summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/zink/zink_compiler.c
blob: db42e2c73afb58b89dd43a94dfb6c0e44c314af3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/*
 * Copyright 2018 Collabora Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "zink_context.h"
#include "zink_compiler.h"
#include "zink_program.h"
#include "zink_screen.h"
#include "nir_to_spirv/nir_to_spirv.h"

#include "pipe/p_state.h"

#include "nir.h"
#include "compiler/nir/nir_builder.h"

#include "nir/tgsi_to_nir.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_from_mesa.h"

#include "util/u_memory.h"

static void
create_vs_pushconst(nir_shader *nir)
{
   nir_variable *vs_pushconst;
   /* create compatible layout for the ntv push constant loader */
   struct glsl_struct_field *fields = rzalloc_array(nir, struct glsl_struct_field, 2);
   fields[0].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[0].name = ralloc_asprintf(nir, "draw_mode_is_indexed");
   fields[0].offset = offsetof(struct zink_push_constant, draw_mode_is_indexed);
   fields[1].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[1].name = ralloc_asprintf(nir, "draw_id");
   fields[1].offset = offsetof(struct zink_push_constant, draw_id);
   vs_pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 2, "struct", false), "vs_pushconst");
   vs_pushconst->data.location = INT_MAX; //doesn't really matter
}

static bool
lower_discard_if_instr(nir_intrinsic_instr *instr, nir_builder *b)
{
   if (instr->intrinsic == nir_intrinsic_discard_if) {
      b->cursor = nir_before_instr(&instr->instr);

      nir_if *if_stmt = nir_push_if(b, nir_ssa_for_src(b, instr->src[0], 1));
      nir_discard(b);
      nir_pop_if(b, if_stmt);
      nir_instr_remove(&instr->instr);
      return true;
   }
   /* a shader like this (shaders@glsl-fs-discard-04):

      uniform int j, k;

      void main()
      {
       for (int i = 0; i < j; i++) {
        if (i > k)
         continue;
        discard;
       }
       gl_FragColor = vec4(0.0, 1.0, 0.0, 0.0);
      }



      will generate nir like:

      loop   {
         //snip
         if   ssa_11   {
            block   block_5:
            /   preds:   block_4   /
            vec1   32   ssa_17   =   iadd   ssa_50,   ssa_31
            /   succs:   block_7   /
         }   else   {
            block   block_6:
            /   preds:   block_4   /
            intrinsic   discard   ()   () <-- not last instruction
            vec1   32   ssa_23   =   iadd   ssa_50,   ssa_31 <-- dead code loop itr increment
            /   succs:   block_7   /
         }
         //snip
      }

      which means that we can't assert like this:

      assert(instr->intrinsic != nir_intrinsic_discard ||
             nir_block_last_instr(instr->instr.block) == &instr->instr);


      and it's unnecessary anyway since post-vtn optimizing will dce the instructions following the discard
    */

   return false;
}

static bool
lower_discard_if(nir_shader *shader)
{
   bool progress = false;

   nir_foreach_function(function, shader) {
      if (function->impl) {
         nir_builder builder;
         nir_builder_init(&builder, function->impl);
         nir_foreach_block(block, function->impl) {
            nir_foreach_instr_safe(instr, block) {
               if (instr->type == nir_instr_type_intrinsic)
                  progress |= lower_discard_if_instr(
                                                  nir_instr_as_intrinsic(instr),
                                                  &builder);
            }
         }

         nir_metadata_preserve(function->impl, nir_metadata_dominance);
      }
   }

   return progress;
}

static bool
lower_64bit_vertex_attribs_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_deref)
      return false;
   nir_deref_instr *deref = nir_instr_as_deref(instr);
   if (deref->deref_type != nir_deref_type_var)
      return false;
   nir_variable *var = nir_deref_instr_get_variable(deref);
   if (var->data.mode != nir_var_shader_in)
      return false;
   if (!glsl_type_is_64bit(var->type) || !glsl_type_is_vector(var->type) || glsl_get_vector_elements(var->type) < 3)
      return false;

   /* create second variable for the split */
   nir_variable *var2 = nir_variable_clone(var, b->shader);
   /* split new variable into second slot */
   var2->data.driver_location++;
   nir_shader_add_variable(b->shader, var2);

   unsigned total_num_components = glsl_get_vector_elements(var->type);
   /* new variable is the second half of the dvec */
   var2->type = glsl_vector_type(glsl_get_base_type(var->type), glsl_get_vector_elements(var->type) - 2);
   /* clamp original variable to a dvec2 */
   deref->type = var->type = glsl_vector_type(glsl_get_base_type(var->type), 2);

   /* create deref instr for new variable */
   b->cursor = nir_after_instr(instr);
   nir_deref_instr *deref2 = nir_build_deref_var(b, var2);

   nir_foreach_use_safe(use_src, &deref->dest.ssa) {
      nir_instr *use_instr = use_src->parent_instr;
      assert(use_instr->type == nir_instr_type_intrinsic &&
             nir_instr_as_intrinsic(use_instr)->intrinsic == nir_intrinsic_load_deref);

      /* this is a load instruction for the deref, and we need to split it into two instructions that we can
       * then zip back into a single ssa def */
      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(use_instr);
      /* clamp the first load to 2 64bit components */
      intr->num_components = intr->dest.ssa.num_components = 2;
      b->cursor = nir_after_instr(use_instr);
      /* this is the second load instruction for the second half of the dvec3/4 components */
      nir_intrinsic_instr *intr2 = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_deref);
      intr2->src[0] = nir_src_for_ssa(&deref2->dest.ssa);
      intr2->num_components = total_num_components - 2;
      nir_ssa_dest_init(&intr2->instr, &intr2->dest, intr2->num_components, 64, NULL);
      nir_builder_instr_insert(b, &intr2->instr);

      nir_ssa_def *def[4];
      /* create a new dvec3/4 comprised of all the loaded components from both variables */
      def[0] = nir_vector_extract(b, &intr->dest.ssa, nir_imm_int(b, 0));
      def[1] = nir_vector_extract(b, &intr->dest.ssa, nir_imm_int(b, 1));
      def[2] = nir_vector_extract(b, &intr2->dest.ssa, nir_imm_int(b, 0));
      if (total_num_components == 4)
         def[3] = nir_vector_extract(b, &intr2->dest.ssa, nir_imm_int(b, 1));
      nir_ssa_def *new_vec = nir_vec(b, def, total_num_components);
      /* use the assembled dvec3/4 for all other uses of the load */
      nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, new_vec,
                                     new_vec->parent_instr);
   }

   return true;
}

/* "64-bit three- and four-component vectors consume two consecutive locations."
 *  - 14.1.4. Location Assignment
 *
 * this pass splits dvec3 and dvec4 vertex inputs into a dvec2 and a double/dvec2 which
 * are assigned to consecutive locations, loaded separately, and then assembled back into a
 * composite value that's used in place of the original loaded ssa src
 */
static bool
lower_64bit_vertex_attribs(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   return nir_shader_instructions_pass(shader, lower_64bit_vertex_attribs_instr, nir_metadata_dominance, NULL);
}

static bool
lower_basevertex_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_base_vertex)
      return false;

   b->cursor = nir_after_instr(&instr->instr);
   nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
   load->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
   nir_intrinsic_set_range(load, 4);
   load->num_components = 1;
   nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "draw_mode_is_indexed");
   nir_builder_instr_insert(b, &load->instr);

   nir_ssa_def *composite = nir_build_alu(b, nir_op_bcsel,
                                          nir_build_alu(b, nir_op_ieq, &load->dest.ssa, nir_imm_int(b, 1), NULL, NULL),
                                          &instr->dest.ssa,
                                          nir_imm_int(b, 0),
                                          NULL);

   nir_ssa_def_rewrite_uses_after(&instr->dest.ssa, composite,
                                  composite->parent_instr);
   return true;
}

static bool
lower_basevertex(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   if (!BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_BASE_VERTEX))
      return false;

   return nir_shader_instructions_pass(shader, lower_basevertex_instr, nir_metadata_dominance, NULL);
}


static bool
lower_drawid_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_draw_id)
      return false;

   b->cursor = nir_before_instr(&instr->instr);
   nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
   load->src[0] = nir_src_for_ssa(nir_imm_int(b, 1));
   nir_intrinsic_set_range(load, 4);
   load->num_components = 1;
   nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "draw_id");
   nir_builder_instr_insert(b, &load->instr);

   nir_ssa_def_rewrite_uses(&instr->dest.ssa, &load->dest.ssa);

   return true;
}

static bool
lower_drawid(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   if (!BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
      return false;

   return nir_shader_instructions_pass(shader, lower_drawid_instr, nir_metadata_dominance, NULL);
}

static bool
lower_dual_blend(nir_shader *shader)
{
   bool progress = false;
   nir_variable *var = nir_find_variable_with_location(shader, nir_var_shader_out, FRAG_RESULT_DATA1);
   if (var) {
      var->data.location = FRAG_RESULT_DATA0;
      var->data.index = 1;
      progress = true;
   }
   nir_shader_preserve_all_metadata(shader);
   return progress;
}

void
zink_screen_init_compiler(struct zink_screen *screen)
{
   static const struct nir_shader_compiler_options
   default_options = {
      .lower_ffma16 = true,
      .lower_ffma32 = true,
      .lower_ffma64 = true,
      .lower_scmp = true,
      .lower_fdph = true,
      .lower_flrp32 = true,
      .lower_fpow = true,
      .lower_fsat = true,
      .lower_extract_byte = true,
      .lower_extract_word = true,
      .lower_mul_high = true,
      .lower_rotate = true,
      .lower_uadd_carry = true,
      .lower_pack_64_2x32_split = true,
      .lower_unpack_64_2x32_split = true,
      .use_scoped_barrier = true,
      .lower_int64_options = 0,
      .lower_doubles_options = ~nir_lower_fp64_full_software,
      .has_fsub = true,
      .has_isub = true,
      .lower_mul_2x32_64 = true,
   };

   screen->nir_options = default_options;

   if (!screen->info.feats.features.shaderInt64)
      screen->nir_options.lower_int64_options = ~0;

   if (!screen->info.feats.features.shaderFloat64) {
      screen->nir_options.lower_doubles_options = ~0;
      screen->nir_options.lower_flrp64 = true;
      screen->nir_options.lower_ffma64 = true;
   }
}

const void *
zink_get_compiler_options(struct pipe_screen *pscreen,
                          enum pipe_shader_ir ir,
                          enum pipe_shader_type shader)
{
   assert(ir == PIPE_SHADER_IR_NIR);
   return &zink_screen(pscreen)->nir_options;
}

struct nir_shader *
zink_tgsi_to_nir(struct pipe_screen *screen, const struct tgsi_token *tokens)
{
   if (zink_debug & ZINK_DEBUG_TGSI) {
      fprintf(stderr, "TGSI shader:\n---8<---\n");
      tgsi_dump_to_file(tokens, 0, stderr);
      fprintf(stderr, "---8<---\n\n");
   }

   return tgsi_to_nir(tokens, screen, false);
}

static void
optimize_nir(struct nir_shader *s)
{
   bool progress;
   do {
      progress = false;
      NIR_PASS_V(s, nir_lower_vars_to_ssa);
      NIR_PASS(progress, s, nir_copy_prop);
      NIR_PASS(progress, s, nir_opt_remove_phis);
      NIR_PASS(progress, s, nir_opt_dce);
      NIR_PASS(progress, s, nir_opt_dead_cf);
      NIR_PASS(progress, s, nir_opt_cse);
      NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
      NIR_PASS(progress, s, nir_opt_algebraic);
      NIR_PASS(progress, s, nir_opt_constant_folding);
      NIR_PASS(progress, s, nir_opt_undef);
      NIR_PASS(progress, s, zink_nir_lower_b2b);
   } while (progress);
}

/* check for a genuine gl_PointSize output vs one from nir_lower_point_size_mov */
static bool
check_psiz(struct nir_shader *s)
{
   nir_foreach_shader_out_variable(var, s) {
      if (var->data.location == VARYING_SLOT_PSIZ) {
         /* genuine PSIZ outputs will have this set */
         return !!var->data.explicit_location;
      }
   }
   return false;
}

/* semi-copied from iris */
static void
update_so_info(struct zink_shader *sh,
               uint64_t outputs_written, bool have_psiz)
{
   uint8_t reverse_map[64] = {};
   unsigned slot = 0;
   while (outputs_written) {
      int bit = u_bit_scan64(&outputs_written);
      /* PSIZ from nir_lower_point_size_mov breaks stream output, so always skip it */
      if (bit == VARYING_SLOT_PSIZ && !have_psiz)
         continue;
      reverse_map[slot++] = bit;
   }

   for (unsigned i = 0; i < sh->streamout.so_info.num_outputs; i++) {
      struct pipe_stream_output *output = &sh->streamout.so_info.output[i];
      /* Map Gallium's condensed "slots" back to real VARYING_SLOT_* enums */
      sh->streamout.so_info_slots[i] = reverse_map[output->register_index];
   }
}

VkShaderModule
zink_shader_compile(struct zink_screen *screen, struct zink_shader *zs, struct zink_shader_key *key,
                    unsigned char *shader_slot_map, unsigned char *shader_slots_reserved)
{
   VkShaderModule mod = VK_NULL_HANDLE;
   void *streamout = NULL;
   nir_shader *nir = zs->nir;
   /* TODO: use a separate mem ctx here for ralloc */
   if (zs->nir->info.stage < MESA_SHADER_FRAGMENT) {
      if (zink_vs_key(key)->last_vertex_stage) {
         if (zs->streamout.so_info_slots)
            streamout = &zs->streamout;

         if (!zink_vs_key(key)->clip_halfz) {
            nir = nir_shader_clone(NULL, zs->nir);
            NIR_PASS_V(nir, nir_lower_clip_halfz);
         }
         if (zink_vs_key(key)->push_drawid) {
            if (nir == zs->nir)
               nir = nir_shader_clone(NULL, zs->nir);
            NIR_PASS_V(nir, lower_drawid);
         }
      }
   } else if (zs->nir->info.stage == MESA_SHADER_FRAGMENT) {
      if (!zink_fs_key(key)->samples &&
          nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
         nir = nir_shader_clone(NULL, zs->nir);
         /* VK will always use gl_SampleMask[] values even if sample count is 0,
          * so we need to skip this write here to mimic GL's behavior of ignoring it
          */
         nir_foreach_shader_out_variable(var, nir) {
            if (var->data.location == FRAG_RESULT_SAMPLE_MASK)
               var->data.mode = nir_var_shader_temp;
         }
         nir_fixup_deref_modes(nir);
         NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
         optimize_nir(nir);
      }
      if (zink_fs_key(key)->force_dual_color_blend && nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA1)) {
         if (nir == zs->nir)
            nir = nir_shader_clone(NULL, zs->nir);
         NIR_PASS_V(nir, lower_dual_blend);
      }
      if (zink_fs_key(key)->coord_replace_bits) {
         if (nir == zs->nir)
            nir = nir_shader_clone(NULL, zs->nir);
         NIR_PASS_V(nir, nir_lower_texcoord_replace, zink_fs_key(key)->coord_replace_bits,
                    false, zink_fs_key(key)->coord_replace_yinvert);
      }
   }
   struct spirv_shader *spirv = nir_to_spirv(nir, streamout, shader_slot_map, shader_slots_reserved);
   assert(spirv);

   if (zink_debug & ZINK_DEBUG_SPIRV) {
      char buf[256];
      static int i;
      snprintf(buf, sizeof(buf), "dump%02d.spv", i++);
      FILE *fp = fopen(buf, "wb");
      if (fp) {
         fwrite(spirv->words, sizeof(uint32_t), spirv->num_words, fp);
         fclose(fp);
         fprintf(stderr, "wrote '%s'...\n", buf);
      }
   }

   VkShaderModuleCreateInfo smci = {};
   smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
   smci.codeSize = spirv->num_words * sizeof(uint32_t);
   smci.pCode = spirv->words;

   if (vkCreateShaderModule(screen->dev, &smci, NULL, &mod) != VK_SUCCESS)
      mod = VK_NULL_HANDLE;

   if (nir != zs->nir)
      ralloc_free(nir);

   /* TODO: determine if there's any reason to cache spirv output? */
   ralloc_free(spirv);
   return mod;
}

static bool
lower_baseinstance_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_instance_id)
      return false;
   b->cursor = nir_after_instr(instr);
   nir_ssa_def *def = nir_isub(b, &intr->dest.ssa, nir_load_base_instance(b));
   nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, def, def->parent_instr);
   return true;
}

static bool
lower_baseinstance(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;
   return nir_shader_instructions_pass(shader, lower_baseinstance_instr, nir_metadata_dominance, NULL);
}

bool nir_lower_dynamic_bo_access(nir_shader *shader);

struct zink_shader *
zink_shader_create(struct zink_screen *screen, struct nir_shader *nir,
                   const struct pipe_stream_output_info *so_info)
{
   struct zink_shader *ret = CALLOC_STRUCT(zink_shader);
   bool have_psiz = false;

   ret->shader_id = p_atomic_inc_return(&screen->shader_id);
   ret->programs = _mesa_pointer_set_create(NULL);

   if (!screen->info.feats.features.shaderImageGatherExtended) {
      nir_lower_tex_options tex_opts = {};
      tex_opts.lower_tg4_offsets = true;
      NIR_PASS_V(nir, nir_lower_tex, &tex_opts);
   }

   if (nir->info.stage == MESA_SHADER_VERTEX)
      create_vs_pushconst(nir);
   else if (nir->info.stage == MESA_SHADER_TESS_CTRL ||
            nir->info.stage == MESA_SHADER_TESS_EVAL) {
      NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_shader_in | nir_var_shader_out, UINT_MAX);
      NIR_PASS_V(nir, nir_lower_io_arrays_to_elements_no_indirects, false);
   }

   /* only do uniforms -> ubo if we have uniforms, otherwise we're just
    * screwing with the bindings for no reason
    */
   if (nir->num_uniforms)
      NIR_PASS_V(nir, nir_lower_uniforms_to_ubo, 16);
   if (nir->info.stage < MESA_SHADER_FRAGMENT)
      have_psiz = check_psiz(nir);
   if (nir->info.stage == MESA_SHADER_GEOMETRY)
      NIR_PASS_V(nir, nir_lower_gs_intrinsics, nir_lower_gs_intrinsics_per_stream);
   NIR_PASS_V(nir, lower_basevertex);
   NIR_PASS_V(nir, nir_lower_regs_to_ssa);
   NIR_PASS_V(nir, lower_baseinstance);
   optimize_nir(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
   NIR_PASS_V(nir, lower_discard_if);
   NIR_PASS_V(nir, nir_lower_fragcolor);
   NIR_PASS_V(nir, lower_64bit_vertex_attribs);
   if (nir->info.num_ubos || nir->info.num_ssbos)
      NIR_PASS_V(nir, nir_lower_dynamic_bo_access);
   NIR_PASS_V(nir, nir_convert_from_ssa, true);

   if (zink_debug & ZINK_DEBUG_NIR) {
      fprintf(stderr, "NIR shader:\n---8<---\n");
      nir_print_shader(nir, stderr);
      fprintf(stderr, "---8<---\n");
   }

   ret->num_bindings = 0;
   uint32_t cur_ubo = 0;
   /* UBO buffers are zero-indexed, but buffer 0 is always the one created by nir_lower_uniforms_to_ubo,
    * which means there is no buffer 0 if there are no uniforms
    */
   int ubo_index = !nir->num_uniforms;
   /* need to set up var->data.binding for UBOs, which means we need to start at
    * the "first" UBO, which is at the end of the list
    */
   int ssbo_array_index = 0;
   foreach_list_typed_reverse(nir_variable, var, node, &nir->variables) {
      if (_nir_shader_variable_has_mode(var, nir_var_uniform |
                                        nir_var_mem_ubo |
                                        nir_var_mem_ssbo)) {
         if (var->data.mode == nir_var_mem_ubo) {
            /* ignore variables being accessed if they aren't the base of the UBO */
            bool ubo_array = glsl_type_is_array(var->type) && glsl_type_is_interface(glsl_without_array(var->type));
            if (var->data.location && !ubo_array && var->type != var->interface_type)
               continue;
            var->data.binding = cur_ubo;
            /* if this is a ubo array, create a binding point for each array member:
             * 
               "For uniform blocks declared as arrays, each individual array element
                corresponds to a separate buffer object backing one instance of the block."
                - ARB_gpu_shader5

               (also it's just easier)
             */
            for (unsigned i = 0; i < (ubo_array ? glsl_get_aoa_size(var->type) : 1); i++) {

               int binding = zink_binding(nir->info.stage,
                                          VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                                          cur_ubo++);
               ret->bindings[ret->num_bindings].index = ubo_index++;
               ret->bindings[ret->num_bindings].binding = binding;
               ret->bindings[ret->num_bindings].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
               ret->bindings[ret->num_bindings].size = 1;
               ret->num_bindings++;
            }
         } else if (var->data.mode == nir_var_mem_ssbo) {
            /* same-ish mechanics as ubos */
            bool bo_array = glsl_type_is_array(var->type) && glsl_type_is_interface(glsl_without_array(var->type));
            if (var->data.location && !bo_array)
               continue;
            if (!var->data.explicit_binding) {
               var->data.binding = ssbo_array_index;
            }
            for (unsigned i = 0; i < (bo_array ? glsl_get_aoa_size(var->type) : 1); i++) {
               int binding = zink_binding(nir->info.stage,
                                          VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
                                          var->data.binding + i);
               if (strcmp(glsl_get_type_name(var->interface_type), "counters"))
                  ret->bindings[ret->num_bindings].index = ssbo_array_index++;
               else
                  ret->bindings[ret->num_bindings].index = var->data.binding;
               ret->bindings[ret->num_bindings].binding = binding;
               ret->bindings[ret->num_bindings].type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
               ret->bindings[ret->num_bindings].size = 1;
               ret->num_bindings++;
            }
         } else {
            assert(var->data.mode == nir_var_uniform);
            const struct glsl_type *type = glsl_without_array(var->type);
            if (glsl_type_is_sampler(type) || glsl_type_is_image(type)) {
               VkDescriptorType vktype = glsl_type_is_image(type) ? zink_image_type(type) : zink_sampler_type(type);
               int binding = zink_binding(nir->info.stage,
                                          vktype,
                                          var->data.binding);
               ret->bindings[ret->num_bindings].index = var->data.binding;
               ret->bindings[ret->num_bindings].binding = binding;
               ret->bindings[ret->num_bindings].type = vktype;
               if (glsl_type_is_array(var->type))
                  ret->bindings[ret->num_bindings].size = glsl_get_aoa_size(var->type);
               else
                  ret->bindings[ret->num_bindings].size = 1;
               ret->num_bindings++;
            }
         }
      }
   }

   ret->nir = nir;
   if (so_info) {
      memcpy(&ret->streamout.so_info, so_info, sizeof(struct pipe_stream_output_info));
      ret->streamout.so_info_slots = malloc(so_info->num_outputs * sizeof(unsigned int));
      assert(ret->streamout.so_info_slots);
      update_so_info(ret, nir->info.outputs_written, have_psiz);
   }

   return ret;
}

void
zink_shader_free(struct zink_context *ctx, struct zink_shader *shader)
{
   struct zink_screen *screen = zink_screen(ctx->base.screen);
   set_foreach(shader->programs, entry) {
      if (shader->nir->info.stage == MESA_SHADER_COMPUTE) {
         struct zink_compute_program *comp = (void*)entry->key;
         _mesa_hash_table_remove_key(ctx->compute_program_cache, &comp->shader->shader_id);
         comp->shader = NULL;
         zink_compute_program_reference(screen, &comp, NULL);
      } else {
         struct zink_gfx_program *prog = (void*)entry->key;
         _mesa_hash_table_remove_key(ctx->program_cache, prog->shaders);
         prog->shaders[pipe_shader_type_from_mesa(shader->nir->info.stage)] = NULL;
         if (shader->nir->info.stage == MESA_SHADER_TESS_EVAL && shader->generated)
            /* automatically destroy generated tcs shaders when tes is destroyed */
            zink_shader_free(ctx, shader->generated);
         zink_gfx_program_reference(screen, &prog, NULL);
      }
   }
   _mesa_set_destroy(shader->programs, NULL);
   free(shader->streamout.so_info_slots);
   ralloc_free(shader->nir);
   FREE(shader);
}


/* creating a passthrough tcs shader that's roughly:

#version 150
#extension GL_ARB_tessellation_shader : require

in vec4 some_var[gl_MaxPatchVertices];
out vec4 some_var_out;

layout(push_constant) uniform tcsPushConstants {
    layout(offset = 0) float TessLevelInner[2];
    layout(offset = 8) float TessLevelOuter[4];
} u_tcsPushConstants;
layout(vertices = $vertices_per_patch) out;
void main()
{
  gl_TessLevelInner = u_tcsPushConstants.TessLevelInner;
  gl_TessLevelOuter = u_tcsPushConstants.TessLevelOuter;
  some_var_out = some_var[gl_InvocationID];
}

*/
struct zink_shader *
zink_shader_tcs_create(struct zink_context *ctx, struct zink_shader *vs)
{
   unsigned vertices_per_patch = ctx->gfx_pipeline_state.vertices_per_patch;
   struct zink_shader *ret = CALLOC_STRUCT(zink_shader);
   ret->shader_id = 0; //special value for internal shaders
   ret->programs = _mesa_pointer_set_create(NULL);

   nir_shader *nir = nir_shader_create(NULL, MESA_SHADER_TESS_CTRL, &zink_screen(ctx->base.screen)->nir_options, NULL);
   nir_function *fn = nir_function_create(nir, "main");
   fn->is_entrypoint = true;
   nir_function_impl *impl = nir_function_impl_create(fn);

   nir_builder b;
   nir_builder_init(&b, impl);
   b.cursor = nir_before_block(nir_start_block(impl));

   nir_ssa_def *invocation_id = nir_load_invocation_id(&b);

   nir_foreach_shader_out_variable(var, vs->nir) {
      const struct glsl_type *type = var->type;
      const struct glsl_type *in_type = var->type;
      const struct glsl_type *out_type = var->type;
      char buf[1024];
      snprintf(buf, sizeof(buf), "%s_out", var->name);
      in_type = glsl_array_type(type, 32 /* MAX_PATCH_VERTICES */, 0);
      out_type = glsl_array_type(type, vertices_per_patch, 0);

      nir_variable *in = nir_variable_create(nir, nir_var_shader_in, in_type, var->name);
      nir_variable *out = nir_variable_create(nir, nir_var_shader_out, out_type, buf);
      out->data.location = in->data.location = var->data.location;
      out->data.location_frac = in->data.location_frac = var->data.location_frac;

      /* gl_in[] receives values from equivalent built-in output
         variables written by the vertex shader (section 2.14.7).  Each array
         element of gl_in[] is a structure holding values for a specific vertex of
         the input patch.  The length of gl_in[] is equal to the
         implementation-dependent maximum patch size (gl_MaxPatchVertices).
         - ARB_tessellation_shader
       */
      for (unsigned i = 0; i < vertices_per_patch; i++) {
         /* we need to load the invocation-specific value of the vertex output and then store it to the per-patch output */
         nir_if *start_block = nir_push_if(&b, nir_ieq(&b, invocation_id, nir_imm_int(&b, i)));
         nir_deref_instr *in_array_var = nir_build_deref_array(&b, nir_build_deref_var(&b, in), invocation_id);
         nir_ssa_def *load = nir_load_deref(&b, in_array_var);
         nir_deref_instr *out_array_var = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, out), i);
         nir_store_deref(&b, out_array_var, load, 0xff);
         nir_pop_if(&b, start_block);
      }
   }
   nir_variable *gl_TessLevelInner = nir_variable_create(nir, nir_var_shader_out, glsl_array_type(glsl_float_type(), 2, 0), "gl_TessLevelInner");
   gl_TessLevelInner->data.location = VARYING_SLOT_TESS_LEVEL_INNER;
   gl_TessLevelInner->data.patch = 1;
   nir_variable *gl_TessLevelOuter = nir_variable_create(nir, nir_var_shader_out, glsl_array_type(glsl_float_type(), 4, 0), "gl_TessLevelOuter");
   gl_TessLevelOuter->data.location = VARYING_SLOT_TESS_LEVEL_OUTER;
   gl_TessLevelOuter->data.patch = 1;

   /* hacks so we can size these right for now */
   struct glsl_struct_field *fields = rzalloc_array(nir, struct glsl_struct_field, 3);
   /* just use a single blob for padding here because it's easier */
   fields[0].type = glsl_array_type(glsl_uint_type(), offsetof(struct zink_push_constant, default_inner_level) / 4, 0);
   fields[0].name = ralloc_asprintf(nir, "padding");
   fields[0].offset = 0;
   fields[1].type = glsl_array_type(glsl_uint_type(), 2, 0);
   fields[1].name = ralloc_asprintf(nir, "gl_TessLevelInner");
   fields[1].offset = offsetof(struct zink_push_constant, default_inner_level);
   fields[2].type = glsl_array_type(glsl_uint_type(), 4, 0);
   fields[2].name = ralloc_asprintf(nir, "gl_TessLevelOuter");
   fields[2].offset = offsetof(struct zink_push_constant, default_outer_level);
   nir_variable *pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 3, "struct", false), "pushconst");
   pushconst->data.location = VARYING_SLOT_VAR0;

   nir_ssa_def *load_inner = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 1), .base = 1, .range = 8);
   nir_ssa_def *load_outer = nir_load_push_constant(&b, 4, 32, nir_imm_int(&b, 2), .base = 2, .range = 16);

   for (unsigned i = 0; i < 2; i++) {
      nir_deref_instr *store_idx = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, gl_TessLevelInner), i);
      nir_store_deref(&b, store_idx, nir_channel(&b, load_inner, i), 0xff);
   }
   for (unsigned i = 0; i < 4; i++) {
      nir_deref_instr *store_idx = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, gl_TessLevelOuter), i);
      nir_store_deref(&b, store_idx, nir_channel(&b, load_outer, i), 0xff);
   }

   nir->info.tess.tcs_vertices_out = vertices_per_patch;
   nir_validate_shader(nir, "created");

   NIR_PASS_V(nir, nir_lower_regs_to_ssa);
   optimize_nir(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
   NIR_PASS_V(nir, lower_discard_if);
   NIR_PASS_V(nir, nir_convert_from_ssa, true);

   ret->nir = nir;
   ret->is_generated = true;
   return ret;
}