folding);
                NIR_PASS(progress, nir, nir_copy_prop);
                NIR_PASS(progress, nir, nir_opt_dce);
                NIR_PASS(progress, nir, nir_opt_cse);
        }

        NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
        NIR_PASS(progress, nir, nir_opt_vectorize, bi_vectorize_filter, NULL);
        NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
        NIR_PASS(progress, nir, nir_opt_dce);

        /* Prepass to simplify instruction selection */
        NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
        NIR_PASS(progress, nir, nir_opt_dce);

        if (nir->info.stage == MESA_SHADER_FRAGMENT) {
                NIR_PASS_V(nir, nir_shader_instructions_pass,
                           bifrost_nir_lower_blend_components,
                           nir_metadata_block_index | nir_metadata_dominance,
                           NULL);
        }

        /* Backend scheduler is purely local, so do some global optimizations
         * to reduce register pressure. */
        nir_move_options move_all =
                nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
                nir_move_comparisons | nir_move_copies | nir_move_load_ssbo;

        NIR_PASS_V(nir, nir_opt_sink, move_all);
        NIR_PASS_V(nir, nir_opt_move, move_all);

        /* We might lower attribute, varying, and image indirects. Use the
         * gathered info to skip the extra analysis in the happy path. */
        bool any_indirects =
                nir->info.inputs_read_indirectly ||
                nir->info.outputs_accessed_indirectly ||
                nir->info.patch_inputs_read_indirectly ||
                nir->info.patch_outputs_accessed_indirectly ||
                nir->info.images_used;

        if (any_indirects) {
                nir_convert_to_lcssa(nir, true, true);
                NIR_PASS_V(nir, nir_divergence_analysis);
                NIR_PASS_V(nir, bi_lower_divergent_indirects,
                                bifrost_lanes_per_warp(gpu_id));
                NIR_PASS_V(nir, nir_shader_instructions_pass,
                        nir_invalidate_divergence, nir_metadata_all, NULL);
        }

        /* Take us out of SSA */
        NIR_PASS(progress, nir, nir_lower_locals_to_regs);
        NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
        NIR_PASS(progress, nir, nir_convert_from_ssa, true);
}

/* The cmdstream lowers 8-bit fragment output as 16-bit, so we need to do the
 * same lowering here to zero-extend correctly */

static bool
bifrost_nir_lower_i8_fragout_impl(struct nir_builder *b,
                nir_intrinsic_instr *intr, UNUSED void *data)
{
        if (nir_src_bit_size(intr->src[0]) != 8)
                return false;

        nir_alu_type type =
                nir_alu_type_get_base_type(nir_intrinsic_src_type(intr));

        assert(type == nir_type_int || type == nir_type_uint);

        b->cursor = nir_before_instr(&intr->instr);
        nir_ssa_def *cast = nir_convert_to_bit_size(b, intr->src[0].ssa, type, 16);

        nir_intrinsic_set_src_type(intr, type | 16);
        nir_instr_rewrite_src_ssa(&intr->instr, &intr->src[0], cast);
        return true;
}

static bool
bifrost_nir_lower_i8_fragin_impl(struct nir_builder *b,
                nir_intrinsic_instr *intr, UNUSED void *data)
{
        if (nir_dest_bit_size(intr->dest) != 8)
                return false;

        nir_alu_type type =
                nir_alu_type_get_base_type(nir_intrinsic_dest_type(intr));

        assert(type == nir_type_int || type == nir_type_uint);

        b->cursor = nir_before_instr(&intr->instr);
        nir_ssa_def *out =
                nir_load_output(b, intr->num_components, 16, intr->src[0].ssa,
                        .base = nir_intrinsic_base(intr),
                        .component = nir_intrinsic_component(intr),
                        .dest_type = type | 16,
                        .io_semantics = nir_intrinsic_io_semantics(intr));

        nir_ssa_def *cast = nir_convert_to_bit_size(b, out, type, 8);
        nir_ssa_def_rewrite_uses(&intr->dest.ssa, cast);
        return true;
}

static bool
bifrost_nir_lower_i8_frag(struct nir_builder *b,
                nir_instr *instr, UNUSED void *data)
{
        if (instr->type != nir_instr_type_intrinsic)
                return false;

        nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
        if (intr->intrinsic == nir_intrinsic_load_output)
                return bifrost_nir_lower_i8_fragin_impl(b, intr, data);
        else if (intr->intrinsic == nir_intrinsic_store_output)
                return bifrost_nir_lower_i8_fragout_impl(b, intr, data);
        else
                return false;
}

static void
bi_opt_post_ra(bi_context *ctx)
{
        bi_foreach_instr_global_safe(ctx, ins) {
                if (ins->op == BI_OPCODE_MOV_I32 && bi_is_equiv(ins->dest[0], ins->src[0]))
                        bi_remove_instruction(ins);
        }
}

static bool
bifrost_nir_lower_store_component(struct nir_builder *b,
                nir_instr *instr, void *data)
{
        if (instr->type != nir_instr_type_intrinsic)
                return false;

        nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);

        if (intr->intrinsic != nir_intrinsic_store_output)
                return false;

        struct hash_table_u64 *slots = data;
        unsigned component = nir_intrinsic_component(intr);
        nir_src *slot_src = nir_get_io_offset_src(intr);
        uint64_t slot = nir_src_as_uint(*slot_src) + nir_intrinsic_base(intr);

        nir_intrinsic_instr *prev = _mesa_hash_table_u64_search(slots, slot);
        unsigned mask = (prev ? nir_intrinsic_write_mask(prev) : 0);

        nir_ssa_def *value = intr->src[0].ssa;
        b->cursor = nir_before_instr(&intr->instr);

        nir_ssa_def *undef = nir_ssa_undef(b, 1, value->bit_size);
        nir_ssa_def *channels[4] = { undef, undef, undef, undef };

        /* Copy old */
        u_foreach_bit(i, mask) {
                assert(prev != NULL);
                nir_ssa_def *prev_ssa = prev->src[0].ssa;
                channels[i] = nir_channel(b, prev_ssa, i);
        }

        /* Copy new */
        unsigned new_mask = nir_intrinsic_write_mask(intr);
        mask |= (new_mask << component);

        u_foreach_bit(i, new_mask) {
                assert(component + i < 4);
                channels[component + i] = nir_channel(b, value, i);
        }

        intr->num_components = util_last_bit(mask);
        nir_instr_rewrite_src_ssa(instr, &intr->src[0], 
                        nir_vec(b, channels, intr->num_components));

        nir_intrinsic_set_component(intr, 0);
        nir_intrinsic_set_write_mask(intr, mask);

        if (prev) {
                _mesa_hash_table_u64_remove(slots, slot);
                nir_instr_remove(&prev->instr);
        }

        _mesa_hash_table_u64_insert(slots, slot, intr);
        return false;
}

/* Dead code elimination for branches at the end of a block - only one branch
 * per block is legal semantically, but unreachable jumps can be generated.
 * Likewise we can generate jumps to the terminal block which need to be
 * lowered away to a jump to #0x0, which induces successful termination. */

static void
bi_lower_branch(bi_block *block)
{
        bool branched = false;
        ASSERTED bool was_jump = false;

        bi_foreach_instr_in_block_safe(block, ins) {
                if (!ins->branch_target) continue;

                if (branched) {
                        assert(was_jump && (ins->op == BI_OPCODE_JUMP));
                        bi_remove_instruction(ins);
                        continue;
                }

                branched = true;
                was_jump = ins->op == BI_OPCODE_JUMP;

                if (bi_is_terminal_block(ins->branch_target))
                        ins->branch_target = NULL;
        }
}

static void
bi_pack_clauses(bi_context *ctx, struct util_dynarray *binary)
{
        unsigned final_clause = bi_pack(ctx, binary);

        /* If we need to wait for ATEST or BLEND in the first clause, pass the
         * corresponding bits through to the renderer state descriptor */
        bi_block *first_block = list_first_entry(&ctx->blocks, bi_block, link);
        bi_clause *first_clause = bi_next_clause(ctx, first_block, NULL);

        unsigned first_deps = first_clause ? first_clause->dependencies : 0;
        ctx->info->bifrost.wait_6 = (first_deps & (1 << 6));
        ctx->info->bifrost.wait_7 = (first_deps & (1 << 7));

        /* Pad the shader with enough zero bytes to trick the prefetcher,
         * unless we're compiling an empty shader (in which case we don't pad
         * so the size remains 0) */
        unsigned prefetch_size = BIFROST_SHADER_PREFETCH - final_clause;

        if (binary->size) {
                memset(util_dynarray_grow(binary, uint8_t, prefetch_size),
                       0, prefetch_size);
        }
}

void
bifrost_compile_shader_nir(nir_shader *nir,
                           const struct panfrost_compile_inputs *inputs,
                           struct util_dynarray *binary,
                           struct pan_shader_info *info)
{
        bifrost_debug = debug_get_option_bifrost_debug();

        bi_context *ctx = rzalloc(NULL, bi_context);
        ctx->sysval_to_id = panfrost_init_sysvals(&info->sysvals, ctx);

        ctx->inputs = inputs;
        ctx->nir = nir;
        ctx->info = info;
        ctx->stage = nir->info.stage;
        ctx->quirks = bifrost_get_quirks(inputs->gpu_id);
        ctx->arch = inputs->gpu_id >> 12;

        /* If nothing is pushed, all UBOs need to be uploaded */
        ctx->ubo_mask = ~0;

        list_inithead(&ctx->blocks);

        /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
         * (so we don't accidentally duplicate the epilogue since mesa/st has
         * messed with our I/O quite a bit already) */

        NIR_PASS_V(nir, nir_lower_vars_to_ssa);

        if (ctx->stage == MESA_SHADER_VERTEX) {
                NIR_PASS_V(nir, nir_lower_viewport_transform);
                NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
        }

        /* Lower large arrays to scratch and small arrays to bcsel (TODO: tune
         * threshold, but not until addresses / csel is optimized better) */
        NIR_PASS_V(nir, nir_lower_vars_to_scratch, nir_var_function_temp, 16,
                        glsl_get_natural_size_align_bytes);
        NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_function_temp, ~0);

        NIR_PASS_V(nir, nir_split_var_copies);
        NIR_PASS_V(nir, nir_lower_global_vars_to_local);
        NIR_PASS_V(nir, nir_lower_var_copies);
        NIR_PASS_V(nir, nir_lower_vars_to_ssa);
        NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
                        glsl_type_size, 0);

        if (ctx->stage == MESA_SHADER_FRAGMENT) {
                NIR_PASS_V(nir, nir_lower_mediump_io, nir_var_shader_out,
                                ~0, false);
        } else {
                struct hash_table_u64 *stores = _mesa_hash_table_u64_create(ctx);
                NIR_PASS_V(nir, nir_shader_instructions_pass,
                                bifrost_nir_lower_store_component,
                                nir_metadata_block_index |
                                nir_metadata_dominance, stores);
                _mesa_hash_table_u64_destroy(stores);
        }

        NIR_PASS_V(nir, nir_lower_ssbo);
        NIR_PASS_V(nir, pan_nir_lower_zs_store);
        NIR_PASS_V(nir, pan_lower_sample_pos);
        NIR_PASS_V(nir, nir_lower_bit_size, bi_lower_bit_size, NULL);

        if (nir->info.stage == MESA_SHADER_FRAGMENT) {
                NIR_PASS_V(nir, nir_shader_instructions_pass,
                        bifrost_nir_lower_i8_frag,
                        nir_metadata_block_index | nir_metadata_dominance,
                        NULL);
        }

        bi_optimize_nir(nir, ctx->inputs->gpu_id, ctx->inputs->is_blend);

        NIR_PASS_V(nir, pan_nir_reorder_writeout);

        bool skip_internal = nir->info.internal;
        skip_internal &= !(bifrost_debug & BIFROST_DBG_INTERNAL);

        if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal) {
                nir_print_shader(nir, stdout);
        }

        info->tls_size = nir->scratch_size;

        nir_foreach_function(func, nir) {
                if (!func->impl)
                        continue;

                ctx->ssa_alloc += func->impl->ssa_alloc;
                ctx->reg_alloc += func->impl->reg_alloc;

                emit_cf_list(ctx, &func->impl->body);
                break; /* TODO: Multi-function shaders */
        }

        unsigned block_source_count = 0;

        bi_foreach_block(ctx, block) {
                /* Name blocks now that we're done emitting so the order is
                 * consistent */
                block->name = block_source_count++;
        }

        bi_validate(ctx, "NIR -> BIR");

        /* If the shader doesn't write any colour or depth outputs, it may
         * still need an ATEST at the very end! */
        bool need_dummy_atest =
                (ctx->stage == MESA_SHADER_FRAGMENT) &&
                !ctx->emitted_atest &&
                !bi_skip_atest(ctx, false);

        if (need_dummy_atest) {
                bi_block *end = list_last_entry(&ctx->blocks, bi_block, link);
                bi_builder b = bi_init_builder(ctx, bi_after_block(end));
                bi_emit_atest(&b, bi_zero());
        }

        bool optimize = !(bifrost_debug & BIFROST_DBG_NOOPT);

        /* Runs before constant folding */
        bi_lower_swizzle(ctx);
        bi_validate(ctx, "Early lowering");

        /* Runs before copy prop */
        if (optimize && !ctx->inputs->no_ubo_to_push) {
                bi_opt_push_ubo(ctx);
        }

        if (likely(optimize)) {
                bi_opt_copy_prop(ctx);
                bi_opt_constant_fold(ctx);
                bi_opt_copy_prop(ctx);
                bi_opt_mod_prop_forward(ctx);
                bi_opt_mod_prop_backward(ctx);
                bi_opt_dead_code_eliminate(ctx);
                bi_opt_cse(ctx);
                bi_opt_dead_code_eliminate(ctx);
                bi_validate(ctx, "Optimization passes");
        }

        bi_foreach_instr_global(ctx, I) {
                bi_lower_opt_instruction(I);
        }

        bi_foreach_block(ctx, block) {
                bi_lower_branch(block);
        }

        if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal)
                bi_print_shader(ctx, stdout);
        bi_lower_fau(ctx);

        /* Analyze before register allocation to avoid false dependencies. The
         * skip bit is a function of only the data flow graph and is invariant
         * under valid scheduling. */
        bi_analyze_helper_requirements(ctx);
        bi_validate(ctx, "Late lowering");

        bi_register_allocate(ctx);

        if (likely(optimize))
                bi_opt_post_ra(ctx);

        if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal)
                bi_print_shader(ctx, stdout);

        if (ctx->arch <= 8) {
                bi_schedule(ctx);
                bi_assign_scoreboard(ctx);
        }

        /* Analyze after scheduling since we depend on instruction order. */
        bi_analyze_helper_terminate(ctx);

        if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal)
                bi_print_shader(ctx, stdout);

        if (ctx->arch <= 8) {
                bi_pack_clauses(ctx, binary);
        } else {
                /* TODO: pack flat */
        }

        info->ubo_mask = ctx->ubo_mask & BITSET_MASK(ctx->nir->info.num_ubos);

        if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal) {
                disassemble_bifrost(stdout, binary->data, binary->size,
                                    bifrost_debug & BIFROST_DBG_VERBOSE);
                fflush(stdout);
        }

        if ((bifrost_debug & BIFROST_DBG_SHADERDB || inputs->shaderdb) &&
            !skip_internal) {
                bi_print_stats(ctx, binary->size, stderr);
        }

        _mesa_hash_table_u64_destroy(ctx->sysval_to_id);
        ralloc_free(ctx);
}