summaryrefslogtreecommitdiff
path: root/src/mesa/drivers/dri/i965/brw_fs_channel_expressions.cpp
blob: 9fe0ffc107804a3cddb8935f0b9f9ea4a9b42852 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file brw_wm_channel_expressions.cpp
 *
 * Breaks vector operations down into operations on each component.
 *
 * The 965 fragment shader receives 8 or 16 pixels at a time, so each
 * channel of a vector is laid out as 1 or 2 8-float registers.  Each
 * ALU operation operates on one of those channel registers.  As a
 * result, there is no value to the 965 fragment shader in tracking
 * "vector" expressions in the sense of GLSL fragment shaders, when
 * doing a channel at a time may help in constant folding, algebraic
 * simplification, and reducing the liveness of channel registers.
 *
 * The exception to the desire to break everything down to floats is
 * texturing.  The texture sampler returns a writemasked masked
 * 4/8-register sequence containing the texture values.  We don't want
 * to dispatch to the sampler separately for each channel we need, so
 * we do retain the vector types in that case.
 */

extern "C" {
#include "main/core.h"
#include "brw_wm.h"
}
#include "glsl/ir.h"
#include "glsl/ir_expression_flattening.h"
#include "glsl/glsl_types.h"

class ir_channel_expressions_visitor : public ir_hierarchical_visitor {
public:
   ir_channel_expressions_visitor()
   {
      this->progress = false;
      this->mem_ctx = NULL;
   }

   ir_visitor_status visit_leave(ir_assignment *);

   ir_rvalue *get_element(ir_variable *var, unsigned int element);
   void assign(ir_assignment *ir, int elem, ir_rvalue *val);

   bool progress;
   void *mem_ctx;
};

static bool
channel_expressions_predicate(ir_instruction *ir)
{
   ir_expression *expr = ir->as_expression();
   unsigned int i;

   if (!expr)
      return false;

   for (i = 0; i < expr->get_num_operands(); i++) {
      if (expr->operands[i]->type->is_vector())
	 return true;
   }

   return false;
}

bool
brw_do_channel_expressions(exec_list *instructions)
{
   ir_channel_expressions_visitor v;

   /* Pull out any matrix expression to a separate assignment to a
    * temp.  This will make our handling of the breakdown to
    * operations on the matrix's vector components much easier.
    */
   do_expression_flattening(instructions, channel_expressions_predicate);

   visit_list_elements(&v, instructions);

   return v.progress;
}

ir_rvalue *
ir_channel_expressions_visitor::get_element(ir_variable *var, unsigned int elem)
{
   ir_dereference *deref;

   if (var->type->is_scalar())
      return new(mem_ctx) ir_dereference_variable(var);

   assert(elem < var->type->components());
   deref = new(mem_ctx) ir_dereference_variable(var);
   return new(mem_ctx) ir_swizzle(deref, elem, 0, 0, 0, 1);
}

void
ir_channel_expressions_visitor::assign(ir_assignment *ir, int elem, ir_rvalue *val)
{
   ir_dereference *lhs = ir->lhs->clone(mem_ctx, NULL);
   ir_assignment *assign;

   /* This assign-of-expression should have been generated by the
    * expression flattening visitor (since we never short circit to
    * not flatten, even for plain assignments of variables), so the
    * writemask is always full.
    */
   assert(ir->write_mask == (1 << ir->lhs->type->components()) - 1);

   assign = new(mem_ctx) ir_assignment(lhs, val, NULL, (1 << elem));
   ir->insert_before(assign);
}

ir_visitor_status
ir_channel_expressions_visitor::visit_leave(ir_assignment *ir)
{
   ir_expression *expr = ir->rhs->as_expression();
   bool found_vector = false;
   unsigned int i, vector_elements = 1;
   ir_variable *op_var[3];

   if (!expr)
      return visit_continue;

   if (!this->mem_ctx)
      this->mem_ctx = ralloc_parent(ir);

   for (i = 0; i < expr->get_num_operands(); i++) {
      if (expr->operands[i]->type->is_vector()) {
	 found_vector = true;
	 vector_elements = expr->operands[i]->type->vector_elements;
	 break;
      }
   }
   if (!found_vector)
      return visit_continue;

   /* Store the expression operands in temps so we can use them
    * multiple times.
    */
   for (i = 0; i < expr->get_num_operands(); i++) {
      ir_assignment *assign;
      ir_dereference *deref;

      assert(!expr->operands[i]->type->is_matrix());

      op_var[i] = new(mem_ctx) ir_variable(expr->operands[i]->type,
					   "channel_expressions",
					   ir_var_temporary);
      ir->insert_before(op_var[i]);

      deref = new(mem_ctx) ir_dereference_variable(op_var[i]);
      assign = new(mem_ctx) ir_assignment(deref,
					  expr->operands[i],
					  NULL);
      ir->insert_before(assign);
   }

   const glsl_type *element_type = glsl_type::get_instance(ir->lhs->type->base_type,
							   1, 1);

   /* OK, time to break down this vector operation. */
   switch (expr->operation) {
   case ir_unop_bit_not:
   case ir_unop_logic_not:
   case ir_unop_neg:
   case ir_unop_abs:
   case ir_unop_sign:
   case ir_unop_rcp:
   case ir_unop_rsq:
   case ir_unop_sqrt:
   case ir_unop_exp:
   case ir_unop_log:
   case ir_unop_exp2:
   case ir_unop_log2:
   case ir_unop_bitcast_i2f:
   case ir_unop_bitcast_f2i:
   case ir_unop_bitcast_f2u:
   case ir_unop_bitcast_u2f:
   case ir_unop_i2u:
   case ir_unop_u2i:
   case ir_unop_f2i:
   case ir_unop_f2u:
   case ir_unop_i2f:
   case ir_unop_f2b:
   case ir_unop_b2f:
   case ir_unop_i2b:
   case ir_unop_b2i:
   case ir_unop_u2f:
   case ir_unop_trunc:
   case ir_unop_ceil:
   case ir_unop_floor:
   case ir_unop_fract:
   case ir_unop_round_even:
   case ir_unop_sin:
   case ir_unop_cos:
   case ir_unop_sin_reduced:
   case ir_unop_cos_reduced:
   case ir_unop_dFdx:
   case ir_unop_dFdy:
   case ir_unop_bitfield_reverse:
   case ir_unop_bit_count:
   case ir_unop_find_msb:
   case ir_unop_find_lsb:
      for (i = 0; i < vector_elements; i++) {
	 ir_rvalue *op0 = get_element(op_var[0], i);

	 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
						  element_type,
						  op0,
						  NULL));
      }
      break;

   case ir_binop_add:
   case ir_binop_sub:
   case ir_binop_mul:
   case ir_binop_imul_high:
   case ir_binop_div:
   case ir_binop_carry:
   case ir_binop_borrow:
   case ir_binop_mod:
   case ir_binop_min:
   case ir_binop_max:
   case ir_binop_pow:
   case ir_binop_lshift:
   case ir_binop_rshift:
   case ir_binop_bit_and:
   case ir_binop_bit_xor:
   case ir_binop_bit_or:
   case ir_binop_less:
   case ir_binop_greater:
   case ir_binop_lequal:
   case ir_binop_gequal:
   case ir_binop_equal:
   case ir_binop_nequal:
      for (i = 0; i < vector_elements; i++) {
	 ir_rvalue *op0 = get_element(op_var[0], i);
	 ir_rvalue *op1 = get_element(op_var[1], i);

	 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
						  element_type,
						  op0,
						  op1));
      }
      break;

   case ir_unop_any: {
      ir_expression *temp;
      temp = new(mem_ctx) ir_expression(ir_binop_logic_or,
					element_type,
					get_element(op_var[0], 0),
					get_element(op_var[0], 1));

      for (i = 2; i < vector_elements; i++) {
	 temp = new(mem_ctx) ir_expression(ir_binop_logic_or,
					   element_type,
					   get_element(op_var[0], i),
					   temp);
      }
      assign(ir, 0, temp);
      break;
   }

   case ir_binop_dot: {
      ir_expression *last = NULL;
      for (i = 0; i < vector_elements; i++) {
	 ir_rvalue *op0 = get_element(op_var[0], i);
	 ir_rvalue *op1 = get_element(op_var[1], i);
	 ir_expression *temp;

	 temp = new(mem_ctx) ir_expression(ir_binop_mul,
					   element_type,
					   op0,
					   op1);
	 if (last) {
	    last = new(mem_ctx) ir_expression(ir_binop_add,
					      element_type,
					      temp,
					      last);
	 } else {
	    last = temp;
	 }
      }
      assign(ir, 0, last);
      break;
   }

   case ir_binop_logic_and:
   case ir_binop_logic_xor:
   case ir_binop_logic_or:
      ir->fprint(stderr);
      fprintf(stderr, "\n");
      unreachable("not reached: expression operates on scalars only");
   case ir_binop_all_equal:
   case ir_binop_any_nequal: {
      ir_expression *last = NULL;
      for (i = 0; i < vector_elements; i++) {
	 ir_rvalue *op0 = get_element(op_var[0], i);
	 ir_rvalue *op1 = get_element(op_var[1], i);
	 ir_expression *temp;
	 ir_expression_operation join;

	 if (expr->operation == ir_binop_all_equal)
	    join = ir_binop_logic_and;
	 else
	    join = ir_binop_logic_or;

	 temp = new(mem_ctx) ir_expression(expr->operation,
					   element_type,
					   op0,
					   op1);
	 if (last) {
	    last = new(mem_ctx) ir_expression(join,
					      element_type,
					      temp,
					      last);
	 } else {
	    last = temp;
	 }
      }
      assign(ir, 0, last);
      break;
   }
   case ir_unop_noise:
      unreachable("noise should have been broken down to function call");

   case ir_binop_bfm: {
      /* Does not need to be scalarized, since its result will be identical
       * for all channels.
       */
      ir_rvalue *op0 = get_element(op_var[0], 0);
      ir_rvalue *op1 = get_element(op_var[1], 0);

      assign(ir, 0, new(mem_ctx) ir_expression(expr->operation,
                                               element_type,
                                               op0,
                                               op1));
      break;
   }

   case ir_binop_ubo_load:
      unreachable("not yet supported");

   case ir_triop_fma:
   case ir_triop_lrp:
   case ir_triop_csel:
   case ir_triop_bitfield_extract:
      for (i = 0; i < vector_elements; i++) {
	 ir_rvalue *op0 = get_element(op_var[0], i);
	 ir_rvalue *op1 = get_element(op_var[1], i);
	 ir_rvalue *op2 = get_element(op_var[2], i);

	 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
						  element_type,
						  op0,
						  op1,
						  op2));
      }
      break;

   case ir_triop_bfi: {
      /* Only a single BFM is needed for multiple BFIs. */
      ir_rvalue *op0 = get_element(op_var[0], 0);

      for (i = 0; i < vector_elements; i++) {
         ir_rvalue *op1 = get_element(op_var[1], i);
         ir_rvalue *op2 = get_element(op_var[2], i);

         assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
                                                  element_type,
                                                  op0->clone(mem_ctx, NULL),
                                                  op1,
                                                  op2));
      }
      break;
   }

   case ir_unop_pack_snorm_2x16:
   case ir_unop_pack_snorm_4x8:
   case ir_unop_pack_unorm_2x16:
   case ir_unop_pack_unorm_4x8:
   case ir_unop_pack_half_2x16:
   case ir_unop_unpack_snorm_2x16:
   case ir_unop_unpack_snorm_4x8:
   case ir_unop_unpack_unorm_2x16:
   case ir_unop_unpack_unorm_4x8:
   case ir_unop_unpack_half_2x16:
   case ir_binop_ldexp:
   case ir_binop_vector_extract:
   case ir_triop_vector_insert:
   case ir_quadop_bitfield_insert:
   case ir_quadop_vector:
      unreachable("should have been lowered");

   case ir_unop_unpack_half_2x16_split_x:
   case ir_unop_unpack_half_2x16_split_y:
   case ir_binop_pack_half_2x16_split:
      unreachable("not reached: expression operates on scalars only");
   }

   ir->remove();
   this->progress = true;

   return visit_continue;
}