summaryrefslogtreecommitdiff
path: root/src/intel/vulkan/genX_state.c
blob: 7177b9c136cbe7638ff9add1cdf77c5bc0768e4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"

#include "common/intel_aux_map.h"
#include "common/intel_sample_positions.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"

#include "vk_util.h"

/**
 * Compute an \p n x \p m pixel hashing table usable as slice, subslice or
 * pixel pipe hashing table.  The resulting table is the cyclic repetition of
 * a fixed pattern with periodicity equal to \p period.
 *
 * If \p index is specified to be equal to \p period, a 2-way hashing table
 * will be generated such that indices 0 and 1 are returned for the following
 * fractions of entries respectively:
 *
 *   p_0 = ceil(period / 2) / period
 *   p_1 = floor(period / 2) / period
 *
 * If \p index is even and less than \p period, a 3-way hashing table will be
 * generated such that indices 0, 1 and 2 are returned for the following
 * fractions of entries:
 *
 *   p_0 = (ceil(period / 2) - 1) / period
 *   p_1 = floor(period / 2) / period
 *   p_2 = 1 / period
 *
 * The equations above apply if \p flip is equal to 0, if it is equal to 1 p_0
 * and p_1 will be swapped for the result.  Note that in the context of pixel
 * pipe hashing this can be always 0 on Gfx12 platforms, since the hardware
 * transparently remaps logical indices found on the table to physical pixel
 * pipe indices from the highest to lowest EU count.
 */
UNUSED static void
calculate_pixel_hashing_table(unsigned n, unsigned m,
                              unsigned period, unsigned index, bool flip,
                              uint32_t *p)
{
   for (unsigned i = 0; i < n; i++) {
      for (unsigned j = 0; j < m; j++) {
         const unsigned k = (i + j) % period;
         p[j + m * i] = (k == index ? 2 : (k & 1) ^ flip);
      }
   }
}

static void
genX(emit_slice_hashing_state)(struct anv_device *device,
                               struct anv_batch *batch)
{
#if GFX_VER == 11
   /* Gfx11 hardware has two pixel pipes at most. */
   for (unsigned i = 2; i < ARRAY_SIZE(device->info.ppipe_subslices); i++)
      assert(device->info.ppipe_subslices[i] == 0);

   if (device->info.ppipe_subslices[0] == device->info.ppipe_subslices[1])
     return;

   if (!device->slice_hash.alloc_size) {
      unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
      device->slice_hash =
         anv_state_pool_alloc(&device->dynamic_state_pool, size, 64);

      const bool flip = device->info.ppipe_subslices[0] <
                     device->info.ppipe_subslices[1];
      struct GENX(SLICE_HASH_TABLE) table;
      calculate_pixel_hashing_table(16, 16, 3, 3, flip, table.Entry[0]);

      GENX(SLICE_HASH_TABLE_pack)(NULL, device->slice_hash.map, &table);
   }

   anv_batch_emit(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
      ptr.SliceHashStatePointerValid = true;
      ptr.SliceHashTableStatePointer = device->slice_hash.offset;
   }

   anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), mode) {
      mode.SliceHashingTableEnable = true;
   }
#elif GFX_VERx10 == 120
   /* For each n calculate ppipes_of[n], equal to the number of pixel pipes
    * present with n active dual subslices.
    */
   unsigned ppipes_of[3] = {};

   for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
      for (unsigned p = 0; p < 3; p++)
         ppipes_of[n] += (device->info.ppipe_subslices[p] == n);
   }

   /* Gfx12 has three pixel pipes. */
   for (unsigned p = 3; p < ARRAY_SIZE(device->info.ppipe_subslices); p++)
      assert(device->info.ppipe_subslices[p] == 0);

   if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
      /* All three pixel pipes have the maximum number of active dual
       * subslices, or there is only one active pixel pipe: Nothing to do.
       */
      return;
   }

   anv_batch_emit(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
      p.SliceHashControl[0] = TABLE_0;

      if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
         calculate_pixel_hashing_table(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
      else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
         calculate_pixel_hashing_table(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);

      if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
         calculate_pixel_hashing_table(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
      else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
         calculate_pixel_hashing_table(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
      else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
         calculate_pixel_hashing_table(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
      else
         unreachable("Illegal fusing.");
   }

   anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), p) {
      p.SubsliceHashingTableEnable = true;
      p.SubsliceHashingTableEnableMask = true;
   }
#endif
}

static VkResult
init_render_queue_state(struct anv_queue *queue)
{
   struct anv_device *device = queue->device;
   struct anv_batch batch;

   uint32_t cmds[64];
   batch.start = batch.next = cmds;
   batch.end = (void *) cmds + sizeof(cmds);

   anv_batch_emit(&batch, GENX(PIPELINE_SELECT), ps) {
#if GFX_VER >= 9
      ps.MaskBits = GFX_VER >= 12 ? 0x13 : 3;
      ps.MediaSamplerDOPClockGateEnable = GFX_VER >= 12;
#endif
      ps.PipelineSelection = _3D;
   }

#if GFX_VER == 9
   anv_batch_write_reg(&batch, GENX(CACHE_MODE_1), cm1) {
      cm1.FloatBlendOptimizationEnable = true;
      cm1.FloatBlendOptimizationEnableMask = true;
      cm1.MSCRAWHazardAvoidanceBit = true;
      cm1.MSCRAWHazardAvoidanceBitMask = true;
      cm1.PartialResolveDisableInVC = true;
      cm1.PartialResolveDisableInVCMask = true;
   }
#endif

   anv_batch_emit(&batch, GENX(3DSTATE_AA_LINE_PARAMETERS), aa);

   anv_batch_emit(&batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
      rect.ClippedDrawingRectangleYMin = 0;
      rect.ClippedDrawingRectangleXMin = 0;
      rect.ClippedDrawingRectangleYMax = UINT16_MAX;
      rect.ClippedDrawingRectangleXMax = UINT16_MAX;
      rect.DrawingRectangleOriginY = 0;
      rect.DrawingRectangleOriginX = 0;
   }

#if GFX_VER >= 8
   anv_batch_emit(&batch, GENX(3DSTATE_WM_CHROMAKEY), ck);

   genX(emit_sample_pattern)(&batch, 0, NULL);

   /* The BDW+ docs describe how to use the 3DSTATE_WM_HZ_OP instruction in the
    * section titled, "Optimized Depth Buffer Clear and/or Stencil Buffer
    * Clear." It mentions that the packet overrides GPU state for the clear
    * operation and needs to be reset to 0s to clear the overrides. Depending
    * on the kernel, we may not get a context with the state for this packet
    * zeroed. Do it ourselves just in case. We've observed this to prevent a
    * number of GPU hangs on ICL.
    */
   anv_batch_emit(&batch, GENX(3DSTATE_WM_HZ_OP), hzp);
#endif

#if GFX_VER == 11
   /* The default behavior of bit 5 "Headerless Message for Pre-emptable
    * Contexts" in SAMPLER MODE register is set to 0, which means
    * headerless sampler messages are not allowed for pre-emptable
    * contexts. Set the bit 5 to 1 to allow them.
    */
   anv_batch_write_reg(&batch, GENX(SAMPLER_MODE), sm) {
      sm.HeaderlessMessageforPreemptableContexts = true;
      sm.HeaderlessMessageforPreemptableContextsMask = true;
   }

   /* Bit 1 "Enabled Texel Offset Precision Fix" must be set in
    * HALF_SLICE_CHICKEN7 register.
    */
   anv_batch_write_reg(&batch, GENX(HALF_SLICE_CHICKEN7), hsc7) {
      hsc7.EnabledTexelOffsetPrecisionFix = true;
      hsc7.EnabledTexelOffsetPrecisionFixMask = true;
   }

   anv_batch_write_reg(&batch, GENX(TCCNTLREG), tcc) {
      tcc.L3DataPartialWriteMergingEnable = true;
      tcc.ColorZPartialWriteMergingEnable = true;
      tcc.URBPartialWriteMergingEnable = true;
      tcc.TCDisable = true;
   }
#endif
   genX(emit_slice_hashing_state)(device, &batch);

#if GFX_VER >= 11
   /* hardware specification recommends disabling repacking for
    * the compatibility with decompression mechanism in display controller.
    */
   if (device->info.disable_ccs_repack) {
      anv_batch_write_reg(&batch, GENX(CACHE_MODE_0), cm0) {
         cm0.DisableRepackingforCompression = true;
         cm0.DisableRepackingforCompressionMask = true;
      }
   }

   /* an unknown issue is causing vs push constants to become
    * corrupted during object-level preemption. For now, restrict
    * to command buffer level preemption to avoid rendering
    * corruption.
    */
   anv_batch_write_reg(&batch, GENX(CS_CHICKEN1), cc1) {
      cc1.ReplayMode = MidcmdbufferPreemption;
      cc1.ReplayModeMask = true;
   }

#if GFX_VERx10 < 125
#define AA_LINE_QUALITY_REG GENX(3D_CHICKEN3)
#else
#define AA_LINE_QUALITY_REG GENX(CHICKEN_RASTER_1)
#endif

   /* Enable the new line drawing algorithm that produces higher quality
    * lines.
    */
   anv_batch_write_reg(&batch, AA_LINE_QUALITY_REG, c3) {
      c3.AALineQualityFix = true;
      c3.AALineQualityFixMask = true;
   }
#endif

#if GFX_VER == 12
   if (device->info.has_aux_map) {
      uint64_t aux_base_addr = intel_aux_map_get_base(device->aux_map_ctx);
      assert(aux_base_addr % (32 * 1024) == 0);
      anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
         lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
         lri.DataDWord = aux_base_addr & 0xffffffff;
      }
      anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
         lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
         lri.DataDWord = aux_base_addr >> 32;
      }
   }
#endif

   /* Set the "CONSTANT_BUFFER Address Offset Disable" bit, so
    * 3DSTATE_CONSTANT_XS buffer 0 is an absolute address.
    *
    * This is only safe on kernels with context isolation support.
    */
   if (GFX_VER >= 8 && device->physical->has_context_isolation) {
#if GFX_VER >= 9
      anv_batch_write_reg(&batch, GENX(CS_DEBUG_MODE2), csdm2) {
         csdm2.CONSTANT_BUFFERAddressOffsetDisable = true;
         csdm2.CONSTANT_BUFFERAddressOffsetDisableMask = true;
      }
#elif GFX_VER == 8
      anv_batch_write_reg(&batch, GENX(INSTPM), instpm) {
         instpm.CONSTANT_BUFFERAddressOffsetDisable = true;
         instpm.CONSTANT_BUFFERAddressOffsetDisableMask = true;
      }
#endif
   }

#if GFX_VER >= 11
   /* Starting with GFX version 11, SLM is no longer part of the L3$ config
    * so it never changes throughout the lifetime of the VkDevice.
    */
   const struct intel_l3_config *cfg = intel_get_default_l3_config(&device->info);
   genX(emit_l3_config)(&batch, device, cfg);
   device->l3_config = cfg;
#endif

   anv_batch_emit(&batch, GENX(MI_BATCH_BUFFER_END), bbe);

   assert(batch.next <= batch.end);

   return anv_queue_submit_simple_batch(queue, &batch);
}

void
genX(init_physical_device_state)(ASSERTED struct anv_physical_device *device)
{
   assert(device->info.verx10 == GFX_VERx10);
}

VkResult
genX(init_device_state)(struct anv_device *device)
{
   VkResult res;

   device->slice_hash = (struct anv_state) { 0 };
   for (uint32_t i = 0; i < device->queue_count; i++) {
      struct anv_queue *queue = &device->queues[i];
      switch (queue->family->engine_class) {
      case I915_ENGINE_CLASS_RENDER:
         res = init_render_queue_state(queue);
         break;
      default:
         res = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
         break;
      }
      if (res != VK_SUCCESS)
         return res;
   }

   return res;
}

void
genX(emit_l3_config)(struct anv_batch *batch,
                     const struct anv_device *device,
                     const struct intel_l3_config *cfg)
{
   UNUSED const struct intel_device_info *devinfo = &device->info;

#if GFX_VER >= 8

#if GFX_VER >= 12
#define L3_ALLOCATION_REG GENX(L3ALLOC)
#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
#else
#define L3_ALLOCATION_REG GENX(L3CNTLREG)
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
#endif

   anv_batch_write_reg(batch, L3_ALLOCATION_REG, l3cr) {
      if (cfg == NULL) {
#if GFX_VER >= 12
         l3cr.L3FullWayAllocationEnable = true;
#else
         unreachable("Invalid L3$ config");
#endif
      } else {
#if GFX_VER < 11
         l3cr.SLMEnable = cfg->n[INTEL_L3P_SLM];
#endif
#if GFX_VER == 11
         /* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be
          * set in L3CNTLREG register. The default setting of the bit is not
          * the desirable behavior.
          */
         l3cr.ErrorDetectionBehaviorControl = true;
         l3cr.UseFullWays = true;
#endif /* GFX_VER == 11 */
         assert(cfg->n[INTEL_L3P_IS] == 0);
         assert(cfg->n[INTEL_L3P_C] == 0);
         assert(cfg->n[INTEL_L3P_T] == 0);
         l3cr.URBAllocation = cfg->n[INTEL_L3P_URB];
         l3cr.ROAllocation = cfg->n[INTEL_L3P_RO];
         l3cr.DCAllocation = cfg->n[INTEL_L3P_DC];
         l3cr.AllAllocation = cfg->n[INTEL_L3P_ALL];
      }
   }

#else /* GFX_VER < 8 */

   const bool has_dc = cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_ALL];
   const bool has_is = cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_RO] ||
                       cfg->n[INTEL_L3P_ALL];
   const bool has_c = cfg->n[INTEL_L3P_C] || cfg->n[INTEL_L3P_RO] ||
                      cfg->n[INTEL_L3P_ALL];
   const bool has_t = cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_RO] ||
                      cfg->n[INTEL_L3P_ALL];

   assert(!cfg->n[INTEL_L3P_ALL]);

   /* When enabled SLM only uses a portion of the L3 on half of the banks,
    * the matching space on the remaining banks has to be allocated to a
    * client (URB for all validated configurations) set to the
    * lower-bandwidth 2-bank address hashing mode.
    */
   const bool urb_low_bw = cfg->n[INTEL_L3P_SLM] && devinfo->platform != INTEL_PLATFORM_BYT;
   assert(!urb_low_bw || cfg->n[INTEL_L3P_URB] == cfg->n[INTEL_L3P_SLM]);

   /* Minimum number of ways that can be allocated to the URB. */
   const unsigned n0_urb = devinfo->platform == INTEL_PLATFORM_BYT ? 32 : 0;
   assert(cfg->n[INTEL_L3P_URB] >= n0_urb);

   anv_batch_write_reg(batch, GENX(L3SQCREG1), l3sqc) {
      l3sqc.ConvertDC_UC = !has_dc;
      l3sqc.ConvertIS_UC = !has_is;
      l3sqc.ConvertC_UC = !has_c;
      l3sqc.ConvertT_UC = !has_t;
#if GFX_VERx10 == 75
      l3sqc.L3SQGeneralPriorityCreditInitialization = SQGPCI_DEFAULT;
#else
      l3sqc.L3SQGeneralPriorityCreditInitialization =
         devinfo->platform == INTEL_PLATFORM_BYT ? BYT_SQGPCI_DEFAULT : SQGPCI_DEFAULT;
#endif
      l3sqc.L3SQHighPriorityCreditInitialization = SQHPCI_DEFAULT;
   }

   anv_batch_write_reg(batch, GENX(L3CNTLREG2), l3cr2) {
      l3cr2.SLMEnable = cfg->n[INTEL_L3P_SLM];
      l3cr2.URBLowBandwidth = urb_low_bw;
      l3cr2.URBAllocation = cfg->n[INTEL_L3P_URB] - n0_urb;
#if !GFX_VERx10 == 75
      l3cr2.ALLAllocation = cfg->n[INTEL_L3P_ALL];
#endif
      l3cr2.ROAllocation = cfg->n[INTEL_L3P_RO];
      l3cr2.DCAllocation = cfg->n[INTEL_L3P_DC];
   }

   anv_batch_write_reg(batch, GENX(L3CNTLREG3), l3cr3) {
      l3cr3.ISAllocation = cfg->n[INTEL_L3P_IS];
      l3cr3.ISLowBandwidth = 0;
      l3cr3.CAllocation = cfg->n[INTEL_L3P_C];
      l3cr3.CLowBandwidth = 0;
      l3cr3.TAllocation = cfg->n[INTEL_L3P_T];
      l3cr3.TLowBandwidth = 0;
   }

#if GFX_VERx10 == 75
   if (device->physical->cmd_parser_version >= 4) {
      /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
       * them disabled to avoid crashing the system hard.
       */
      anv_batch_write_reg(batch, GENX(SCRATCH1), s1) {
         s1.L3AtomicDisable = !has_dc;
      }
      anv_batch_write_reg(batch, GENX(CHICKEN3), c3) {
         c3.L3AtomicDisableMask = true;
         c3.L3AtomicDisable = !has_dc;
      }
   }
#endif /* GFX_VERx10 == 75 */

#endif /* GFX_VER < 8 */
}

void
genX(emit_multisample)(struct anv_batch *batch, uint32_t samples,
                       const VkSampleLocationEXT *locations)
{
   anv_batch_emit(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
      ms.NumberofMultisamples       = __builtin_ffs(samples) - 1;

      ms.PixelLocation              = CENTER;
#if GFX_VER >= 8
      /* The PRM says that this bit is valid only for DX9:
       *
       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
       *    should not have any effect by setting or not setting this bit.
       */
      ms.PixelPositionOffsetEnable  = false;
#else

      if (locations) {
         switch (samples) {
         case 1:
            INTEL_SAMPLE_POS_1X_ARRAY(ms.Sample, locations);
            break;
         case 2:
            INTEL_SAMPLE_POS_2X_ARRAY(ms.Sample, locations);
            break;
         case 4:
            INTEL_SAMPLE_POS_4X_ARRAY(ms.Sample, locations);
            break;
         case 8:
            INTEL_SAMPLE_POS_8X_ARRAY(ms.Sample, locations);
            break;
         default:
            break;
         }
      } else {
         switch (samples) {
         case 1:
            INTEL_SAMPLE_POS_1X(ms.Sample);
            break;
         case 2:
            INTEL_SAMPLE_POS_2X(ms.Sample);
            break;
         case 4:
            INTEL_SAMPLE_POS_4X(ms.Sample);
            break;
         case 8:
            INTEL_SAMPLE_POS_8X(ms.Sample);
            break;
         default:
            break;
         }
      }
#endif
   }
}

#if GFX_VER >= 8
void
genX(emit_sample_pattern)(struct anv_batch *batch, uint32_t samples,
                          const VkSampleLocationEXT *locations)
{
   /* See the Vulkan 1.0 spec Table 24.1 "Standard sample locations" and
    * VkPhysicalDeviceFeatures::standardSampleLocations.
    */
   anv_batch_emit(batch, GENX(3DSTATE_SAMPLE_PATTERN), sp) {
      if (locations) {
         /* The Skylake PRM Vol. 2a "3DSTATE_SAMPLE_PATTERN" says:
          *
          *    "When programming the sample offsets (for NUMSAMPLES_4 or _8
          *    and MSRASTMODE_xxx_PATTERN), the order of the samples 0 to 3
          *    (or 7 for 8X, or 15 for 16X) must have monotonically increasing
          *    distance from the pixel center. This is required to get the
          *    correct centroid computation in the device."
          *
          * However, the Vulkan spec seems to require that the the samples
          * occur in the order provided through the API. The standard sample
          * patterns have the above property that they have monotonically
          * increasing distances from the center but client-provided ones do
          * not. As long as this only affects centroid calculations as the
          * docs say, we should be ok because OpenGL and Vulkan only require
          * that the centroid be some lit sample and that it's the same for
          * all samples in a pixel; they have no requirement that it be the
          * one closest to center.
          */
         switch (samples) {
         case 1:
            INTEL_SAMPLE_POS_1X_ARRAY(sp._1xSample, locations);
            break;
         case 2:
            INTEL_SAMPLE_POS_2X_ARRAY(sp._2xSample, locations);
            break;
         case 4:
            INTEL_SAMPLE_POS_4X_ARRAY(sp._4xSample, locations);
            break;
         case 8:
            INTEL_SAMPLE_POS_8X_ARRAY(sp._8xSample, locations);
            break;
#if GFX_VER >= 9
         case 16:
            INTEL_SAMPLE_POS_16X_ARRAY(sp._16xSample, locations);
            break;
#endif
         default:
            break;
         }
      } else {
         INTEL_SAMPLE_POS_1X(sp._1xSample);
         INTEL_SAMPLE_POS_2X(sp._2xSample);
         INTEL_SAMPLE_POS_4X(sp._4xSample);
         INTEL_SAMPLE_POS_8X(sp._8xSample);
#if GFX_VER >= 9
         INTEL_SAMPLE_POS_16X(sp._16xSample);
#endif
      }
   }
}
#endif

#if GFX_VER >= 11
void
genX(emit_shading_rate)(struct anv_batch *batch,
                        const struct anv_graphics_pipeline *pipeline,
                        struct anv_state cps_states,
                        struct anv_dynamic_state *dynamic_state)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   const bool cps_enable = wm_prog_data && wm_prog_data->per_coarse_pixel_dispatch;

#if GFX_VER == 11
   anv_batch_emit(batch, GENX(3DSTATE_CPS), cps) {
      cps.CoarsePixelShadingMode = cps_enable ? CPS_MODE_CONSTANT : CPS_MODE_NONE;
      if (cps_enable) {
         cps.MinCPSizeX = dynamic_state->fragment_shading_rate.width;
         cps.MinCPSizeY = dynamic_state->fragment_shading_rate.height;
      }
   }
#elif GFX_VER == 12
   for (uint32_t i = 0; i < dynamic_state->viewport.count; i++) {
      uint32_t *cps_state_dwords =
         cps_states.map + GENX(CPS_STATE_length) * 4 * i;
      struct GENX(CPS_STATE) cps_state = {
         .CoarsePixelShadingMode = cps_enable ? CPS_MODE_CONSTANT : CPS_MODE_NONE,
      };

      if (cps_enable) {
         cps_state.MinCPSizeX = dynamic_state->fragment_shading_rate.width;
         cps_state.MinCPSizeY = dynamic_state->fragment_shading_rate.height;
      }

      GENX(CPS_STATE_pack)(NULL, cps_state_dwords, &cps_state);
   }

   anv_batch_emit(batch, GENX(3DSTATE_CPS_POINTERS), cps) {
      cps.CoarsePixelShadingStateArrayPointer = cps_states.offset;
   }
#endif
}
#endif /* GFX_VER >= 11 */

static uint32_t
vk_to_intel_tex_filter(VkFilter filter, bool anisotropyEnable)
{
   switch (filter) {
   default:
      assert(!"Invalid filter");
   case VK_FILTER_NEAREST:
      return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_NEAREST;
   case VK_FILTER_LINEAR:
      return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_LINEAR;
   }
}

static uint32_t
vk_to_intel_max_anisotropy(float ratio)
{
   return (anv_clamp_f(ratio, 2, 16) - 2) / 2;
}

static const uint32_t vk_to_intel_mipmap_mode[] = {
   [VK_SAMPLER_MIPMAP_MODE_NEAREST]          = MIPFILTER_NEAREST,
   [VK_SAMPLER_MIPMAP_MODE_LINEAR]           = MIPFILTER_LINEAR
};

static const uint32_t vk_to_intel_tex_address[] = {
   [VK_SAMPLER_ADDRESS_MODE_REPEAT]          = TCM_WRAP,
   [VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT] = TCM_MIRROR,
   [VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE]   = TCM_CLAMP,
   [VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
   [VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
};

/* Vulkan specifies the result of shadow comparisons as:
 *     1     if   ref <op> texel,
 *     0     otherwise.
 *
 * The hardware does:
 *     0     if texel <op> ref,
 *     1     otherwise.
 *
 * So, these look a bit strange because there's both a negation
 * and swapping of the arguments involved.
 */
static const uint32_t vk_to_intel_shadow_compare_op[] = {
   [VK_COMPARE_OP_NEVER]                        = PREFILTEROP_ALWAYS,
   [VK_COMPARE_OP_LESS]                         = PREFILTEROP_LEQUAL,
   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROP_NOTEQUAL,
   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROP_LESS,
   [VK_COMPARE_OP_GREATER]                      = PREFILTEROP_GEQUAL,
   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROP_EQUAL,
   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROP_GREATER,
   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROP_NEVER,
};

#if GFX_VER >= 9
static const uint32_t vk_to_intel_sampler_reduction_mode[] = {
   [VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT] = STD_FILTER,
   [VK_SAMPLER_REDUCTION_MODE_MIN_EXT]              = MINIMUM,
   [VK_SAMPLER_REDUCTION_MODE_MAX_EXT]              = MAXIMUM,
};
#endif

VkResult genX(CreateSampler)(
    VkDevice                                    _device,
    const VkSamplerCreateInfo*                  pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSampler*                                  pSampler)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_sampler *sampler;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);

   sampler = vk_object_zalloc(&device->vk, pAllocator, sizeof(*sampler),
                              VK_OBJECT_TYPE_SAMPLER);
   if (!sampler)
      return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);

   sampler->n_planes = 1;

   uint32_t border_color_stride = GFX_VERx10 == 75 ? 512 : 64;
   uint32_t border_color_offset;
   ASSERTED bool has_custom_color = false;
   if (pCreateInfo->borderColor <= VK_BORDER_COLOR_INT_OPAQUE_WHITE) {
      border_color_offset = device->border_colors.offset +
                            pCreateInfo->borderColor *
                            border_color_stride;
   } else {
      assert(GFX_VER >= 8);
      sampler->custom_border_color =
         anv_state_reserved_pool_alloc(&device->custom_border_colors);
      border_color_offset = sampler->custom_border_color.offset;
   }

#if GFX_VER >= 9
   unsigned sampler_reduction_mode = STD_FILTER;
   bool enable_sampler_reduction = false;
#endif

   vk_foreach_struct(ext, pCreateInfo->pNext) {
      switch (ext->sType) {
      case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO: {
         VkSamplerYcbcrConversionInfo *pSamplerConversion =
            (VkSamplerYcbcrConversionInfo *) ext;
         ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion,
                         pSamplerConversion->conversion);

         /* Ignore conversion for non-YUV formats. This fulfills a requirement
          * for clients that want to utilize same code path for images with
          * external formats (VK_FORMAT_UNDEFINED) and "regular" RGBA images
          * where format is known.
          */
         if (conversion == NULL || !conversion->format->can_ycbcr)
            break;

         sampler->n_planes = conversion->format->n_planes;
         sampler->conversion = conversion;
         break;
      }
#if GFX_VER >= 9
      case VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO: {
         VkSamplerReductionModeCreateInfo *sampler_reduction =
            (VkSamplerReductionModeCreateInfo *) ext;
         sampler_reduction_mode =
            vk_to_intel_sampler_reduction_mode[sampler_reduction->reductionMode];
         enable_sampler_reduction = true;
         break;
      }
#endif
      case VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT: {
         VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
            (VkSamplerCustomBorderColorCreateInfoEXT *) ext;
         if (sampler->custom_border_color.map == NULL)
            break;
         struct gfx8_border_color *cbc = sampler->custom_border_color.map;
         if (custom_border_color->format == VK_FORMAT_B4G4R4A4_UNORM_PACK16) {
            /* B4G4R4A4_UNORM_PACK16 is treated as R4G4B4A4_UNORM_PACK16 with
             * a swizzle, but this does not carry over to the sampler for
             * border colors, so we need to do the swizzle ourselves here.
             */
            cbc->uint32[0] = custom_border_color->customBorderColor.uint32[2];
            cbc->uint32[1] = custom_border_color->customBorderColor.uint32[1];
            cbc->uint32[2] = custom_border_color->customBorderColor.uint32[0];
            cbc->uint32[3] = custom_border_color->customBorderColor.uint32[3];
         } else {
            /* Both structs share the same layout, so just copy them over. */
            memcpy(cbc, &custom_border_color->customBorderColor,
                   sizeof(VkClearColorValue));
         }
         has_custom_color = true;
         break;
      }
      default:
         anv_debug_ignored_stype(ext->sType);
         break;
      }
   }

   assert((sampler->custom_border_color.map == NULL) || has_custom_color);

   if (device->physical->has_bindless_samplers) {
      /* If we have bindless, allocate enough samplers.  We allocate 32 bytes
       * for each sampler instead of 16 bytes because we want all bindless
       * samplers to be 32-byte aligned so we don't have to use indirect
       * sampler messages on them.
       */
      sampler->bindless_state =
         anv_state_pool_alloc(&device->dynamic_state_pool,
                              sampler->n_planes * 32, 32);
   }

   for (unsigned p = 0; p < sampler->n_planes; p++) {
      const bool plane_has_chroma =
         sampler->conversion && sampler->conversion->format->planes[p].has_chroma;
      const VkFilter min_filter =
         plane_has_chroma ? sampler->conversion->chroma_filter : pCreateInfo->minFilter;
      const VkFilter mag_filter =
         plane_has_chroma ? sampler->conversion->chroma_filter : pCreateInfo->magFilter;
      const bool enable_min_filter_addr_rounding = min_filter != VK_FILTER_NEAREST;
      const bool enable_mag_filter_addr_rounding = mag_filter != VK_FILTER_NEAREST;
      /* From Broadwell PRM, SAMPLER_STATE:
       *   "Mip Mode Filter must be set to MIPFILTER_NONE for Planar YUV surfaces."
       */
      const bool isl_format_is_planar_yuv = sampler->conversion &&
         isl_format_is_yuv(sampler->conversion->format->planes[0].isl_format) &&
         isl_format_is_planar(sampler->conversion->format->planes[0].isl_format);

      const uint32_t mip_filter_mode =
         isl_format_is_planar_yuv ?
         MIPFILTER_NONE : vk_to_intel_mipmap_mode[pCreateInfo->mipmapMode];

      struct GENX(SAMPLER_STATE) sampler_state = {
         .SamplerDisable = false,
         .TextureBorderColorMode = DX10OGL,

#if GFX_VER >= 11
         .CPSLODCompensationEnable = true,
#endif

#if GFX_VER >= 8
         .LODPreClampMode = CLAMP_MODE_OGL,
#else
         .LODPreClampEnable = CLAMP_ENABLE_OGL,
#endif

#if GFX_VER == 8
         .BaseMipLevel = 0.0,
#endif
         .MipModeFilter = mip_filter_mode,
         .MagModeFilter = vk_to_intel_tex_filter(mag_filter, pCreateInfo->anisotropyEnable),
         .MinModeFilter = vk_to_intel_tex_filter(min_filter, pCreateInfo->anisotropyEnable),
         .TextureLODBias = anv_clamp_f(pCreateInfo->mipLodBias, -16, 15.996),
         .AnisotropicAlgorithm =
            pCreateInfo->anisotropyEnable ? EWAApproximation : LEGACY,
         .MinLOD = anv_clamp_f(pCreateInfo->minLod, 0, 14),
         .MaxLOD = anv_clamp_f(pCreateInfo->maxLod, 0, 14),
         .ChromaKeyEnable = 0,
         .ChromaKeyIndex = 0,
         .ChromaKeyMode = 0,
         .ShadowFunction =
            vk_to_intel_shadow_compare_op[pCreateInfo->compareEnable ?
                                        pCreateInfo->compareOp : VK_COMPARE_OP_NEVER],
         .CubeSurfaceControlMode = OVERRIDE,

         .BorderColorPointer = border_color_offset,

#if GFX_VER >= 8
         .LODClampMagnificationMode = MIPNONE,
#endif

         .MaximumAnisotropy = vk_to_intel_max_anisotropy(pCreateInfo->maxAnisotropy),
         .RAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
         .RAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
         .VAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
         .VAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
         .UAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
         .UAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
         .TrilinearFilterQuality = 0,
         .NonnormalizedCoordinateEnable = pCreateInfo->unnormalizedCoordinates,
         .TCXAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeU],
         .TCYAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeV],
         .TCZAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeW],

#if GFX_VER >= 9
         .ReductionType = sampler_reduction_mode,
         .ReductionTypeEnable = enable_sampler_reduction,
#endif
      };

      GENX(SAMPLER_STATE_pack)(NULL, sampler->state[p], &sampler_state);

      if (sampler->bindless_state.map) {
         memcpy(sampler->bindless_state.map + p * 32,
                sampler->state[p], GENX(SAMPLER_STATE_length) * 4);
      }
   }

   *pSampler = anv_sampler_to_handle(sampler);

   return VK_SUCCESS;
}