summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/core/rasterizer.cpp
blob: c14cd56e52ed7df9b520e0bd2adc4b621e84d9e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/****************************************************************************
 * Copyright (C) 2014-2018 Intel Corporation.   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * @file rasterizer.cpp
 *
 * @brief Implementation for the rasterizer.
 *
 ******************************************************************************/

#include <vector>
#include <algorithm>

#include "rasterizer.h"
#include "backends/gen_rasterizer.hpp"
#include "rdtsc_core.h"
#include "backend.h"
#include "utils.h"
#include "frontend.h"
#include "tilemgr.h"
#include "memory/tilingtraits.h"
#include "rasterizer_impl.h"

PFN_WORK_FUNC gRasterizerFuncs[SWR_MULTISAMPLE_TYPE_COUNT][2][2][SWR_INPUT_COVERAGE_COUNT]
                              [STATE_VALID_TRI_EDGE_COUNT][2];

void RasterizeLine(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t macroTile, void* pData)
{
    const TRIANGLE_WORK_DESC& workDesc = *((TRIANGLE_WORK_DESC*)pData);
#if KNOB_ENABLE_TOSS_POINTS
    if (KNOB_TOSS_BIN_TRIS)
    {
        return;
    }
#endif

    // bloat line to two tris and call the triangle rasterizer twice
    RDTSC_BEGIN(pDC->pContext->pBucketMgr, BERasterizeLine, pDC->drawId);

    const API_STATE&     state     = GetApiState(pDC);
    const SWR_RASTSTATE& rastState = state.rastState;

    // macrotile dimensioning
    uint32_t macroX, macroY;
    MacroTileMgr::getTileIndices(macroTile, macroX, macroY);
    int32_t macroBoxLeft   = macroX * KNOB_MACROTILE_X_DIM_FIXED;
    int32_t macroBoxRight  = macroBoxLeft + KNOB_MACROTILE_X_DIM_FIXED - 1;
    int32_t macroBoxTop    = macroY * KNOB_MACROTILE_Y_DIM_FIXED;
    int32_t macroBoxBottom = macroBoxTop + KNOB_MACROTILE_Y_DIM_FIXED - 1;

    const SWR_RECT& scissorInFixedPoint =
        state.scissorsInFixedPoint[workDesc.triFlags.viewportIndex];

    // create a copy of the triangle buffer to write our adjusted vertices to
    OSALIGNSIMD(float) newTriBuffer[4 * 4];
    TRIANGLE_WORK_DESC newWorkDesc = workDesc;
    newWorkDesc.pTriBuffer         = &newTriBuffer[0];

    // create a copy of the attrib buffer to write our adjusted attribs to
    OSALIGNSIMD(float) newAttribBuffer[4 * 3 * SWR_VTX_NUM_SLOTS];
    newWorkDesc.pAttribs = &newAttribBuffer[0];

    const __m128 vBloat0 = _mm_set_ps(0.5f, -0.5f, -0.5f, 0.5f);
    const __m128 vBloat1 = _mm_set_ps(0.5f, 0.5f, 0.5f, -0.5f);

    __m128 vX, vY, vZ, vRecipW;

    vX      = _mm_load_ps(workDesc.pTriBuffer);
    vY      = _mm_load_ps(workDesc.pTriBuffer + 4);
    vZ      = _mm_load_ps(workDesc.pTriBuffer + 8);
    vRecipW = _mm_load_ps(workDesc.pTriBuffer + 12);

    // triangle 0
    // v0,v1 -> v0,v0,v1
    __m128 vXa      = _mm_shuffle_ps(vX, vX, _MM_SHUFFLE(1, 1, 0, 0));
    __m128 vYa      = _mm_shuffle_ps(vY, vY, _MM_SHUFFLE(1, 1, 0, 0));
    __m128 vZa      = _mm_shuffle_ps(vZ, vZ, _MM_SHUFFLE(1, 1, 0, 0));
    __m128 vRecipWa = _mm_shuffle_ps(vRecipW, vRecipW, _MM_SHUFFLE(1, 1, 0, 0));

    __m128 vLineWidth = _mm_set1_ps(pDC->pState->state.rastState.lineWidth);
    __m128 vAdjust    = _mm_mul_ps(vLineWidth, vBloat0);
    if (workDesc.triFlags.yMajor)
    {
        vXa = _mm_add_ps(vAdjust, vXa);
    }
    else
    {
        vYa = _mm_add_ps(vAdjust, vYa);
    }

    // Store triangle description for rasterizer
    _mm_store_ps((float*)&newTriBuffer[0], vXa);
    _mm_store_ps((float*)&newTriBuffer[4], vYa);
    _mm_store_ps((float*)&newTriBuffer[8], vZa);
    _mm_store_ps((float*)&newTriBuffer[12], vRecipWa);

    // binner bins 3 edges for lines as v0, v1, v1
    // tri0 needs v0, v0, v1
    for (uint32_t a = 0; a < workDesc.numAttribs; ++a)
    {
        __m128 vAttrib0 = _mm_load_ps(&workDesc.pAttribs[a * 12 + 0]);
        __m128 vAttrib1 = _mm_load_ps(&workDesc.pAttribs[a * 12 + 4]);

        _mm_store_ps((float*)&newAttribBuffer[a * 12 + 0], vAttrib0);
        _mm_store_ps((float*)&newAttribBuffer[a * 12 + 4], vAttrib0);
        _mm_store_ps((float*)&newAttribBuffer[a * 12 + 8], vAttrib1);
    }

    // Store user clip distances for triangle 0
    float    newClipBuffer[3 * 8];
    uint32_t numClipDist = _mm_popcnt_u32(state.backendState.clipDistanceMask);
    if (numClipDist)
    {
        newWorkDesc.pUserClipBuffer = newClipBuffer;

        float* pOldBuffer = workDesc.pUserClipBuffer;
        float* pNewBuffer = newClipBuffer;
        for (uint32_t i = 0; i < numClipDist; ++i)
        {
            // read barycentric coeffs from binner
            float a = *(pOldBuffer++);
            float b = *(pOldBuffer++);

            // reconstruct original clip distance at vertices
            float c0 = a + b;
            float c1 = b;

            // construct triangle barycentrics
            *(pNewBuffer++) = c0 - c1;
            *(pNewBuffer++) = c0 - c1;
            *(pNewBuffer++) = c1;
        }
    }

    // setup triangle rasterizer function
    PFN_WORK_FUNC pfnTriRast;
    // conservative rast not supported for points/lines
    pfnTriRast = GetRasterizerFunc(rastState.sampleCount,
                                   rastState.bIsCenterPattern,
                                   false,
                                   SWR_INPUT_COVERAGE_NONE,
                                   EdgeValToEdgeState(ALL_EDGES_VALID),
                                   (pDC->pState->state.scissorsTileAligned == false));

    // make sure this macrotile intersects the triangle
    __m128i vXai = fpToFixedPoint(vXa);
    __m128i vYai = fpToFixedPoint(vYa);
    OSALIGNSIMD(SWR_RECT) bboxA;
    calcBoundingBoxInt(vXai, vYai, bboxA);

    if (!(bboxA.xmin > macroBoxRight || bboxA.xmin > scissorInFixedPoint.xmax ||
          bboxA.xmax - 1 < macroBoxLeft || bboxA.xmax - 1 < scissorInFixedPoint.xmin ||
          bboxA.ymin > macroBoxBottom || bboxA.ymin > scissorInFixedPoint.ymax ||
          bboxA.ymax - 1 < macroBoxTop || bboxA.ymax - 1 < scissorInFixedPoint.ymin))
    {
        // rasterize triangle
        pfnTriRast(pDC, workerId, macroTile, (void*)&newWorkDesc);
    }

    // triangle 1
    // v0,v1 -> v1,v1,v0
    vXa      = _mm_shuffle_ps(vX, vX, _MM_SHUFFLE(1, 0, 1, 1));
    vYa      = _mm_shuffle_ps(vY, vY, _MM_SHUFFLE(1, 0, 1, 1));
    vZa      = _mm_shuffle_ps(vZ, vZ, _MM_SHUFFLE(1, 0, 1, 1));
    vRecipWa = _mm_shuffle_ps(vRecipW, vRecipW, _MM_SHUFFLE(1, 0, 1, 1));

    vAdjust = _mm_mul_ps(vLineWidth, vBloat1);
    if (workDesc.triFlags.yMajor)
    {
        vXa = _mm_add_ps(vAdjust, vXa);
    }
    else
    {
        vYa = _mm_add_ps(vAdjust, vYa);
    }

    // Store triangle description for rasterizer
    _mm_store_ps((float*)&newTriBuffer[0], vXa);
    _mm_store_ps((float*)&newTriBuffer[4], vYa);
    _mm_store_ps((float*)&newTriBuffer[8], vZa);
    _mm_store_ps((float*)&newTriBuffer[12], vRecipWa);

    // binner bins 3 edges for lines as v0, v1, v1
    // tri1 needs v1, v1, v0
    for (uint32_t a = 0; a < workDesc.numAttribs; ++a)
    {
        __m128 vAttrib0 = _mm_load_ps(&workDesc.pAttribs[a * 12 + 0]);
        __m128 vAttrib1 = _mm_load_ps(&workDesc.pAttribs[a * 12 + 4]);

        _mm_store_ps((float*)&newAttribBuffer[a * 12 + 0], vAttrib1);
        _mm_store_ps((float*)&newAttribBuffer[a * 12 + 4], vAttrib1);
        _mm_store_ps((float*)&newAttribBuffer[a * 12 + 8], vAttrib0);
    }

    // store user clip distance for triangle 1
    if (numClipDist)
    {
        float* pOldBuffer = workDesc.pUserClipBuffer;
        float* pNewBuffer = newClipBuffer;
        for (uint32_t i = 0; i < numClipDist; ++i)
        {
            // read barycentric coeffs from binner
            float a = *(pOldBuffer++);
            float b = *(pOldBuffer++);

            // reconstruct original clip distance at vertices
            float c0 = a + b;
            float c1 = b;

            // construct triangle barycentrics
            *(pNewBuffer++) = c1 - c0;
            *(pNewBuffer++) = c1 - c0;
            *(pNewBuffer++) = c0;
        }
    }

    vXai = fpToFixedPoint(vXa);
    vYai = fpToFixedPoint(vYa);
    calcBoundingBoxInt(vXai, vYai, bboxA);

    if (!(bboxA.xmin > macroBoxRight || bboxA.xmin > scissorInFixedPoint.xmax ||
          bboxA.xmax - 1 < macroBoxLeft || bboxA.xmax - 1 < scissorInFixedPoint.xmin ||
          bboxA.ymin > macroBoxBottom || bboxA.ymin > scissorInFixedPoint.ymax ||
          bboxA.ymax - 1 < macroBoxTop || bboxA.ymax - 1 < scissorInFixedPoint.ymin))
    {
        // rasterize triangle
        pfnTriRast(pDC, workerId, macroTile, (void*)&newWorkDesc);
    }

    RDTSC_BEGIN(pDC->pContext->pBucketMgr, BERasterizeLine, 1);
}

void RasterizeSimplePoint(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t macroTile, void* pData)
{
#if KNOB_ENABLE_TOSS_POINTS
    if (KNOB_TOSS_BIN_TRIS)
    {
        return;
    }
#endif

    const TRIANGLE_WORK_DESC& workDesc     = *(const TRIANGLE_WORK_DESC*)pData;
    const BACKEND_FUNCS&      backendFuncs = pDC->pState->backendFuncs;

    // map x,y relative offsets from start of raster tile to bit position in
    // coverage mask for the point
    static const uint32_t coverageMap[8][8] = {{0, 1, 4, 5, 8, 9, 12, 13},
                                               {2, 3, 6, 7, 10, 11, 14, 15},
                                               {16, 17, 20, 21, 24, 25, 28, 29},
                                               {18, 19, 22, 23, 26, 27, 30, 31},
                                               {32, 33, 36, 37, 40, 41, 44, 45},
                                               {34, 35, 38, 39, 42, 43, 46, 47},
                                               {48, 49, 52, 53, 56, 57, 60, 61},
                                               {50, 51, 54, 55, 58, 59, 62, 63}};

    OSALIGNSIMD(SWR_TRIANGLE_DESC) triDesc = {};

    // pull point information from triangle buffer
    // @todo use structs for readability
    uint32_t tileAlignedX = *(uint32_t*)workDesc.pTriBuffer;
    uint32_t tileAlignedY = *(uint32_t*)(workDesc.pTriBuffer + 1);
    float    z            = *(workDesc.pTriBuffer + 2);

    // construct triangle descriptor for point
    // no interpolation, set up i,j for constant interpolation of z and attribs
    // @todo implement an optimized backend that doesn't require triangle information

    // compute coverage mask from x,y packed into the coverageMask flag
    // mask indices by the maximum valid index for x/y of coveragemap.
    uint32_t tX = workDesc.triFlags.coverageMask & 0x7;
    uint32_t tY = (workDesc.triFlags.coverageMask >> 4) & 0x7;
    for (uint32_t i = 0; i < _countof(triDesc.coverageMask); ++i)
    {
        triDesc.coverageMask[i] = 1ULL << coverageMap[tY][tX];
    }
    triDesc.anyCoveredSamples = triDesc.coverageMask[0];
    triDesc.innerCoverageMask = triDesc.coverageMask[0];

    // no persp divide needed for points
    triDesc.pAttribs = triDesc.pPerspAttribs = workDesc.pAttribs;
    triDesc.triFlags                         = workDesc.triFlags;
    triDesc.recipDet                         = 1.0f;
    triDesc.OneOverW[0] = triDesc.OneOverW[1] = triDesc.OneOverW[2] = 1.0f;
    triDesc.I[0] = triDesc.I[1] = triDesc.I[2] = 0.0f;
    triDesc.J[0] = triDesc.J[1] = triDesc.J[2] = 0.0f;
    triDesc.Z[0] = triDesc.Z[1] = triDesc.Z[2] = z;

    RenderOutputBuffers renderBuffers;
    GetRenderHotTiles(pDC,
                      workerId,
                      macroTile,
                      tileAlignedX >> KNOB_TILE_X_DIM_SHIFT,
                      tileAlignedY >> KNOB_TILE_Y_DIM_SHIFT,
                      renderBuffers,
                      triDesc.triFlags.renderTargetArrayIndex);

    RDTSC_BEGIN(pDC->pContext->pBucketMgr, BEPixelBackend, pDC->drawId);
    backendFuncs.pfnBackend(pDC, workerId, tileAlignedX, tileAlignedY, triDesc, renderBuffers);
    RDTSC_END(pDC->pContext->pBucketMgr, BEPixelBackend, 0);
}

void RasterizeTriPoint(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t macroTile, void* pData)
{
    const TRIANGLE_WORK_DESC& workDesc     = *(const TRIANGLE_WORK_DESC*)pData;
    const SWR_RASTSTATE&      rastState    = pDC->pState->state.rastState;
    const SWR_BACKEND_STATE&  backendState = pDC->pState->state.backendState;

    bool isPointSpriteTexCoordEnabled = backendState.pointSpriteTexCoordMask != 0;

    // load point vertex
    float x = *workDesc.pTriBuffer;
    float y = *(workDesc.pTriBuffer + 1);
    float z = *(workDesc.pTriBuffer + 2);

    // create a copy of the triangle buffer to write our adjusted vertices to
    OSALIGNSIMD(float) newTriBuffer[4 * 4];
    TRIANGLE_WORK_DESC newWorkDesc = workDesc;
    newWorkDesc.pTriBuffer         = &newTriBuffer[0];

    // create a copy of the attrib buffer to write our adjusted attribs to
    OSALIGNSIMD(float) newAttribBuffer[4 * 3 * SWR_VTX_NUM_SLOTS];
    newWorkDesc.pAttribs = &newAttribBuffer[0];

    newWorkDesc.pUserClipBuffer = workDesc.pUserClipBuffer;
    newWorkDesc.numAttribs      = workDesc.numAttribs;
    newWorkDesc.triFlags        = workDesc.triFlags;

    // construct two tris by bloating point by point size
    float halfPointSize = workDesc.triFlags.pointSize * 0.5f;
    float lowerX        = x - halfPointSize;
    float upperX        = x + halfPointSize;
    float lowerY        = y - halfPointSize;
    float upperY        = y + halfPointSize;

    // tri 0
    float* pBuf = &newTriBuffer[0];
    *pBuf++     = lowerX;
    *pBuf++     = lowerX;
    *pBuf++     = upperX;
    pBuf++;
    *pBuf++ = lowerY;
    *pBuf++ = upperY;
    *pBuf++ = upperY;
    pBuf++;
    _mm_store_ps(pBuf, _mm_set1_ps(z));
    _mm_store_ps(pBuf += 4, _mm_set1_ps(1.0f));

    // setup triangle rasterizer function
    PFN_WORK_FUNC pfnTriRast;
    // conservative rast not supported for points/lines
    pfnTriRast = GetRasterizerFunc(rastState.sampleCount,
                                   rastState.bIsCenterPattern,
                                   false,
                                   SWR_INPUT_COVERAGE_NONE,
                                   EdgeValToEdgeState(ALL_EDGES_VALID),
                                   (pDC->pState->state.scissorsTileAligned == false));

    // overwrite texcoords for point sprites
    if (isPointSpriteTexCoordEnabled)
    {
        // copy original attribs
        memcpy(&newAttribBuffer[0], workDesc.pAttribs, 4 * 3 * workDesc.numAttribs * sizeof(float));
        newWorkDesc.pAttribs = &newAttribBuffer[0];

        // overwrite texcoord for point sprites
        uint32_t texCoordMask   = backendState.pointSpriteTexCoordMask;
        unsigned long texCoordAttrib = 0;

        while (_BitScanForward(&texCoordAttrib, texCoordMask))
        {
            texCoordMask &= ~(1 << texCoordAttrib);
            __m128* pTexAttrib = (__m128*)&newAttribBuffer[0] + 3 * texCoordAttrib;
            if (rastState.pointSpriteTopOrigin)
            {
                pTexAttrib[0] = _mm_set_ps(1, 0, 0, 0);
                pTexAttrib[1] = _mm_set_ps(1, 0, 1, 0);
                pTexAttrib[2] = _mm_set_ps(1, 0, 1, 1);
            }
            else
            {
                pTexAttrib[0] = _mm_set_ps(1, 0, 1, 0);
                pTexAttrib[1] = _mm_set_ps(1, 0, 0, 0);
                pTexAttrib[2] = _mm_set_ps(1, 0, 0, 1);
            }
        }
    }
    else
    {
        // no texcoord overwrite, can reuse the attrib buffer from frontend
        newWorkDesc.pAttribs = workDesc.pAttribs;
    }

    pfnTriRast(pDC, workerId, macroTile, (void*)&newWorkDesc);

    // tri 1
    pBuf    = &newTriBuffer[0];
    *pBuf++ = lowerX;
    *pBuf++ = upperX;
    *pBuf++ = upperX;
    pBuf++;
    *pBuf++ = lowerY;
    *pBuf++ = upperY;
    *pBuf++ = lowerY;
    // z, w unchanged

    if (isPointSpriteTexCoordEnabled)
    {
        uint32_t texCoordMask   = backendState.pointSpriteTexCoordMask;
        unsigned long texCoordAttrib = 0;

        while (_BitScanForward(&texCoordAttrib, texCoordMask))
        {
            texCoordMask &= ~(1 << texCoordAttrib);
            __m128* pTexAttrib = (__m128*)&newAttribBuffer[0] + 3 * texCoordAttrib;
            if (rastState.pointSpriteTopOrigin)
            {
                pTexAttrib[0] = _mm_set_ps(1, 0, 0, 0);
                pTexAttrib[1] = _mm_set_ps(1, 0, 1, 1);
                pTexAttrib[2] = _mm_set_ps(1, 0, 0, 1);
            }
            else
            {
                pTexAttrib[0] = _mm_set_ps(1, 0, 1, 0);
                pTexAttrib[1] = _mm_set_ps(1, 0, 0, 1);
                pTexAttrib[2] = _mm_set_ps(1, 0, 1, 1);
            }
        }
    }

    pfnTriRast(pDC, workerId, macroTile, (void*)&newWorkDesc);
}

void InitRasterizerFunctions()
{
    InitRasterizerFuncs();
}

// Selector for correct templated RasterizeTriangle function
PFN_WORK_FUNC GetRasterizerFunc(SWR_MULTISAMPLE_COUNT numSamples,
                                bool                  IsCenter,
                                bool                  IsConservative,
                                SWR_INPUT_COVERAGE    InputCoverage,
                                uint32_t              EdgeEnable,
                                bool                  RasterizeScissorEdges)
{
    SWR_ASSERT(numSamples >= 0 && numSamples < SWR_MULTISAMPLE_TYPE_COUNT);
    SWR_ASSERT(InputCoverage >= 0 && InputCoverage < SWR_INPUT_COVERAGE_COUNT);
    SWR_ASSERT(EdgeEnable < STATE_VALID_TRI_EDGE_COUNT);

    PFN_WORK_FUNC func = gRasterizerFuncs[numSamples][IsCenter][IsConservative][InputCoverage]
                                         [EdgeEnable][RasterizeScissorEdges];
    SWR_ASSERT(func);

    return func;
}