summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/jitter/blend_jit.cpp
blob: 940399c2020496a77475bf388090b6025d072749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file blend_jit.cpp
*
* @brief Implementation of the blend jitter
*
* Notes:
*
******************************************************************************/
#include "jit_api.h"
#include "blend_jit.h"
#include "builder.h"
#include "state_llvm.h"

#include <sstream>

// components with bit-widths <= the QUANTIZE_THRESHOLD will be quantized
#define QUANTIZE_THRESHOLD 2

//////////////////////////////////////////////////////////////////////////
/// Interface to Jitting a blend shader
//////////////////////////////////////////////////////////////////////////
struct BlendJit : public Builder
{
    BlendJit(JitManager* pJitMgr) : Builder(pJitMgr){};

    template<bool Color, bool Alpha>
    void GenerateBlendFactor(SWR_BLEND_FACTOR factor, Value* constColor[4], Value* src[4], Value* src1[4], Value* dst[4], Value* result[4])
    {
        Value* out[4];

        switch (factor)
        {
        case BLENDFACTOR_ONE:
            out[0] = out[1] = out[2] = out[3] = VIMMED1(1.0f);
            break;
        case BLENDFACTOR_SRC_COLOR:
            out[0] = src[0];
            out[1] = src[1];
            out[2] = src[2];
            out[3] = src[3];
            break;
        case BLENDFACTOR_SRC_ALPHA:
            out[0] = out[1] = out[2] = out[3] = src[3];
            break;
        case BLENDFACTOR_DST_ALPHA:
            out[0] = out[1] = out[2] = out[3] = dst[3];
            break;
        case BLENDFACTOR_DST_COLOR:
            out[0] = dst[0];
            out[1] = dst[1];
            out[2] = dst[2];
            out[3] = dst[3];
            break;
        case BLENDFACTOR_SRC_ALPHA_SATURATE:
            out[0] = out[1] = out[2] = VMINPS(src[3], FSUB(VIMMED1(1.0f), dst[3]));
            out[3] = VIMMED1(1.0f);
            break;
        case BLENDFACTOR_CONST_COLOR:
            out[0] = constColor[0];
            out[1] = constColor[1];
            out[2] = constColor[2];
            out[3] = constColor[3];
            break;
        case BLENDFACTOR_CONST_ALPHA:
            out[0] = out[1] = out[2] = out[3] = constColor[3];
            break;
        case BLENDFACTOR_SRC1_COLOR:
            out[0] = src1[0];
            out[1] = src1[1];
            out[2] = src1[2];
            out[3] = src1[3];
            break;
        case BLENDFACTOR_SRC1_ALPHA:
            out[0] = out[1] = out[2] = out[3] = src1[3];
            break;
        case BLENDFACTOR_ZERO:
            out[0] = out[1] = out[2] = out[3] = VIMMED1(0.0f);
            break;
        case BLENDFACTOR_INV_SRC_COLOR:
            out[0] = FSUB(VIMMED1(1.0f), src[0]);
            out[1] = FSUB(VIMMED1(1.0f), src[1]);
            out[2] = FSUB(VIMMED1(1.0f), src[2]);
            out[3] = FSUB(VIMMED1(1.0f), src[3]);
            break;
        case BLENDFACTOR_INV_SRC_ALPHA:
            out[0] = out[1] = out[2] = out[3] = FSUB(VIMMED1(1.0f), src[3]);
            break;
        case BLENDFACTOR_INV_DST_ALPHA:
            out[0] = out[1] = out[2] = out[3] = FSUB(VIMMED1(1.0f), dst[3]);
            break;
        case BLENDFACTOR_INV_DST_COLOR:
            out[0] = FSUB(VIMMED1(1.0f), dst[0]);
            out[1] = FSUB(VIMMED1(1.0f), dst[1]);
            out[2] = FSUB(VIMMED1(1.0f), dst[2]);
            out[3] = FSUB(VIMMED1(1.0f), dst[3]);
            break;
        case BLENDFACTOR_INV_CONST_COLOR:
            out[0] = FSUB(VIMMED1(1.0f), constColor[0]);
            out[1] = FSUB(VIMMED1(1.0f), constColor[1]);
            out[2] = FSUB(VIMMED1(1.0f), constColor[2]);
            out[3] = FSUB(VIMMED1(1.0f), constColor[3]);
            break;
        case BLENDFACTOR_INV_CONST_ALPHA:
            out[0] = out[1] = out[2] = out[3] = FSUB(VIMMED1(1.0f), constColor[3]);
            break;
        case BLENDFACTOR_INV_SRC1_COLOR:
            out[0] = FSUB(VIMMED1(1.0f), src1[0]);
            out[1] = FSUB(VIMMED1(1.0f), src1[1]);
            out[2] = FSUB(VIMMED1(1.0f), src1[2]);
            out[3] = FSUB(VIMMED1(1.0f), src1[3]);
            break;
        case BLENDFACTOR_INV_SRC1_ALPHA:
            out[0] = out[1] = out[2] = out[3] = FSUB(VIMMED1(1.0f), src1[3]);
            break;
        default:
            SWR_ASSERT(false, "Unsupported blend factor: %d", factor);
            out[0] = out[1] = out[2] = out[3] = VIMMED1(0.0f);
            break;
        }

        if (Color)
        {
            result[0] = out[0];
            result[1] = out[1];
            result[2] = out[2];
        }

        if (Alpha)
        {
            result[3] = out[3];
        }
    }

    void Clamp(SWR_FORMAT format, Value* src[4])
    {
        const SWR_FORMAT_INFO& info = GetFormatInfo(format);
        SWR_TYPE type = info.type[0];

        switch (type)
        {
        case SWR_TYPE_FLOAT:
            break;

        case SWR_TYPE_UNORM:
            src[0] = VMINPS(VMAXPS(src[0], VIMMED1(0.0f)), VIMMED1(1.0f));
            src[1] = VMINPS(VMAXPS(src[1], VIMMED1(0.0f)), VIMMED1(1.0f));
            src[2] = VMINPS(VMAXPS(src[2], VIMMED1(0.0f)), VIMMED1(1.0f));
            src[3] = VMINPS(VMAXPS(src[3], VIMMED1(0.0f)), VIMMED1(1.0f));
            break;

        case SWR_TYPE_SNORM:
            src[0] = VMINPS(VMAXPS(src[0], VIMMED1(-1.0f)), VIMMED1(1.0f));
            src[1] = VMINPS(VMAXPS(src[1], VIMMED1(-1.0f)), VIMMED1(1.0f));
            src[2] = VMINPS(VMAXPS(src[2], VIMMED1(-1.0f)), VIMMED1(1.0f));
            src[3] = VMINPS(VMAXPS(src[3], VIMMED1(-1.0f)), VIMMED1(1.0f));
            break;

        default: SWR_ASSERT(false, "Unsupport format type: %d", type);
        }
    }

    void ApplyDefaults(SWR_FORMAT format, Value* src[4])
    {
        const SWR_FORMAT_INFO& info = GetFormatInfo(format);

        bool valid[] = { false, false, false, false };
        for (uint32_t c = 0; c < info.numComps; ++c)
        {
            valid[info.swizzle[c]] = true;
        }

        for (uint32_t c = 0; c < 4; ++c)
        {
            if (!valid[c])
            {
                src[c] = BITCAST(VIMMED1((int)info.defaults[c]), mSimdFP32Ty);
            }
        }
    }

    void ApplyUnusedDefaults(SWR_FORMAT format, Value* src[4])
    {
        const SWR_FORMAT_INFO& info = GetFormatInfo(format);

        for (uint32_t c = 0; c < info.numComps; ++c)
        {
            if (info.type[c] == SWR_TYPE_UNUSED)
            {
                src[info.swizzle[c]] = BITCAST(VIMMED1((int)info.defaults[info.swizzle[c]]), mSimdFP32Ty);
            }
        }
    }

    void Quantize(SWR_FORMAT format, Value* src[4])
    {
        const SWR_FORMAT_INFO& info = GetFormatInfo(format);
        for (uint32_t c = 0; c < info.numComps; ++c)
        {
            if (info.bpc[c] <= QUANTIZE_THRESHOLD)
            {
                uint32_t swizComp = info.swizzle[c];
                float factor = (float)((1 << info.bpc[c]) - 1);
                switch (info.type[c])
                {
                case SWR_TYPE_UNORM:
                    src[swizComp] = FADD(FMUL(src[swizComp], VIMMED1(factor)), VIMMED1(0.5f));
                    src[swizComp] = VROUND(src[swizComp], C(_MM_FROUND_TO_ZERO));
                    src[swizComp] = FMUL(src[swizComp], VIMMED1(1.0f /factor));
                    break;
                default: SWR_ASSERT(false, "Unsupported format type: %d", info.type[c]);
                }
            }
        }
    }

    template<bool Color, bool Alpha>
    void BlendFunc(SWR_BLEND_OP blendOp, Value* src[4], Value* srcFactor[4], Value* dst[4], Value* dstFactor[4], Value* result[4])
    {
        Value* out[4];
        Value* srcBlend[4];
        Value* dstBlend[4];
        for (uint32_t i = 0; i < 4; ++i)
        {
            srcBlend[i] = FMUL(src[i], srcFactor[i]);
            dstBlend[i] = FMUL(dst[i], dstFactor[i]);
        }

        switch (blendOp)
        {
        case BLENDOP_ADD:
            out[0] = FADD(srcBlend[0], dstBlend[0]);
            out[1] = FADD(srcBlend[1], dstBlend[1]);
            out[2] = FADD(srcBlend[2], dstBlend[2]);
            out[3] = FADD(srcBlend[3], dstBlend[3]);
            break;

        case BLENDOP_SUBTRACT:
            out[0] = FSUB(srcBlend[0], dstBlend[0]);
            out[1] = FSUB(srcBlend[1], dstBlend[1]);
            out[2] = FSUB(srcBlend[2], dstBlend[2]);
            out[3] = FSUB(srcBlend[3], dstBlend[3]);
            break;

        case BLENDOP_REVSUBTRACT:
            out[0] = FSUB(dstBlend[0], srcBlend[0]);
            out[1] = FSUB(dstBlend[1], srcBlend[1]);
            out[2] = FSUB(dstBlend[2], srcBlend[2]);
            out[3] = FSUB(dstBlend[3], srcBlend[3]);
            break;

        case BLENDOP_MIN:
            out[0] = VMINPS(src[0], dst[0]);
            out[1] = VMINPS(src[1], dst[1]);
            out[2] = VMINPS(src[2], dst[2]);
            out[3] = VMINPS(src[3], dst[3]);
            break;

        case BLENDOP_MAX:
            out[0] = VMAXPS(src[0], dst[0]);
            out[1] = VMAXPS(src[1], dst[1]);
            out[2] = VMAXPS(src[2], dst[2]);
            out[3] = VMAXPS(src[3], dst[3]);
            break;

        default:
            SWR_ASSERT(false, "Unsupported blend operation: %d", blendOp);
            out[0] = out[1] = out[2] = out[3] = VIMMED1(0.0f);
            break;
        }

        if (Color)
        {
            result[0] = out[0];
            result[1] = out[1];
            result[2] = out[2];
        }

        if (Alpha)
        {
            result[3] = out[3];
        }
    }

    void LogicOpFunc(SWR_LOGIC_OP logicOp, Value* src[4], Value* dst[4], Value* result[4])
    {
        // Op: (s == PS output, d = RT contents)
        switch(logicOp)
        {
        case LOGICOP_CLEAR:
            result[0] = VIMMED1(0);
            result[1] = VIMMED1(0);
            result[2] = VIMMED1(0);
            result[3] = VIMMED1(0);
            break;

        case LOGICOP_NOR:
            // ~(s | d)
            result[0] = XOR(OR(src[0], dst[0]), VIMMED1(0xFFFFFFFF));
            result[1] = XOR(OR(src[1], dst[1]), VIMMED1(0xFFFFFFFF));
            result[2] = XOR(OR(src[2], dst[2]), VIMMED1(0xFFFFFFFF));
            result[3] = XOR(OR(src[3], dst[3]), VIMMED1(0xFFFFFFFF));
            break;

        case LOGICOP_AND_INVERTED:
            // ~s & d
            // todo: use avx andnot instr when I can find the intrinsic to call
            result[0] = AND(XOR(src[0], VIMMED1(0xFFFFFFFF)), dst[0]);
            result[1] = AND(XOR(src[1], VIMMED1(0xFFFFFFFF)), dst[1]);
            result[2] = AND(XOR(src[2], VIMMED1(0xFFFFFFFF)), dst[2]);
            result[3] = AND(XOR(src[3], VIMMED1(0xFFFFFFFF)), dst[3]);
            break;

        case LOGICOP_COPY_INVERTED:
            // ~s
            result[0] = XOR(src[0], VIMMED1(0xFFFFFFFF));
            result[1] = XOR(src[1], VIMMED1(0xFFFFFFFF));
            result[2] = XOR(src[2], VIMMED1(0xFFFFFFFF));
            result[3] = XOR(src[3], VIMMED1(0xFFFFFFFF));
            break;

        case LOGICOP_AND_REVERSE:
            // s & ~d
            // todo: use avx andnot instr when I can find the intrinsic to call
            result[0] = AND(XOR(dst[0], VIMMED1(0xFFFFFFFF)), src[0]);
            result[1] = AND(XOR(dst[1], VIMMED1(0xFFFFFFFF)), src[1]);
            result[2] = AND(XOR(dst[2], VIMMED1(0xFFFFFFFF)), src[2]);
            result[3] = AND(XOR(dst[3], VIMMED1(0xFFFFFFFF)), src[3]);
            break;

        case LOGICOP_INVERT:
            // ~d
            result[0] = XOR(dst[0], VIMMED1(0xFFFFFFFF));
            result[1] = XOR(dst[1], VIMMED1(0xFFFFFFFF));
            result[2] = XOR(dst[2], VIMMED1(0xFFFFFFFF));
            result[3] = XOR(dst[3], VIMMED1(0xFFFFFFFF));
            break;

        case LOGICOP_XOR:
            // s ^ d
            result[0] = XOR(src[0], dst[0]);
            result[1] = XOR(src[1], dst[1]);
            result[2] = XOR(src[2], dst[2]);
            result[3] = XOR(src[3], dst[3]);
            break;

        case LOGICOP_NAND:
            // ~(s & d)
            result[0] = XOR(AND(src[0], dst[0]), VIMMED1(0xFFFFFFFF));
            result[1] = XOR(AND(src[1], dst[1]), VIMMED1(0xFFFFFFFF));
            result[2] = XOR(AND(src[2], dst[2]), VIMMED1(0xFFFFFFFF));
            result[3] = XOR(AND(src[3], dst[3]), VIMMED1(0xFFFFFFFF));
            break;

        case LOGICOP_AND:
            // s & d
            result[0] = AND(src[0], dst[0]);
            result[1] = AND(src[1], dst[1]);
            result[2] = AND(src[2], dst[2]);
            result[3] = AND(src[3], dst[3]);
            break;

        case LOGICOP_EQUIV:
            // ~(s ^ d)
            result[0] = XOR(XOR(src[0], dst[0]), VIMMED1(0xFFFFFFFF));
            result[1] = XOR(XOR(src[1], dst[1]), VIMMED1(0xFFFFFFFF));
            result[2] = XOR(XOR(src[2], dst[2]), VIMMED1(0xFFFFFFFF));
            result[3] = XOR(XOR(src[3], dst[3]), VIMMED1(0xFFFFFFFF));
            break;

        case LOGICOP_NOOP:
            result[0] = dst[0];
            result[1] = dst[1];
            result[2] = dst[2];
            result[3] = dst[3];
            break;

        case LOGICOP_OR_INVERTED:
            // ~s | d
            result[0] = OR(XOR(src[0], VIMMED1(0xFFFFFFFF)), dst[0]);
            result[1] = OR(XOR(src[1], VIMMED1(0xFFFFFFFF)), dst[1]);
            result[2] = OR(XOR(src[2], VIMMED1(0xFFFFFFFF)), dst[2]);
            result[3] = OR(XOR(src[3], VIMMED1(0xFFFFFFFF)), dst[3]);
            break;

        case LOGICOP_COPY:
            result[0] = src[0];
            result[1] = src[1];
            result[2] = src[2];
            result[3] = src[3];
            break;

        case LOGICOP_OR_REVERSE:
            // s | ~d
            result[0] = OR(XOR(dst[0], VIMMED1(0xFFFFFFFF)), src[0]);
            result[1] = OR(XOR(dst[1], VIMMED1(0xFFFFFFFF)), src[1]);
            result[2] = OR(XOR(dst[2], VIMMED1(0xFFFFFFFF)), src[2]);
            result[3] = OR(XOR(dst[3], VIMMED1(0xFFFFFFFF)), src[3]);
            break;

        case LOGICOP_OR:
            // s | d
            result[0] = OR(src[0], dst[0]);
            result[1] = OR(src[1], dst[1]);
            result[2] = OR(src[2], dst[2]);
            result[3] = OR(src[3], dst[3]);
            break;

        case LOGICOP_SET:
            result[0] = VIMMED1(0xFFFFFFFF);
            result[1] = VIMMED1(0xFFFFFFFF);
            result[2] = VIMMED1(0xFFFFFFFF);
            result[3] = VIMMED1(0xFFFFFFFF);
            break;

        default:
            SWR_ASSERT(false, "Unsupported logic operation: %d", logicOp);
            result[0] = result[1] = result[2] = result[3] = VIMMED1(0.0f);
            break;
        }
    }

    void AlphaTest(const BLEND_COMPILE_STATE& state, Value* pBlendState, Value* pAlpha, Value* ppMask)
    {
        // load uint32_t reference
        Value* pRef = VBROADCAST(LOAD(pBlendState, { 0, SWR_BLEND_STATE_alphaTestReference }));

        Value* pTest = nullptr;
        if (state.alphaTestFormat == ALPHA_TEST_UNORM8)
        {
            // convert float alpha to unorm8
            Value* pAlphaU8 = FMUL(pAlpha, VIMMED1(256.0f));
            pAlphaU8 = FP_TO_UI(pAlphaU8, mSimdInt32Ty);

            // compare
            switch (state.alphaTestFunction)
            {
            case ZFUNC_ALWAYS:  pTest = VIMMED1(true); break;
            case ZFUNC_NEVER:   pTest = VIMMED1(false); break;
            case ZFUNC_LT:      pTest = ICMP_ULT(pAlphaU8, pRef); break;
            case ZFUNC_EQ:      pTest = ICMP_EQ(pAlphaU8, pRef); break;
            case ZFUNC_LE:      pTest = ICMP_ULE(pAlphaU8, pRef); break;
            case ZFUNC_GT:      pTest = ICMP_UGT(pAlphaU8, pRef); break;
            case ZFUNC_NE:      pTest = ICMP_NE(pAlphaU8, pRef); break;
            case ZFUNC_GE:      pTest = ICMP_UGE(pAlphaU8, pRef); break;
            default:
                SWR_ASSERT(false, "Invalid alpha test function");
                break;
            }
        }
        else
        {
            // cast ref to float
            pRef = BITCAST(pRef, mSimdFP32Ty);

            // compare
            switch (state.alphaTestFunction)
            {
            case ZFUNC_ALWAYS:  pTest = VIMMED1(true); break;
            case ZFUNC_NEVER:   pTest = VIMMED1(false); break;
            case ZFUNC_LT:      pTest = FCMP_OLT(pAlpha, pRef); break;
            case ZFUNC_EQ:      pTest = FCMP_OEQ(pAlpha, pRef); break;
            case ZFUNC_LE:      pTest = FCMP_OLE(pAlpha, pRef); break;
            case ZFUNC_GT:      pTest = FCMP_OGT(pAlpha, pRef); break;
            case ZFUNC_NE:      pTest = FCMP_ONE(pAlpha, pRef); break;
            case ZFUNC_GE:      pTest = FCMP_OGE(pAlpha, pRef); break;
            default:
                SWR_ASSERT(false, "Invalid alpha test function");
                break;
            }
        }

        // load current mask
        Value* pMask = LOAD(ppMask);

        // convert to int1 mask
        pMask = MASK(pMask);

        // and with alpha test result
        pMask = AND(pMask, pTest);

        // convert back to vector mask
        pMask = VMASK(pMask);

        // store new mask
        STORE(pMask, ppMask);
    }

    Function* Create(const BLEND_COMPILE_STATE& state)
    {
        static std::size_t jitNum = 0;

        std::stringstream fnName("BlendShader", std::ios_base::in | std::ios_base::out | std::ios_base::ate);
        fnName << jitNum++;

        // blend function signature
        //typedef void(*PFN_BLEND_JIT_FUNC)(const SWR_BLEND_STATE*, simdvector&, simdvector&, uint32_t, BYTE*, simdvector&, simdscalari*, simdscalari*);

        std::vector<Type*> args{
            PointerType::get(Gen_SWR_BLEND_STATE(JM()), 0), // SWR_BLEND_STATE*
            PointerType::get(mSimdFP32Ty, 0),               // simdvector& src
            PointerType::get(mSimdFP32Ty, 0),               // simdvector& src1
            Type::getInt32Ty(JM()->mContext),               // sampleNum
            PointerType::get(mSimdFP32Ty, 0),               // uint8_t* pDst
            PointerType::get(mSimdFP32Ty, 0),               // simdvector& result
            PointerType::get(mSimdInt32Ty, 0),              // simdscalari* oMask
            PointerType::get(mSimdInt32Ty, 0),              // simdscalari* pMask
        };

        FunctionType* fTy = FunctionType::get(IRB()->getVoidTy(), args, false);
        Function* blendFunc = Function::Create(fTy, GlobalValue::ExternalLinkage, fnName.str(), JM()->mpCurrentModule);

        BasicBlock* entry = BasicBlock::Create(JM()->mContext, "entry", blendFunc);

        IRB()->SetInsertPoint(entry);

        // arguments
        auto argitr = blendFunc->getArgumentList().begin();
        Value* pBlendState = &*argitr++;
        pBlendState->setName("pBlendState");
        Value* pSrc = &*argitr++;
        pSrc->setName("src");
        Value* pSrc1 = &*argitr++;
        pSrc1->setName("src1");
        Value* sampleNum = &*argitr++;
        sampleNum->setName("sampleNum");
        Value* pDst = &*argitr++;
        pDst->setName("pDst");
        Value* pResult = &*argitr++;
        pResult->setName("result");
        Value* ppoMask = &*argitr++;
        ppoMask->setName("ppoMask");
        Value* ppMask = &*argitr++;
        ppMask->setName("pMask");

        static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");
        Value* dst[4];
        Value* constantColor[4];
        Value* src[4];
        Value* src1[4];
        Value* result[4];
        for (uint32_t i = 0; i < 4; ++i)
        {
            // load hot tile
            dst[i] = LOAD(pDst, { i });

            // load constant color
            constantColor[i] = VBROADCAST(LOAD(pBlendState, { 0, SWR_BLEND_STATE_constantColor, i }));

            // load src
            src[i] = LOAD(pSrc, { i });

            // load src1
            src1[i] = LOAD(pSrc1, { i });
        }
        Value* currentMask = VIMMED1(-1);
        if (state.desc.alphaToCoverageEnable)
        {
            Value* pClampedSrc = FCLAMP(src[3], 0.0f, 1.0f);
            uint32_t bits = (1 << state.desc.numSamples) - 1;
            currentMask = FMUL(pClampedSrc, VBROADCAST(C((float)bits)));
            currentMask = FP_TO_SI(FADD(currentMask, VIMMED1(0.5f)), mSimdInt32Ty);
        }

        // alpha test
        if (state.desc.alphaTestEnable)
        {
            AlphaTest(state, pBlendState, src[3], ppMask);
        }

        // color blend
        if (state.blendState.blendEnable)
        {
            // clamp sources
            Clamp(state.format, src);
            Clamp(state.format, src1);
            Clamp(state.format, dst);
            Clamp(state.format, constantColor);

            // apply defaults to hottile contents to take into account missing components
            ApplyDefaults(state.format, dst);

            // Force defaults for unused 'X' components
            ApplyUnusedDefaults(state.format, dst);

            // Quantize low precision components
            Quantize(state.format, dst);

            // special case clamping for R11G11B10_float which has no sign bit
            if (state.format == R11G11B10_FLOAT)
            {
                dst[0] = VMAXPS(dst[0], VIMMED1(0.0f));
                dst[1] = VMAXPS(dst[1], VIMMED1(0.0f));
                dst[2] = VMAXPS(dst[2], VIMMED1(0.0f));
                dst[3] = VMAXPS(dst[3], VIMMED1(0.0f));
            }

            Value* srcFactor[4];
            Value* dstFactor[4];
            if (state.desc.independentAlphaBlendEnable)
            {
                GenerateBlendFactor<true, false>(state.blendState.sourceBlendFactor, constantColor, src, src1, dst, srcFactor);
                GenerateBlendFactor<false, true>(state.blendState.sourceAlphaBlendFactor, constantColor, src, src1, dst, srcFactor);

                GenerateBlendFactor<true, false>(state.blendState.destBlendFactor, constantColor, src, src1, dst, dstFactor);
                GenerateBlendFactor<false, true>(state.blendState.destAlphaBlendFactor, constantColor, src, src1, dst, dstFactor);

                BlendFunc<true, false>(state.blendState.colorBlendFunc, src, srcFactor, dst, dstFactor, result);
                BlendFunc<false, true>(state.blendState.alphaBlendFunc, src, srcFactor, dst, dstFactor, result);
            }
            else
            {
                GenerateBlendFactor<true, true>(state.blendState.sourceBlendFactor, constantColor, src, src1, dst, srcFactor);
                GenerateBlendFactor<true, true>(state.blendState.destBlendFactor, constantColor, src, src1, dst, dstFactor);

                BlendFunc<true, true>(state.blendState.colorBlendFunc, src, srcFactor, dst, dstFactor, result);
            }

            // store results out
            for (uint32_t i = 0; i < 4; ++i)
            {
                STORE(result[i], pResult, { i });
            }
        }
        
        if(state.blendState.logicOpEnable)
        {
            const SWR_FORMAT_INFO& info = GetFormatInfo(state.format);
            SWR_ASSERT(info.type[0] == SWR_TYPE_UINT);
            Value* vMask[4];
            for(uint32_t i = 0; i < 4; i++)
            {
                switch(info.bpc[i])
                {
                case 0: vMask[i] = VIMMED1(0x00000000); break;
                case 2: vMask[i] = VIMMED1(0x00000003); break;
                case 5: vMask[i] = VIMMED1(0x0000001F); break;
                case 6: vMask[i] = VIMMED1(0x0000003F); break;
                case 8: vMask[i] = VIMMED1(0x000000FF); break;
                case 10: vMask[i] = VIMMED1(0x000003FF); break;
                case 11: vMask[i] = VIMMED1(0x000007FF); break;
                case 16: vMask[i] = VIMMED1(0x0000FFFF); break;
                case 24: vMask[i] = VIMMED1(0x00FFFFFF); break;
                case 32: vMask[i] = VIMMED1(0xFFFFFFFF); break;
                default:
                    vMask[i] = VIMMED1(0x0);
                    SWR_ASSERT(0, "Unsupported bpc for logic op\n");
                    break;
                }
                src[i] = BITCAST(src[i], mSimdInt32Ty);//, vMask[i]);
                dst[i] = BITCAST(dst[i], mSimdInt32Ty);
            }

            LogicOpFunc(state.blendState.logicOpFunc, src, dst, result);

            // store results out
            for(uint32_t i = 0; i < 4; ++i)
            {
                // clear upper bits from PS output not in RT format after doing logic op
                result[i] = AND(result[i], vMask[i]);

                STORE(BITCAST(result[i], mSimdFP32Ty), pResult, {i});
            }
        }

        if(state.desc.oMaskEnable)
        {
            assert(!(state.desc.alphaToCoverageEnable));
            // load current mask
            Value* oMask = LOAD(ppoMask);
            Value* sampleMasked = VBROADCAST(SHL(C(1), sampleNum));
            oMask = AND(oMask, sampleMasked);
            currentMask = AND(oMask, currentMask);
        }

        if(state.desc.sampleMaskEnable)
        {
            Value* sampleMask = LOAD(pBlendState, { 0, SWR_BLEND_STATE_sampleMask});
            Value* sampleMasked = SHL(C(1), sampleNum);
            sampleMask = AND(sampleMask, sampleMasked);
            sampleMask = VBROADCAST(ICMP_SGT(sampleMask, C(0)));
            sampleMask = S_EXT(sampleMask, mSimdInt32Ty);
            currentMask = AND(sampleMask, currentMask);
        }

        if (state.desc.alphaToCoverageEnable)
        {
            Value* sampleMasked = SHL(C(1), sampleNum);
            currentMask = AND(currentMask, VBROADCAST(sampleMasked));
        }

        if(state.desc.sampleMaskEnable || state.desc.alphaToCoverageEnable ||
           state.desc.oMaskEnable)
        {
            // load current mask
            Value* pMask = LOAD(ppMask);
            currentMask = S_EXT(ICMP_SGT(currentMask, VBROADCAST(C(0))), mSimdInt32Ty);
            Value* outputMask = AND(pMask, currentMask);
            // store new mask
            STORE(outputMask, GEP(ppMask, C(0)));
        }

        RET_VOID();

        JitManager::DumpToFile(blendFunc, "");

        ::FunctionPassManager passes(JM()->mpCurrentModule);

        passes.add(createBreakCriticalEdgesPass());
        passes.add(createCFGSimplificationPass());
        passes.add(createEarlyCSEPass());
        passes.add(createPromoteMemoryToRegisterPass());
        passes.add(createCFGSimplificationPass());
        passes.add(createEarlyCSEPass());
        passes.add(createInstructionCombiningPass());
        passes.add(createInstructionSimplifierPass());
        passes.add(createConstantPropagationPass());
        passes.add(createSCCPPass());
        passes.add(createAggressiveDCEPass());

        passes.run(*blendFunc);

        JitManager::DumpToFile(blendFunc, "optimized");

        return blendFunc;
    }
};

//////////////////////////////////////////////////////////////////////////
/// @brief JITs from fetch shader IR
/// @param hJitMgr - JitManager handle
/// @param func   - LLVM function IR
/// @return PFN_FETCH_FUNC - pointer to fetch code
PFN_BLEND_JIT_FUNC JitBlendFunc(HANDLE hJitMgr, const HANDLE hFunc)
{
    const llvm::Function *func = (const llvm::Function*)hFunc;
    JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
    PFN_BLEND_JIT_FUNC pfnBlend;
    pfnBlend = (PFN_BLEND_JIT_FUNC)(pJitMgr->mpExec->getFunctionAddress(func->getName().str()));
    // MCJIT finalizes modules the first time you JIT code from them. After finalized, you cannot add new IR to the module
    pJitMgr->mIsModuleFinalized = true;

    return pfnBlend;
}

//////////////////////////////////////////////////////////////////////////
/// @brief JIT compiles blend shader
/// @param hJitMgr - JitManager handle
/// @param state   - blend state to build function from
extern "C" PFN_BLEND_JIT_FUNC JITCALL JitCompileBlend(HANDLE hJitMgr, const BLEND_COMPILE_STATE& state)
{
    JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);

    pJitMgr->SetupNewModule();

    BlendJit theJit(pJitMgr);
    HANDLE hFunc = theJit.Create(state);

    return JitBlendFunc(hJitMgr, hFunc);
}