summaryrefslogtreecommitdiff
path: root/src/glsl/ast_function.cpp
blob: 6c36a04889eb1f353bf54290afd91762af4f6e21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "glsl_symbol_table.h"
#include "ast.h"
#include "glsl_types.h"
#include "ir.h"
#include "main/macros.h"

static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type);

static unsigned
process_parameters(exec_list *instructions, exec_list *actual_parameters,
		   exec_list *parameters,
		   struct _mesa_glsl_parse_state *state)
{
   unsigned count = 0;

   foreach_list (n, parameters) {
      ast_node *const ast = exec_node_data(ast_node, n, link);
      ir_rvalue *result = ast->hir(instructions, state);

      ir_constant *const constant = result->constant_expression_value();
      if (constant != NULL)
	 result = constant;

      actual_parameters->push_tail(result);
      count++;
   }

   return count;
}


/**
 * Generate a source prototype for a function signature
 *
 * \param return_type Return type of the function.  May be \c NULL.
 * \param name        Name of the function.
 * \param parameters  Parameter list for the function.  This may be either a
 *                    formal or actual parameter list.  Only the type is used.
 *
 * \return
 * A talloced string representing the prototype of the function.
 */
char *
prototype_string(const glsl_type *return_type, const char *name,
		 exec_list *parameters)
{
   char *str = NULL;

   if (return_type != NULL)
      str = talloc_asprintf(str, "%s ", return_type->name);

   str = talloc_asprintf_append(str, "%s(", name);

   const char *comma = "";
   foreach_list(node, parameters) {
      const ir_instruction *const param = (ir_instruction *) node;

      str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
      comma = ", ";
   }

   str = talloc_strdup_append(str, ")");
   return str;
}


static ir_rvalue *
process_call(exec_list *instructions, ir_function *f,
	     YYLTYPE *loc, exec_list *actual_parameters,
	     struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   ir_function_signature *sig = f->matching_signature(actual_parameters);

   /* The instructions param will be used when the FINISHMEs below are done */
   (void) instructions;

   if (sig != NULL) {
      /* Verify that 'out' and 'inout' actual parameters are lvalues.  This
       * isn't done in ir_function::matching_signature because that function
       * cannot generate the necessary diagnostics.
       */
      exec_list_iterator actual_iter = actual_parameters->iterator();
      exec_list_iterator formal_iter = sig->parameters.iterator();

      while (actual_iter.has_next()) {
	 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
	 ir_variable *formal = (ir_variable *) formal_iter.get();

	 assert(actual != NULL);
	 assert(formal != NULL);

	 if ((formal->mode == ir_var_out)
	     || (formal->mode == ir_var_inout)) {
	    if (! actual->is_lvalue()) {
	       /* FINISHME: Log a better diagnostic here.  There is no way
		* FINISHME: to tell the user which parameter is invalid.
		*/
	       _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
				(formal->mode == ir_var_out) ? "out" : "inout");
	    }
	 }

	 if (formal->type->is_numeric() || formal->type->is_boolean()) {
	    ir_rvalue *converted = convert_component(actual, formal->type);
	    actual->replace_with(converted);
	 }

	 actual_iter.next();
	 formal_iter.next();
      }

      /* Always insert the call in the instruction stream, and return a deref
       * of its return val if it returns a value, since we don't know if
       * the rvalue is going to be assigned to anything or not.
       */
      ir_call *call = new(ctx) ir_call(sig, actual_parameters);
      if (!sig->return_type->is_void()) {
	 ir_variable *var;
	 ir_dereference_variable *deref;

	 var = new(ctx) ir_variable(sig->return_type,
				    talloc_asprintf(ctx, "%s_retval",
						    sig->function_name()),
				    ir_var_temporary);
	 instructions->push_tail(var);

	 deref = new(ctx) ir_dereference_variable(var);
	 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
	 instructions->push_tail(assign);
	 if (state->language_version >= 120)
	    var->constant_value = call->constant_expression_value();

	 deref = new(ctx) ir_dereference_variable(var);
	 return deref;
      } else {
	 instructions->push_tail(call);
	 return NULL;
      }
   } else {
      char *str = prototype_string(NULL, f->name, actual_parameters);

      _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
		       str);
      talloc_free(str);

      const char *prefix = "candidates are: ";
      foreach_list (node, &f->signatures) {
	 ir_function_signature *sig = (ir_function_signature *) node;

	 str = prototype_string(sig->return_type, f->name, &sig->parameters);
	 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
	 talloc_free(str);

	 prefix = "                ";
      }

      return ir_call::get_error_instruction(ctx);
   }
}


static ir_rvalue *
match_function_by_name(exec_list *instructions, const char *name,
		       YYLTYPE *loc, exec_list *actual_parameters,
		       struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   ir_function *f = state->symbols->get_function(name);

   if (f == NULL) {
      _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
      return ir_call::get_error_instruction(ctx);
   }

   /* Once we've determined that the function being called might exist, try
    * to find an overload of the function that matches the parameters.
    */
   return process_call(instructions, f, loc, actual_parameters, state);
}


/**
 * Perform automatic type conversion of constructor parameters
 *
 * This implements the rules in the "Conversion and Scalar Constructors"
 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
 */
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type)
{
   void *ctx = talloc_parent(src);
   const unsigned a = desired_type->base_type;
   const unsigned b = src->type->base_type;
   ir_expression *result = NULL;

   if (src->type->is_error())
      return src;

   assert(a <= GLSL_TYPE_BOOL);
   assert(b <= GLSL_TYPE_BOOL);

   if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
      return src;

   switch (a) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
      if (b == GLSL_TYPE_FLOAT)
	 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
      else {
	 assert(b == GLSL_TYPE_BOOL);
	 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
      }
      break;
   case GLSL_TYPE_FLOAT:
      switch (b) {
      case GLSL_TYPE_UINT:
	 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
	 break;
      case GLSL_TYPE_INT:
	 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
	 break;
      case GLSL_TYPE_BOOL:
	 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
	 break;
      }
      break;
   case GLSL_TYPE_BOOL:
      switch (b) {
      case GLSL_TYPE_UINT:
      case GLSL_TYPE_INT:
	 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
	 break;
      case GLSL_TYPE_FLOAT:
	 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
	 break;
      }
      break;
   }

   assert(result != NULL);

   /* Try constant folding; it may fold in the conversion we just added. */
   ir_constant *const constant = result->constant_expression_value();
   return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
}

/**
 * Dereference a specific component from a scalar, vector, or matrix
 */
static ir_rvalue *
dereference_component(ir_rvalue *src, unsigned component)
{
   void *ctx = talloc_parent(src);
   assert(component < src->type->components());

   /* If the source is a constant, just create a new constant instead of a
    * dereference of the existing constant.
    */
   ir_constant *constant = src->as_constant();
   if (constant)
      return new(ctx) ir_constant(constant, component);

   if (src->type->is_scalar()) {
      return src;
   } else if (src->type->is_vector()) {
      return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
   } else {
      assert(src->type->is_matrix());

      /* Dereference a row of the matrix, then call this function again to get
       * a specific element from that row.
       */
      const int c = component / src->type->column_type()->vector_elements;
      const int r = component % src->type->column_type()->vector_elements;
      ir_constant *const col_index = new(ctx) ir_constant(c);
      ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);

      col->type = src->type->column_type();

      return dereference_component(col, r);
   }

   assert(!"Should not get here.");
   return NULL;
}


static ir_rvalue *
process_array_constructor(exec_list *instructions,
			  const glsl_type *constructor_type,
			  YYLTYPE *loc, exec_list *parameters,
			  struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   /* Array constructors come in two forms: sized and unsized.  Sized array
    * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
    * variables.  In this case the number of parameters must exactly match the
    * specified size of the array.
    *
    * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
    * are vec4 variables.  In this case the size of the array being constructed
    * is determined by the number of parameters.
    *
    * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
    *
    *    "There must be exactly the same number of arguments as the size of
    *    the array being constructed. If no size is present in the
    *    constructor, then the array is explicitly sized to the number of
    *    arguments provided. The arguments are assigned in order, starting at
    *    element 0, to the elements of the constructed array. Each argument
    *    must be the same type as the element type of the array, or be a type
    *    that can be converted to the element type of the array according to
    *    Section 4.1.10 "Implicit Conversions.""
    */
   exec_list actual_parameters;
   const unsigned parameter_count =
      process_parameters(instructions, &actual_parameters, parameters, state);

   if ((parameter_count == 0)
       || ((constructor_type->length != 0)
	   && (constructor_type->length != parameter_count))) {
      const unsigned min_param = (constructor_type->length == 0)
	 ? 1 : constructor_type->length;

      _mesa_glsl_error(loc, state, "array constructor must have %s %u "
		       "parameter%s",
		       (constructor_type->length != 0) ? "at least" : "exactly",
		       min_param, (min_param <= 1) ? "" : "s");
      return ir_call::get_error_instruction(ctx);
   }

   if (constructor_type->length == 0) {
      constructor_type =
	 glsl_type::get_array_instance(constructor_type->element_type(),
				       parameter_count);
      assert(constructor_type != NULL);
      assert(constructor_type->length == parameter_count);
   }

   bool all_parameters_are_constant = true;

   /* Type cast each parameter and, if possible, fold constants. */
   foreach_list_safe(n, &actual_parameters) {
      ir_rvalue *ir = (ir_rvalue *) n;
      ir_rvalue *result = ir;

      /* Apply implicit conversions (not the scalar constructor rules!) */
      if (constructor_type->element_type()->is_float()) {
	 const glsl_type *desired_type =
	    glsl_type::get_instance(GLSL_TYPE_FLOAT,
				    ir->type->vector_elements,
				    ir->type->matrix_columns);
	 result = convert_component(ir, desired_type);
      }

      if (result->type != constructor_type->element_type()) {
	 _mesa_glsl_error(loc, state, "type error in array constructor: "
			  "expected: %s, found %s",
			  constructor_type->element_type()->name,
			  result->type->name);
      }

      /* Attempt to convert the parameter to a constant valued expression.
       * After doing so, track whether or not all the parameters to the
       * constructor are trivially constant valued expressions.
       */
      ir_rvalue *const constant = result->constant_expression_value();

      if (constant != NULL)
         result = constant;
      else
         all_parameters_are_constant = false;

      ir->replace_with(result);
   }

   if (all_parameters_are_constant)
      return new(ctx) ir_constant(constructor_type, &actual_parameters);

   ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
					   ir_var_temporary);
   instructions->push_tail(var);

   int i = 0;
   foreach_list(node, &actual_parameters) {
      ir_rvalue *rhs = (ir_rvalue *) node;
      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
						     new(ctx) ir_constant(i));

      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
      instructions->push_tail(assignment);

      i++;
   }

   return new(ctx) ir_dereference_variable(var);
}


/**
 * Try to convert a record constructor to a constant expression
 */
static ir_constant *
constant_record_constructor(const glsl_type *constructor_type,
			    YYLTYPE *loc, exec_list *parameters,
			    struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   bool all_parameters_are_constant = true;

   exec_node *node = parameters->head;
   for (unsigned i = 0; i < constructor_type->length; i++) {
      ir_instruction *ir = (ir_instruction *) node;

      if (node->is_tail_sentinel()) {
	 _mesa_glsl_error(loc, state,
			  "insufficient parameters to constructor for `%s'",
			  constructor_type->name);
	 return NULL;
      }

      if (ir->type != constructor_type->fields.structure[i].type) {
	 _mesa_glsl_error(loc, state,
			  "parameter type mismatch in constructor for `%s' "
			  " (%s vs %s)",
			  constructor_type->name,
			  ir->type->name,
			  constructor_type->fields.structure[i].type->name);
	 return NULL;
      }

      if (ir->as_constant() == NULL)
	 all_parameters_are_constant = false;

      node = node->next;
   }

   if (!all_parameters_are_constant)
      return NULL;

   return new(ctx) ir_constant(constructor_type, parameters);
}


/**
 * Generate data for a constant matrix constructor w/a single scalar parameter
 *
 * Matrix constructors in GLSL can be passed a single scalar of the
 * approriate type.  In these cases, the resulting matrix is the identity
 * matrix multipled by the specified scalar.  This function generates data for
 * that matrix.
 *
 * \param type         Type of the desired matrix.
 * \param initializer  Scalar value used to initialize the matrix diagonal.
 * \param data         Location to store the resulting matrix.
 */
void
generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
			    ir_constant_data *data)
{
   switch (type->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
      for (unsigned i = 0; i < type->components(); i++)
	 data->u[i] = 0;

      for (unsigned i = 0; i < type->matrix_columns; i++) {
	 /* The array offset of the ith row and column of the matrix.
	  */
	 const unsigned idx = (i * type->vector_elements) + i;

	 data->u[idx] = initializer->value.u[0];
      }
      break;

   case GLSL_TYPE_FLOAT:
      for (unsigned i = 0; i < type->components(); i++)
	 data->f[i] = 0;

      for (unsigned i = 0; i < type->matrix_columns; i++) {
	 /* The array offset of the ith row and column of the matrix.
	  */
	 const unsigned idx = (i * type->vector_elements) + i;

	 data->f[idx] = initializer->value.f[0];
      }

      break;

   default:
      assert(!"Should not get here.");
      break;
   }
}


/**
 * Generate data for a constant vector constructor w/a single scalar parameter
 *
 * Vector constructors in GLSL can be passed a single scalar of the
 * approriate type.  In these cases, the resulting vector contains the specified
 * value in all components.  This function generates data for that vector.
 *
 * \param type         Type of the desired vector.
 * \param initializer  Scalar value used to initialize the vector.
 * \param data         Location to store the resulting vector data.
 */
void
generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
			    ir_constant_data *data)
{
   switch (type->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
      for (unsigned i = 0; i < type->components(); i++)
	 data->u[i] = initializer->value.u[0];

      break;

   case GLSL_TYPE_FLOAT:
      for (unsigned i = 0; i < type->components(); i++)
	 data->f[i] = initializer->value.f[0];

      break;

   case GLSL_TYPE_BOOL:
      for (unsigned i = 0; i < type->components(); i++)
	 data->b[i] = initializer->value.b[0];

      break;

   default:
      assert(!"Should not get here.");
      break;
   }
}


/**
 * Determine if a list consists of a single scalar r-value
 */
bool
single_scalar_parameter(exec_list *parameters)
{
   const ir_rvalue *const p = (ir_rvalue *) parameters->head;
   assert(((ir_rvalue *)p)->as_rvalue() != NULL);

   return (p->type->is_scalar() && p->next->is_tail_sentinel());
}


/**
 * Generate inline code for a vector constructor
 *
 * The generated constructor code will consist of a temporary variable
 * declaration of the same type as the constructor.  A sequence of assignments
 * from constructor parameters to the temporary will follow.
 *
 * \return
 * An \c ir_dereference_variable of the temprorary generated in the constructor
 * body.
 */
ir_rvalue *
emit_inline_vector_constructor(const glsl_type *type,
			       exec_list *instructions,
			       exec_list *parameters,
			       void *ctx)
{
   assert(!parameters->is_empty());

   ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
   instructions->push_tail(var);

   /* There are two kinds of vector constructors.
    *
    *  - Construct a vector from a single scalar by replicating that scalar to
    *    all components of the vector.
    *
    *  - Construct a vector from an arbirary combination of vectors and
    *    scalars.  The components of the constructor parameters are assigned
    *    to the vector in order until the vector is full.
    */
   const unsigned lhs_components = type->components();
   if (single_scalar_parameter(parameters)) {
      ir_rvalue *first_param = (ir_rvalue *)parameters->head;
      ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
					   lhs_components);
      ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
      const unsigned mask = (1U << lhs_components) - 1;

      assert(rhs->type == lhs->type);

      ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
      instructions->push_tail(inst);
   } else {
      unsigned base_component = 0;
      foreach_list(node, parameters) {
	 ir_rvalue *param = (ir_rvalue *) node;
	 unsigned rhs_components = param->type->components();

	 /* Do not try to assign more components to the vector than it has!
	  */
	 if ((rhs_components + base_component) > lhs_components) {
	    rhs_components = lhs_components - base_component;
	 }

	 /* Generate a swizzle that puts the first element of the source at
	  * the location of the first element of the destination.
	  */
	 unsigned swiz[4] = { 0, 0, 0, 0 };
	 for (unsigned i = 0; i < rhs_components; i++)
	    swiz[i + base_component] = i;

	 /* Mask of fields to be written in the assignment.
	  */
	 const unsigned write_mask = ((1U << rhs_components) - 1)
	    << base_component;

	 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
	 ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, lhs_components);

	 ir_instruction *inst =
	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
	 instructions->push_tail(inst);

	 /* Advance the component index by the number of components that were
	  * just assigned.
	  */
	 base_component += rhs_components;
      }
   }
   return new(ctx) ir_dereference_variable(var);
}


/**
 * Generate assignment of a portion of a vector to a portion of a matrix column
 *
 * \param src_base  First component of the source to be used in assignment
 * \param column    Column of destination to be assiged
 * \param row_base  First component of the destination column to be assigned
 * \param count     Number of components to be assigned
 *
 * \note
 * \c src_base + \c count must be less than or equal to the number of components
 * in the source vector.
 */
ir_instruction *
assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
			ir_rvalue *src, unsigned src_base, unsigned count,
			void *mem_ctx)
{
   ir_constant *col_idx = new(mem_ctx) ir_constant(column);
   ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);

   assert(column_ref->type->components() >= (row_base + count));
   assert(src->type->components() >= (src_base + count));

   /* Generate a swizzle that puts the first element of the source at the
    * location of the first element of the destination.
    */
   unsigned swiz[4] = { src_base, src_base, src_base, src_base };
   for (unsigned i = 0; i < count; i++)
      swiz[i + row_base] = src_base + i;

   ir_rvalue *const rhs =
      new(mem_ctx) ir_swizzle(src, swiz, column_ref->type->components());

   /* Mask of fields to be written in the assignment.
    */
   const unsigned write_mask = ((1U << count) - 1) << row_base;

   return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
}


/**
 * Generate inline code for a matrix constructor
 *
 * The generated constructor code will consist of a temporary variable
 * declaration of the same type as the constructor.  A sequence of assignments
 * from constructor parameters to the temporary will follow.
 *
 * \return
 * An \c ir_dereference_variable of the temprorary generated in the constructor
 * body.
 */
ir_rvalue *
emit_inline_matrix_constructor(const glsl_type *type,
			       exec_list *instructions,
			       exec_list *parameters,
			       void *ctx)
{
   assert(!parameters->is_empty());

   ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
   instructions->push_tail(var);

   /* There are three kinds of matrix constructors.
    *
    *  - Construct a matrix from a single scalar by replicating that scalar to
    *    along the diagonal of the matrix and setting all other components to
    *    zero.
    *
    *  - Construct a matrix from an arbirary combination of vectors and
    *    scalars.  The components of the constructor parameters are assigned
    *    to the matrix in colum-major order until the matrix is full.
    *
    *  - Construct a matrix from a single matrix.  The source matrix is copied
    *    to the upper left portion of the constructed matrix, and the remaining
    *    elements take values from the identity matrix.
    */
   ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
   if (single_scalar_parameter(parameters)) {
      /* Assign the scalar to the X component of a vec4, and fill the remaining
       * components with zero.
       */
      ir_variable *rhs_var =
	 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
			      ir_var_temporary);
      instructions->push_tail(rhs_var);

      ir_constant_data zero;
      zero.f[0] = 0.0;
      zero.f[1] = 0.0;
      zero.f[2] = 0.0;
      zero.f[3] = 0.0;

      ir_instruction *inst =
	 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
				new(ctx) ir_constant(rhs_var->type, &zero),
				NULL);
      instructions->push_tail(inst);

      ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);

      inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
      instructions->push_tail(inst);

      /* Assign the temporary vector to each column of the destination matrix
       * with a swizzle that puts the X component on the diagonal of the
       * matrix.  In some cases this may mean that the X component does not
       * get assigned into the column at all (i.e., when the matrix has more
       * columns than rows).
       */
      static const unsigned rhs_swiz[4][4] = {
	 { 0, 1, 1, 1 },
	 { 1, 0, 1, 1 },
	 { 1, 1, 0, 1 },
	 { 1, 1, 1, 0 }
      };

      const unsigned cols_to_init = MIN2(type->matrix_columns,
					 type->vector_elements);
      for (unsigned i = 0; i < cols_to_init; i++) {
	 ir_constant *const col_idx = new(ctx) ir_constant(i);
	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);

	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
						    type->vector_elements);

	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
	 instructions->push_tail(inst);
      }

      for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
	 ir_constant *const col_idx = new(ctx) ir_constant(i);
	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);

	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
						    type->vector_elements);

	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
	 instructions->push_tail(inst);
      }
   } else if (first_param->type->is_matrix()) {
      /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
       *
       *     "If a matrix is constructed from a matrix, then each component
       *     (column i, row j) in the result that has a corresponding
       *     component (column i, row j) in the argument will be initialized
       *     from there. All other components will be initialized to the
       *     identity matrix. If a matrix argument is given to a matrix
       *     constructor, it is an error to have any other arguments."
       */
      assert(first_param->next->is_tail_sentinel());
      ir_rvalue *const src_matrix = first_param;

      /* If the source matrix is smaller, pre-initialize the relavent parts of
       * the destination matrix to the identity matrix.
       */
      if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
	  || (src_matrix->type->vector_elements < var->type->vector_elements)) {

	 /* If the source matrix has fewer rows, every column of the destination
	  * must be initialized.  Otherwise only the columns in the destination
	  * that do not exist in the source must be initialized.
	  */
	 unsigned col =
	    (src_matrix->type->vector_elements < var->type->vector_elements)
	    ? 0 : src_matrix->type->matrix_columns;

	 const glsl_type *const col_type = var->type->column_type();
	 for (/* empty */; col < var->type->matrix_columns; col++) {
	    ir_constant_data ident;

	    ident.f[0] = 0.0;
	    ident.f[1] = 0.0;
	    ident.f[2] = 0.0;
	    ident.f[3] = 0.0;

	    ident.f[col] = 1.0;

	    ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);

	    ir_rvalue *const lhs =
	       new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));

	    ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
	    instructions->push_tail(inst);
	 }
      }

      /* Assign columns from the source matrix to the destination matrix.
       *
       * Since the parameter will be used in the RHS of multiple assignments,
       * generate a temporary and copy the paramter there.
       */
      ir_variable *const rhs_var =
	 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
			      ir_var_temporary);
      instructions->push_tail(rhs_var);

      ir_dereference *const rhs_var_ref =
	 new(ctx) ir_dereference_variable(rhs_var);
      ir_instruction *const inst =
	 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
      instructions->push_tail(inst);


      unsigned swiz[4] = { 0, 0, 0, 0 };
      for (unsigned i = 1; i < src_matrix->type->vector_elements; i++)
	 swiz[i] = i;

      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
				     var->type->matrix_columns);
      const unsigned write_mask = (1U << var->type->vector_elements) - 1;

      for (unsigned i = 0; i < last_col; i++) {
	 ir_dereference *const lhs =
	    new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
	 ir_rvalue *const rhs_col =
	    new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));

	 /* If one matrix has columns that are smaller than the columns of the
	  * other matrix, wrap the column access of the larger with a swizzle
	  * so that the LHS and RHS of the assignment have the same size (and
	  * therefore have the same type).
	  *
	  * It would be perfectly valid to unconditionally generate the
	  * swizzles, this this will typically result in a more compact IR tree.
	  */
	 ir_rvalue *rhs;
	 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
	    rhs = new(ctx) ir_swizzle(rhs_col, swiz,
				      lhs->type->vector_elements);
	 } else {
	    rhs = rhs_col;
	 }

	 assert(lhs->type == rhs->type);

	 ir_instruction *inst =
	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
	 instructions->push_tail(inst);
      }
   } else {
      const unsigned rows = type->matrix_columns;
      const unsigned cols = type->vector_elements;
      unsigned col_idx = 0;
      unsigned row_idx = 0;

      foreach_list (node, parameters) {
	 ir_rvalue *const rhs = (ir_rvalue *) node;
	 const unsigned components_remaining_this_column = rows - row_idx;
	 unsigned rhs_components = rhs->type->components();
	 unsigned rhs_base = 0;

	 /* Since the parameter might be used in the RHS of two assignments,
	  * generate a temporary and copy the paramter there.
	  */
	 ir_variable *rhs_var =
	    new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
	 instructions->push_tail(rhs_var);

	 ir_dereference *rhs_var_ref =
	    new(ctx) ir_dereference_variable(rhs_var);
	 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
	 instructions->push_tail(inst);

	 /* Assign the current parameter to as many components of the matrix
	  * as it will fill.
	  *
	  * NOTE: A single vector parameter can span two matrix columns.  A
	  * single vec4, for example, can completely fill a mat2.
	  */
	 if (rhs_components >= components_remaining_this_column) {
	    const unsigned count = MIN2(rhs_components,
					components_remaining_this_column);

	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);

	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
							   row_idx,
							   rhs_var_ref, 0,
							   count, ctx);
	    instructions->push_tail(inst);

	    rhs_base = count;

	    col_idx++;
	    row_idx = 0;
	 }

	 /* If there is data left in the parameter and components left to be
	  * set in the destination, emit another assignment.  It is possible
	  * that the assignment could be of a vec4 to the last element of the
	  * matrix.  In this case col_idx==cols, but there is still data
	  * left in the source parameter.  Obviously, don't emit an assignment
	  * to data outside the destination matrix.
	  */
	 if ((col_idx < cols) && (rhs_base < rhs_components)) {
	    const unsigned count = rhs_components - rhs_base;

	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);

	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
							   row_idx,
							   rhs_var_ref,
							   rhs_base,
							   count, ctx);
	    instructions->push_tail(inst);

	    row_idx += count;
	 }
      }
   }

   return new(ctx) ir_dereference_variable(var);
}


ir_rvalue *
ast_function_expression::hir(exec_list *instructions,
			     struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   /* There are three sorts of function calls.
    *
    * 1. constructors - The first subexpression is an ast_type_specifier.
    * 2. methods - Only the .length() method of array types.
    * 3. functions - Calls to regular old functions.
    *
    * Method calls are actually detected when the ast_field_selection
    * expression is handled.
    */
   if (is_constructor()) {
      const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
      YYLTYPE loc = type->get_location();
      const char *name;

      const glsl_type *const constructor_type = type->glsl_type(& name, state);


      /* Constructors for samplers are illegal.
       */
      if (constructor_type->is_sampler()) {
	 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
			  constructor_type->name);
	 return ir_call::get_error_instruction(ctx);
      }

      if (constructor_type->is_array()) {
	 if (state->language_version <= 110) {
	    _mesa_glsl_error(& loc, state,
			     "array constructors forbidden in GLSL 1.10");
	    return ir_call::get_error_instruction(ctx);
	 }

	 return process_array_constructor(instructions, constructor_type,
					  & loc, &this->expressions, state);
      }

      /* There are two kinds of constructor call.  Constructors for built-in
       * language types, such as mat4 and vec2, are free form.  The only
       * requirement is that the parameters must provide enough values of the
       * correct scalar type.  Constructors for arrays and structures must
       * have the exact number of parameters with matching types in the
       * correct order.  These constructors follow essentially the same type
       * matching rules as functions.
       */
      if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
	 return ir_call::get_error_instruction(ctx);

      /* Total number of components of the type being constructed. */
      const unsigned type_components = constructor_type->components();

      /* Number of components from parameters that have actually been
       * consumed.  This is used to perform several kinds of error checking.
       */
      unsigned components_used = 0;

      unsigned matrix_parameters = 0;
      unsigned nonmatrix_parameters = 0;
      exec_list actual_parameters;

      foreach_list (n, &this->expressions) {
	 ast_node *ast = exec_node_data(ast_node, n, link);
	 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();

	 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
	  *
	  *    "It is an error to provide extra arguments beyond this
	  *    last used argument."
	  */
	 if (components_used >= type_components) {
	    _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
			     "constructor",
			     constructor_type->name);
	    return ir_call::get_error_instruction(ctx);
	 }

	 if (!result->type->is_numeric() && !result->type->is_boolean()) {
	    _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
			     "non-numeric data type",
			     constructor_type->name);
	    return ir_call::get_error_instruction(ctx);
	 }

	 /* Count the number of matrix and nonmatrix parameters.  This
	  * is used below to enforce some of the constructor rules.
	  */
	 if (result->type->is_matrix())
	    matrix_parameters++;
	 else
	    nonmatrix_parameters++;

	 actual_parameters.push_tail(result);
	 components_used += result->type->components();
      }

      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
       *
       *    "It is an error to construct matrices from other matrices. This
       *    is reserved for future use."
       */
      if ((state->language_version <= 110) && (matrix_parameters > 0)
	  && constructor_type->is_matrix()) {
	 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
			  "matrix in GLSL 1.10",
			  constructor_type->name);
	 return ir_call::get_error_instruction(ctx);
      }

      /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
       *
       *    "If a matrix argument is given to a matrix constructor, it is
       *    an error to have any other arguments."
       */
      if ((matrix_parameters > 0)
	  && ((matrix_parameters + nonmatrix_parameters) > 1)
	  && constructor_type->is_matrix()) {
	 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
			  "matrix must be only parameter",
			  constructor_type->name);
	 return ir_call::get_error_instruction(ctx);
      }

      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
       *
       *    "In these cases, there must be enough components provided in the
       *    arguments to provide an initializer for every component in the
       *    constructed value."
       */
      if ((components_used < type_components) && (components_used != 1)) {
	 _mesa_glsl_error(& loc, state, "too few components to construct "
			  "`%s'",
			  constructor_type->name);
	 return ir_call::get_error_instruction(ctx);
      }

      /* Later, we cast each parameter to the same base type as the
       * constructor.  Since there are no non-floating point matrices, we
       * need to break them up into a series of column vectors.
       */
      if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
	 foreach_list_safe(n, &actual_parameters) {
	    ir_rvalue *matrix = (ir_rvalue *) n;

	    if (!matrix->type->is_matrix())
	       continue;

	    /* Create a temporary containing the matrix. */
	    ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
						    ir_var_temporary);
	    instructions->push_tail(var);
	    instructions->push_tail(new(ctx) ir_assignment(new(ctx)
	       ir_dereference_variable(var), matrix, NULL));
	    var->constant_value = matrix->constant_expression_value();

	    /* Replace the matrix with dereferences of its columns. */
	    for (int i = 0; i < matrix->type->matrix_columns; i++) {
	       matrix->insert_before(new (ctx) ir_dereference_array(var,
		  new(ctx) ir_constant(i)));
	    }
	    matrix->remove();
	 }
      }

      bool all_parameters_are_constant = true;

      /* Type cast each parameter and, if possible, fold constants.*/
      foreach_list_safe(n, &actual_parameters) {
	 ir_rvalue *ir = (ir_rvalue *) n;

	 const glsl_type *desired_type =
	    glsl_type::get_instance(constructor_type->base_type,
				    ir->type->vector_elements,
				    ir->type->matrix_columns);
	 ir_rvalue *result = convert_component(ir, desired_type);

	 /* Attempt to convert the parameter to a constant valued expression.
	  * After doing so, track whether or not all the parameters to the
	  * constructor are trivially constant valued expressions.
	  */
	 ir_rvalue *const constant = result->constant_expression_value();

	 if (constant != NULL)
	    result = constant;
	 else
	    all_parameters_are_constant = false;

	 if (result != ir) {
	    ir->replace_with(result);
	 }
      }

      /* If all of the parameters are trivially constant, create a
       * constant representing the complete collection of parameters.
       */
      if (all_parameters_are_constant) {
	 if (components_used >= type_components)
	    return new(ctx) ir_constant(constructor_type,
					& actual_parameters);

	 /* The above case must handle all scalar constructors.
	  */
	 assert(constructor_type->is_vector()
		|| constructor_type->is_matrix());

	 /* Constructors with exactly one component are special for
	  * vectors and matrices.  For vectors it causes all elements of
	  * the vector to be filled with the value.  For matrices it
	  * causes the matrix to be filled with 0 and the diagonal to be
	  * filled with the value.
	  */
	 ir_constant_data data;
	 ir_constant *const initializer =
	    (ir_constant *) actual_parameters.head;
	 if (constructor_type->is_matrix())
	    generate_constructor_matrix(constructor_type, initializer,
					&data);
	 else
	    generate_constructor_vector(constructor_type, initializer,
					&data);

	 return new(ctx) ir_constant(constructor_type, &data);
      } else if (constructor_type->is_scalar()) {
	 return dereference_component((ir_rvalue *) actual_parameters.head,
				      0);
      } else if (constructor_type->is_vector()) {
	 return emit_inline_vector_constructor(constructor_type,
					       instructions,
					       &actual_parameters,
					       ctx);
      } else {
	 assert(constructor_type->is_matrix());
	 return emit_inline_matrix_constructor(constructor_type,
					       instructions,
					       &actual_parameters,
					       ctx);
      }
   } else {
      const ast_expression *id = subexpressions[0];
      YYLTYPE loc = id->get_location();
      exec_list actual_parameters;

      process_parameters(instructions, &actual_parameters, &this->expressions,
			 state);

      const glsl_type *const type =
	 state->symbols->get_type(id->primary_expression.identifier);

      if ((type != NULL) && type->is_record()) {
	 ir_constant *constant =
	    constant_record_constructor(type, &loc, &actual_parameters, state);

	 if (constant != NULL)
	    return constant;
      }

      return match_function_by_name(instructions, 
				    id->primary_expression.identifier, & loc,
				    &actual_parameters, state);
   }

   return ir_call::get_error_instruction(ctx);
}