summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/core/backend_impl.h
blob: 2e32e4d32cb0299afc6c7ea88e13a4b6e84f6179 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file backend.h
*
* @brief Backend handles rasterization, pixel shading and output merger
*        operations.
*
******************************************************************************/
#pragma once

void InitBackendSingleFuncTable(PFN_BACKEND_FUNC(&table)[SWR_INPUT_COVERAGE_COUNT][2][2]);
void InitBackendSampleFuncTable(PFN_BACKEND_FUNC(&table)[SWR_MULTISAMPLE_TYPE_COUNT][SWR_INPUT_COVERAGE_COUNT][2][2]);

static INLINE void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext);


enum SWR_BACKEND_FUNCS
{
    SWR_BACKEND_SINGLE_SAMPLE,
    SWR_BACKEND_MSAA_PIXEL_RATE,
    SWR_BACKEND_MSAA_SAMPLE_RATE,
    SWR_BACKEND_FUNCS_MAX,
};

#if KNOB_SIMD_WIDTH == 8
static const __m256 vCenterOffsetsX = __m256{0.5, 1.5, 0.5, 1.5, 2.5, 3.5, 2.5, 3.5};
static const __m256 vCenterOffsetsY = __m256{0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 1.5, 1.5};
static const __m256 vULOffsetsX = __m256{0.0, 1.0, 0.0, 1.0, 2.0, 3.0, 2.0, 3.0};
static const __m256 vULOffsetsY = __m256{0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0};
#define MASK 0xff
#endif

static INLINE simdmask ComputeUserClipMask(uint8_t clipMask, float* pUserClipBuffer, simdscalar vI, simdscalar vJ)
{
    simdscalar vClipMask = _simd_setzero_ps();
    uint32_t numClipDistance = _mm_popcnt_u32(clipMask);

    for (uint32_t i = 0; i < numClipDistance; ++i)
    {
        // pull triangle clip distance values from clip buffer
        simdscalar vA = _simd_broadcast_ss(pUserClipBuffer++);
        simdscalar vB = _simd_broadcast_ss(pUserClipBuffer++);
        simdscalar vC = _simd_broadcast_ss(pUserClipBuffer++);

        // interpolate
        simdscalar vInterp = vplaneps(vA, vB, vC, vI, vJ);

        // clip if interpolated clip distance is < 0 || NAN
        simdscalar vCull = _simd_cmp_ps(_simd_setzero_ps(), vInterp, _CMP_NLE_UQ);

        vClipMask = _simd_or_ps(vClipMask, vCull);
    }

    return _simd_movemask_ps(vClipMask);
}

INLINE static uint32_t RasterTileColorOffset(uint32_t sampleNum)
{
    static const uint32_t RasterTileColorOffsets[16]
    { 0,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8),
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 2,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 3,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 4,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 5,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 6,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 7,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 8,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 9,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 10,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 11,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 12,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 13,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 14,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 15,
    };
    assert(sampleNum < 16);
    return RasterTileColorOffsets[sampleNum];
}

INLINE static uint32_t RasterTileDepthOffset(uint32_t sampleNum)
{
    static const uint32_t RasterTileDepthOffsets[16]
    { 0,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8),
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 2,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 3,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 4,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 5,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 6,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 7,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 8,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 9,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 10,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 11,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 12,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 13,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 14,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 15,
    };
    assert(sampleNum < 16);
    return RasterTileDepthOffsets[sampleNum];
}

INLINE static uint32_t RasterTileStencilOffset(uint32_t sampleNum)
{
    static const uint32_t RasterTileStencilOffsets[16]
    { 0,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8),
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 2,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 3,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 4,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 5,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 6,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 7,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 8,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 9,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 10,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 11,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 12,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 13,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 14,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 15,
    };
    assert(sampleNum < 16);
    return RasterTileStencilOffsets[sampleNum];
}

template<typename T, uint32_t InputCoverage>
struct generateInputCoverage
{
    INLINE generateInputCoverage(const uint64_t *const coverageMask, uint32_t (&inputMask)[KNOB_SIMD_WIDTH], const uint32_t sampleMask)
    {
        // will need to update for avx512
        assert(KNOB_SIMD_WIDTH == 8);

        simdscalari mask[2];
        simdscalari sampleCoverage[2];
        
        if(T::bIsCenterPattern)
        {
            // center coverage is the same for all samples; just broadcast to the sample slots
            uint32_t centerCoverage = ((uint32_t)(*coverageMask) & MASK);
            if(T::MultisampleT::numSamples == 1)
            {
                sampleCoverage[0] = _simd_set_epi32(0, 0, 0, 0, 0, 0, 0, centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 2)
            {
                sampleCoverage[0] = _simd_set_epi32(0, 0, 0, 0, 0, 0, centerCoverage, centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 4)
            {
                sampleCoverage[0] = _simd_set_epi32(0, 0, 0, 0, centerCoverage, centerCoverage, centerCoverage, centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 8)
            {
                sampleCoverage[0] = _simd_set1_epi32(centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 16)
            {
                sampleCoverage[0] = _simd_set1_epi32(centerCoverage);
                sampleCoverage[1] = _simd_set1_epi32(centerCoverage);
            }
        }
        else
        {
            simdscalari src = _simd_set1_epi32(0);
            simdscalari index0 = _simd_set_epi32(7, 6, 5, 4, 3, 2, 1, 0), index1;

            if(T::MultisampleT::numSamples == 1)
            {
                mask[0] = _simd_set_epi32(0, 0, 0, 0, 0, 0, 0, -1);
            }
            else if(T::MultisampleT::numSamples == 2)
            {
                mask[0] = _simd_set_epi32(0, 0, 0, 0, 0, 0, -1, -1);
            }
            else if(T::MultisampleT::numSamples == 4)
            {
                mask[0] = _simd_set_epi32(0, 0, 0, 0, -1, -1, -1, -1);
            }
            else if(T::MultisampleT::numSamples == 8)
            {
                mask[0] = _simd_set1_epi32(-1);
            }
            else if(T::MultisampleT::numSamples == 16)
            {
                mask[0] = _simd_set1_epi32(-1);
                mask[1] = _simd_set1_epi32(-1);
                index1 = _simd_set_epi32(15, 14, 13, 12, 11, 10, 9, 8);
            }

            // gather coverage for samples 0-7
            sampleCoverage[0] = _mm256_castps_si256(_simd_mask_i32gather_ps(_mm256_castsi256_ps(src), (const float*)coverageMask, index0, _mm256_castsi256_ps(mask[0]), 8));
            if(T::MultisampleT::numSamples > 8)
            {
                // gather coverage for samples 8-15
                sampleCoverage[1] = _mm256_castps_si256(_simd_mask_i32gather_ps(_mm256_castsi256_ps(src), (const float*)coverageMask, index1, _mm256_castsi256_ps(mask[1]), 8));
            }
        }

        mask[0] = _mm256_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0xC, 0x8, 0x4, 0x0,
                                  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0xC, 0x8, 0x4, 0x0);
        // pull out the 8bit 4x2 coverage for samples 0-7 into the lower 32 bits of each 128bit lane
        simdscalari packedCoverage0 = _simd_shuffle_epi8(sampleCoverage[0], mask[0]);

        simdscalari packedCoverage1;
        if(T::MultisampleT::numSamples > 8)
        {
            // pull out the 8bit 4x2 coverage for samples 8-15 into the lower 32 bits of each 128bit lane
            packedCoverage1 = _simd_shuffle_epi8(sampleCoverage[1], mask[0]);
        }

    #if (KNOB_ARCH == KNOB_ARCH_AVX)
        // pack lower 32 bits of each 128 bit lane into lower 64 bits of single 128 bit lane 
        simdscalari hiToLow = _mm256_permute2f128_si256(packedCoverage0, packedCoverage0, 0x83);
        simdscalar shufRes = _mm256_shuffle_ps(_mm256_castsi256_ps(hiToLow), _mm256_castsi256_ps(hiToLow), _MM_SHUFFLE(1, 1, 0, 1));
        packedCoverage0 = _mm256_castps_si256(_mm256_blend_ps(_mm256_castsi256_ps(packedCoverage0), shufRes, 0xFE));

        simdscalari packedSampleCoverage;
        if(T::MultisampleT::numSamples > 8)
        {
            // pack lower 32 bits of each 128 bit lane into upper 64 bits of single 128 bit lane
            hiToLow = _mm256_permute2f128_si256(packedCoverage1, packedCoverage1, 0x83);
            shufRes = _mm256_shuffle_ps(_mm256_castsi256_ps(hiToLow), _mm256_castsi256_ps(hiToLow), _MM_SHUFFLE(1, 1, 0, 1));
            shufRes = _mm256_blend_ps(_mm256_castsi256_ps(packedCoverage1), shufRes, 0xFE);
            packedCoverage1 = _mm256_castps_si256(_mm256_castpd_ps(_mm256_shuffle_pd(_mm256_castps_pd(shufRes), _mm256_castps_pd(shufRes), 0x01)));
            packedSampleCoverage = _mm256_castps_si256(_mm256_blend_ps(_mm256_castsi256_ps(packedCoverage0), _mm256_castsi256_ps(packedCoverage1), 0xFC));
        }
        else
        {
            packedSampleCoverage = packedCoverage0;
        }
    #else
        simdscalari permMask = _simd_set_epi32(0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x4, 0x0);
        // pack lower 32 bits of each 128 bit lane into lower 64 bits of single 128 bit lane 
        packedCoverage0 = _mm256_permutevar8x32_epi32(packedCoverage0, permMask);

        simdscalari packedSampleCoverage;
        if(T::MultisampleT::numSamples > 8)
        {
            permMask = _simd_set_epi32(0x7, 0x7, 0x7, 0x7, 0x4, 0x0, 0x7, 0x7);
            // pack lower 32 bits of each 128 bit lane into upper 64 bits of single 128 bit lane
            packedCoverage1 = _mm256_permutevar8x32_epi32(packedCoverage1, permMask);

            // blend coverage masks for samples 0-7 and samples 8-15 into single 128 bit lane
            packedSampleCoverage = _mm256_blend_epi32(packedCoverage0, packedCoverage1, 0x0C);
        }
        else
        {
            packedSampleCoverage = packedCoverage0;
        }
    #endif

        for(int32_t i = KNOB_SIMD_WIDTH - 1; i >= 0; i--)
        {
            // convert packed sample coverage masks into single coverage masks for all samples for each pixel in the 4x2
            inputMask[i] = _simd_movemask_epi8(packedSampleCoverage);

            if(!T::bForcedSampleCount)
            {
                // input coverage has to be anded with sample mask if MSAA isn't forced on
                inputMask[i] &= sampleMask;
            }

            // shift to the next pixel in the 4x2
            packedSampleCoverage = _simd_slli_epi32(packedSampleCoverage, 1);
        }
    }

    INLINE generateInputCoverage(const uint64_t *const coverageMask, simdscalar &inputCoverage, const uint32_t sampleMask)
    {
        uint32_t inputMask[KNOB_SIMD_WIDTH];
        generateInputCoverage<T, T::InputCoverage>(coverageMask, inputMask, sampleMask);
        inputCoverage = _simd_castsi_ps(_simd_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]));
    }

};

template<typename T>
struct generateInputCoverage<T, SWR_INPUT_COVERAGE_INNER_CONSERVATIVE>
{
    INLINE generateInputCoverage(const uint64_t *const coverageMask, simdscalar &inputCoverage, const uint32_t sampleMask)
    {
        // will need to update for avx512
        assert(KNOB_SIMD_WIDTH == 8);
        simdscalari vec = _simd_set1_epi32(coverageMask[0]);
        const simdscalari bit = _simd_set_epi32(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
        vec = _simd_and_si(vec, bit);
        vec = _simd_cmplt_epi32(_simd_setzero_si(), vec);
        vec = _simd_blendv_epi32(_simd_setzero_si(), _simd_set1_epi32(1), vec);
        inputCoverage = _simd_castsi_ps(vec);
    }

    INLINE generateInputCoverage(const uint64_t *const coverageMask, uint32_t (&inputMask)[KNOB_SIMD_WIDTH], const uint32_t sampleMask)
    {
        uint32_t simdCoverage = (coverageMask[0] & MASK);
        static const uint32_t FullCoverageMask = (1 << T::MultisampleT::numSamples) - 1;
        for(int i = 0; i < KNOB_SIMD_WIDTH; i++)
        {
            // set all samples to covered if conservative coverage mask is set for that pixel
            inputMask[i] = (((1 << i) & simdCoverage) > 0) ? FullCoverageMask : 0;
        }
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Centroid behaves exactly as follows :
// (1) If all samples in the primitive are covered, the attribute is evaluated at the pixel center (even if the sample pattern does not happen to 
//     have a sample location there).
// (2) Else the attribute is evaluated at the first covered sample, in increasing order of sample index, where sample coverage is after ANDing the 
//     coverage with the SampleMask Rasterizer State.
// (3) If no samples are covered, such as on helper pixels executed off the bounds of a primitive to fill out 2x2 pixel stamps, the attribute is 
//     evaluated as follows : If the SampleMask Rasterizer state is a subset of the samples in the pixel, then the first sample covered by the 
//     SampleMask Rasterizer State is the evaluation point.Otherwise (full SampleMask), the pixel center is the evaluation point.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
INLINE void CalcCentroidPos(SWR_PS_CONTEXT &psContext, const SWR_MULTISAMPLE_POS& samplePos,
                            const uint64_t *const coverageMask, const uint32_t sampleMask,
                            const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
{
    uint32_t inputMask[KNOB_SIMD_WIDTH];
    generateInputCoverage<T, T::InputCoverage>(coverageMask, inputMask, sampleMask);

    // Case (2) - partially covered pixel

    // scan for first covered sample per pixel in the 4x2 span
    unsigned long sampleNum[KNOB_SIMD_WIDTH];
    (inputMask[0] > 0) ? (_BitScanForward(&sampleNum[0], inputMask[0])) : (sampleNum[0] = 0);
    (inputMask[1] > 0) ? (_BitScanForward(&sampleNum[1], inputMask[1])) : (sampleNum[1] = 0);
    (inputMask[2] > 0) ? (_BitScanForward(&sampleNum[2], inputMask[2])) : (sampleNum[2] = 0);
    (inputMask[3] > 0) ? (_BitScanForward(&sampleNum[3], inputMask[3])) : (sampleNum[3] = 0);
    (inputMask[4] > 0) ? (_BitScanForward(&sampleNum[4], inputMask[4])) : (sampleNum[4] = 0);
    (inputMask[5] > 0) ? (_BitScanForward(&sampleNum[5], inputMask[5])) : (sampleNum[5] = 0);
    (inputMask[6] > 0) ? (_BitScanForward(&sampleNum[6], inputMask[6])) : (sampleNum[6] = 0);
    (inputMask[7] > 0) ? (_BitScanForward(&sampleNum[7], inputMask[7])) : (sampleNum[7] = 0);

    // look up and set the sample offsets from UL pixel corner for first covered sample 
    simdscalar vXSample = _simd_set_ps(samplePos.X(sampleNum[7]),
                                    samplePos.X(sampleNum[6]),
                                    samplePos.X(sampleNum[5]),
                                    samplePos.X(sampleNum[4]),
                                    samplePos.X(sampleNum[3]),
                                    samplePos.X(sampleNum[2]),
                                    samplePos.X(sampleNum[1]),
                                    samplePos.X(sampleNum[0]));

    simdscalar vYSample = _simd_set_ps(samplePos.Y(sampleNum[7]),
                                    samplePos.Y(sampleNum[6]),
                                    samplePos.Y(sampleNum[5]),
                                    samplePos.Y(sampleNum[4]),
                                    samplePos.Y(sampleNum[3]),
                                    samplePos.Y(sampleNum[2]),
                                    samplePos.Y(sampleNum[1]),
                                    samplePos.Y(sampleNum[0]));
    // add sample offset to UL pixel corner
    vXSample = _simd_add_ps(vXSamplePosUL, vXSample);
    vYSample = _simd_add_ps(vYSamplePosUL, vYSample);

    // Case (1) and case (3b) - All samples covered or not covered with full SampleMask
    static const simdscalari vFullyCoveredMask = T::MultisampleT::FullSampleMask();
    simdscalari vInputCoveragei =  _simd_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]);
    simdscalari vAllSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vFullyCoveredMask);

    static const simdscalari vZero = _simd_setzero_si();
    const simdscalari vSampleMask = _simd_and_si(_simd_set1_epi32(sampleMask), vFullyCoveredMask);
    simdscalari vNoSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vZero);
    simdscalari vIsFullSampleMask = _simd_cmpeq_epi32(vSampleMask, vFullyCoveredMask);
    simdscalari vCase3b = _simd_and_si(vNoSamplesCovered, vIsFullSampleMask);

    simdscalari vEvalAtCenter = _simd_or_si(vAllSamplesCovered, vCase3b);

    // set the centroid position based on results from above
    psContext.vX.centroid = _simd_blendv_ps(vXSample, psContext.vX.center, _simd_castsi_ps(vEvalAtCenter));
    psContext.vY.centroid = _simd_blendv_ps(vYSample, psContext.vY.center, _simd_castsi_ps(vEvalAtCenter));

    // Case (3a) No samples covered and partial sample mask
    simdscalari vSomeSampleMaskSamples = _simd_cmplt_epi32(vSampleMask, vFullyCoveredMask);
    // sample mask should never be all 0's for this case, but handle it anyways
    unsigned long firstCoveredSampleMaskSample = 0;
    (sampleMask > 0) ? (_BitScanForward(&firstCoveredSampleMaskSample, sampleMask)) : (firstCoveredSampleMaskSample = 0);

    simdscalari vCase3a = _simd_and_si(vNoSamplesCovered, vSomeSampleMaskSamples);

    vXSample = _simd_set1_ps(samplePos.X(firstCoveredSampleMaskSample));
    vYSample = _simd_set1_ps(samplePos.Y(firstCoveredSampleMaskSample));

    // blend in case 3a pixel locations
    psContext.vX.centroid = _simd_blendv_ps(psContext.vX.centroid, vXSample, _simd_castsi_ps(vCase3a));
    psContext.vY.centroid = _simd_blendv_ps(psContext.vY.centroid, vYSample, _simd_castsi_ps(vCase3a));
}

INLINE void CalcCentroidBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext,
                                     const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
{
    // evaluate I,J
    psContext.vI.centroid = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.centroid, psContext.vY.centroid);
    psContext.vJ.centroid = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.centroid, psContext.vY.centroid);
    psContext.vI.centroid = _simd_mul_ps(psContext.vI.centroid, coeffs.vRecipDet);
    psContext.vJ.centroid = _simd_mul_ps(psContext.vJ.centroid, coeffs.vRecipDet);

    // interpolate 1/w
    psContext.vOneOverW.centroid = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.centroid, psContext.vJ.centroid);
}

INLINE simdmask CalcDepthBoundsAcceptMask(simdscalar z, float minz, float maxz)
{
    const simdscalar minzMask = _simd_cmpge_ps(z, _simd_set1_ps(minz));
    const simdscalar maxzMask = _simd_cmple_ps(z, _simd_set1_ps(maxz));

    return _simd_movemask_ps(_simd_and_ps(minzMask, maxzMask));
}

template<typename T>
INLINE uint32_t GetNumOMSamples(SWR_MULTISAMPLE_COUNT blendSampleCount)
{
    // RT has to be single sample if we're in forcedMSAA mode
    if(T::bForcedSampleCount && (T::MultisampleT::sampleCount > SWR_MULTISAMPLE_1X))
    {
        return 1;
    }
    // unless we're forced to single sample, in which case we run the OM at the sample count of the RT
    else if(T::bForcedSampleCount && (T::MultisampleT::sampleCount == SWR_MULTISAMPLE_1X))
    {
        return GetNumSamples(blendSampleCount);
    }
    // else we're in normal MSAA mode and rasterizer and OM are running at the same sample count
    else
    {
        return T::MultisampleT::numSamples;
    }
}

inline void SetupBarycentricCoeffs(BarycentricCoeffs *coeffs, const SWR_TRIANGLE_DESC &work)
{
    // broadcast scalars

    coeffs->vIa = _simd_broadcast_ss(&work.I[0]);
    coeffs->vIb = _simd_broadcast_ss(&work.I[1]);
    coeffs->vIc = _simd_broadcast_ss(&work.I[2]);

    coeffs->vJa = _simd_broadcast_ss(&work.J[0]);
    coeffs->vJb = _simd_broadcast_ss(&work.J[1]);
    coeffs->vJc = _simd_broadcast_ss(&work.J[2]);

    coeffs->vZa = _simd_broadcast_ss(&work.Z[0]);
    coeffs->vZb = _simd_broadcast_ss(&work.Z[1]);
    coeffs->vZc = _simd_broadcast_ss(&work.Z[2]);

    coeffs->vRecipDet = _simd_broadcast_ss(&work.recipDet);

    coeffs->vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
    coeffs->vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
    coeffs->vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
}

inline void SetupRenderBuffers(uint8_t *pColorBuffer[SWR_NUM_RENDERTARGETS], uint8_t **pDepthBuffer, uint8_t **pStencilBuffer, uint32_t colorBufferCount, RenderOutputBuffers &renderBuffers)
{
    assert(colorBufferCount <= SWR_NUM_RENDERTARGETS);

    if (pColorBuffer)
    {
        for (uint32_t index = 0; index < colorBufferCount; index += 1)
        {
            pColorBuffer[index] = renderBuffers.pColor[index];
        }
    }

    if (pDepthBuffer)
    {
        *pDepthBuffer = renderBuffers.pDepth;
    }

    if (pStencilBuffer)
    {
        *pStencilBuffer = renderBuffers.pStencil;;
    }
}

template<typename T>
void SetupPixelShaderContext(SWR_PS_CONTEXT *psContext, const SWR_MULTISAMPLE_POS& samplePos, SWR_TRIANGLE_DESC &work)
{
    psContext->pAttribs = work.pAttribs;
    psContext->pPerspAttribs = work.pPerspAttribs;
    psContext->frontFace = work.triFlags.frontFacing;
    psContext->renderTargetArrayIndex = work.triFlags.renderTargetArrayIndex;

    // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
    psContext->I = work.I;
    psContext->J = work.J;

    psContext->recipDet = work.recipDet;
    psContext->pRecipW = work.pRecipW;
    psContext->pSamplePosX = samplePos.X();//reinterpret_cast<const float *>(&T::MultisampleT::samplePosX);
    psContext->pSamplePosY = samplePos.Y();//reinterpret_cast<const float *>(&T::MultisampleT::samplePosY);
    psContext->rasterizerSampleCount = T::MultisampleT::numSamples;
    psContext->sampleIndex = 0;
}

template<typename T, bool IsSingleSample>
void CalcCentroid(SWR_PS_CONTEXT *psContext, const SWR_MULTISAMPLE_POS& samplePos,
                  const BarycentricCoeffs &coeffs, const uint64_t * const coverageMask, uint32_t sampleMask)
{
    if (IsSingleSample) // if (T::MultisampleT::numSamples == 1) // doesn't cut it, the centroid positions are still different
    {
        // for 1x case, centroid is pixel center
        psContext->vX.centroid = psContext->vX.center;
        psContext->vY.centroid = psContext->vY.center;
        psContext->vI.centroid = psContext->vI.center;
        psContext->vJ.centroid = psContext->vJ.center;
        psContext->vOneOverW.centroid = psContext->vOneOverW.center;
    }
    else
    {
        if (T::bCentroidPos)
        {
            ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
            if (T::bIsCenterPattern)
            {
                psContext->vX.centroid = _simd_add_ps(psContext->vX.UL, _simd_set1_ps(0.5f));
                psContext->vY.centroid = _simd_add_ps(psContext->vY.UL, _simd_set1_ps(0.5f));
            }
            else
            {
                // add param: const uint32_t inputMask[KNOB_SIMD_WIDTH] to eliminate 'generate coverage 2X'..
                CalcCentroidPos<T>(*psContext, samplePos, coverageMask, sampleMask, psContext->vX.UL, psContext->vY.UL);
            }

            CalcCentroidBarycentrics(coeffs, *psContext, psContext->vX.UL, psContext->vY.UL);
        }
        else
        {
            psContext->vX.centroid = psContext->vX.sample;
            psContext->vY.centroid = psContext->vY.sample;
        }
    }
}

template<typename T>
struct PixelRateZTestLoop
{
    PixelRateZTestLoop(DRAW_CONTEXT *DC, uint32_t _workerId, const SWR_TRIANGLE_DESC &Work, const BarycentricCoeffs& Coeffs, const API_STATE& apiState,
                       uint8_t*& depthBuffer, uint8_t*& stencilBuffer, const uint8_t ClipDistanceMask) :
                       pDC(DC), workerId(_workerId), work(Work), coeffs(Coeffs), state(apiState), psState(apiState.psState),
                       samplePos(state.rastState.samplePositions),
                       clipDistanceMask(ClipDistanceMask), pDepthBuffer(depthBuffer), pStencilBuffer(stencilBuffer){};

    INLINE
    uint32_t operator()(simdscalar& activeLanes, SWR_PS_CONTEXT& psContext, 
                        const CORE_BUCKETS BEDepthBucket, uint32_t currentSimdIn8x8 = 0)
    {
        SWR_CONTEXT *pContext = pDC->pContext;

        uint32_t statCount = 0;
        simdscalar anyDepthSamplePassed = _simd_setzero_ps();
        for(uint32_t sample = 0; sample < T::MultisampleT::numCoverageSamples; sample++)
        {
            const uint8_t *pCoverageMask = (uint8_t*)&work.coverageMask[sample];
            vCoverageMask[sample] = _simd_and_ps(activeLanes, vMask(pCoverageMask[currentSimdIn8x8] & MASK));

            if(!_simd_movemask_ps(vCoverageMask[sample]))
            {
                vCoverageMask[sample] = depthPassMask[sample] = stencilPassMask[sample] = _simd_setzero_ps();
                continue;
            }

            // offset depth/stencil buffers current sample
            uint8_t *pDepthSample = pDepthBuffer + RasterTileDepthOffset(sample);
            uint8_t * pStencilSample = pStencilBuffer + RasterTileStencilOffset(sample);

            if (state.depthHottileEnable && state.depthBoundsState.depthBoundsTestEnable)
            {
                static_assert(KNOB_DEPTH_HOT_TILE_FORMAT == R32_FLOAT, "Unsupported depth hot tile format");

                const simdscalar z = _simd_load_ps(reinterpret_cast<const float *>(pDepthSample));

                const float minz = state.depthBoundsState.depthBoundsTestMinValue;
                const float maxz = state.depthBoundsState.depthBoundsTestMaxValue;

                vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(CalcDepthBoundsAcceptMask(z, minz, maxz)));
            }

            AR_BEGIN(BEBarycentric, pDC->drawId);

            // calculate per sample positions
            psContext.vX.sample = _simd_add_ps(psContext.vX.UL, samplePos.vX(sample));
            psContext.vY.sample = _simd_add_ps(psContext.vY.UL, samplePos.vY(sample));

            // calc I & J per sample
            CalcSampleBarycentrics(coeffs, psContext);

            if(psState.writesODepth)
            {
                {
                    // broadcast and test oDepth(psContext.vZ) written from the PS for each sample
                    vZ[sample] = psContext.vZ;
                }
            }
            else
            {
                vZ[sample] = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
                vZ[sample] = state.pfnQuantizeDepth(vZ[sample]);
            }

            AR_END(BEBarycentric, 0);

            ///@todo: perspective correct vs non-perspective correct clipping?
            // if clip distances are enabled, we need to interpolate for each sample
            if(clipDistanceMask)
            {
                uint8_t clipMask = ComputeUserClipMask(clipDistanceMask, work.pUserClipBuffer, psContext.vI.sample, psContext.vJ.sample);

                vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(~clipMask));
            }

            // ZTest for this sample
            ///@todo Need to uncomment out this bucket.
            //AR_BEGIN(BEDepthBucket, pDC->drawId);
            depthPassMask[sample] = vCoverageMask[sample];
            stencilPassMask[sample] = vCoverageMask[sample];
            depthPassMask[sample] = DepthStencilTest(&state, work.triFlags.frontFacing, work.triFlags.viewportIndex,
                                                     vZ[sample], pDepthSample, vCoverageMask[sample], 
                                                     pStencilSample, &stencilPassMask[sample]);
            //AR_END(BEDepthBucket, 0);

            // early-exit if no pixels passed depth or earlyZ is forced on
            if(psState.forceEarlyZ || !_simd_movemask_ps(depthPassMask[sample]))
            {
                DepthStencilWrite(&state.vp[work.triFlags.viewportIndex], &state.depthStencilState, work.triFlags.frontFacing, vZ[sample],
                                  pDepthSample, depthPassMask[sample], vCoverageMask[sample], pStencilSample, stencilPassMask[sample]);

                if(!_simd_movemask_ps(depthPassMask[sample]))
                {
                    continue;
                }
            }
            anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, depthPassMask[sample]);
            uint32_t statMask = _simd_movemask_ps(depthPassMask[sample]);
            statCount += _mm_popcnt_u32(statMask);
        }

        activeLanes = _simd_and_ps(anyDepthSamplePassed, activeLanes);
        // return number of samples that passed depth and coverage
        return statCount;
    }

    // saved depth/stencil/coverage masks and interpolated Z used in OM and DepthWrite
    simdscalar vZ[T::MultisampleT::numCoverageSamples];
    simdscalar vCoverageMask[T::MultisampleT::numCoverageSamples];
    simdscalar depthPassMask[T::MultisampleT::numCoverageSamples];
    simdscalar stencilPassMask[T::MultisampleT::numCoverageSamples];

private:
    // functor inputs
    DRAW_CONTEXT* pDC;
    uint32_t workerId;

    const SWR_TRIANGLE_DESC& work;
    const BarycentricCoeffs& coeffs;
    const API_STATE& state;
    const SWR_PS_STATE& psState;
    const SWR_MULTISAMPLE_POS& samplePos;
    const uint8_t clipDistanceMask;
    uint8_t*& pDepthBuffer;
    uint8_t*& pStencilBuffer;
};

INLINE void CalcPixelBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
{
    // evaluate I,J
    psContext.vI.center = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.center, psContext.vY.center);
    psContext.vJ.center = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.center, psContext.vY.center);
    psContext.vI.center = _simd_mul_ps(psContext.vI.center, coeffs.vRecipDet);
    psContext.vJ.center = _simd_mul_ps(psContext.vJ.center, coeffs.vRecipDet);

    // interpolate 1/w
    psContext.vOneOverW.center = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.center, psContext.vJ.center);
}

static INLINE void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
{
    // evaluate I,J
    psContext.vI.sample = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.sample, psContext.vY.sample);
    psContext.vJ.sample = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.sample, psContext.vY.sample);
    psContext.vI.sample = _simd_mul_ps(psContext.vI.sample, coeffs.vRecipDet);
    psContext.vJ.sample = _simd_mul_ps(psContext.vJ.sample, coeffs.vRecipDet);

    // interpolate 1/w
    psContext.vOneOverW.sample = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.sample, psContext.vJ.sample);
}

// Merge Output to 4x2 SIMD Tile Format
INLINE void OutputMerger4x2(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
    const PFN_BLEND_JIT_FUNC (&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask, const uint32_t NumRT)
{
    // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
    const uint32_t rasterTileColorOffset = RasterTileColorOffset(sample);
    simdvector blendOut;

    for(uint32_t rt = 0; rt < NumRT; ++rt)
    {
        uint8_t *pColorSample = pColorBase[rt] + rasterTileColorOffset;

        const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];

        {
            // pfnBlendFunc may not update all channels.  Initialize with PS output.
            /// TODO: move this into the blend JIT.
            blendOut = psContext.shaded[rt];

            // Blend outputs and update coverage mask for alpha test
            if(pfnBlendFunc[rt] != nullptr)
            {
                pfnBlendFunc[rt](
                    pBlendState,
                    psContext.shaded[rt],
                    psContext.shaded[1],
                    psContext.shaded[0].w,
                    sample,
                    pColorSample,
                    blendOut,
                    &psContext.oMask,
                    (simdscalari*)&coverageMask);
            }
        }

        // final write mask 
        simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));

        ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
        static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");

        const uint32_t simd = KNOB_SIMD_WIDTH * sizeof(float);

        // store with color mask
        if(!pRTBlend->writeDisableRed)
        {
            _simd_maskstore_ps((float*)pColorSample, outputMask, blendOut.x);
        }
        if(!pRTBlend->writeDisableGreen)
        {
            _simd_maskstore_ps((float*)(pColorSample + simd), outputMask, blendOut.y);
        }
        if(!pRTBlend->writeDisableBlue)
        {
            _simd_maskstore_ps((float*)(pColorSample + simd * 2), outputMask, blendOut.z);
        }
        if(!pRTBlend->writeDisableAlpha)
        {
            _simd_maskstore_ps((float*)(pColorSample + simd * 3), outputMask, blendOut.w);
        }
    }
}

#if USE_8x2_TILE_BACKEND
// Merge Output to 8x2 SIMD16 Tile Format
INLINE void OutputMerger8x2(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
    const PFN_BLEND_JIT_FUNC(&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask, const uint32_t NumRT, const uint32_t colorBufferEnableMask, bool useAlternateOffset)
{
    // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
    uint32_t rasterTileColorOffset = RasterTileColorOffset(sample);

    if (useAlternateOffset)
    {
        rasterTileColorOffset += sizeof(simdscalar);
    }

    simdvector blendSrc;
    simdvector blendOut;

    uint32_t colorBufferBit = 1;
    for (uint32_t rt = 0; rt < NumRT; rt += 1, colorBufferBit <<= 1)
    {
        simdscalar *pColorSample = reinterpret_cast<simdscalar *>(pColorBase[rt] + rasterTileColorOffset);

        const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];

        if (colorBufferBit & colorBufferEnableMask)
        {
            blendSrc[0] = pColorSample[0];
            blendSrc[1] = pColorSample[2];
            blendSrc[2] = pColorSample[4];
            blendSrc[3] = pColorSample[6];
        }

        {
            // pfnBlendFunc may not update all channels.  Initialize with PS output.
            /// TODO: move this into the blend JIT.
            blendOut = psContext.shaded[rt];

            // Blend outputs and update coverage mask for alpha test
            if(pfnBlendFunc[rt] != nullptr)
            {
                pfnBlendFunc[rt](
                    pBlendState,
                    psContext.shaded[rt],
                    psContext.shaded[1],
                    psContext.shaded[0].w,
                    sample,
                    reinterpret_cast<uint8_t *>(&blendSrc),
                    blendOut,
                    &psContext.oMask,
                    reinterpret_cast<simdscalari *>(&coverageMask));
            }
        }

        // final write mask 
        simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));

        ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
        static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");

        // store with color mask
        if (!pRTBlend->writeDisableRed)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[0]), outputMask, blendOut.x);
        }
        if (!pRTBlend->writeDisableGreen)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[2]), outputMask, blendOut.y);
        }
        if (!pRTBlend->writeDisableBlue)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[4]), outputMask, blendOut.z);
        }
        if (!pRTBlend->writeDisableAlpha)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[6]), outputMask, blendOut.w);
        }
    }
}

#endif

template<typename T>
void BackendPixelRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
{
    ///@todo: Need to move locals off stack to prevent __chkstk's from being generated for the backend


    SWR_CONTEXT *pContext = pDC->pContext;

    AR_BEGIN(BEPixelRateBackend, pDC->drawId);
    AR_BEGIN(BESetup, pDC->drawId);

    const API_STATE &state = GetApiState(pDC);

    BarycentricCoeffs coeffs;
    SetupBarycentricCoeffs(&coeffs, work);

    SWR_PS_CONTEXT psContext;
    const SWR_MULTISAMPLE_POS& samplePos = state.rastState.samplePositions;
    SetupPixelShaderContext<T>(&psContext, samplePos, work);

    uint8_t *pDepthBuffer, *pStencilBuffer;
    SetupRenderBuffers(psContext.pColorBuffer, &pDepthBuffer, &pStencilBuffer, state.psState.numRenderTargets, renderBuffers);

    AR_END(BESetup, 0);

    PixelRateZTestLoop<T> PixelRateZTest(pDC, workerId, work, coeffs, state, pDepthBuffer, pStencilBuffer, state.rastState.clipDistanceMask);

    psContext.vY.UL     = _simd_add_ps(vULOffsetsY,     _simd_set1_ps(static_cast<float>(y)));
    psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps(static_cast<float>(y)));

    const simdscalar dy = _simd_set1_ps(static_cast<float>(SIMD_TILE_Y_DIM));

    for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
    {
        psContext.vX.UL     = _simd_add_ps(vULOffsetsX,     _simd_set1_ps(static_cast<float>(x)));
        psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps(static_cast<float>(x)));

        const simdscalar dx = _simd_set1_ps(static_cast<float>(SIMD_TILE_X_DIM));

        for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
        {
#if USE_8x2_TILE_BACKEND
            const bool useAlternateOffset = ((xx & SIMD_TILE_X_DIM) != 0);
#endif
            simdscalar activeLanes;
            if(!(work.anyCoveredSamples & MASK)) {goto Endtile;};
            activeLanes = vMask(work.anyCoveredSamples & MASK);

            if (T::InputCoverage != SWR_INPUT_COVERAGE_NONE)
            {
                const uint64_t* pCoverageMask = (T::InputCoverage == SWR_INPUT_COVERAGE_INNER_CONSERVATIVE) ? &work.innerCoverageMask : &work.coverageMask[0];

                generateInputCoverage<T, T::InputCoverage>(pCoverageMask, psContext.inputMask, state.blendState.sampleMask);
            }

            AR_BEGIN(BEBarycentric, pDC->drawId);

            CalcPixelBarycentrics(coeffs, psContext);

            CalcCentroid<T, false>(&psContext, samplePos, coeffs, work.coverageMask, state.blendState.sampleMask);

            AR_END(BEBarycentric, 0);

            if(T::bForcedSampleCount)
            {
                // candidate pixels (that passed coverage) will cause shader invocation if any bits in the samplemask are set
                const simdscalar vSampleMask = _simd_castsi_ps(_simd_cmpgt_epi32(_simd_set1_epi32(state.blendState.sampleMask), _simd_setzero_si()));
                activeLanes = _simd_and_ps(activeLanes, vSampleMask);
            }

            // Early-Z?
            if(T::bCanEarlyZ && !T::bForcedSampleCount)
            {
                uint32_t depthPassCount = PixelRateZTest(activeLanes, psContext, BEEarlyDepthTest);
                UPDATE_STAT_BE(DepthPassCount, depthPassCount);
                AR_EVENT(EarlyDepthInfoPixelRate(depthPassCount, _simd_movemask_ps(activeLanes)));
            }

            // if we have no covered samples that passed depth at this point, go to next tile
            if(!_simd_movemask_ps(activeLanes)) { goto Endtile; };

            if(state.psState.usesSourceDepth)
            {
                AR_BEGIN(BEBarycentric, pDC->drawId);
                // interpolate and quantize z
                psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
                psContext.vZ = state.pfnQuantizeDepth(psContext.vZ);
                AR_END(BEBarycentric, 0);
            }

            // pixels that are currently active
            psContext.activeMask = _simd_castps_si(activeLanes);
            psContext.oMask = T::MultisampleT::FullSampleMask();

            // execute pixel shader
            AR_BEGIN(BEPixelShader, pDC->drawId);
            state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
            UPDATE_STAT_BE(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(activeLanes)));
            AR_END(BEPixelShader, 0);

            // update active lanes to remove any discarded or oMask'd pixels
            activeLanes = _simd_castsi_ps(_simd_and_si(psContext.activeMask, _simd_cmpgt_epi32(psContext.oMask, _simd_setzero_si())));
            if(!_simd_movemask_ps(activeLanes)) { goto Endtile; };

            // late-Z
            if(!T::bCanEarlyZ && !T::bForcedSampleCount)
            {
                uint32_t depthPassCount = PixelRateZTest(activeLanes, psContext, BELateDepthTest);
                UPDATE_STAT_BE(DepthPassCount, depthPassCount);
                AR_EVENT(LateDepthInfoPixelRate(depthPassCount, _simd_movemask_ps(activeLanes)));
            }

            // if we have no covered samples that passed depth at this point, skip OM and go to next tile
            if(!_simd_movemask_ps(activeLanes)) { goto Endtile; };

            // output merger
            // loop over all samples, broadcasting the results of the PS to all passing pixels
            for(uint32_t sample = 0; sample < GetNumOMSamples<T>(state.blendState.sampleCount); sample++)
            {
                AR_BEGIN(BEOutputMerger, pDC->drawId);
                // center pattern does a single coverage/depth/stencil test, standard pattern tests all samples
                uint32_t coverageSampleNum = (T::bIsCenterPattern) ? 0 : sample;
                simdscalar coverageMask, depthMask;
                if(T::bForcedSampleCount)
                {
                    coverageMask = depthMask = activeLanes;
                }
                else
                {
                    coverageMask = PixelRateZTest.vCoverageMask[coverageSampleNum];
                    depthMask = PixelRateZTest.depthPassMask[coverageSampleNum];
                    if(!_simd_movemask_ps(depthMask))
                    {
                        // stencil should already have been written in early/lateZ tests
                        AR_END(BEOutputMerger, 0);
                        continue;
                    }
                }
                
                // broadcast the results of the PS to all passing pixels
#if USE_8x2_TILE_BACKEND
                OutputMerger8x2(psContext, psContext.pColorBuffer, sample, &state.blendState,state.pfnBlendFunc, coverageMask, depthMask, state.psState.numRenderTargets, state.colorHottileEnable, useAlternateOffset);
#else // USE_8x2_TILE_BACKEND
                OutputMerger4x2(psContext, psContext.pColorBuffer, sample, &state.blendState, state.pfnBlendFunc, coverageMask, depthMask, state.psState.numRenderTargets);
#endif // USE_8x2_TILE_BACKEND

                if(!state.psState.forceEarlyZ && !T::bForcedSampleCount)
                {
                    uint8_t *pDepthSample = pDepthBuffer + RasterTileDepthOffset(sample);
                    uint8_t * pStencilSample = pStencilBuffer + RasterTileStencilOffset(sample);

                    DepthStencilWrite(&state.vp[work.triFlags.viewportIndex], &state.depthStencilState, work.triFlags.frontFacing, PixelRateZTest.vZ[coverageSampleNum],
                                      pDepthSample, depthMask, coverageMask, pStencilSample, PixelRateZTest.stencilPassMask[coverageSampleNum]);
                }
                AR_END(BEOutputMerger, 0);
            }
Endtile:
            AR_BEGIN(BEEndTile, pDC->drawId);

            for(uint32_t sample = 0; sample < T::MultisampleT::numCoverageSamples; sample++)
            {
                work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
            }

            if(T::InputCoverage == SWR_INPUT_COVERAGE_INNER_CONSERVATIVE)
            {
                work.innerCoverageMask >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
            }
            work.anyCoveredSamples >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);

#if USE_8x2_TILE_BACKEND
            if (useAlternateOffset)
            {
                for (uint32_t rt = 0; rt < state.psState.numRenderTargets; ++rt)
                {
                    psContext.pColorBuffer[rt] += (2 * KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
                }
            }
#else
            for(uint32_t rt = 0; rt < state.psState.numRenderTargets; ++rt)
            {
                psContext.pColorBuffer[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
            }
#endif
            pDepthBuffer += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
            pStencilBuffer += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;

            AR_END(BEEndTile, 0);

            psContext.vX.UL     = _simd_add_ps(psContext.vX.UL,     dx);
            psContext.vX.center = _simd_add_ps(psContext.vX.center, dx);
        }

        psContext.vY.UL     = _simd_add_ps(psContext.vY.UL,     dy);
        psContext.vY.center = _simd_add_ps(psContext.vY.center, dy);
    }

    AR_END(BEPixelRateBackend, 0);
}

template<uint32_t sampleCountT = SWR_MULTISAMPLE_1X, uint32_t isCenter = 0,
         uint32_t coverage = 0, uint32_t centroid = 0, uint32_t forced = 0, uint32_t canEarlyZ = 0
    >
struct SwrBackendTraits
{
    static const bool bIsCenterPattern = (isCenter == 1);
    static const uint32_t InputCoverage = coverage;
    static const bool bCentroidPos = (centroid == 1);
    static const bool bForcedSampleCount = (forced == 1);
    static const bool bCanEarlyZ = (canEarlyZ == 1);
    typedef MultisampleTraits<(SWR_MULTISAMPLE_COUNT)sampleCountT, bIsCenterPattern> MultisampleT;
};