summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/zink/nir_to_spirv/nir_to_spirv.c
blob: 166bdf2994913ff92d3b299d075cca97b4b43b10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
/*
 * Copyright 2018 Collabora Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "nir_to_spirv.h"
#include "spirv_builder.h"

#include "nir.h"
#include "pipe/p_state.h"
#include "util/u_memory.h"

struct ntv_context {
   struct spirv_builder builder;

   SpvId GLSL_std_450;

   gl_shader_stage stage;
   SpvId inputs[PIPE_MAX_SHADER_INPUTS][4];
   SpvId outputs[PIPE_MAX_SHADER_OUTPUTS][4];

   SpvId ubos[128];
   size_t num_ubos;
   SpvId samplers[PIPE_MAX_SAMPLERS];
   size_t num_samplers;
   SpvId entry_ifaces[PIPE_MAX_SHADER_INPUTS * 4 + PIPE_MAX_SHADER_OUTPUTS * 4];
   size_t num_entry_ifaces;

   SpvId *defs;
   size_t num_defs;
};

static SpvId
get_bvec_type(struct ntv_context *ctx, int num_components)
{
   SpvId bool_type = spirv_builder_type_bool(&ctx->builder);
   if (num_components > 1)
      return spirv_builder_type_vector(&ctx->builder, bool_type,
                                       num_components);

   assert(num_components == 1);
   return bool_type;
}

static SpvId
get_fvec_type(struct ntv_context *ctx, unsigned bit_size, unsigned num_components)
{
   assert(bit_size == 32); // only 32-bit floats supported so far

   SpvId float_type = spirv_builder_type_float(&ctx->builder, bit_size);
   if (num_components > 1)
      return spirv_builder_type_vector(&ctx->builder, float_type,
                                       num_components);

   assert(num_components == 1);
   return float_type;
}

static SpvId
get_dest_type(struct ntv_context *ctx, nir_dest *dest)
{
   return get_fvec_type(ctx, nir_dest_bit_size(*dest),
                             nir_dest_num_components(*dest));
}

static SpvId
get_glsl_basetype(struct ntv_context *ctx, enum glsl_base_type type)
{
   switch (type) {
   case GLSL_TYPE_FLOAT:
      return spirv_builder_type_float(&ctx->builder, 32);

   case GLSL_TYPE_INT:
      return spirv_builder_type_int(&ctx->builder, 32);

   case GLSL_TYPE_UINT:
      return spirv_builder_type_uint(&ctx->builder, 32);
   /* TODO: handle more types */

   default:
      unreachable("unknown GLSL type");
   }
}

static SpvId
get_glsl_type(struct ntv_context *ctx, const struct glsl_type *type)
{
   assert(type);
   if (glsl_type_is_scalar(type))
      return get_glsl_basetype(ctx, glsl_get_base_type(type));

   if (glsl_type_is_vector(type))
      return spirv_builder_type_vector(&ctx->builder,
         get_glsl_basetype(ctx, glsl_get_base_type(type)),
         glsl_get_vector_elements(type));

   unreachable("we shouldn't get here, I think...");
}

static void
emit_input(struct ntv_context *ctx, struct nir_variable *var)
{
   SpvId vec_type = get_glsl_type(ctx, var->type);
   SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
                                                   SpvStorageClassInput,
                                                   vec_type);
   SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
                                         SpvStorageClassInput);

   if (var->name)
      spirv_builder_emit_name(&ctx->builder, var_id, var->name);

   if (ctx->stage == MESA_SHADER_FRAGMENT) {
      switch (var->data.location) {
      case VARYING_SLOT_POS:
         spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInFragCoord);
         break;

      case VARYING_SLOT_PNTC:
         spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInPointCoord);
         break;

      default:
         spirv_builder_emit_location(&ctx->builder, var_id,
                                     var->data.driver_location);
         break;
      }
   } else {
      spirv_builder_emit_location(&ctx->builder, var_id,
                                  var->data.driver_location);
   }

   if (var->data.location_frac)
      spirv_builder_emit_component(&ctx->builder, var_id,
                                   var->data.location_frac);

   if (var->data.interpolation == INTERP_MODE_FLAT)
      spirv_builder_emit_decoration(&ctx->builder, var_id, SpvDecorationFlat);

   assert(var->data.driver_location < PIPE_MAX_SHADER_INPUTS);
   assert(var->data.location_frac < 4);
   assert(ctx->inputs[var->data.driver_location][var->data.location_frac] == 0);
   ctx->inputs[var->data.driver_location][var->data.location_frac] = var_id;

   assert(ctx->num_entry_ifaces < ARRAY_SIZE(ctx->entry_ifaces));
   ctx->entry_ifaces[ctx->num_entry_ifaces++] = var_id;
}

static void
emit_output(struct ntv_context *ctx, struct nir_variable *var)
{
   SpvId vec_type = get_glsl_type(ctx, var->type);
   SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
                                                   SpvStorageClassOutput,
                                                   vec_type);
   SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
                                         SpvStorageClassOutput);
   if (var->name)
      spirv_builder_emit_name(&ctx->builder, var_id, var->name);


   if (ctx->stage == MESA_SHADER_VERTEX) {
      switch (var->data.location) {
      case VARYING_SLOT_POS:
         spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInPosition);
         break;

      case VARYING_SLOT_PSIZ:
         spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInPointSize);
         break;

      default:
         spirv_builder_emit_location(&ctx->builder, var_id,
                                     var->data.driver_location - 1);
      }
   } else if (ctx->stage == MESA_SHADER_FRAGMENT) {
      switch (var->data.location) {
      case FRAG_RESULT_DEPTH:
         spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInFragDepth);
         break;

      default:
         spirv_builder_emit_location(&ctx->builder, var_id,
                                     var->data.driver_location);
      }
   }

   if (var->data.location_frac)
      spirv_builder_emit_component(&ctx->builder, var_id,
                                   var->data.location_frac);

   assert(var->data.driver_location < PIPE_MAX_SHADER_INPUTS);
   assert(var->data.location_frac < 4);
   assert(ctx->outputs[var->data.driver_location][var->data.location_frac] == 0);
   ctx->outputs[var->data.driver_location][var->data.location_frac] = var_id;

   assert(ctx->num_entry_ifaces < ARRAY_SIZE(ctx->entry_ifaces));
   ctx->entry_ifaces[ctx->num_entry_ifaces++] = var_id;
}

static SpvDim
type_to_dim(enum glsl_sampler_dim gdim, bool *is_ms)
{
   *is_ms = false;
   switch (gdim) {
   case GLSL_SAMPLER_DIM_1D:
      return SpvDim1D;
   case GLSL_SAMPLER_DIM_2D:
      return SpvDim2D;
   case GLSL_SAMPLER_DIM_RECT:
      return SpvDimRect;
   case GLSL_SAMPLER_DIM_CUBE:
      return SpvDimCube;
   case GLSL_SAMPLER_DIM_3D:
      return SpvDim3D;
   case GLSL_SAMPLER_DIM_MS:
      *is_ms = true;
      return SpvDim2D;
   default:
      fprintf(stderr, "unknown sampler type %d\n", gdim);
      break;
   }
   return SpvDim2D;
}

static void
emit_sampler(struct ntv_context *ctx, struct nir_variable *var)
{
   bool is_ms;
   SpvDim dimension = type_to_dim(glsl_get_sampler_dim(var->type), &is_ms);
   SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
   SpvId image_type = spirv_builder_type_image(&ctx->builder, float_type,
                            dimension, false, glsl_sampler_type_is_array(var->type), is_ms, 1,
                            SpvImageFormatUnknown);

   SpvId sampled_type = spirv_builder_type_sampled_image(&ctx->builder,
                                                         image_type);
   SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
                                                   SpvStorageClassUniformConstant,
                                                   sampled_type);
   SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
                                         SpvStorageClassUniformConstant);

   if (var->name)
      spirv_builder_emit_name(&ctx->builder, var_id, var->name);

   assert(ctx->num_samplers < ARRAY_SIZE(ctx->samplers));
   ctx->samplers[ctx->num_samplers++] = var_id;

   spirv_builder_emit_descriptor_set(&ctx->builder, var_id,
                                     var->data.descriptor_set);
   spirv_builder_emit_binding(&ctx->builder, var_id, var->data.binding);
}

static void
emit_ubo(struct ntv_context *ctx, struct nir_variable *var)
{
   uint32_t size = glsl_count_attribute_slots(var->type, false);
   SpvId vec4_type = get_fvec_type(ctx, 32, 4);
   SpvId array_length = spirv_builder_const_uint(&ctx->builder, 32, size);
   SpvId array_type = spirv_builder_type_array(&ctx->builder, vec4_type,
                                               array_length);
   spirv_builder_emit_array_stride(&ctx->builder, array_type, 16);

   // wrap UBO-array in a struct
   SpvId struct_type = spirv_builder_type_struct(&ctx->builder, &array_type, 1);
   if (var->name) {
      char struct_name[100];
      snprintf(struct_name, sizeof(struct_name), "struct_%s", var->name);
      spirv_builder_emit_name(&ctx->builder, struct_type, struct_name);
   }

   spirv_builder_emit_decoration(&ctx->builder, struct_type,
                                 SpvDecorationBlock);
   spirv_builder_emit_member_offset(&ctx->builder, struct_type, 0, 0);


   SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
                                                   SpvStorageClassUniform,
                                                   struct_type);

   SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
                                         SpvStorageClassUniform);
   if (var->name)
      spirv_builder_emit_name(&ctx->builder, var_id, var->name);

   assert(ctx->num_ubos < ARRAY_SIZE(ctx->ubos));
   ctx->ubos[ctx->num_ubos++] = var_id;

   spirv_builder_emit_descriptor_set(&ctx->builder, var_id,
                                     var->data.descriptor_set);
   spirv_builder_emit_binding(&ctx->builder, var_id, var->data.binding);
}

static void
emit_uniform(struct ntv_context *ctx, struct nir_variable *var)
{
   if (glsl_type_is_sampler(var->type))
      emit_sampler(ctx, var);
   else if (var->interface_type)
      emit_ubo(ctx, var);
}

static SpvId
get_src(struct ntv_context *ctx, nir_src *src)
{
   assert(src->is_ssa);
   assert(src->ssa->index < ctx->num_defs);
   assert(ctx->defs[src->ssa->index] != 0);
   return ctx->defs[src->ssa->index];
}

static SpvId
get_alu_src(struct ntv_context *ctx, nir_alu_instr *alu, unsigned src)
{
   assert(!alu->src[src].negate);
   assert(!alu->src[src].abs);

   SpvId def = get_src(ctx, &alu->src[src].src);

   unsigned used_channels = 0;
   bool need_swizzle = false;
   for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
      if (!nir_alu_instr_channel_used(alu, src, i))
         continue;

      used_channels++;

      if (alu->src[src].swizzle[i] != i)
         need_swizzle = true;
   }
   assert(used_channels != 0);

   unsigned live_channels = nir_src_num_components(alu->src[src].src);
   if (used_channels != live_channels)
      need_swizzle = true;

   if (!need_swizzle)
      return def;

   int bit_size = nir_src_bit_size(alu->src[src].src);

   if (used_channels == 1) {
      SpvId result_type = spirv_builder_type_float(&ctx->builder, bit_size);
      uint32_t indices[] =  { alu->src[src].swizzle[0] };
      return spirv_builder_emit_composite_extract(&ctx->builder, result_type,
                                                  def, indices,
                                                  ARRAY_SIZE(indices));
   } else if (live_channels == 1) {
      SpvId type = get_fvec_type(ctx, bit_size, used_channels);

      SpvId constituents[NIR_MAX_VEC_COMPONENTS];
      for (unsigned i = 0; i < used_channels; ++i)
        constituents[i] = def;

      return spirv_builder_emit_composite_construct(&ctx->builder, type,
                                                    constituents,
                                                    used_channels);
   } else {
      uint32_t components[NIR_MAX_VEC_COMPONENTS];
      size_t num_components = 0;
      for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
         if (!nir_alu_instr_channel_used(alu, src, i))
            continue;

         components[num_components++] = alu->src[src].swizzle[i];
      }

      SpvId vecType = get_fvec_type(ctx, bit_size, used_channels);
      return spirv_builder_emit_vector_shuffle(&ctx->builder, vecType,
                                        def, def, components, num_components);
   }
}

static void
store_ssa_def(struct ntv_context *ctx, nir_ssa_def *ssa, SpvId result)
{
   assert(result != 0);
   assert(ssa->index < ctx->num_defs);
   ctx->defs[ssa->index] = result;
}

static void
store_dest(struct ntv_context *ctx, nir_dest *dest, SpvId result)
{
   assert(dest->is_ssa);
   store_ssa_def(ctx, &dest->ssa, result);
}

static void
store_alu_result(struct ntv_context *ctx, nir_alu_dest *dest, SpvId result)
{
   assert(!dest->saturate);
   return store_dest(ctx, &dest->dest, result);
}

static SpvId
emit_unop(struct ntv_context *ctx, SpvOp op, SpvId type, SpvId src)
{
   return spirv_builder_emit_unop(&ctx->builder, op, type, src);
}

static SpvId
emit_binop(struct ntv_context *ctx, SpvOp op, SpvId type,
           SpvId src0, SpvId src1)
{
   return spirv_builder_emit_binop(&ctx->builder, op, type, src0, src1);
}

static SpvId
emit_triop(struct ntv_context *ctx, SpvOp op, SpvId type,
           SpvId src0, SpvId src1, SpvId src2)
{
   return spirv_builder_emit_triop(&ctx->builder, op, type, src0, src1, src2);
}

static SpvId
emit_builtin_unop(struct ntv_context *ctx, enum GLSLstd450 op, SpvId type,
                  SpvId src)
{
   SpvId args[] = { src };
   return spirv_builder_emit_ext_inst(&ctx->builder, type, ctx->GLSL_std_450,
                                      op, args, ARRAY_SIZE(args));
}

static SpvId
emit_builtin_binop(struct ntv_context *ctx, enum GLSLstd450 op, SpvId type,
                   SpvId src0, SpvId src1)
{
   SpvId args[] = { src0, src1 };
   return spirv_builder_emit_ext_inst(&ctx->builder, type, ctx->GLSL_std_450,
                                      op, args, ARRAY_SIZE(args));
}

static SpvId
get_fvec_constant(struct ntv_context *ctx, int bit_size, int num_components,
                 float values[])
{
   assert(bit_size == 32);

   if (num_components > 1) {
      SpvId components[num_components];
      for (int i = 0; i < num_components; i++)
         components[i] = spirv_builder_const_float(&ctx->builder, bit_size,
                                                   values[i]);

      SpvId type = get_fvec_type(ctx, bit_size, num_components);
      return spirv_builder_const_composite(&ctx->builder, type, components,
                                           num_components);
   }

   assert(num_components == 1);
   return spirv_builder_const_float(&ctx->builder, bit_size, values[0]);
}

static void
emit_alu(struct ntv_context *ctx, nir_alu_instr *alu)
{
   SpvId src[nir_op_infos[alu->op].num_inputs];
   for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++)
      src[i] = get_alu_src(ctx, alu, i);

   SpvId dest_type = get_dest_type(ctx, &alu->dest.dest);

   SpvId result = 0;
   switch (alu->op) {
   case nir_op_mov:
      assert(nir_op_infos[alu->op].num_inputs == 1);
      result = src[0];
      break;

#define UNOP(nir_op, spirv_op) \
   case nir_op: \
      assert(nir_op_infos[alu->op].num_inputs == 1); \
      result = emit_unop(ctx, spirv_op, dest_type, src[0]); \
      break;

#define BUILTIN_UNOP(nir_op, spirv_op) \
   case nir_op: \
      assert(nir_op_infos[alu->op].num_inputs == 1); \
      result = emit_builtin_unop(ctx, spirv_op, dest_type, src[0]); \
      break;

   UNOP(nir_op_fneg, SpvOpFNegate)
   UNOP(nir_op_fddx, SpvOpDPdx)
   UNOP(nir_op_fddy, SpvOpDPdy)

   BUILTIN_UNOP(nir_op_fabs, GLSLstd450FAbs)
   BUILTIN_UNOP(nir_op_fsqrt, GLSLstd450Sqrt)
   BUILTIN_UNOP(nir_op_frsq, GLSLstd450InverseSqrt)
   BUILTIN_UNOP(nir_op_flog2, GLSLstd450Log2)
   BUILTIN_UNOP(nir_op_fexp2, GLSLstd450Exp2)
   BUILTIN_UNOP(nir_op_ffract, GLSLstd450Fract)
   BUILTIN_UNOP(nir_op_ffloor, GLSLstd450Floor)
   BUILTIN_UNOP(nir_op_fceil, GLSLstd450Ceil)
   BUILTIN_UNOP(nir_op_ftrunc, GLSLstd450Trunc)
   BUILTIN_UNOP(nir_op_fround_even, GLSLstd450RoundEven)
   BUILTIN_UNOP(nir_op_fsign, GLSLstd450FSign)
   BUILTIN_UNOP(nir_op_fsin, GLSLstd450Sin)
   BUILTIN_UNOP(nir_op_fcos, GLSLstd450Cos)

   case nir_op_frcp: {
      assert(nir_op_infos[alu->op].num_inputs == 1);
      float one[4] = { 1, 1, 1, 1 };
      src[1] = src[0];
      src[0] = get_fvec_constant(ctx, nir_dest_bit_size(alu->dest.dest),
                                     nir_dest_num_components(alu->dest.dest),
                                     one);
      result = emit_binop(ctx, SpvOpFDiv, dest_type, src[0], src[1]);
      }
      break;

#undef UNOP
#undef BUILTIN_UNOP

#define BINOP(nir_op, spirv_op) \
   case nir_op: \
      assert(nir_op_infos[alu->op].num_inputs == 2); \
      result = emit_binop(ctx, spirv_op, dest_type, src[0], src[1]); \
      break;

#define BUILTIN_BINOP(nir_op, spirv_op) \
   case nir_op: \
      assert(nir_op_infos[alu->op].num_inputs == 2); \
      result = emit_builtin_binop(ctx, spirv_op, dest_type, src[0], src[1]); \
      break;

   BINOP(nir_op_fadd, SpvOpFAdd)
   BINOP(nir_op_fsub, SpvOpFSub)
   BINOP(nir_op_fmul, SpvOpFMul)
   BINOP(nir_op_flt, SpvOpFUnordLessThan)
   BINOP(nir_op_fge, SpvOpFUnordGreaterThanEqual)

   BUILTIN_BINOP(nir_op_fmin, GLSLstd450FMin)
   BUILTIN_BINOP(nir_op_fmax, GLSLstd450FMax)

#undef BINOP
#undef BUILTIN_BINOP

   case nir_op_fdot2:
   case nir_op_fdot3:
   case nir_op_fdot4:
      assert(nir_op_infos[alu->op].num_inputs == 2);
      result = emit_binop(ctx, SpvOpDot, dest_type, src[0], src[1]);
      break;

   case nir_op_seq:
   case nir_op_sne:
   case nir_op_slt:
   case nir_op_sge: {
      assert(nir_op_infos[alu->op].num_inputs == 2);
      int num_components = nir_dest_num_components(alu->dest.dest);
      SpvId bool_type = get_bvec_type(ctx, num_components);

      SpvId zero = spirv_builder_const_float(&ctx->builder, 32, 0.0f);
      SpvId one = spirv_builder_const_float(&ctx->builder, 32, 1.0f);
      if (num_components > 1) {
         SpvId zero_comps[num_components], one_comps[num_components];
         for (int i = 0; i < num_components; i++) {
            zero_comps[i] = zero;
            one_comps[i] = one;
         }

         zero = spirv_builder_const_composite(&ctx->builder, dest_type,
                                              zero_comps, num_components);
         one = spirv_builder_const_composite(&ctx->builder, dest_type,
                                             one_comps, num_components);
      }

      SpvOp op;
      switch (alu->op) {
      case nir_op_seq: op = SpvOpFOrdEqual; break;
      case nir_op_sne: op = SpvOpFOrdNotEqual; break;
      case nir_op_slt: op = SpvOpFOrdLessThan; break;
      case nir_op_sge: op = SpvOpFOrdGreaterThanEqual; break;
      default: unreachable("unexpected op");
      }

      result = emit_binop(ctx, op, bool_type, src[0], src[1]);
      result = emit_triop(ctx, SpvOpSelect, dest_type, result, one, zero);
      }
      break;

   case nir_op_fcsel: {
      assert(nir_op_infos[alu->op].num_inputs == 3);
      int num_components = nir_dest_num_components(alu->dest.dest);
      SpvId bool_type = get_bvec_type(ctx, num_components);

      float zero[4] = { 0, 0, 0, 0 };
      SpvId cmp = get_fvec_constant(ctx, nir_src_bit_size(alu->src[0].src),
                                         num_components, zero);

      result = emit_binop(ctx, SpvOpFOrdGreaterThan, bool_type, src[0], cmp);
      result = emit_triop(ctx, SpvOpSelect, dest_type, result, src[1], src[2]);
      }
      break;

   case nir_op_vec2:
   case nir_op_vec3:
   case nir_op_vec4: {
      int num_inputs = nir_op_infos[alu->op].num_inputs;
      assert(2 <= num_inputs && num_inputs <= 4);
      result = spirv_builder_emit_composite_construct(&ctx->builder, dest_type,
                                                      src, num_inputs);
   }
   break;

   default:
      fprintf(stderr, "emit_alu: not implemented (%s)\n",
              nir_op_infos[alu->op].name);

      unreachable("unsupported opcode");
      return;
   }

   store_alu_result(ctx, &alu->dest, result);
}

static void
emit_load_const(struct ntv_context *ctx, nir_load_const_instr *load_const)
{
   float values[NIR_MAX_VEC_COMPONENTS];
   for (int i = 0; i < load_const->def.num_components; ++i)
      values[i] = load_const->value[i].f32;

   SpvId constant = get_fvec_constant(ctx, load_const->def.bit_size,
                                            load_const->def.num_components,
                                            values);
   store_ssa_def(ctx, &load_const->def, constant);
}

static void
emit_load_input(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
   nir_const_value *const_offset = nir_src_as_const_value(intr->src[0]);
   if (const_offset) {
      SpvId type = get_dest_type(ctx, &intr->dest);

      int driver_location = (int)nir_intrinsic_base(intr) + const_offset->u32;
      assert(driver_location < PIPE_MAX_SHADER_INPUTS);
      int location_frac = nir_intrinsic_component(intr);
      assert(location_frac < 4);

      SpvId ptr = ctx->inputs[driver_location][location_frac];
      assert(ptr > 0);

      store_dest(ctx, &intr->dest, spirv_builder_emit_load(&ctx->builder, type, ptr));
   } else
      unreachable("input-addressing not yet supported");
}

static void
emit_load_ubo(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
   nir_const_value *const_block_index = nir_src_as_const_value(intr->src[0]);
   assert(const_block_index); // no dynamic indexing for now
   assert(const_block_index->u32 == 0); // we only support the default UBO for now

   nir_const_value *const_offset = nir_src_as_const_value(intr->src[1]);
   if (const_offset) {
      SpvId vec4_type = get_fvec_type(ctx, 32, 4);
      SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
                                                      SpvStorageClassUniform,
                                                      vec4_type);

      unsigned idx = const_offset->u32;
      SpvId member = spirv_builder_const_uint(&ctx->builder, 32, 0);
      SpvId offset = spirv_builder_const_uint(&ctx->builder, 32, idx);
      SpvId offsets[] = { member, offset };
      SpvId ptr = spirv_builder_emit_access_chain(&ctx->builder, pointer_type,
                                                  ctx->ubos[0], offsets,
                                                  ARRAY_SIZE(offsets));
      SpvId result = spirv_builder_emit_load(&ctx->builder, vec4_type, ptr);

      SpvId type = get_dest_type(ctx, &intr->dest);
      unsigned num_components = nir_dest_num_components(intr->dest);
      if (num_components == 1) {
         uint32_t components[] = { 0 };
         result = spirv_builder_emit_composite_extract(&ctx->builder,
                                                       type,
                                                       result, components,
                                                       1);
      } else if (num_components < 4) {
         SpvId constituents[num_components];
         SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
         for (uint32_t i = 0; i < num_components; ++i)
            constituents[i] = spirv_builder_emit_composite_extract(&ctx->builder,
                                                                   float_type,
                                                                   result, &i,
                                                                   1);

         result = spirv_builder_emit_composite_construct(&ctx->builder,
                                                         type,
                                                         constituents,
                                                         num_components);
      }

      store_dest(ctx, &intr->dest, result);
   } else
      unreachable("uniform-addressing not yet supported");
}

static void
emit_store_output(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
   nir_const_value *const_offset = nir_src_as_const_value(intr->src[1]);
   if (const_offset) {
      int driver_location = (int)nir_intrinsic_base(intr) + const_offset->u32;
      assert(driver_location < PIPE_MAX_SHADER_OUTPUTS);
      int location_frac = nir_intrinsic_component(intr);
      assert(location_frac < 4);

      SpvId ptr = ctx->outputs[driver_location][location_frac];
      assert(ptr > 0);

      SpvId src = get_src(ctx, &intr->src[0]);
      spirv_builder_emit_store(&ctx->builder, ptr, src);
   } else
      unreachable("output-addressing not yet supported");
}

static void
emit_intrinsic(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
   switch (intr->intrinsic) {
   case nir_intrinsic_load_input:
      emit_load_input(ctx, intr);
      break;

   case nir_intrinsic_load_ubo:
      emit_load_ubo(ctx, intr);
      break;

   case nir_intrinsic_store_output:
      emit_store_output(ctx, intr);
      break;

   default:
      fprintf(stderr, "emit_intrinsic: not implemented (%s)\n",
              nir_intrinsic_infos[intr->intrinsic].name);
      unreachable("unsupported intrinsic");
   }
}

static void
emit_undef(struct ntv_context *ctx, nir_ssa_undef_instr *undef)
{
   SpvId type = get_fvec_type(ctx, undef->def.bit_size,
                              undef->def.num_components);

   store_ssa_def(ctx, &undef->def,
                 spirv_builder_emit_undef(&ctx->builder, type));
}

static void
emit_tex(struct ntv_context *ctx, nir_tex_instr *tex)
{
   assert(tex->op == nir_texop_tex);
   assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float);
   assert(tex->texture_index == tex->sampler_index);

   bool has_proj = false;
   SpvId coord = 0, proj;
   unsigned coord_size;
   for (unsigned i = 0; i < tex->num_srcs; i++) {
      switch (tex->src[i].src_type) {
      case nir_tex_src_coord:
         coord = get_src(ctx, &tex->src[i].src);
         coord_size = nir_src_num_components(tex->src[i].src);
         break;

      case nir_tex_src_projector:
         has_proj = true;
         proj = get_src(ctx, &tex->src[i].src);
         break;

      default:
         fprintf(stderr, "texture source: %d\n", tex->src[i].src_type);
         unreachable("unknown texture source");
      }
   }

   bool is_ms;
   SpvDim dimension = type_to_dim(tex->sampler_dim, &is_ms);
   SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
   SpvId image_type = spirv_builder_type_image(&ctx->builder, float_type,
                            dimension, false, tex->is_array, is_ms, 1,
                            SpvImageFormatUnknown);
   SpvId sampled_type = spirv_builder_type_sampled_image(&ctx->builder,
                                                         image_type);

   assert(tex->texture_index < ctx->num_samplers);
   SpvId load = spirv_builder_emit_load(&ctx->builder, sampled_type,
                                        ctx->samplers[tex->texture_index]);

   SpvId dest_type = get_dest_type(ctx, &tex->dest);

   SpvId result;
   if (has_proj) {
      SpvId constituents[coord_size + 1];
      SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
      for (uint32_t i = 0; i < coord_size; ++i)
         constituents[i] = spirv_builder_emit_composite_extract(&ctx->builder,
                                              float_type,
                                              coord,
                                              &i, 1);

      constituents[coord_size++] = proj;

      SpvId vec_type = get_fvec_type(ctx, 32, coord_size);
      SpvId merged = spirv_builder_emit_composite_construct(&ctx->builder,
                                                            vec_type,
                                                            constituents,
                                                            coord_size);

      result = spirv_builder_emit_image_sample_proj_implicit_lod(&ctx->builder,
                                                                 dest_type,
                                                                 load,
                                                                 merged);
   } else
      result = spirv_builder_emit_image_sample_implicit_lod(&ctx->builder,
                                                            dest_type, load,
                                                            coord);
   spirv_builder_emit_decoration(&ctx->builder, result,
                                 SpvDecorationRelaxedPrecision);

   store_dest(ctx, &tex->dest, result);
}

static void
emit_block(struct ntv_context *ctx, struct nir_block *block)
{
   nir_foreach_instr(instr, block) {
      switch (instr->type) {
      case nir_instr_type_alu:
         emit_alu(ctx, nir_instr_as_alu(instr));
         break;
      case nir_instr_type_intrinsic:
         emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
         break;
      case nir_instr_type_load_const:
         emit_load_const(ctx, nir_instr_as_load_const(instr));
         break;
      case nir_instr_type_ssa_undef:
         emit_undef(ctx, nir_instr_as_ssa_undef(instr));
         break;
      case nir_instr_type_tex:
         emit_tex(ctx, nir_instr_as_tex(instr));
         break;
      case nir_instr_type_phi:
         unreachable("nir_instr_type_phi not supported");
         break;
      case nir_instr_type_jump:
         unreachable("nir_instr_type_jump not supported");
         break;
      case nir_instr_type_call:
         unreachable("nir_instr_type_call not supported");
         break;
      case nir_instr_type_parallel_copy:
         unreachable("nir_instr_type_parallel_copy not supported");
         break;
      case nir_instr_type_deref:
         unreachable("nir_instr_type_deref not supported");
         break;
      }
   }
}

static void
emit_cf_list(struct ntv_context *ctx, struct exec_list *list)
{
   foreach_list_typed(nir_cf_node, node, node, list) {
      switch (node->type) {
      case nir_cf_node_block:
         emit_block(ctx, nir_cf_node_as_block(node));
         break;

      case nir_cf_node_if:
         unreachable("nir_cf_node_if not supported");
         break;

      case nir_cf_node_loop:
         unreachable("nir_cf_node_loop not supported");
         break;

      case nir_cf_node_function:
         unreachable("nir_cf_node_function not supported");
         break;
      }
   }
}

struct spirv_shader *
nir_to_spirv(struct nir_shader *s)
{
   struct spirv_shader *ret = NULL;

   struct ntv_context ctx = {};

   switch (s->info.stage) {
   case MESA_SHADER_VERTEX:
   case MESA_SHADER_FRAGMENT:
   case MESA_SHADER_COMPUTE:
      spirv_builder_emit_cap(&ctx.builder, SpvCapabilityShader);
      break;

   case MESA_SHADER_TESS_CTRL:
   case MESA_SHADER_TESS_EVAL:
      spirv_builder_emit_cap(&ctx.builder, SpvCapabilityTessellation);
      break;

   case MESA_SHADER_GEOMETRY:
      spirv_builder_emit_cap(&ctx.builder, SpvCapabilityGeometry);
      break;

   default:
      unreachable("invalid stage");
   }

   ctx.stage = s->info.stage;
   ctx.GLSL_std_450 = spirv_builder_import(&ctx.builder, "GLSL.std.450");
   spirv_builder_emit_source(&ctx.builder, SpvSourceLanguageGLSL, 450);

   spirv_builder_emit_mem_model(&ctx.builder, SpvAddressingModelLogical,
                                SpvMemoryModelGLSL450);

   SpvExecutionModel exec_model;
   switch (s->info.stage) {
   case MESA_SHADER_VERTEX:
      exec_model = SpvExecutionModelVertex;
      break;
   case MESA_SHADER_TESS_CTRL:
      exec_model = SpvExecutionModelTessellationControl;
      break;
   case MESA_SHADER_TESS_EVAL:
      exec_model = SpvExecutionModelTessellationEvaluation;
      break;
   case MESA_SHADER_GEOMETRY:
      exec_model = SpvExecutionModelGeometry;
      break;
   case MESA_SHADER_FRAGMENT:
      exec_model = SpvExecutionModelFragment;
      break;
   case MESA_SHADER_COMPUTE:
      exec_model = SpvExecutionModelGLCompute;
      break;
   default:
      unreachable("invalid stage");
   }

   SpvId type_void = spirv_builder_type_void(&ctx.builder);
   SpvId type_main = spirv_builder_type_function(&ctx.builder, type_void,
                                                 NULL, 0);
   SpvId entry_point = spirv_builder_new_id(&ctx.builder);
   SpvId label = spirv_builder_new_id(&ctx.builder);
   spirv_builder_emit_name(&ctx.builder, entry_point, "main");

   nir_foreach_variable(var, &s->inputs)
      emit_input(&ctx, var);

   nir_foreach_variable(var, &s->outputs)
      emit_output(&ctx, var);

   nir_foreach_variable(var, &s->uniforms)
      emit_uniform(&ctx, var);

   spirv_builder_emit_entry_point(&ctx.builder, exec_model, entry_point,
                                  "main", ctx.entry_ifaces,
                                  ctx.num_entry_ifaces);
   if (s->info.stage == MESA_SHADER_FRAGMENT)
      spirv_builder_emit_exec_mode(&ctx.builder, entry_point,
                                   SpvExecutionModeOriginUpperLeft);


   spirv_builder_function(&ctx.builder, entry_point, type_void,
                                            SpvFunctionControlMaskNone,
                                            type_main);
   spirv_builder_label(&ctx.builder, label);

   nir_function_impl *entry = nir_shader_get_entrypoint(s);

   ctx.defs = (SpvId *)malloc(sizeof(SpvId) * entry->ssa_alloc);
   if (!ctx.defs)
      goto fail;
   ctx.num_defs = entry->ssa_alloc;

   emit_cf_list(&ctx, &entry->body);
   free(ctx.defs);

   spirv_builder_return(&ctx.builder); // doesn't belong here, but whatevz
   spirv_builder_function_end(&ctx.builder);

   size_t num_words = spirv_builder_get_num_words(&ctx.builder);

   ret = CALLOC_STRUCT(spirv_shader);
   if (!ret)
      goto fail;

   ret->words = MALLOC(sizeof(uint32_t) * num_words);
   if (!ret->words)
      goto fail;

   ret->num_words = spirv_builder_get_words(&ctx.builder, ret->words, num_words);
   assert(ret->num_words == num_words);

   return ret;

fail:

   if (ret)
      spirv_shader_delete(ret);

   return NULL;
}

void
spirv_shader_delete(struct spirv_shader *s)
{
   FREE(s->words);
   FREE(s);
}