summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/core/utils.h
blob: 96f061a78aff562301595e472cb87b04424d47d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file utils.h
*
* @brief Utilities used by SWR core.
*
******************************************************************************/
#pragma once

#include <string.h>
#include <type_traits>
#include <algorithm>
#include "common/os.h"
#include "common/simdintrin.h"
#include "common/swr_assert.h"
#include "core/api.h"

#if defined(_WIN64) || defined(__x86_64__)
#define _MM_INSERT_EPI64 _mm_insert_epi64
#define _MM_EXTRACT_EPI64 _mm_extract_epi64
#else
INLINE int64_t _MM_EXTRACT_EPI64(__m128i a, const int32_t ndx)
{
    OSALIGNLINE(uint32_t) elems[4];
    _mm_store_si128((__m128i*)elems, a);
    if (ndx == 0)
    {
        uint64_t foo = elems[0];
        foo |= (uint64_t)elems[1] << 32;
        return foo;
    } 
    else
    {
        uint64_t foo = elems[2];
        foo |= (uint64_t)elems[3] << 32;
        return foo;
    }
}

INLINE __m128i  _MM_INSERT_EPI64(__m128i a, int64_t b, const int32_t ndx)
{
    OSALIGNLINE(int64_t) elems[2];
    _mm_store_si128((__m128i*)elems, a);
    if (ndx == 0)
    {
        elems[0] = b;
    }
    else
    {
        elems[1] = b;
    }
    __m128i out;
    out = _mm_load_si128((const __m128i*)elems);
    return out;
}
#endif

struct simdBBox
{
    simdscalari ymin;
    simdscalari ymax;
    simdscalari xmin;
    simdscalari xmax;
};

INLINE
void vTranspose(__m128 &row0, __m128 &row1, __m128 &row2, __m128 &row3)
{
    __m128i row0i = _mm_castps_si128(row0);
    __m128i row1i = _mm_castps_si128(row1);
    __m128i row2i = _mm_castps_si128(row2);
    __m128i row3i = _mm_castps_si128(row3);

    __m128i vTemp = row2i;
    row2i = _mm_unpacklo_epi32(row2i, row3i);
    vTemp = _mm_unpackhi_epi32(vTemp, row3i);

    row3i = row0i;
    row0i = _mm_unpacklo_epi32(row0i, row1i);
    row3i = _mm_unpackhi_epi32(row3i, row1i);

    row1i = row0i;
    row0i = _mm_unpacklo_epi64(row0i, row2i);
    row1i = _mm_unpackhi_epi64(row1i, row2i);

    row2i = row3i;
    row2i = _mm_unpacklo_epi64(row2i, vTemp);
    row3i = _mm_unpackhi_epi64(row3i, vTemp);

    row0 = _mm_castsi128_ps(row0i);
    row1 = _mm_castsi128_ps(row1i);
    row2 = _mm_castsi128_ps(row2i);
    row3 = _mm_castsi128_ps(row3i);
}

INLINE
void vTranspose(__m128i &row0, __m128i &row1, __m128i &row2, __m128i &row3)
{
    __m128i vTemp = row2;
    row2 = _mm_unpacklo_epi32(row2, row3);
    vTemp = _mm_unpackhi_epi32(vTemp, row3);

    row3 = row0;
    row0 = _mm_unpacklo_epi32(row0, row1);
    row3 = _mm_unpackhi_epi32(row3, row1);

    row1 = row0;
    row0 = _mm_unpacklo_epi64(row0, row2);
    row1 = _mm_unpackhi_epi64(row1, row2);

    row2 = row3;
    row2 = _mm_unpacklo_epi64(row2, vTemp);
    row3 = _mm_unpackhi_epi64(row3, vTemp);
}

#define GCC_VERSION (__GNUC__ * 10000 \
                     + __GNUC_MINOR__ * 100 \
                     + __GNUC_PATCHLEVEL__)

#if defined(__clang__) || (defined(__GNUC__) && (GCC_VERSION < 40900))
#define _mm_undefined_ps _mm_setzero_ps
#define _mm_undefined_si128 _mm_setzero_si128
#if KNOB_SIMD_WIDTH == 8
#define _mm256_undefined_ps _mm256_setzero_ps
#endif
#endif

#if KNOB_SIMD_WIDTH == 8 || KNOB_SIMD_WIDTH == 16
INLINE
void vTranspose3x8(__m128 (&vDst)[8], __m256 &vSrc0, __m256 &vSrc1, __m256 &vSrc2)
{
    __m256 r0r2 = _mm256_unpacklo_ps(vSrc0, vSrc2);                    //x0z0x1z1 x4z4x5z5
    __m256 r1rx = _mm256_unpacklo_ps(vSrc1, _mm256_undefined_ps());    //y0w0y1w1 y4w4y5w5
    __m256 r02r1xlolo = _mm256_unpacklo_ps(r0r2, r1rx);                //x0y0z0w0 x4y4z4w4
    __m256 r02r1xlohi = _mm256_unpackhi_ps(r0r2, r1rx);                //x1y1z1w1 x5y5z5w5

    r0r2 = _mm256_unpackhi_ps(vSrc0, vSrc2);                        //x2z2x3z3 x6z6x7z7
    r1rx = _mm256_unpackhi_ps(vSrc1, _mm256_undefined_ps());        //y2w2y3w3 y6w6yw77
    __m256 r02r1xhilo = _mm256_unpacklo_ps(r0r2, r1rx);                //x2y2z2w2 x6y6z6w6
    __m256 r02r1xhihi = _mm256_unpackhi_ps(r0r2, r1rx);                //x3y3z3w3 x7y7z7w7

    vDst[0] = _mm256_castps256_ps128(r02r1xlolo);
    vDst[1] = _mm256_castps256_ps128(r02r1xlohi);
    vDst[2] = _mm256_castps256_ps128(r02r1xhilo);
    vDst[3] = _mm256_castps256_ps128(r02r1xhihi);

    vDst[4] = _mm256_extractf128_ps(r02r1xlolo, 1);
    vDst[5] = _mm256_extractf128_ps(r02r1xlohi, 1);
    vDst[6] = _mm256_extractf128_ps(r02r1xhilo, 1);
    vDst[7] = _mm256_extractf128_ps(r02r1xhihi, 1);
}

INLINE
void vTranspose4x8(__m128 (&vDst)[8], __m256 &vSrc0, __m256 &vSrc1, __m256 &vSrc2, __m256 &vSrc3)
{
    __m256 r0r2 = _mm256_unpacklo_ps(vSrc0, vSrc2);                    //x0z0x1z1 x4z4x5z5
    __m256 r1rx = _mm256_unpacklo_ps(vSrc1, vSrc3);                    //y0w0y1w1 y4w4y5w5
    __m256 r02r1xlolo = _mm256_unpacklo_ps(r0r2, r1rx);                //x0y0z0w0 x4y4z4w4
    __m256 r02r1xlohi = _mm256_unpackhi_ps(r0r2, r1rx);                //x1y1z1w1 x5y5z5w5

    r0r2 = _mm256_unpackhi_ps(vSrc0, vSrc2);                        //x2z2x3z3 x6z6x7z7
    r1rx = _mm256_unpackhi_ps(vSrc1, vSrc3)                    ;        //y2w2y3w3 y6w6yw77
    __m256 r02r1xhilo = _mm256_unpacklo_ps(r0r2, r1rx);                //x2y2z2w2 x6y6z6w6
    __m256 r02r1xhihi = _mm256_unpackhi_ps(r0r2, r1rx);                //x3y3z3w3 x7y7z7w7

    vDst[0] = _mm256_castps256_ps128(r02r1xlolo);
    vDst[1] = _mm256_castps256_ps128(r02r1xlohi);
    vDst[2] = _mm256_castps256_ps128(r02r1xhilo);
    vDst[3] = _mm256_castps256_ps128(r02r1xhihi);

    vDst[4] = _mm256_extractf128_ps(r02r1xlolo, 1);
    vDst[5] = _mm256_extractf128_ps(r02r1xlohi, 1);
    vDst[6] = _mm256_extractf128_ps(r02r1xhilo, 1);
    vDst[7] = _mm256_extractf128_ps(r02r1xhihi, 1);
}

INLINE
void vTranspose8x8(__m256 (&vDst)[8], const __m256 &vMask0, const __m256 &vMask1, const __m256 &vMask2, const __m256 &vMask3, const __m256 &vMask4, const __m256 &vMask5, const __m256 &vMask6, const __m256 &vMask7)
{
    __m256 __t0 = _mm256_unpacklo_ps(vMask0, vMask1);
    __m256 __t1 = _mm256_unpackhi_ps(vMask0, vMask1);
    __m256 __t2 = _mm256_unpacklo_ps(vMask2, vMask3);
    __m256 __t3 = _mm256_unpackhi_ps(vMask2, vMask3);
    __m256 __t4 = _mm256_unpacklo_ps(vMask4, vMask5);
    __m256 __t5 = _mm256_unpackhi_ps(vMask4, vMask5);
    __m256 __t6 = _mm256_unpacklo_ps(vMask6, vMask7);
    __m256 __t7 = _mm256_unpackhi_ps(vMask6, vMask7);
    __m256 __tt0 = _mm256_shuffle_ps(__t0,__t2,_MM_SHUFFLE(1,0,1,0));
    __m256 __tt1 = _mm256_shuffle_ps(__t0,__t2,_MM_SHUFFLE(3,2,3,2));
    __m256 __tt2 = _mm256_shuffle_ps(__t1,__t3,_MM_SHUFFLE(1,0,1,0));
    __m256 __tt3 = _mm256_shuffle_ps(__t1,__t3,_MM_SHUFFLE(3,2,3,2));
    __m256 __tt4 = _mm256_shuffle_ps(__t4,__t6,_MM_SHUFFLE(1,0,1,0));
    __m256 __tt5 = _mm256_shuffle_ps(__t4,__t6,_MM_SHUFFLE(3,2,3,2));
    __m256 __tt6 = _mm256_shuffle_ps(__t5,__t7,_MM_SHUFFLE(1,0,1,0));
    __m256 __tt7 = _mm256_shuffle_ps(__t5,__t7,_MM_SHUFFLE(3,2,3,2));
    vDst[0] = _mm256_permute2f128_ps(__tt0, __tt4, 0x20);
    vDst[1] = _mm256_permute2f128_ps(__tt1, __tt5, 0x20);
    vDst[2] = _mm256_permute2f128_ps(__tt2, __tt6, 0x20);
    vDst[3] = _mm256_permute2f128_ps(__tt3, __tt7, 0x20);
    vDst[4] = _mm256_permute2f128_ps(__tt0, __tt4, 0x31);
    vDst[5] = _mm256_permute2f128_ps(__tt1, __tt5, 0x31);
    vDst[6] = _mm256_permute2f128_ps(__tt2, __tt6, 0x31);
    vDst[7] = _mm256_permute2f128_ps(__tt3, __tt7, 0x31);
}

INLINE
void vTranspose8x8(__m256 (&vDst)[8], const __m256i &vMask0, const __m256i &vMask1, const __m256i &vMask2, const __m256i &vMask3, const __m256i &vMask4, const __m256i &vMask5, const __m256i &vMask6, const __m256i &vMask7)
{
    vTranspose8x8(vDst, _mm256_castsi256_ps(vMask0), _mm256_castsi256_ps(vMask1), _mm256_castsi256_ps(vMask2), _mm256_castsi256_ps(vMask3), 
        _mm256_castsi256_ps(vMask4), _mm256_castsi256_ps(vMask5), _mm256_castsi256_ps(vMask6), _mm256_castsi256_ps(vMask7));
}
#endif

//////////////////////////////////////////////////////////////////////////
/// TranposeSingleComponent
//////////////////////////////////////////////////////////////////////////
template<uint32_t bpp>
struct TransposeSingleComponent
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Pass-thru for single component.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
        memcpy(pDst, pSrc, (bpp * KNOB_SIMD_WIDTH) / 8);
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose8_8_8_8
//////////////////////////////////////////////////////////////////////////
struct Transpose8_8_8_8
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 8_8_8_8 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
        simdscalari src = _simd_load_si((const simdscalari*)pSrc);

#if KNOB_SIMD_WIDTH == 8
#if KNOB_ARCH == KNOB_ARCH_AVX
        __m128i c0c1 = _mm256_castsi256_si128(src);                                           // rrrrrrrrgggggggg
        __m128i c2c3 = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(src), 1));  // bbbbbbbbaaaaaaaa
        __m128i c0c2 = _mm_unpacklo_epi64(c0c1, c2c3);                                        // rrrrrrrrbbbbbbbb
        __m128i c1c3 = _mm_unpackhi_epi64(c0c1, c2c3);                                        // ggggggggaaaaaaaa
        __m128i c01 = _mm_unpacklo_epi8(c0c2, c1c3);                                          // rgrgrgrgrgrgrgrg
        __m128i c23 = _mm_unpackhi_epi8(c0c2, c1c3);                                          // babababababababa
        __m128i c0123lo = _mm_unpacklo_epi16(c01, c23);                                       // rgbargbargbargba
        __m128i c0123hi = _mm_unpackhi_epi16(c01, c23);                                       // rgbargbargbargba
        _mm_store_si128((__m128i*)pDst, c0123lo);
        _mm_store_si128((__m128i*)(pDst + 16), c0123hi);
#elif KNOB_ARCH == KNOB_ARCH_AVX2
        simdscalari dst01 = _mm256_shuffle_epi8(src,
            _mm256_set_epi32(0x0f078080, 0x0e068080, 0x0d058080, 0x0c048080, 0x80800b03, 0x80800a02, 0x80800901, 0x80800800));
        simdscalari dst23 = _mm256_permute2x128_si256(src, src, 0x01);
        dst23 = _mm256_shuffle_epi8(dst23,
            _mm256_set_epi32(0x80800f07, 0x80800e06, 0x80800d05, 0x80800c04, 0x0b038080, 0x0a028080, 0x09018080, 0x08008080));
        simdscalari dst = _mm256_or_si256(dst01, dst23);
        _simd_store_si((simdscalari*)pDst, dst);
#endif
#elif KNOB_SIMD_WIDTH == 16
        simdscalari mask0 = _simd_set_epi32(0x0f078080, 0x0e068080, 0x0d058080, 0x0c048080, 0x80800b03, 0x80800a02, 0x80800901, 0x80800800);

        simdscalari dst01 = _simd_shuffle_epi8(src, mask0);

        simdscalari perm1 = _simd_permute_128(src, src, 1);

        simdscalari mask1 = _simd_set_epi32(0x80800f07, 0x80800e06, 0x80800d05, 0x80800c04, 0x0b038080, 0x0a028080, 0x09018080, 0x08008080);

        simdscalari dst23 = _simd_shuffle_epi8(perm1, mask1);

        simdscalari dst = _simd_or_si(dst01, dst23);

        _simd_store_si(reinterpret_cast<simdscalari *>(pDst), dst);
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose8_8_8
//////////////////////////////////////////////////////////////////////////
struct Transpose8_8_8
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 8_8_8 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose8_8
//////////////////////////////////////////////////////////////////////////
struct Transpose8_8
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 8_8 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        simdscalari src = _simd_load_si((const simdscalari*)pSrc);

        __m128i rg = _mm256_castsi256_si128(src);           // rrrrrrrr gggggggg
        __m128i g = _mm_unpackhi_epi64(rg, rg);             // gggggggg gggggggg
        rg = _mm_unpacklo_epi8(rg, g);
        _mm_store_si128((__m128i*)pDst, rg);
#elif KNOB_SIMD_WIDTH == 16
        __m256i src = _mm256_load_si256(reinterpret_cast<const __m256i *>(pSrc));   // rrrrrrrrrrrrrrrrgggggggggggggggg

        __m256i r = _mm256_permute4x64_epi64(src, 0x50);    // 0x50 = 01010000b     // rrrrrrrrxxxxxxxxrrrrrrrrxxxxxxxx

        __m256i g = _mm256_permute4x64_epi64(src, 0xFA);    // 0xFA = 11111010b     // ggggggggxxxxxxxxggggggggxxxxxxxx

        __m256i dst = _mm256_unpacklo_epi8(r, g);                                   // rgrgrgrgrgrgrgrgrgrgrgrgrgrgrgrg

        _mm256_store_si256(reinterpret_cast<__m256i *>(pDst), dst);
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose32_32_32_32
//////////////////////////////////////////////////////////////////////////
struct Transpose32_32_32_32
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 32_32_32_32 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        simdscalar src0 = _simd_load_ps((const float*)pSrc);
        simdscalar src1 = _simd_load_ps((const float*)pSrc + 8);
        simdscalar src2 = _simd_load_ps((const float*)pSrc + 16);
        simdscalar src3 = _simd_load_ps((const float*)pSrc + 24);

        __m128 vDst[8];
        vTranspose4x8(vDst, src0, src1, src2, src3);
        _mm_store_ps((float*)pDst, vDst[0]);
        _mm_store_ps((float*)pDst+4, vDst[1]);
        _mm_store_ps((float*)pDst+8, vDst[2]);
        _mm_store_ps((float*)pDst+12, vDst[3]);
        _mm_store_ps((float*)pDst+16, vDst[4]);
        _mm_store_ps((float*)pDst+20, vDst[5]);
        _mm_store_ps((float*)pDst+24, vDst[6]);
        _mm_store_ps((float*)pDst+28, vDst[7]);
#elif KNOB_SIMD_WIDTH == 16
#if ENABLE_AVX512_EMULATION
        simdscalar src0 = _simd_load_ps(reinterpret_cast<const float*>(pSrc));
        simdscalar src1 = _simd_load_ps(reinterpret_cast<const float*>(pSrc) + 16);
        simdscalar src2 = _simd_load_ps(reinterpret_cast<const float*>(pSrc) + 32);
        simdscalar src3 = _simd_load_ps(reinterpret_cast<const float*>(pSrc) + 48);

        __m128 vDst[8];

        vTranspose4x8(vDst, src0.lo, src1.lo, src2.lo, src3.lo);

        _mm_store_ps(reinterpret_cast<float*>(pDst), vDst[0]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 4, vDst[1]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 8, vDst[2]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 12, vDst[3]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 16, vDst[4]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 20, vDst[5]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 24, vDst[6]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 28, vDst[7]);

        vTranspose4x8(vDst, src0.hi, src1.hi, src2.hi, src3.hi);

        _mm_store_ps(reinterpret_cast<float*>(pDst) + 32, vDst[0]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 36, vDst[1]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 40, vDst[2]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 44, vDst[3]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 48, vDst[4]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 52, vDst[5]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 56, vDst[6]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 60, vDst[7]);
#endif
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose32_32_32
//////////////////////////////////////////////////////////////////////////
struct Transpose32_32_32
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 32_32_32 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        simdscalar src0 = _simd_load_ps((const float*)pSrc);
        simdscalar src1 = _simd_load_ps((const float*)pSrc + 8);
        simdscalar src2 = _simd_load_ps((const float*)pSrc + 16);

        __m128 vDst[8];
        vTranspose3x8(vDst, src0, src1, src2);
        _mm_store_ps((float*)pDst, vDst[0]);
        _mm_store_ps((float*)pDst + 4, vDst[1]);
        _mm_store_ps((float*)pDst + 8, vDst[2]);
        _mm_store_ps((float*)pDst + 12, vDst[3]);
        _mm_store_ps((float*)pDst + 16, vDst[4]);
        _mm_store_ps((float*)pDst + 20, vDst[5]);
        _mm_store_ps((float*)pDst + 24, vDst[6]);
        _mm_store_ps((float*)pDst + 28, vDst[7]);
#elif KNOB_SIMD_WIDTH == 16
#if ENABLE_AVX512_EMULATION
        simdscalar src0 = _simd_load_ps(reinterpret_cast<const float*>(pSrc));
        simdscalar src1 = _simd_load_ps(reinterpret_cast<const float*>(pSrc) + 16);
        simdscalar src2 = _simd_load_ps(reinterpret_cast<const float*>(pSrc) + 32);

        __m128 vDst[8];

        vTranspose3x8(vDst, src0.lo, src1.lo, src2.lo);

        _mm_store_ps(reinterpret_cast<float*>(pDst), vDst[0]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 4, vDst[1]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 8, vDst[2]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 12, vDst[3]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 16, vDst[4]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 20, vDst[5]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 24, vDst[6]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 28, vDst[7]);

        vTranspose3x8(vDst, src0.hi, src1.hi, src2.hi);

        _mm_store_ps(reinterpret_cast<float*>(pDst) + 32, vDst[0]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 36, vDst[1]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 40, vDst[2]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 44, vDst[3]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 48, vDst[4]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 52, vDst[5]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 56, vDst[6]);
        _mm_store_ps(reinterpret_cast<float*>(pDst) + 60, vDst[7]);
#endif
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose32_32
//////////////////////////////////////////////////////////////////////////
struct Transpose32_32
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 32_32 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        const float* pfSrc = (const float*)pSrc;
        __m128 src_r0 = _mm_load_ps(pfSrc + 0);
        __m128 src_r1 = _mm_load_ps(pfSrc + 4);
        __m128 src_g0 = _mm_load_ps(pfSrc + 8);
        __m128 src_g1 = _mm_load_ps(pfSrc + 12);

        __m128 dst0 = _mm_unpacklo_ps(src_r0, src_g0);
        __m128 dst1 = _mm_unpackhi_ps(src_r0, src_g0);
        __m128 dst2 = _mm_unpacklo_ps(src_r1, src_g1);
        __m128 dst3 = _mm_unpackhi_ps(src_r1, src_g1);

        float* pfDst = (float*)pDst;
        _mm_store_ps(pfDst + 0, dst0);
        _mm_store_ps(pfDst + 4, dst1);
        _mm_store_ps(pfDst + 8, dst2);
        _mm_store_ps(pfDst + 12, dst3);
#elif KNOB_SIMD_WIDTH == 16
        const float* pfSrc = (const float*)pSrc;
        __m256 src_r0 = _mm256_load_ps(pfSrc + 0);
        __m256 src_r1 = _mm256_load_ps(pfSrc + 8);
        __m256 src_g0 = _mm256_load_ps(pfSrc + 16);
        __m256 src_g1 = _mm256_load_ps(pfSrc + 24);

        __m256 dst0 = _mm256_unpacklo_ps(src_r0, src_g0);
        __m256 dst1 = _mm256_unpackhi_ps(src_r0, src_g0);
        __m256 dst2 = _mm256_unpacklo_ps(src_r1, src_g1);
        __m256 dst3 = _mm256_unpackhi_ps(src_r1, src_g1);

        float* pfDst = (float*)pDst;
        _mm256_store_ps(pfDst + 0, dst0);
        _mm256_store_ps(pfDst + 8, dst1);
        _mm256_store_ps(pfDst + 16, dst2);
        _mm256_store_ps(pfDst + 24, dst3);
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose16_16_16_16
//////////////////////////////////////////////////////////////////////////
struct Transpose16_16_16_16
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 16_16_16_16 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        simdscalari src_rg = _simd_load_si((const simdscalari*)pSrc);
        simdscalari src_ba = _simd_load_si((const simdscalari*)(pSrc + sizeof(simdscalari)));

        __m128i src_r = _mm256_extractf128_si256(src_rg, 0);
        __m128i src_g = _mm256_extractf128_si256(src_rg, 1);
        __m128i src_b = _mm256_extractf128_si256(src_ba, 0);
        __m128i src_a = _mm256_extractf128_si256(src_ba, 1);

        __m128i rg0 = _mm_unpacklo_epi16(src_r, src_g);
        __m128i rg1 = _mm_unpackhi_epi16(src_r, src_g);
        __m128i ba0 = _mm_unpacklo_epi16(src_b, src_a);
        __m128i ba1 = _mm_unpackhi_epi16(src_b, src_a);

        __m128i dst0 = _mm_unpacklo_epi32(rg0, ba0);
        __m128i dst1 = _mm_unpackhi_epi32(rg0, ba0);
        __m128i dst2 = _mm_unpacklo_epi32(rg1, ba1);
        __m128i dst3 = _mm_unpackhi_epi32(rg1, ba1);

        _mm_store_si128(((__m128i*)pDst) + 0, dst0);
        _mm_store_si128(((__m128i*)pDst) + 1, dst1);
        _mm_store_si128(((__m128i*)pDst) + 2, dst2);
        _mm_store_si128(((__m128i*)pDst) + 3, dst3);
#elif KNOB_SIMD_WIDTH == 16
#if ENABLE_AVX512_EMULATION
        simdscalari src_rg = _simd_load_si(reinterpret_cast<const simdscalari*>(pSrc));
        simdscalari src_ba = _simd_load_si(reinterpret_cast<const simdscalari*>(pSrc + sizeof(simdscalari)));

        __m256i src_r = src_rg.lo;
        __m256i src_g = src_rg.hi;
        __m256i src_b = src_ba.lo;
        __m256i src_a = src_ba.hi;

        __m256i rg0 = _mm256_unpacklo_epi16(src_r, src_g);
        __m256i rg1 = _mm256_unpackhi_epi16(src_r, src_g);
        __m256i ba0 = _mm256_unpacklo_epi16(src_b, src_a);
        __m256i ba1 = _mm256_unpackhi_epi16(src_b, src_a);

        __m256i dst0 = _mm256_unpacklo_epi32(rg0, ba0);
        __m256i dst1 = _mm256_unpackhi_epi32(rg0, ba0);
        __m256i dst2 = _mm256_unpacklo_epi32(rg1, ba1);
        __m256i dst3 = _mm256_unpackhi_epi32(rg1, ba1);

        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 0, dst0);
        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 1, dst1);
        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 2, dst2);
        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 3, dst3);
#endif
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose16_16_16
//////////////////////////////////////////////////////////////////////////
struct Transpose16_16_16
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 16_16_16 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        simdscalari src_rg = _simd_load_si((const simdscalari*)pSrc);

        __m128i src_r = _mm256_extractf128_si256(src_rg, 0);
        __m128i src_g = _mm256_extractf128_si256(src_rg, 1);
        __m128i src_b = _mm_load_si128((const __m128i*)(pSrc + sizeof(simdscalari)));
        __m128i src_a = _mm_undefined_si128();

        __m128i rg0 = _mm_unpacklo_epi16(src_r, src_g);
        __m128i rg1 = _mm_unpackhi_epi16(src_r, src_g);
        __m128i ba0 = _mm_unpacklo_epi16(src_b, src_a);
        __m128i ba1 = _mm_unpackhi_epi16(src_b, src_a);

        __m128i dst0 = _mm_unpacklo_epi32(rg0, ba0);
        __m128i dst1 = _mm_unpackhi_epi32(rg0, ba0);
        __m128i dst2 = _mm_unpacklo_epi32(rg1, ba1);
        __m128i dst3 = _mm_unpackhi_epi32(rg1, ba1);

        _mm_store_si128(((__m128i*)pDst) + 0, dst0);
        _mm_store_si128(((__m128i*)pDst) + 1, dst1);
        _mm_store_si128(((__m128i*)pDst) + 2, dst2);
        _mm_store_si128(((__m128i*)pDst) + 3, dst3);
#elif KNOB_SIMD_WIDTH == 16
#if ENABLE_AVX512_EMULATION
        simdscalari src_rg = _simd_load_si(reinterpret_cast<const simdscalari*>(pSrc));

        __m256i src_r = src_rg.lo;
        __m256i src_g = src_rg.hi;
        __m256i src_b = _mm256_load_si256(reinterpret_cast<const __m256i*>(pSrc + sizeof(simdscalari)));
        __m256i src_a = _mm256_undefined_si256();

        __m256i rg0 = _mm256_unpacklo_epi16(src_r, src_g);
        __m256i rg1 = _mm256_unpackhi_epi16(src_r, src_g);
        __m256i ba0 = _mm256_unpacklo_epi16(src_b, src_a);
        __m256i ba1 = _mm256_unpackhi_epi16(src_b, src_a);

        __m256i dst0 = _mm256_unpacklo_epi32(rg0, ba0);
        __m256i dst1 = _mm256_unpackhi_epi32(rg0, ba0);
        __m256i dst2 = _mm256_unpacklo_epi32(rg1, ba1);
        __m256i dst3 = _mm256_unpackhi_epi32(rg1, ba1);

        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 0, dst0);
        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 1, dst1);
        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 2, dst2);
        _mm256_store_si256(reinterpret_cast<__m256i*>(pDst) + 3, dst3);
#endif
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose16_16
//////////////////////////////////////////////////////////////////////////
struct Transpose16_16
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 16_16 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    INLINE static void Transpose(const uint8_t* pSrc, uint8_t* pDst)
    {
#if KNOB_SIMD_WIDTH == 8
        simdscalar src = _simd_load_ps((const float*)pSrc);

        __m128 comp0 = _mm256_castps256_ps128(src);
        __m128 comp1 = _mm256_extractf128_ps(src, 1);

        __m128i comp0i = _mm_castps_si128(comp0);
        __m128i comp1i = _mm_castps_si128(comp1);

        __m128i resLo = _mm_unpacklo_epi16(comp0i, comp1i);
        __m128i resHi = _mm_unpackhi_epi16(comp0i, comp1i);

        _mm_store_si128((__m128i*)pDst, resLo);
        _mm_store_si128((__m128i*)pDst + 1, resHi);
#elif KNOB_SIMD_WIDTH == 16
#if ENABLE_AVX512_EMULATION
        simdscalari src = _simd_castps_si(_simd_load_ps(reinterpret_cast<const float*>(pSrc)));

        simdscalari result;

        result.lo = _mm256_unpacklo_epi16(src.lo, src.hi);
        result.hi = _mm256_unpackhi_epi16(src.lo, src.hi);

        _simd_store_si(reinterpret_cast<simdscalari *>(pDst), result);
#endif
#else
#error Unsupported vector width
#endif
    }
};

//////////////////////////////////////////////////////////////////////////
/// Transpose24_8
//////////////////////////////////////////////////////////////////////////
struct Transpose24_8
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 24_8 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose32_8_24
//////////////////////////////////////////////////////////////////////////
struct Transpose32_8_24
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 32_8_24 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};



//////////////////////////////////////////////////////////////////////////
/// Transpose4_4_4_4
//////////////////////////////////////////////////////////////////////////
struct Transpose4_4_4_4
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 4_4_4_4 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose5_6_5
//////////////////////////////////////////////////////////////////////////
struct Transpose5_6_5
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 5_6_5 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose9_9_9_5
//////////////////////////////////////////////////////////////////////////
struct Transpose9_9_9_5
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 9_9_9_5 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose5_5_5_1
//////////////////////////////////////////////////////////////////////////
struct Transpose5_5_5_1
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 5_5_5_1 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose1_5_5_5
//////////////////////////////////////////////////////////////////////////
struct Transpose1_5_5_5
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 5_5_5_1 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose10_10_10_2
//////////////////////////////////////////////////////////////////////////
struct Transpose10_10_10_2
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 10_10_10_2 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

//////////////////////////////////////////////////////////////////////////
/// Transpose11_11_10
//////////////////////////////////////////////////////////////////////////
struct Transpose11_11_10
{
    //////////////////////////////////////////////////////////////////////////
    /// @brief Performs an SOA to AOS conversion for packed 11_11_10 data.
    /// @param pSrc - source data in SOA form
    /// @param pDst - output data in AOS form
    static void Transpose(const uint8_t* pSrc, uint8_t* pDst) = delete;
};

// helper function to unroll loops
template<int Begin, int End, int Step = 1>
struct UnrollerL {
    template<typename Lambda>
    INLINE static void step(Lambda& func) {
        func(Begin);
        UnrollerL<Begin + Step, End, Step>::step(func);
    }
};

template<int End, int Step>
struct UnrollerL<End, End, Step> {
    template<typename Lambda>
    static void step(Lambda& func) {
    }
};

// helper function to unroll loops, with mask to skip specific iterations
template<int Begin, int End, int Step = 1, int Mask = 0x7f>
struct UnrollerLMask {
    template<typename Lambda>
    INLINE static void step(Lambda& func) {
        if(Mask & (1 << Begin))
        {
            func(Begin);
        }
        UnrollerL<Begin + Step, End, Step>::step(func);
    }
};

template<int End, int Step, int Mask>
struct UnrollerLMask<End, End, Step, Mask> {
    template<typename Lambda>
    static void step(Lambda& func) {
    }
};

// general CRC compute
INLINE
uint32_t ComputeCRC(uint32_t crc, const void *pData, uint32_t size)
{
#if defined(_WIN64) || defined(__x86_64__)
    uint32_t sizeInQwords = size / sizeof(uint64_t);
    uint32_t sizeRemainderBytes = size % sizeof(uint64_t);
    uint64_t* pDataWords = (uint64_t*)pData;
    for (uint32_t i = 0; i < sizeInQwords; ++i)
    {
        crc = (uint32_t)_mm_crc32_u64(crc, *pDataWords++);
    }
#else
    uint32_t sizeInDwords = size / sizeof(uint32_t);
    uint32_t sizeRemainderBytes = size % sizeof(uint32_t);
    uint32_t* pDataWords = (uint32_t*)pData;
    for (uint32_t i = 0; i < sizeInDwords; ++i)
    {
        crc = _mm_crc32_u32(crc, *pDataWords++);
    }
#endif

    uint8_t* pRemainderBytes = (uint8_t*)pDataWords;
    for (uint32_t i = 0; i < sizeRemainderBytes; ++i)
    {
        crc = _mm_crc32_u8(crc, *pRemainderBytes++);
    }

    return crc;
}

//////////////////////////////////////////////////////////////////////////
/// Add byte offset to any-type pointer
//////////////////////////////////////////////////////////////////////////
template <typename T>
INLINE
static T* PtrAdd(T* p, intptr_t offset)
{
    intptr_t intp = reinterpret_cast<intptr_t>(p);
    return reinterpret_cast<T*>(intp + offset);
}

//////////////////////////////////////////////////////////////////////////
/// Is a power-of-2?
//////////////////////////////////////////////////////////////////////////
template <typename T>
INLINE
static bool IsPow2(T value)
{
    return value == (value & (0 - value));
}

//////////////////////////////////////////////////////////////////////////
/// Align down to specified alignment
/// Note: IsPow2(alignment) MUST be true
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1 AlignDownPow2(T1 value, T2 alignment)
{
    SWR_ASSERT(IsPow2(alignment));
    return value & ~T1(alignment - 1);
}

//////////////////////////////////////////////////////////////////////////
/// Align up to specified alignment
/// Note: IsPow2(alignment) MUST be true
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1 AlignUpPow2(T1 value, T2 alignment)
{
    return AlignDownPow2(value + T1(alignment - 1), alignment);
}

//////////////////////////////////////////////////////////////////////////
/// Align up ptr to specified alignment
/// Note: IsPow2(alignment) MUST be true
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1* AlignUpPow2(T1* value, T2 alignment)
{
    return reinterpret_cast<T1*>(
        AlignDownPow2(reinterpret_cast<uintptr_t>(value) + uintptr_t(alignment - 1), alignment));
}

//////////////////////////////////////////////////////////////////////////
/// Align down to specified alignment
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1 AlignDown(T1 value, T2 alignment)
{
    if (IsPow2(alignment)) { return AlignDownPow2(value, alignment); }
    return value - T1(value % alignment);
}

//////////////////////////////////////////////////////////////////////////
/// Align down to specified alignment
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1* AlignDown(T1* value, T2 alignment)
{
    return (T1*)AlignDown(uintptr_t(value), alignment);
}

//////////////////////////////////////////////////////////////////////////
/// Align up to specified alignment
/// Note: IsPow2(alignment) MUST be true
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1 AlignUp(T1 value, T2 alignment)
{
    return AlignDown(value + T1(alignment - 1), alignment);
}

//////////////////////////////////////////////////////////////////////////
/// Align up to specified alignment
/// Note: IsPow2(alignment) MUST be true
//////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2>
INLINE
static T1* AlignUp(T1* value, T2 alignment)
{
    return AlignDown(PtrAdd(value, alignment - 1), alignment);
}

//////////////////////////////////////////////////////////////////////////
/// Helper structure used to access an array of elements that don't 
/// correspond to a typical word size.
//////////////////////////////////////////////////////////////////////////
template<typename T, size_t BitsPerElementT, size_t ArrayLenT>
class BitsArray
{
private:
    static const size_t BITS_PER_WORD = sizeof(size_t) * 8;
    static const size_t ELEMENTS_PER_WORD = BITS_PER_WORD / BitsPerElementT;
    static const size_t NUM_WORDS = (ArrayLenT + ELEMENTS_PER_WORD - 1) / ELEMENTS_PER_WORD;
    static const size_t ELEMENT_MASK = (size_t(1) << BitsPerElementT) - 1;

    static_assert(ELEMENTS_PER_WORD * BitsPerElementT == BITS_PER_WORD,
        "Element size must an integral fraction of pointer size");

    size_t              m_words[NUM_WORDS] = {};

public:

    T operator[] (size_t elementIndex) const
    {
        size_t word = m_words[elementIndex / ELEMENTS_PER_WORD];
        word >>= ((elementIndex % ELEMENTS_PER_WORD) * BitsPerElementT);
        return T(word & ELEMENT_MASK);
    }
};

// Ranged integer argument for TemplateArgUnroller
template <uint32_t TMin, uint32_t TMax>
struct IntArg
{
    uint32_t val;
};

// Recursive template used to auto-nest conditionals.  Converts dynamic boolean function
// arguments to static template arguments.
template <typename TermT, typename... ArgsB>
struct TemplateArgUnroller
{
    //-----------------------------------------
    // Boolean value
    //-----------------------------------------

    // Last Arg Terminator
    static typename TermT::FuncType GetFunc(bool bArg)
    {
        if (bArg)
        {
            return TermT::template GetFunc<ArgsB..., std::true_type>();
        }

        return TermT::template GetFunc<ArgsB..., std::false_type>();
    }

    // Recursively parse args
    template <typename... TArgsT>
    static typename TermT::FuncType GetFunc(bool bArg, TArgsT... remainingArgs)
    {
        if (bArg)
        {
            return TemplateArgUnroller<TermT, ArgsB..., std::true_type>::GetFunc(remainingArgs...);
        }

        return TemplateArgUnroller<TermT, ArgsB..., std::false_type>::GetFunc(remainingArgs...);
    }

    //-----------------------------------------
    // Integer value (within specified range)
    //-----------------------------------------

    // Last Arg Terminator
    template <uint32_t TMin, uint32_t TMax>
    static typename TermT::FuncType GetFunc(IntArg<TMin, TMax> iArg)
    {
        if (iArg.val == TMax)
        {
            return TermT::template GetFunc<ArgsB..., std::integral_constant<uint32_t, TMax>>();
        }
        if (TMax > TMin)
        {
            return TemplateArgUnroller<TermT, ArgsB...>::GetFunc(IntArg<TMin, TMax-1>{iArg.val});
        }
        SWR_ASSUME(false); return nullptr;
    }
    template <uint32_t TVal>
    static typename TermT::FuncType GetFunc(IntArg<TVal, TVal> iArg)
    {
        SWR_ASSERT(iArg.val == TVal);
        return TermT::template GetFunc<ArgsB..., std::integral_constant<uint32_t, TVal>>();
    }

    // Recursively parse args
    template <uint32_t TMin, uint32_t TMax, typename... TArgsT>
    static typename TermT::FuncType GetFunc(IntArg<TMin, TMax> iArg, TArgsT... remainingArgs)
    {
        if (iArg.val == TMax)
        {
            return TemplateArgUnroller<TermT, ArgsB..., std::integral_constant<uint32_t, TMax>>::GetFunc(remainingArgs...);
        }
        if (TMax > TMin)
        {
            return TemplateArgUnroller<TermT, ArgsB...>::GetFunc(IntArg<TMin, TMax - 1>{iArg.val}, remainingArgs...);
        }
        SWR_ASSUME(false); return nullptr;
    }
    template <uint32_t TVal, typename... TArgsT>
    static typename TermT::FuncType GetFunc(IntArg<TVal, TVal> iArg, TArgsT... remainingArgs)
    {
        SWR_ASSERT(iArg.val == TVal);
        return TemplateArgUnroller<TermT, ArgsB..., std::integral_constant<uint32_t, TVal>>::GetFunc(remainingArgs...);
    }
};