summaryrefslogtreecommitdiff
path: root/src/intel/vulkan/anv_nir_apply_pipeline_layout.c
blob: 3e4f79ae37ee06adf1a580c71e453bda4d404915 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "anv_nir.h"
#include "program/prog_parameter.h"
#include "nir/nir_builder.h"
#include "compiler/brw_nir.h"
#include "util/mesa-sha1.h"
#include "util/set.h"

/* Sampler tables don't actually have a maximum size but we pick one just so
 * that we don't end up emitting too much state on-the-fly.
 */
#define MAX_SAMPLER_TABLE_SIZE 128
#define BINDLESS_OFFSET        255

struct apply_pipeline_layout_state {
   const struct anv_physical_device *pdevice;

   const struct anv_pipeline_layout *layout;
   bool add_bounds_checks;
   nir_address_format desc_addr_format;
   nir_address_format ssbo_addr_format;
   nir_address_format ubo_addr_format;

   /* Place to flag lowered instructions so we don't lower them twice */
   struct set *lowered_instrs;

   bool uses_constants;
   bool has_dynamic_buffers;
   uint8_t constants_offset;
   struct {
      bool desc_buffer_used;
      uint8_t desc_offset;

      uint8_t *use_count;
      uint8_t *surface_offsets;
      uint8_t *sampler_offsets;
   } set[MAX_SETS];
};

static nir_address_format
addr_format_for_desc_type(VkDescriptorType desc_type,
                          struct apply_pipeline_layout_state *state)
{
   switch (desc_type) {
   case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
   case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
      return state->ssbo_addr_format;

   case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
   case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      return state->ubo_addr_format;

   case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
      return state->desc_addr_format;

   default:
      unreachable("Unsupported descriptor type");
   }
}

static void
add_binding(struct apply_pipeline_layout_state *state,
            uint32_t set, uint32_t binding)
{
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &state->layout->set[set].layout->binding[binding];

   if (state->set[set].use_count[binding] < UINT8_MAX)
      state->set[set].use_count[binding]++;

   /* Only flag the descriptor buffer as used if there's actually data for
    * this binding.  This lets us be lazy and call this function constantly
    * without worrying about unnecessarily enabling the buffer.
    */
   if (anv_descriptor_size(bind_layout))
      state->set[set].desc_buffer_used = true;
}

static void
add_deref_src_binding(struct apply_pipeline_layout_state *state, nir_src src)
{
   nir_deref_instr *deref = nir_src_as_deref(src);
   nir_variable *var = nir_deref_instr_get_variable(deref);
   add_binding(state, var->data.descriptor_set, var->data.binding);
}

static void
add_tex_src_binding(struct apply_pipeline_layout_state *state,
                    nir_tex_instr *tex, nir_tex_src_type deref_src_type)
{
   int deref_src_idx = nir_tex_instr_src_index(tex, deref_src_type);
   if (deref_src_idx < 0)
      return;

   add_deref_src_binding(state, tex->src[deref_src_idx].src);
}

static bool
get_used_bindings(UNUSED nir_builder *_b, nir_instr *instr, void *_state)
{
   struct apply_pipeline_layout_state *state = _state;

   switch (instr->type) {
   case nir_instr_type_intrinsic: {
      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
      switch (intrin->intrinsic) {
      case nir_intrinsic_vulkan_resource_index:
         add_binding(state, nir_intrinsic_desc_set(intrin),
                     nir_intrinsic_binding(intrin));
         break;

      case nir_intrinsic_image_deref_load:
      case nir_intrinsic_image_deref_store:
      case nir_intrinsic_image_deref_atomic_add:
      case nir_intrinsic_image_deref_atomic_imin:
      case nir_intrinsic_image_deref_atomic_umin:
      case nir_intrinsic_image_deref_atomic_imax:
      case nir_intrinsic_image_deref_atomic_umax:
      case nir_intrinsic_image_deref_atomic_and:
      case nir_intrinsic_image_deref_atomic_or:
      case nir_intrinsic_image_deref_atomic_xor:
      case nir_intrinsic_image_deref_atomic_exchange:
      case nir_intrinsic_image_deref_atomic_comp_swap:
      case nir_intrinsic_image_deref_size:
      case nir_intrinsic_image_deref_samples:
      case nir_intrinsic_image_deref_load_param_intel:
      case nir_intrinsic_image_deref_load_raw_intel:
      case nir_intrinsic_image_deref_store_raw_intel:
         add_deref_src_binding(state, intrin->src[0]);
         break;

      case nir_intrinsic_load_constant:
         state->uses_constants = true;
         break;

      default:
         break;
      }
      break;
   }
   case nir_instr_type_tex: {
      nir_tex_instr *tex = nir_instr_as_tex(instr);
      add_tex_src_binding(state, tex, nir_tex_src_texture_deref);
      add_tex_src_binding(state, tex, nir_tex_src_sampler_deref);
      break;
   }
   default:
      break;
   }

   return false;
}

static nir_intrinsic_instr *
find_descriptor_for_index_src(nir_src src,
                              struct apply_pipeline_layout_state *state)
{
   nir_intrinsic_instr *intrin = nir_src_as_intrinsic(src);

   while (intrin && intrin->intrinsic == nir_intrinsic_vulkan_resource_reindex)
      intrin = nir_src_as_intrinsic(intrin->src[0]);

   if (!intrin || intrin->intrinsic != nir_intrinsic_vulkan_resource_index)
      return NULL;

   return intrin;
}

static bool
descriptor_has_bti(nir_intrinsic_instr *intrin,
                   struct apply_pipeline_layout_state *state)
{
   assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_index);

   uint32_t set = nir_intrinsic_desc_set(intrin);
   uint32_t binding = nir_intrinsic_binding(intrin);
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &state->layout->set[set].layout->binding[binding];

   uint32_t surface_index;
   if (bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM)
      surface_index = state->set[set].desc_offset;
   else
      surface_index = state->set[set].surface_offsets[binding];

   /* Only lower to a BTI message if we have a valid binding table index. */
   return surface_index < MAX_BINDING_TABLE_SIZE;
}

static nir_address_format
descriptor_address_format(nir_intrinsic_instr *intrin,
                          struct apply_pipeline_layout_state *state)
{
   assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_index);

   uint32_t set = nir_intrinsic_desc_set(intrin);
   uint32_t binding = nir_intrinsic_binding(intrin);
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &state->layout->set[set].layout->binding[binding];

   return addr_format_for_desc_type(bind_layout->type, state);
}

static nir_intrinsic_instr *
nir_deref_find_descriptor(nir_deref_instr *deref,
                          struct apply_pipeline_layout_state *state)
{
   while (1) {
      /* Nothing we will use this on has a variable */
      assert(deref->deref_type != nir_deref_type_var);

      nir_deref_instr *parent = nir_src_as_deref(deref->parent);
      if (!parent)
         break;

      deref = parent;
   }
   assert(deref->deref_type == nir_deref_type_cast);

   nir_intrinsic_instr *intrin = nir_src_as_intrinsic(deref->parent);
   if (!intrin || intrin->intrinsic != nir_intrinsic_load_vulkan_descriptor)
      return false;

   return find_descriptor_for_index_src(intrin->src[0], state);
}

static nir_ssa_def *
build_load_descriptor_mem(nir_builder *b,
                          nir_ssa_def *desc_addr, unsigned desc_offset,
                          unsigned num_components, unsigned bit_size,
                          struct apply_pipeline_layout_state *state)

{
   switch (state->desc_addr_format) {
   case nir_address_format_64bit_global_32bit_offset: {
      nir_ssa_def *base_addr =
         nir_pack_64_2x32(b, nir_channels(b, desc_addr, 0x3));
      nir_ssa_def *offset32 =
         nir_iadd_imm(b, nir_channel(b, desc_addr, 3), desc_offset);

      return nir_load_global_constant_offset(b, num_components, bit_size,
                                             base_addr, offset32,
                                             .align_mul = 8,
                                             .align_offset = desc_offset % 8);
   }

   case nir_address_format_32bit_index_offset: {
      nir_ssa_def *surface_index = nir_channel(b, desc_addr, 0);
      nir_ssa_def *offset32 =
         nir_iadd_imm(b, nir_channel(b, desc_addr, 1), desc_offset);

      return nir_load_ubo(b, num_components, bit_size,
                          surface_index, offset32,
                          .align_mul = 8,
                          .align_offset = desc_offset % 8,
                          .range_base = 0,
                          .range = ~0);
   }

   default:
      unreachable("Unsupported address format");
   }
}

/** Build a Vulkan resource index
 *
 * A "resource index" is the term used by our SPIR-V parser and the relevant
 * NIR intrinsics for a reference into a descriptor set.  It acts much like a
 * deref in NIR except that it accesses opaque descriptors instead of memory.
 *
 * Coming out of SPIR-V, both the resource indices (in the form of
 * vulkan_resource_[re]index intrinsics) and the memory derefs (in the form
 * of nir_deref_instr) use the same vector component/bit size.  The meaning
 * of those values for memory derefs (nir_deref_instr) is given by the
 * nir_address_format associated with the descriptor type.  For resource
 * indices, it's an entirely internal to ANV encoding which describes, in some
 * sense, the address of the descriptor.  Thanks to the NIR/SPIR-V rules, it
 * must be packed into the same size SSA values as a memory address.  For this
 * reason, the actual encoding may depend both on the address format for
 * memory derefs and the descriptor address format.
 *
 * The load_vulkan_descriptor intrinsic exists to provide a transition point
 * between these two forms of derefs: descriptor and memory.
 */
static nir_ssa_def *
build_res_index(nir_builder *b, uint32_t set, uint32_t binding,
                nir_ssa_def *array_index, nir_address_format addr_format,
                struct apply_pipeline_layout_state *state)
{
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &state->layout->set[set].layout->binding[binding];

   uint32_t array_size = bind_layout->array_size;

   switch (addr_format) {
   case nir_address_format_64bit_global_32bit_offset:
   case nir_address_format_64bit_bounded_global: {
      uint32_t set_idx;
      switch (state->desc_addr_format) {
      case nir_address_format_64bit_global_32bit_offset:
         set_idx = set;
         break;

      case nir_address_format_32bit_index_offset:
         assert(state->set[set].desc_offset < MAX_BINDING_TABLE_SIZE);
         set_idx = state->set[set].desc_offset;
         break;

      default:
         unreachable("Unsupported address format");
      }

      assert(bind_layout->dynamic_offset_index < MAX_DYNAMIC_BUFFERS);
      uint32_t dynamic_offset_index = 0xff; /* No dynamic offset */
      if (bind_layout->dynamic_offset_index >= 0) {
         dynamic_offset_index =
            state->layout->set[set].dynamic_offset_start +
            bind_layout->dynamic_offset_index;
      }

      const uint32_t packed = (set_idx << 16) | dynamic_offset_index;

      return nir_vec4(b, nir_imm_int(b, packed),
                         nir_imm_int(b, bind_layout->descriptor_offset),
                         nir_imm_int(b, array_size - 1),
                         array_index);
   }

   case nir_address_format_32bit_index_offset: {
      assert(state->desc_addr_format == nir_address_format_32bit_index_offset);
      if (bind_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
         uint32_t surface_index = state->set[set].desc_offset;
         return nir_imm_ivec2(b, surface_index,
                                 bind_layout->descriptor_offset);
      } else {
         uint32_t surface_index = state->set[set].surface_offsets[binding];
         assert(array_size > 0 && array_size <= UINT16_MAX);
         assert(surface_index <= UINT16_MAX);
         uint32_t packed = ((array_size - 1) << 16) | surface_index;
         return nir_vec2(b, array_index, nir_imm_int(b, packed));
      }
   }

   default:
      unreachable("Unsupported address format");
   }
}

struct res_index_defs {
   nir_ssa_def *set_idx;
   nir_ssa_def *dyn_offset_base;
   nir_ssa_def *desc_offset_base;
   nir_ssa_def *array_index;
};

static struct res_index_defs
unpack_res_index(nir_builder *b, nir_ssa_def *index)
{
   struct res_index_defs defs;

   nir_ssa_def *packed = nir_channel(b, index, 0);
   defs.set_idx = nir_extract_u16(b, packed, nir_imm_int(b, 1));
   defs.dyn_offset_base = nir_extract_u16(b, packed, nir_imm_int(b, 0));

   defs.desc_offset_base = nir_channel(b, index, 1);
   defs.array_index = nir_umin(b, nir_channel(b, index, 2),
                                  nir_channel(b, index, 3));

   return defs;
}

/** Adjust a Vulkan resource index
 *
 * This is the equivalent of nir_deref_type_ptr_as_array for resource indices.
 * For array descriptors, it allows us to adjust the array index.  Thanks to
 * variable pointers, we cannot always fold this re-index operation into the
 * vulkan_resource_index intrinsic and we have to do it based on nothing but
 * the address format.
 */
static nir_ssa_def *
build_res_reindex(nir_builder *b, nir_ssa_def *orig, nir_ssa_def *delta,
                  nir_address_format addr_format)
{
   switch (addr_format) {
   case nir_address_format_64bit_global_32bit_offset:
   case nir_address_format_64bit_bounded_global:
      return nir_vec4(b, nir_channel(b, orig, 0),
                         nir_channel(b, orig, 1),
                         nir_channel(b, orig, 2),
                         nir_iadd(b, nir_channel(b, orig, 3), delta));

   case nir_address_format_32bit_index_offset:
      return nir_vec2(b, nir_iadd(b, nir_channel(b, orig, 0), delta),
                         nir_channel(b, orig, 1));

   default:
      unreachable("Unhandled address format");
   }
}

/** Get the address for a descriptor given its resource index
 *
 * Because of the re-indexing operations, we can't bounds check descriptor
 * array access until we have the final index.  That means we end up doing the
 * bounds check here, if needed.  See unpack_res_index() for more details.
 *
 * This function takes both a bind_layout and a desc_type which are used to
 * determine the descriptor stride for array descriptors.  The bind_layout is
 * optional for buffer descriptor types.
 */
static nir_ssa_def *
build_desc_addr(nir_builder *b,
                const struct anv_descriptor_set_binding_layout *bind_layout,
                const VkDescriptorType desc_type,
                nir_ssa_def *index, nir_address_format addr_format,
                struct apply_pipeline_layout_state *state)
{
   switch (addr_format) {
   case nir_address_format_64bit_global_32bit_offset:
   case nir_address_format_64bit_bounded_global: {
      struct res_index_defs res = unpack_res_index(b, index);

      nir_ssa_def *desc_offset = res.desc_offset_base;
      if (desc_type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
         /* Compute the actual descriptor offset.  For inline uniform blocks,
          * the array index is ignored as they are only allowed to be a single
          * descriptor (not an array) and there is no concept of a "stride".
          *
          * We use the bind_layout, if available, because it provides a more
          * accurate descriptor size.
          */
         const unsigned stride = bind_layout ?
            anv_descriptor_size(bind_layout) :
            anv_descriptor_type_size(state->pdevice, desc_type);

         desc_offset =
            nir_iadd(b, desc_offset, nir_imul_imm(b, res.array_index, stride));
      }

      switch (state->desc_addr_format) {
      case nir_address_format_64bit_global_32bit_offset: {
         nir_ssa_def *base_addr =
            nir_load_desc_set_address_intel(b, res.set_idx);
         return nir_vec4(b, nir_unpack_64_2x32_split_x(b, base_addr),
                            nir_unpack_64_2x32_split_y(b, base_addr),
                            nir_imm_int(b, UINT32_MAX),
                            desc_offset);
      }

      case nir_address_format_32bit_index_offset:
         return nir_vec2(b, res.set_idx, desc_offset);

      default:
         unreachable("Unhandled address format");
      }
   }

   case nir_address_format_32bit_index_offset:
      assert(desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
      assert(state->desc_addr_format == nir_address_format_32bit_index_offset);
      return index;

   default:
      unreachable("Unhandled address format");
   }
}

/** Convert a Vulkan resource index into a buffer address
 *
 * In some cases, this does a  memory load from the descriptor set and, in
 * others, it simply converts from one form to another.
 *
 * See build_res_index for details about each resource index format.
 */
static nir_ssa_def *
build_buffer_addr_for_res_index(nir_builder *b,
                                const VkDescriptorType desc_type,
                                nir_ssa_def *res_index,
                                nir_address_format addr_format,
                                struct apply_pipeline_layout_state *state)
{
   if (desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
      assert(addr_format == state->desc_addr_format);
      return build_desc_addr(b, NULL, desc_type, res_index, addr_format, state);
   } else if (addr_format == nir_address_format_32bit_index_offset) {
      nir_ssa_def *array_index = nir_channel(b, res_index, 0);
      nir_ssa_def *packed = nir_channel(b, res_index, 1);
      nir_ssa_def *array_max = nir_extract_u16(b, packed, nir_imm_int(b, 1));
      nir_ssa_def *surface_index = nir_extract_u16(b, packed, nir_imm_int(b, 0));

      if (state->add_bounds_checks)
         array_index = nir_umin(b, array_index, array_max);

      return nir_vec2(b, nir_iadd(b, surface_index, array_index),
                         nir_imm_int(b, 0));
   }

   nir_ssa_def *desc_addr =
      build_desc_addr(b, NULL, desc_type, res_index, addr_format, state);

   nir_ssa_def *desc = build_load_descriptor_mem(b, desc_addr, 0, 4, 32, state);

   if (state->has_dynamic_buffers) {
      struct res_index_defs res = unpack_res_index(b, res_index);

      /* This shader has dynamic offsets and we have no way of knowing
       * (save from the dynamic offset base index) if this buffer has a
       * dynamic offset.
       */
      nir_ssa_def *dyn_offset_idx =
         nir_iadd(b, res.dyn_offset_base, res.array_index);
      if (state->add_bounds_checks) {
         dyn_offset_idx = nir_umin(b, dyn_offset_idx,
                                      nir_imm_int(b, MAX_DYNAMIC_BUFFERS));
      }

      nir_ssa_def *dyn_load =
         nir_load_push_constant(b, 1, 32, nir_imul_imm(b, dyn_offset_idx, 4),
                                .base = offsetof(struct anv_push_constants, dynamic_offsets),
                                .range = MAX_DYNAMIC_BUFFERS * 4);

      nir_ssa_def *dynamic_offset =
         nir_bcsel(b, nir_ieq_imm(b, res.dyn_offset_base, 0xff),
                      nir_imm_int(b, 0), dyn_load);

      /* The dynamic offset gets added to the base pointer so that we
       * have a sliding window range.
       */
      nir_ssa_def *base_ptr =
         nir_pack_64_2x32(b, nir_channels(b, desc, 0x3));
      base_ptr = nir_iadd(b, base_ptr, nir_u2u64(b, dynamic_offset));
      desc = nir_vec4(b, nir_unpack_64_2x32_split_x(b, base_ptr),
                         nir_unpack_64_2x32_split_y(b, base_ptr),
                         nir_channel(b, desc, 2),
                         nir_channel(b, desc, 3));
   }

   /* The last element of the vec4 is always zero.
    *
    * See also struct anv_address_range_descriptor
    */
   return nir_vec4(b, nir_channel(b, desc, 0),
                      nir_channel(b, desc, 1),
                      nir_channel(b, desc, 2),
                      nir_imm_int(b, 0));
}

/** Loads descriptor memory for a variable-based deref chain
 *
 * The deref chain has to terminate at a variable with a descriptor_set and
 * binding set.  This is used for images, textures, and samplers.
 */
static nir_ssa_def *
build_load_var_deref_descriptor_mem(nir_builder *b, nir_deref_instr *deref,
                                    unsigned desc_offset,
                                    unsigned num_components, unsigned bit_size,
                                    struct apply_pipeline_layout_state *state)
{
   nir_variable *var = nir_deref_instr_get_variable(deref);

   const uint32_t set = var->data.descriptor_set;
   const uint32_t binding = var->data.binding;
   const struct anv_descriptor_set_binding_layout *bind_layout =
         &state->layout->set[set].layout->binding[binding];

   nir_ssa_def *array_index;
   if (deref->deref_type != nir_deref_type_var) {
      assert(deref->deref_type == nir_deref_type_array);
      assert(nir_deref_instr_parent(deref)->deref_type == nir_deref_type_var);
      assert(deref->arr.index.is_ssa);
      array_index = deref->arr.index.ssa;
   } else {
      array_index = nir_imm_int(b, 0);
   }

   /* It doesn't really matter what address format we choose as everything
    * will constant-fold nicely.  Choose one that uses the actual descriptor
    * buffer so we don't run into issues index/offset assumptions.
    */
   const nir_address_format addr_format =
      nir_address_format_64bit_bounded_global;

   nir_ssa_def *res_index =
      build_res_index(b, set, binding, array_index, addr_format, state);

   nir_ssa_def *desc_addr =
      build_desc_addr(b, bind_layout, bind_layout->type,
                      res_index, addr_format, state);

   return build_load_descriptor_mem(b, desc_addr, desc_offset,
                                    num_components, bit_size, state);
}

/** A recursive form of build_res_index()
 *
 * This recursively walks a resource [re]index chain and builds the resource
 * index.  It places the new code with the resource [re]index operation in the
 * hopes of better CSE.  This means the cursor is not where you left it when
 * this function returns.
 */
static nir_ssa_def *
build_res_index_for_chain(nir_builder *b, nir_intrinsic_instr *intrin,
                          nir_address_format addr_format,
                          uint32_t *set, uint32_t *binding,
                          struct apply_pipeline_layout_state *state)
{
   if (intrin->intrinsic == nir_intrinsic_vulkan_resource_index) {
      b->cursor = nir_before_instr(&intrin->instr);
      assert(intrin->src[0].is_ssa);
      *set = nir_intrinsic_desc_set(intrin);
      *binding = nir_intrinsic_binding(intrin);
      return build_res_index(b, *set, *binding, intrin->src[0].ssa,
                             addr_format, state);
   } else {
      assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_reindex);
      nir_intrinsic_instr *parent = nir_src_as_intrinsic(intrin->src[0]);
      nir_ssa_def *index =
         build_res_index_for_chain(b, parent, addr_format,
                                   set, binding, state);

      b->cursor = nir_before_instr(&intrin->instr);

      assert(intrin->src[1].is_ssa);
      return build_res_reindex(b, index, intrin->src[1].ssa, addr_format);
   }
}

/** Builds a buffer address for a given vulkan [re]index intrinsic
 *
 * The cursor is not where you left it when this function returns.
 */
static nir_ssa_def *
build_buffer_addr_for_idx_intrin(nir_builder *b,
                                 nir_intrinsic_instr *idx_intrin,
                                 nir_address_format addr_format,
                                 struct apply_pipeline_layout_state *state)
{
   uint32_t set = UINT32_MAX, binding = UINT32_MAX;
   nir_ssa_def *res_index =
      build_res_index_for_chain(b, idx_intrin, addr_format,
                                &set, &binding, state);

   const struct anv_descriptor_set_binding_layout *bind_layout =
      &state->layout->set[set].layout->binding[binding];

   return build_buffer_addr_for_res_index(b, bind_layout->type,
                                          res_index, addr_format, state);
}

/** Builds a buffer address for deref chain
 *
 * This assumes that you can chase the chain all the way back to the original
 * vulkan_resource_index intrinsic.
 *
 * The cursor is not where you left it when this function returns.
 */
static nir_ssa_def *
build_buffer_addr_for_deref(nir_builder *b, nir_deref_instr *deref,
                            nir_address_format addr_format,
                            struct apply_pipeline_layout_state *state)
{
   nir_deref_instr *parent = nir_deref_instr_parent(deref);
   if (parent) {
      nir_ssa_def *addr =
         build_buffer_addr_for_deref(b, parent, addr_format, state);

      b->cursor = nir_before_instr(&deref->instr);
      return nir_explicit_io_address_from_deref(b, deref, addr, addr_format);
   }

   nir_intrinsic_instr *load_desc = nir_src_as_intrinsic(deref->parent);
   assert(load_desc->intrinsic == nir_intrinsic_load_vulkan_descriptor);

   nir_intrinsic_instr *idx_intrin = nir_src_as_intrinsic(load_desc->src[0]);

   b->cursor = nir_before_instr(&deref->instr);

   return build_buffer_addr_for_idx_intrin(b, idx_intrin, addr_format, state);
}

static bool
try_lower_direct_buffer_intrinsic(nir_builder *b,
                                  nir_intrinsic_instr *intrin, bool is_atomic,
                                  struct apply_pipeline_layout_state *state)
{
   nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
   if (!nir_deref_mode_is_one_of(deref, nir_var_mem_ubo | nir_var_mem_ssbo))
      return false;

   nir_intrinsic_instr *desc = nir_deref_find_descriptor(deref, state);
   if (desc == NULL) {
      /* We should always be able to find the descriptor for UBO access. */
      assert(nir_deref_mode_is_one_of(deref, nir_var_mem_ssbo));
      return false;
   }

   nir_address_format addr_format = descriptor_address_format(desc, state);

   if (nir_deref_mode_is(deref, nir_var_mem_ssbo)) {
      /* 64-bit atomics only support A64 messages so we can't lower them to
       * the index+offset model.
       */
      if (is_atomic && nir_dest_bit_size(intrin->dest) == 64)
         return false;

      /* Normal binding table-based messages can't handle non-uniform access
       * so we have to fall back to A64.
       */
      if (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM)
         return false;

      if (!descriptor_has_bti(desc, state))
         return false;

      /* Rewrite to 32bit_index_offset whenever we can */
      addr_format = nir_address_format_32bit_index_offset;
   } else {
      assert(nir_deref_mode_is(deref, nir_var_mem_ubo));

      /* Rewrite to 32bit_index_offset whenever we can */
      if (descriptor_has_bti(desc, state))
         addr_format = nir_address_format_32bit_index_offset;
   }

   nir_ssa_def *addr =
      build_buffer_addr_for_deref(b, deref, addr_format, state);

   b->cursor = nir_before_instr(&intrin->instr);
   nir_lower_explicit_io_instr(b, intrin, addr, addr_format);

   return true;
}

static bool
lower_direct_buffer_instr(nir_builder *b, nir_instr *instr, void *_state)
{
   struct apply_pipeline_layout_state *state = _state;

   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
   switch (intrin->intrinsic) {
   case nir_intrinsic_load_deref:
   case nir_intrinsic_store_deref:
      return try_lower_direct_buffer_intrinsic(b, intrin, false, state);

   case nir_intrinsic_deref_atomic_add:
   case nir_intrinsic_deref_atomic_imin:
   case nir_intrinsic_deref_atomic_umin:
   case nir_intrinsic_deref_atomic_imax:
   case nir_intrinsic_deref_atomic_umax:
   case nir_intrinsic_deref_atomic_and:
   case nir_intrinsic_deref_atomic_or:
   case nir_intrinsic_deref_atomic_xor:
   case nir_intrinsic_deref_atomic_exchange:
   case nir_intrinsic_deref_atomic_comp_swap:
   case nir_intrinsic_deref_atomic_fmin:
   case nir_intrinsic_deref_atomic_fmax:
   case nir_intrinsic_deref_atomic_fcomp_swap:
      return try_lower_direct_buffer_intrinsic(b, intrin, true, state);

   case nir_intrinsic_get_ssbo_size: {
      /* The get_ssbo_size intrinsic always just takes a
       * index/reindex intrinsic.
       */
      nir_intrinsic_instr *idx_intrin =
         find_descriptor_for_index_src(intrin->src[0], state);
      if (idx_intrin == NULL || !descriptor_has_bti(idx_intrin, state))
         return false;

      b->cursor = nir_before_instr(&intrin->instr);

      /* We just checked that this is a BTI descriptor */
      const nir_address_format addr_format =
         nir_address_format_32bit_index_offset;

      nir_ssa_def *buffer_addr =
         build_buffer_addr_for_idx_intrin(b, idx_intrin, addr_format, state);

      b->cursor = nir_before_instr(&intrin->instr);
      nir_ssa_def *bti = nir_channel(b, buffer_addr, 0);

      nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
                            nir_src_for_ssa(bti));
      _mesa_set_add(state->lowered_instrs, intrin);
      return true;
   }

   default:
      return false;
   }
}

static bool
lower_res_index_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
                          struct apply_pipeline_layout_state *state)
{
   b->cursor = nir_before_instr(&intrin->instr);

   nir_address_format addr_format =
      addr_format_for_desc_type(nir_intrinsic_desc_type(intrin), state);

   assert(intrin->src[0].is_ssa);
   nir_ssa_def *index =
      build_res_index(b, nir_intrinsic_desc_set(intrin),
                         nir_intrinsic_binding(intrin),
                         intrin->src[0].ssa,
                         addr_format, state);

   assert(intrin->dest.is_ssa);
   assert(intrin->dest.ssa.bit_size == index->bit_size);
   assert(intrin->dest.ssa.num_components == index->num_components);
   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, index);
   nir_instr_remove(&intrin->instr);

   return true;
}

static bool
lower_res_reindex_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
                            struct apply_pipeline_layout_state *state)
{
   b->cursor = nir_before_instr(&intrin->instr);

   nir_address_format addr_format =
      addr_format_for_desc_type(nir_intrinsic_desc_type(intrin), state);

   assert(intrin->src[0].is_ssa && intrin->src[1].is_ssa);
   nir_ssa_def *index =
      build_res_reindex(b, intrin->src[0].ssa,
                           intrin->src[1].ssa,
                           addr_format);

   assert(intrin->dest.is_ssa);
   assert(intrin->dest.ssa.bit_size == index->bit_size);
   assert(intrin->dest.ssa.num_components == index->num_components);
   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, index);
   nir_instr_remove(&intrin->instr);

   return true;
}

static bool
lower_load_vulkan_descriptor(nir_builder *b, nir_intrinsic_instr *intrin,
                             struct apply_pipeline_layout_state *state)
{
   b->cursor = nir_before_instr(&intrin->instr);

   const VkDescriptorType desc_type = nir_intrinsic_desc_type(intrin);
   nir_address_format addr_format = addr_format_for_desc_type(desc_type, state);

   assert(intrin->dest.is_ssa);
   nir_foreach_use(src, &intrin->dest.ssa) {
      if (src->parent_instr->type != nir_instr_type_deref)
         continue;

      nir_deref_instr *cast = nir_instr_as_deref(src->parent_instr);
      assert(cast->deref_type == nir_deref_type_cast);
      switch (desc_type) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
         cast->cast.align_mul = ANV_UBO_ALIGNMENT;
         cast->cast.align_offset = 0;
         break;

      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
         cast->cast.align_mul = ANV_SSBO_ALIGNMENT;
         cast->cast.align_offset = 0;
         break;

      default:
         break;
      }
   }

   assert(intrin->src[0].is_ssa);
   nir_ssa_def *desc =
      build_buffer_addr_for_res_index(b, desc_type, intrin->src[0].ssa,
                                      addr_format, state);

   assert(intrin->dest.is_ssa);
   assert(intrin->dest.ssa.bit_size == desc->bit_size);
   assert(intrin->dest.ssa.num_components == desc->num_components);
   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, desc);
   nir_instr_remove(&intrin->instr);

   return true;
}

static bool
lower_get_ssbo_size(nir_builder *b, nir_intrinsic_instr *intrin,
                    struct apply_pipeline_layout_state *state)
{
   if (_mesa_set_search(state->lowered_instrs, intrin))
      return false;

   b->cursor = nir_before_instr(&intrin->instr);

   nir_address_format addr_format =
      addr_format_for_desc_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, state);

   assert(intrin->src[0].is_ssa);
   nir_ssa_def *desc =
      build_buffer_addr_for_res_index(b, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
                                      intrin->src[0].ssa, addr_format, state);

   switch (addr_format) {
   case nir_address_format_64bit_global_32bit_offset:
   case nir_address_format_64bit_bounded_global: {
      nir_ssa_def *size = nir_channel(b, desc, 2);
      nir_ssa_def_rewrite_uses(&intrin->dest.ssa, size);
      nir_instr_remove(&intrin->instr);
      break;
   }

   case nir_address_format_32bit_index_offset:
      /* The binding table index is the first component of the address.  The
       * back-end wants a scalar binding table index source.
       */
      nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
                            nir_src_for_ssa(nir_channel(b, desc, 0)));
      break;

   default:
      unreachable("Unsupported address format");
   }

   return true;
}

static bool
lower_image_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
                      struct apply_pipeline_layout_state *state)
{
   nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
   nir_variable *var = nir_deref_instr_get_variable(deref);

   unsigned set = var->data.descriptor_set;
   unsigned binding = var->data.binding;
   unsigned binding_offset = state->set[set].surface_offsets[binding];

   b->cursor = nir_before_instr(&intrin->instr);

   ASSERTED const bool use_bindless = state->pdevice->has_bindless_images;

   if (intrin->intrinsic == nir_intrinsic_image_deref_load_param_intel) {
      b->cursor = nir_instr_remove(&intrin->instr);

      assert(!use_bindless); /* Otherwise our offsets would be wrong */
      const unsigned param = nir_intrinsic_base(intrin);

      nir_ssa_def *desc =
         build_load_var_deref_descriptor_mem(b, deref, param * 16,
                                             intrin->dest.ssa.num_components,
                                             intrin->dest.ssa.bit_size, state);

      nir_ssa_def_rewrite_uses(&intrin->dest.ssa, desc);
   } else if (binding_offset > MAX_BINDING_TABLE_SIZE) {
      const bool write_only =
         (var->data.access & ACCESS_NON_READABLE) != 0;
      nir_ssa_def *desc =
         build_load_var_deref_descriptor_mem(b, deref, 0, 2, 32, state);
      nir_ssa_def *handle = nir_channel(b, desc, write_only ? 1 : 0);
      nir_rewrite_image_intrinsic(intrin, handle, true);
   } else {
      unsigned array_size =
         state->layout->set[set].layout->binding[binding].array_size;

      nir_ssa_def *index = NULL;
      if (deref->deref_type != nir_deref_type_var) {
         assert(deref->deref_type == nir_deref_type_array);
         index = nir_ssa_for_src(b, deref->arr.index, 1);
         if (state->add_bounds_checks)
            index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
      } else {
         index = nir_imm_int(b, 0);
      }

      index = nir_iadd_imm(b, index, binding_offset);
      nir_rewrite_image_intrinsic(intrin, index, false);
   }

   return true;
}

static bool
lower_load_constant(nir_builder *b, nir_intrinsic_instr *intrin,
                    struct apply_pipeline_layout_state *state)
{
   b->cursor = nir_instr_remove(&intrin->instr);

   /* Any constant-offset load_constant instructions should have been removed
    * by constant folding.
    */
   assert(!nir_src_is_const(intrin->src[0]));
   nir_ssa_def *offset = nir_iadd_imm(b, nir_ssa_for_src(b, intrin->src[0], 1),
                                      nir_intrinsic_base(intrin));

   nir_ssa_def *data;
   if (state->pdevice->use_softpin) {
      unsigned load_size = intrin->dest.ssa.num_components *
                           intrin->dest.ssa.bit_size / 8;
      unsigned load_align = intrin->dest.ssa.bit_size / 8;

      assert(load_size < b->shader->constant_data_size);
      unsigned max_offset = b->shader->constant_data_size - load_size;
      offset = nir_umin(b, offset, nir_imm_int(b, max_offset));

      nir_ssa_def *const_data_base_addr = nir_pack_64_2x32_split(b,
         nir_load_reloc_const_intel(b, ANV_SHADER_RELOC_CONST_DATA_ADDR_LOW),
         nir_load_reloc_const_intel(b, ANV_SHADER_RELOC_CONST_DATA_ADDR_HIGH));

      data = nir_load_global_constant(b, nir_iadd(b, const_data_base_addr,
                                                     nir_u2u64(b, offset)),
                                      load_align,
                                      intrin->dest.ssa.num_components,
                                      intrin->dest.ssa.bit_size);
   } else {
      nir_ssa_def *index = nir_imm_int(b, state->constants_offset);

      data = nir_load_ubo(b, intrin->num_components, intrin->dest.ssa.bit_size,
                          index, offset,
                          .align_mul = intrin->dest.ssa.bit_size / 8,
                          .align_offset =  0,
                          .range_base = nir_intrinsic_base(intrin),
                          .range = nir_intrinsic_range(intrin));
   }

   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, data);

   return true;
}

static void
lower_tex_deref(nir_builder *b, nir_tex_instr *tex,
                nir_tex_src_type deref_src_type,
                unsigned *base_index, unsigned plane,
                struct apply_pipeline_layout_state *state)
{
   int deref_src_idx = nir_tex_instr_src_index(tex, deref_src_type);
   if (deref_src_idx < 0)
      return;

   nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src);
   nir_variable *var = nir_deref_instr_get_variable(deref);

   unsigned set = var->data.descriptor_set;
   unsigned binding = var->data.binding;
   unsigned array_size =
      state->layout->set[set].layout->binding[binding].array_size;

   unsigned binding_offset;
   if (deref_src_type == nir_tex_src_texture_deref) {
      binding_offset = state->set[set].surface_offsets[binding];
   } else {
      assert(deref_src_type == nir_tex_src_sampler_deref);
      binding_offset = state->set[set].sampler_offsets[binding];
   }

   nir_tex_src_type offset_src_type;
   nir_ssa_def *index = NULL;
   if (binding_offset > MAX_BINDING_TABLE_SIZE) {
      const unsigned plane_offset =
         plane * sizeof(struct anv_sampled_image_descriptor);

      nir_ssa_def *desc =
         build_load_var_deref_descriptor_mem(b, deref, plane_offset,
                                             2, 32, state);

      if (deref_src_type == nir_tex_src_texture_deref) {
         offset_src_type = nir_tex_src_texture_handle;
         index = nir_channel(b, desc, 0);
      } else {
         assert(deref_src_type == nir_tex_src_sampler_deref);
         offset_src_type = nir_tex_src_sampler_handle;
         index = nir_channel(b, desc, 1);
      }
   } else {
      if (deref_src_type == nir_tex_src_texture_deref) {
         offset_src_type = nir_tex_src_texture_offset;
      } else {
         assert(deref_src_type == nir_tex_src_sampler_deref);
         offset_src_type = nir_tex_src_sampler_offset;
      }

      *base_index = binding_offset + plane;

      if (deref->deref_type != nir_deref_type_var) {
         assert(deref->deref_type == nir_deref_type_array);

         if (nir_src_is_const(deref->arr.index)) {
            unsigned arr_index = MIN2(nir_src_as_uint(deref->arr.index), array_size - 1);
            struct anv_sampler **immutable_samplers =
               state->layout->set[set].layout->binding[binding].immutable_samplers;
            if (immutable_samplers) {
               /* Array of YCbCr samplers are tightly packed in the binding
                * tables, compute the offset of an element in the array by
                * adding the number of planes of all preceding elements.
                */
               unsigned desc_arr_index = 0;
               for (int i = 0; i < arr_index; i++)
                  desc_arr_index += immutable_samplers[i]->n_planes;
               *base_index += desc_arr_index;
            } else {
               *base_index += arr_index;
            }
         } else {
            /* From VK_KHR_sampler_ycbcr_conversion:
             *
             * If sampler Y’CBCR conversion is enabled, the combined image
             * sampler must be indexed only by constant integral expressions
             * when aggregated into arrays in shader code, irrespective of
             * the shaderSampledImageArrayDynamicIndexing feature.
             */
            assert(nir_tex_instr_src_index(tex, nir_tex_src_plane) == -1);

            index = nir_ssa_for_src(b, deref->arr.index, 1);

            if (state->add_bounds_checks)
               index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
         }
      }
   }

   if (index) {
      nir_instr_rewrite_src(&tex->instr, &tex->src[deref_src_idx].src,
                            nir_src_for_ssa(index));
      tex->src[deref_src_idx].src_type = offset_src_type;
   } else {
      nir_tex_instr_remove_src(tex, deref_src_idx);
   }
}

static uint32_t
tex_instr_get_and_remove_plane_src(nir_tex_instr *tex)
{
   int plane_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_plane);
   if (plane_src_idx < 0)
      return 0;

   unsigned plane = nir_src_as_uint(tex->src[plane_src_idx].src);

   nir_tex_instr_remove_src(tex, plane_src_idx);

   return plane;
}

static nir_ssa_def *
build_def_array_select(nir_builder *b, nir_ssa_def **srcs, nir_ssa_def *idx,
                       unsigned start, unsigned end)
{
   if (start == end - 1) {
      return srcs[start];
   } else {
      unsigned mid = start + (end - start) / 2;
      return nir_bcsel(b, nir_ilt(b, idx, nir_imm_int(b, mid)),
                       build_def_array_select(b, srcs, idx, start, mid),
                       build_def_array_select(b, srcs, idx, mid, end));
   }
}

static void
lower_gen7_tex_swizzle(nir_builder *b, nir_tex_instr *tex, unsigned plane,
                       struct apply_pipeline_layout_state *state)
{
   assert(state->pdevice->info.gen == 7 && !state->pdevice->info.is_haswell);
   if (tex->sampler_dim == GLSL_SAMPLER_DIM_BUF ||
       nir_tex_instr_is_query(tex) ||
       tex->op == nir_texop_tg4 || /* We can't swizzle TG4 */
       (tex->is_shadow && tex->is_new_style_shadow))
      return;

   int deref_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref);
   assert(deref_src_idx >= 0);

   nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src);
   nir_variable *var = nir_deref_instr_get_variable(deref);

   unsigned set = var->data.descriptor_set;
   unsigned binding = var->data.binding;
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &state->layout->set[set].layout->binding[binding];

   if ((bind_layout->data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE) == 0)
      return;

   b->cursor = nir_before_instr(&tex->instr);

   const unsigned plane_offset =
      plane * sizeof(struct anv_texture_swizzle_descriptor);
   nir_ssa_def *swiz =
      build_load_var_deref_descriptor_mem(b, deref, plane_offset,
                                          1, 32, state);

   b->cursor = nir_after_instr(&tex->instr);

   assert(tex->dest.ssa.bit_size == 32);
   assert(tex->dest.ssa.num_components == 4);

   /* Initializing to undef is ok; nir_opt_undef will clean it up. */
   nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
   nir_ssa_def *comps[8];
   for (unsigned i = 0; i < ARRAY_SIZE(comps); i++)
      comps[i] = undef;

   comps[ISL_CHANNEL_SELECT_ZERO] = nir_imm_int(b, 0);
   if (nir_alu_type_get_base_type(tex->dest_type) == nir_type_float)
      comps[ISL_CHANNEL_SELECT_ONE] = nir_imm_float(b, 1);
   else
      comps[ISL_CHANNEL_SELECT_ONE] = nir_imm_int(b, 1);
   comps[ISL_CHANNEL_SELECT_RED] = nir_channel(b, &tex->dest.ssa, 0);
   comps[ISL_CHANNEL_SELECT_GREEN] = nir_channel(b, &tex->dest.ssa, 1);
   comps[ISL_CHANNEL_SELECT_BLUE] = nir_channel(b, &tex->dest.ssa, 2);
   comps[ISL_CHANNEL_SELECT_ALPHA] = nir_channel(b, &tex->dest.ssa, 3);

   nir_ssa_def *swiz_comps[4];
   for (unsigned i = 0; i < 4; i++) {
      nir_ssa_def *comp_swiz = nir_extract_u8(b, swiz, nir_imm_int(b, i));
      swiz_comps[i] = build_def_array_select(b, comps, comp_swiz, 0, 8);
   }
   nir_ssa_def *swiz_tex_res = nir_vec(b, swiz_comps, 4);

   /* Rewrite uses before we insert so we don't rewrite this use */
   nir_ssa_def_rewrite_uses_after(&tex->dest.ssa,
                                  swiz_tex_res,
                                  swiz_tex_res->parent_instr);
}

static bool
lower_tex(nir_builder *b, nir_tex_instr *tex,
          struct apply_pipeline_layout_state *state)
{
   unsigned plane = tex_instr_get_and_remove_plane_src(tex);

   /* On Ivy Bridge and Bay Trail, we have to swizzle in the shader.  Do this
    * before we lower the derefs away so we can still find the descriptor.
    */
   if (state->pdevice->info.gen == 7 && !state->pdevice->info.is_haswell)
      lower_gen7_tex_swizzle(b, tex, plane, state);

   b->cursor = nir_before_instr(&tex->instr);

   lower_tex_deref(b, tex, nir_tex_src_texture_deref,
                   &tex->texture_index, plane, state);

   lower_tex_deref(b, tex, nir_tex_src_sampler_deref,
                   &tex->sampler_index, plane, state);

   return true;
}

static bool
apply_pipeline_layout(nir_builder *b, nir_instr *instr, void *_state)
{
   struct apply_pipeline_layout_state *state = _state;

   switch (instr->type) {
   case nir_instr_type_intrinsic: {
      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
      switch (intrin->intrinsic) {
      case nir_intrinsic_vulkan_resource_index:
         return lower_res_index_intrinsic(b, intrin, state);
      case nir_intrinsic_vulkan_resource_reindex:
         return lower_res_reindex_intrinsic(b, intrin, state);
      case nir_intrinsic_load_vulkan_descriptor:
         return lower_load_vulkan_descriptor(b, intrin, state);
      case nir_intrinsic_get_ssbo_size:
         return lower_get_ssbo_size(b, intrin, state);
      case nir_intrinsic_image_deref_load:
      case nir_intrinsic_image_deref_store:
      case nir_intrinsic_image_deref_atomic_add:
      case nir_intrinsic_image_deref_atomic_imin:
      case nir_intrinsic_image_deref_atomic_umin:
      case nir_intrinsic_image_deref_atomic_imax:
      case nir_intrinsic_image_deref_atomic_umax:
      case nir_intrinsic_image_deref_atomic_and:
      case nir_intrinsic_image_deref_atomic_or:
      case nir_intrinsic_image_deref_atomic_xor:
      case nir_intrinsic_image_deref_atomic_exchange:
      case nir_intrinsic_image_deref_atomic_comp_swap:
      case nir_intrinsic_image_deref_size:
      case nir_intrinsic_image_deref_samples:
      case nir_intrinsic_image_deref_load_param_intel:
      case nir_intrinsic_image_deref_load_raw_intel:
      case nir_intrinsic_image_deref_store_raw_intel:
         return lower_image_intrinsic(b, intrin, state);
      case nir_intrinsic_load_constant:
         return lower_load_constant(b, intrin, state);
      default:
         return false;
      }
      break;
   }
   case nir_instr_type_tex:
      return lower_tex(b, nir_instr_as_tex(instr), state);
   default:
      return false;
   }
}

struct binding_info {
   uint32_t binding;
   uint8_t set;
   uint16_t score;
};

static int
compare_binding_infos(const void *_a, const void *_b)
{
   const struct binding_info *a = _a, *b = _b;
   if (a->score != b->score)
      return b->score - a->score;

   if (a->set != b->set)
      return a->set - b->set;

   return a->binding - b->binding;
}

void
anv_nir_apply_pipeline_layout(const struct anv_physical_device *pdevice,
                              bool robust_buffer_access,
                              const struct anv_pipeline_layout *layout,
                              nir_shader *shader,
                              struct anv_pipeline_bind_map *map)
{
   void *mem_ctx = ralloc_context(NULL);

   struct apply_pipeline_layout_state state = {
      .pdevice = pdevice,
      .layout = layout,
      .add_bounds_checks = robust_buffer_access,
      .desc_addr_format = nir_address_format_32bit_index_offset,
      .ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_buffer_access),
      .ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_buffer_access),
      .lowered_instrs = _mesa_pointer_set_create(mem_ctx),
   };

   for (unsigned s = 0; s < layout->num_sets; s++) {
      const unsigned count = layout->set[s].layout->binding_count;
      state.set[s].use_count = rzalloc_array(mem_ctx, uint8_t, count);
      state.set[s].surface_offsets = rzalloc_array(mem_ctx, uint8_t, count);
      state.set[s].sampler_offsets = rzalloc_array(mem_ctx, uint8_t, count);
   }

   nir_shader_instructions_pass(shader, get_used_bindings,
                                nir_metadata_all, &state);

   for (unsigned s = 0; s < layout->num_sets; s++) {
      if (state.desc_addr_format != nir_address_format_32bit_index_offset) {
         state.set[s].desc_offset = BINDLESS_OFFSET;
      } else if (state.set[s].desc_buffer_used) {
         map->surface_to_descriptor[map->surface_count] =
            (struct anv_pipeline_binding) {
               .set = ANV_DESCRIPTOR_SET_DESCRIPTORS,
               .index = s,
            };
         state.set[s].desc_offset = map->surface_count;
         map->surface_count++;
      }
   }

   if (state.uses_constants && !pdevice->use_softpin) {
      state.constants_offset = map->surface_count;
      map->surface_to_descriptor[map->surface_count].set =
         ANV_DESCRIPTOR_SET_SHADER_CONSTANTS;
      map->surface_count++;
   }

   unsigned used_binding_count = 0;
   for (uint32_t set = 0; set < layout->num_sets; set++) {
      struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
      for (unsigned b = 0; b < set_layout->binding_count; b++) {
         if (state.set[set].use_count[b] == 0)
            continue;

         used_binding_count++;
      }
   }

   struct binding_info *infos =
      rzalloc_array(mem_ctx, struct binding_info, used_binding_count);
   used_binding_count = 0;
   for (uint32_t set = 0; set < layout->num_sets; set++) {
      const struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
      for (unsigned b = 0; b < set_layout->binding_count; b++) {
         if (state.set[set].use_count[b] == 0)
            continue;

         const struct anv_descriptor_set_binding_layout *binding =
               &layout->set[set].layout->binding[b];

         /* Do a fixed-point calculation to generate a score based on the
          * number of uses and the binding array size.  We shift by 7 instead
          * of 8 because we're going to use the top bit below to make
          * everything which does not support bindless super higher priority
          * than things which do.
          */
         uint16_t score = ((uint16_t)state.set[set].use_count[b] << 7) /
                          binding->array_size;

         /* If the descriptor type doesn't support bindless then put it at the
          * beginning so we guarantee it gets a slot.
          */
         if (!anv_descriptor_supports_bindless(pdevice, binding, true) ||
             !anv_descriptor_supports_bindless(pdevice, binding, false))
            score |= 1 << 15;

         infos[used_binding_count++] = (struct binding_info) {
            .set = set,
            .binding = b,
            .score = score,
         };
      }
   }

   /* Order the binding infos based on score with highest scores first.  If
    * scores are equal we then order by set and binding.
    */
   qsort(infos, used_binding_count, sizeof(struct binding_info),
         compare_binding_infos);

   for (unsigned i = 0; i < used_binding_count; i++) {
      unsigned set = infos[i].set, b = infos[i].binding;
      const struct anv_descriptor_set_binding_layout *binding =
            &layout->set[set].layout->binding[b];

      const uint32_t array_size = binding->array_size;

      if (binding->dynamic_offset_index >= 0)
         state.has_dynamic_buffers = true;

      if (binding->data & ANV_DESCRIPTOR_SURFACE_STATE) {
         if (map->surface_count + array_size > MAX_BINDING_TABLE_SIZE ||
             anv_descriptor_requires_bindless(pdevice, binding, false)) {
            /* If this descriptor doesn't fit in the binding table or if it
             * requires bindless for some reason, flag it as bindless.
             */
            assert(anv_descriptor_supports_bindless(pdevice, binding, false));
            state.set[set].surface_offsets[b] = BINDLESS_OFFSET;
         } else {
            state.set[set].surface_offsets[b] = map->surface_count;
            if (binding->dynamic_offset_index < 0) {
               struct anv_sampler **samplers = binding->immutable_samplers;
               for (unsigned i = 0; i < binding->array_size; i++) {
                  uint8_t planes = samplers ? samplers[i]->n_planes : 1;
                  for (uint8_t p = 0; p < planes; p++) {
                     map->surface_to_descriptor[map->surface_count++] =
                        (struct anv_pipeline_binding) {
                           .set = set,
                           .index = binding->descriptor_index + i,
                           .plane = p,
                        };
                  }
               }
            } else {
               for (unsigned i = 0; i < binding->array_size; i++) {
                  map->surface_to_descriptor[map->surface_count++] =
                     (struct anv_pipeline_binding) {
                        .set = set,
                        .index = binding->descriptor_index + i,
                        .dynamic_offset_index =
                           layout->set[set].dynamic_offset_start +
                           binding->dynamic_offset_index + i,
                     };
               }
            }
         }
         assert(map->surface_count <= MAX_BINDING_TABLE_SIZE);
      }

      if (binding->data & ANV_DESCRIPTOR_SAMPLER_STATE) {
         if (map->sampler_count + array_size > MAX_SAMPLER_TABLE_SIZE ||
             anv_descriptor_requires_bindless(pdevice, binding, true)) {
            /* If this descriptor doesn't fit in the binding table or if it
             * requires bindless for some reason, flag it as bindless.
             *
             * We also make large sampler arrays bindless because we can avoid
             * using indirect sends thanks to bindless samplers being packed
             * less tightly than the sampler table.
             */
            assert(anv_descriptor_supports_bindless(pdevice, binding, true));
            state.set[set].sampler_offsets[b] = BINDLESS_OFFSET;
         } else {
            state.set[set].sampler_offsets[b] = map->sampler_count;
            struct anv_sampler **samplers = binding->immutable_samplers;
            for (unsigned i = 0; i < binding->array_size; i++) {
               uint8_t planes = samplers ? samplers[i]->n_planes : 1;
               for (uint8_t p = 0; p < planes; p++) {
                  map->sampler_to_descriptor[map->sampler_count++] =
                     (struct anv_pipeline_binding) {
                        .set = set,
                        .index = binding->descriptor_index + i,
                        .plane = p,
                     };
               }
            }
         }
      }
   }

   nir_foreach_uniform_variable(var, shader) {
      const struct glsl_type *glsl_type = glsl_without_array(var->type);

      if (!glsl_type_is_image(glsl_type))
         continue;

      enum glsl_sampler_dim dim = glsl_get_sampler_dim(glsl_type);

      const uint32_t set = var->data.descriptor_set;
      const uint32_t binding = var->data.binding;
      const struct anv_descriptor_set_binding_layout *bind_layout =
            &layout->set[set].layout->binding[binding];
      const uint32_t array_size = bind_layout->array_size;

      if (state.set[set].use_count[binding] == 0)
         continue;

      if (state.set[set].surface_offsets[binding] >= MAX_BINDING_TABLE_SIZE)
         continue;

      struct anv_pipeline_binding *pipe_binding =
         &map->surface_to_descriptor[state.set[set].surface_offsets[binding]];
      for (unsigned i = 0; i < array_size; i++) {
         assert(pipe_binding[i].set == set);
         assert(pipe_binding[i].index == bind_layout->descriptor_index + i);

         if (dim == GLSL_SAMPLER_DIM_SUBPASS ||
             dim == GLSL_SAMPLER_DIM_SUBPASS_MS)
            pipe_binding[i].input_attachment_index = var->data.index + i;

         /* NOTE: This is a uint8_t so we really do need to != 0 here */
         pipe_binding[i].write_only =
            (var->data.access & ACCESS_NON_READABLE) != 0;
      }
   }

   /* Before we do the normal lowering, we look for any SSBO operations
    * that we can lower to the BTI model and lower them up-front.  The BTI
    * model can perform better than the A64 model for a couple reasons:
    *
    *  1. 48-bit address calculations are potentially expensive and using
    *     the BTI model lets us simply compute 32-bit offsets and the
    *     hardware adds the 64-bit surface base address.
    *
    *  2. The BTI messages, because they use surface states, do bounds
    *     checking for us.  With the A64 model, we have to do our own
    *     bounds checking and this means wider pointers and extra
    *     calculations and branching in the shader.
    *
    * The solution to both of these is to convert things to the BTI model
    * opportunistically.  The reason why we need to do this as a pre-pass
    * is for two reasons:
    *
    *  1. The BTI model requires nir_address_format_32bit_index_offset
    *     pointers which are not the same type as the pointers needed for
    *     the A64 model.  Because all our derefs are set up for the A64
    *     model (in case we have variable pointers), we have to crawl all
    *     the way back to the vulkan_resource_index intrinsic and build a
    *     completely fresh index+offset calculation.
    *
    *  2. Because the variable-pointers-capable lowering that we do as part
    *     of apply_pipeline_layout_block is destructive (It really has to
    *     be to handle variable pointers properly), we've lost the deref
    *     information by the time we get to the load/store/atomic
    *     intrinsics in that pass.
    */
   nir_shader_instructions_pass(shader, lower_direct_buffer_instr,
                                nir_metadata_block_index |
                                nir_metadata_dominance,
                                &state);

   /* We just got rid of all the direct access.  Delete it so it's not in the
    * way when we do our indirect lowering.
    */
   nir_opt_dce(shader);

   nir_shader_instructions_pass(shader, apply_pipeline_layout,
                                nir_metadata_block_index |
                                nir_metadata_dominance,
                                &state);

   ralloc_free(mem_ctx);

   /* Now that we're done computing the surface and sampler portions of the
    * bind map, hash them.  This lets us quickly determine if the actual
    * mapping has changed and not just a no-op pipeline change.
    */
   _mesa_sha1_compute(map->surface_to_descriptor,
                      map->surface_count * sizeof(struct anv_pipeline_binding),
                      map->surface_sha1);
   _mesa_sha1_compute(map->sampler_to_descriptor,
                      map->sampler_count * sizeof(struct anv_pipeline_binding),
                      map->sampler_sha1);
}