summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/core/backend.h
blob: 53222eabccd03f11d7d0efc5d036a121b0187e8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file backend.h
*
* @brief Backend handles rasterization, pixel shading and output merger
*        operations.
*
******************************************************************************/
#pragma once

#include "common/os.h"
#include "core/context.h"
#include "core/multisample.h"
#include "rdtsc_core.h"

void ProcessComputeBE(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t threadGroupId, void*& pSpillFillBuffer);
void ProcessSyncBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData);
void ProcessClearBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData);
void ProcessStoreTilesBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData);
void ProcessDiscardInvalidateTilesBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData);
void ProcessShutdownBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData);
void BackendNullPS(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers);
void InitClearTilesTable();
simdmask ComputeUserClipMask(uint8_t clipMask, float* pUserClipBuffer, simdscalar vI, simdscalar vJ);
void InitBackendFuncTables();
void InitCPSFuncTables();
void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext);

enum SWR_BACKEND_FUNCS
{
    SWR_BACKEND_SINGLE_SAMPLE,
    SWR_BACKEND_MSAA_PIXEL_RATE,
    SWR_BACKEND_MSAA_SAMPLE_RATE,
    SWR_BACKEND_FUNCS_MAX,
};

#if KNOB_SIMD_WIDTH == 8
extern const __m256 vCenterOffsetsX;
extern const __m256 vCenterOffsetsY;
extern const __m256 vULOffsetsX;
extern const __m256 vULOffsetsY;
#define MASK 0xff
#endif

INLINE static uint32_t RasterTileColorOffset(uint32_t sampleNum)
{
    static const uint32_t RasterTileColorOffsets[16]
    { 0,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8),
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 2,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 3,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 4,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 5,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 6,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 7,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 8,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 9,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 10,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 11,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 12,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 13,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 14,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8) * 15,
    };
    assert(sampleNum < 16);
    return RasterTileColorOffsets[sampleNum];
}

INLINE static uint32_t RasterTileDepthOffset(uint32_t sampleNum)
{
    static const uint32_t RasterTileDepthOffsets[16]
    { 0,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8),
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 2,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 3,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 4,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 5,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 6,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 7,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 8,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 9,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 10,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 11,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 12,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 13,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 14,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8) * 15,
    };
    assert(sampleNum < 16);
    return RasterTileDepthOffsets[sampleNum];
}

INLINE static uint32_t RasterTileStencilOffset(uint32_t sampleNum)
{
    static const uint32_t RasterTileStencilOffsets[16]
    { 0,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8),
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 2,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 3,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 4,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 5,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 6,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 7,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 8,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 9,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 10,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 11,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 12,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 13,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 14,
      (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8) * 15,
    };
    assert(sampleNum < 16);
    return RasterTileStencilOffsets[sampleNum];
}

template<typename T, uint32_t InputCoverage>
struct generateInputCoverage
{
    INLINE generateInputCoverage(const uint64_t *const coverageMask, uint32_t (&inputMask)[KNOB_SIMD_WIDTH], const uint32_t sampleMask)
    {
        // will need to update for avx512
        assert(KNOB_SIMD_WIDTH == 8);

        __m256i mask[2];
        __m256i sampleCoverage[2];
        if(T::bIsStandardPattern)
        {
            __m256i src = _mm256_set1_epi32(0);
            __m256i index0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0), index1;

            if(T::MultisampleT::numSamples == 1)
            {
                mask[0] = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, -1);
            }
            else if(T::MultisampleT::numSamples == 2)
            {
                mask[0] = _mm256_set_epi32(0, 0, 0, 0, 0, 0, -1, -1);
            }
            else if(T::MultisampleT::numSamples == 4)
            {
                mask[0] = _mm256_set_epi32(0, 0, 0, 0, -1, -1, -1, -1);
            }
            else if(T::MultisampleT::numSamples == 8)
            {
                mask[0] = _mm256_set1_epi32(-1);
            }
            else if(T::MultisampleT::numSamples == 16)
            {
                mask[0] = _mm256_set1_epi32(-1);
                mask[1] = _mm256_set1_epi32(-1);
                index1 = _mm256_set_epi32(15, 14, 13, 12, 11, 10, 9, 8);
            }

            // gather coverage for samples 0-7
            sampleCoverage[0] = _mm256_castps_si256(_simd_mask_i32gather_ps(_mm256_castsi256_ps(src), (const float*)coverageMask, index0, _mm256_castsi256_ps(mask[0]), 8));
            if(T::MultisampleT::numSamples > 8)
            {
                // gather coverage for samples 8-15
                sampleCoverage[1] = _mm256_castps_si256(_simd_mask_i32gather_ps(_mm256_castsi256_ps(src), (const float*)coverageMask, index1, _mm256_castsi256_ps(mask[1]), 8));
            }
        }
        else
        {
            // center coverage is the same for all samples; just broadcast to the sample slots
            uint32_t centerCoverage = ((uint32_t)(*coverageMask) & MASK);
            if(T::MultisampleT::numSamples == 1)
            {
                sampleCoverage[0] = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 2)
            {
                sampleCoverage[0] = _mm256_set_epi32(0, 0, 0, 0, 0, 0, centerCoverage, centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 4)
            {
                sampleCoverage[0] = _mm256_set_epi32(0, 0, 0, 0, centerCoverage, centerCoverage, centerCoverage, centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 8)
            {
                sampleCoverage[0] = _mm256_set1_epi32(centerCoverage);
            }
            else if(T::MultisampleT::numSamples == 16)
            {
                sampleCoverage[0] = _mm256_set1_epi32(centerCoverage);
                sampleCoverage[1] = _mm256_set1_epi32(centerCoverage);
            }
        }

        mask[0] = _mm256_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0xC, 0x8, 0x4, 0x0,
                                  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0xC, 0x8, 0x4, 0x0);
        // pull out the 8bit 4x2 coverage for samples 0-7 into the lower 32 bits of each 128bit lane
        __m256i packedCoverage0 = _simd_shuffle_epi8(sampleCoverage[0], mask[0]);

        __m256i packedCoverage1;
        if(T::MultisampleT::numSamples > 8)
        {
            // pull out the 8bit 4x2 coverage for samples 8-15 into the lower 32 bits of each 128bit lane
            packedCoverage1 = _simd_shuffle_epi8(sampleCoverage[1], mask[0]);
        }

    #if (KNOB_ARCH == KNOB_ARCH_AVX)
        // pack lower 32 bits of each 128 bit lane into lower 64 bits of single 128 bit lane 
        __m256i hiToLow = _mm256_permute2f128_si256(packedCoverage0, packedCoverage0, 0x83);
        __m256 shufRes = _mm256_shuffle_ps(_mm256_castsi256_ps(hiToLow), _mm256_castsi256_ps(hiToLow), _MM_SHUFFLE(1, 1, 0, 1));
        packedCoverage0 = _mm256_castps_si256(_mm256_blend_ps(_mm256_castsi256_ps(packedCoverage0), shufRes, 0xFE));

        __m256i packedSampleCoverage;
        if(T::MultisampleT::numSamples > 8)
        {
            // pack lower 32 bits of each 128 bit lane into upper 64 bits of single 128 bit lane
            hiToLow = _mm256_permute2f128_si256(packedCoverage1, packedCoverage1, 0x83);
            shufRes = _mm256_shuffle_ps(_mm256_castsi256_ps(hiToLow), _mm256_castsi256_ps(hiToLow), _MM_SHUFFLE(1, 1, 0, 1));
            shufRes = _mm256_blend_ps(_mm256_castsi256_ps(packedCoverage1), shufRes, 0xFE);
            packedCoverage1 = _mm256_castps_si256(_mm256_castpd_ps(_mm256_shuffle_pd(_mm256_castps_pd(shufRes), _mm256_castps_pd(shufRes), 0x01)));
            packedSampleCoverage = _mm256_castps_si256(_mm256_blend_ps(_mm256_castsi256_ps(packedCoverage0), _mm256_castsi256_ps(packedCoverage1), 0xFC));
        }
        else
        {
            packedSampleCoverage = packedCoverage0;
        }
    #else
        __m256i permMask = _mm256_set_epi32(0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x4, 0x0);
        // pack lower 32 bits of each 128 bit lane into lower 64 bits of single 128 bit lane 
        packedCoverage0 = _mm256_permutevar8x32_epi32(packedCoverage0, permMask);

        __m256i packedSampleCoverage;
        if(T::MultisampleT::numSamples > 8)
        {
            permMask = _mm256_set_epi32(0x7, 0x7, 0x7, 0x7, 0x4, 0x0, 0x7, 0x7);
            // pack lower 32 bits of each 128 bit lane into upper 64 bits of single 128 bit lane
            packedCoverage1 = _mm256_permutevar8x32_epi32(packedCoverage1, permMask);

            // blend coverage masks for samples 0-7 and samples 8-15 into single 128 bit lane
            packedSampleCoverage = _mm256_blend_epi32(packedCoverage0, packedCoverage1, 0x0C);
        }
        else
        {
            packedSampleCoverage = packedCoverage0;
        }
    #endif

        for(int32_t i = KNOB_SIMD_WIDTH - 1; i >= 0; i--)
        {
            // convert packed sample coverage masks into single coverage masks for all samples for each pixel in the 4x2
            inputMask[i] = _simd_movemask_epi8(packedSampleCoverage);

            if(!T::bForcedSampleCount)
            {
                // input coverage has to be anded with sample mask if MSAA isn't forced on
                inputMask[i] &= sampleMask;
            }

            // shift to the next pixel in the 4x2
            packedSampleCoverage = _simd_slli_epi32(packedSampleCoverage, 1);
        }
    }

    INLINE generateInputCoverage(const uint64_t *const coverageMask, __m256 &inputCoverage, const uint32_t sampleMask)
    {
        uint32_t inputMask[KNOB_SIMD_WIDTH];
        generateInputCoverage<T, T::InputCoverage>(coverageMask, inputMask, sampleMask);
        inputCoverage = _simd_castsi_ps(_mm256_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]));
    }

};

template<typename T>
struct generateInputCoverage<T, SWR_INPUT_COVERAGE_INNER_CONSERVATIVE>
{
    INLINE generateInputCoverage(const uint64_t *const coverageMask, __m256 &inputCoverage, const uint32_t sampleMask)
    {
        // will need to update for avx512
        assert(KNOB_SIMD_WIDTH == 8);
        __m256i vec = _mm256_set1_epi32(coverageMask[0]);
        const __m256i bit = _mm256_set_epi32(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
        vec = _simd_and_si(vec, bit);
        vec = _simd_cmplt_epi32(_mm256_setzero_si256(), vec);
        vec = _simd_blendv_epi32(_simd_setzero_si(), _simd_set1_epi32(1), vec);
        inputCoverage = _simd_castsi_ps(vec);
    }

    INLINE generateInputCoverage(const uint64_t *const coverageMask, uint32_t (&inputMask)[KNOB_SIMD_WIDTH], const uint32_t sampleMask)
    {
        uint32_t simdCoverage = (coverageMask[0] & MASK);
        static const uint32_t FullCoverageMask = (1 << T::MultisampleT::numSamples) - 1;
        for(int i = 0; i < KNOB_SIMD_WIDTH; i++)
        {
            // set all samples to covered if conservative coverage mask is set for that pixel
            inputMask[i] = (((1 << i) & simdCoverage) > 0) ? FullCoverageMask : 0;
        }
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Centroid behaves exactly as follows :
// (1) If all samples in the primitive are covered, the attribute is evaluated at the pixel center (even if the sample pattern does not happen to 
//     have a sample location there).
// (2) Else the attribute is evaluated at the first covered sample, in increasing order of sample index, where sample coverage is after ANDing the 
//     coverage with the SampleMask Rasterizer State.
// (3) If no samples are covered, such as on helper pixels executed off the bounds of a primitive to fill out 2x2 pixel stamps, the attribute is 
//     evaluated as follows : If the SampleMask Rasterizer state is a subset of the samples in the pixel, then the first sample covered by the 
//     SampleMask Rasterizer State is the evaluation point.Otherwise (full SampleMask), the pixel center is the evaluation point.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
INLINE void CalcCentroidPos(SWR_PS_CONTEXT &psContext, const uint64_t *const coverageMask, const uint32_t sampleMask,
                            const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
{
    uint32_t inputMask[KNOB_SIMD_WIDTH];
    generateInputCoverage<T, T::InputCoverage>(coverageMask, inputMask, sampleMask);

    // Case (2) - partially covered pixel

    // scan for first covered sample per pixel in the 4x2 span
    unsigned long sampleNum[KNOB_SIMD_WIDTH];
    (inputMask[0] > 0) ? (_BitScanForward(&sampleNum[0], inputMask[0])) : (sampleNum[0] = 0);
    (inputMask[1] > 0) ? (_BitScanForward(&sampleNum[1], inputMask[1])) : (sampleNum[1] = 0);
    (inputMask[2] > 0) ? (_BitScanForward(&sampleNum[2], inputMask[2])) : (sampleNum[2] = 0);
    (inputMask[3] > 0) ? (_BitScanForward(&sampleNum[3], inputMask[3])) : (sampleNum[3] = 0);
    (inputMask[4] > 0) ? (_BitScanForward(&sampleNum[4], inputMask[4])) : (sampleNum[4] = 0);
    (inputMask[5] > 0) ? (_BitScanForward(&sampleNum[5], inputMask[5])) : (sampleNum[5] = 0);
    (inputMask[6] > 0) ? (_BitScanForward(&sampleNum[6], inputMask[6])) : (sampleNum[6] = 0);
    (inputMask[7] > 0) ? (_BitScanForward(&sampleNum[7], inputMask[7])) : (sampleNum[7] = 0);

    // look up and set the sample offsets from UL pixel corner for first covered sample 
    __m256 vXSample = _mm256_set_ps(T::MultisampleT::X(sampleNum[7]),
                                    T::MultisampleT::X(sampleNum[6]),
                                    T::MultisampleT::X(sampleNum[5]),
                                    T::MultisampleT::X(sampleNum[4]),
                                    T::MultisampleT::X(sampleNum[3]),
                                    T::MultisampleT::X(sampleNum[2]),
                                    T::MultisampleT::X(sampleNum[1]),
                                    T::MultisampleT::X(sampleNum[0]));

    __m256 vYSample = _mm256_set_ps(T::MultisampleT::Y(sampleNum[7]),
                                    T::MultisampleT::Y(sampleNum[6]),
                                    T::MultisampleT::Y(sampleNum[5]),
                                    T::MultisampleT::Y(sampleNum[4]),
                                    T::MultisampleT::Y(sampleNum[3]),
                                    T::MultisampleT::Y(sampleNum[2]),
                                    T::MultisampleT::Y(sampleNum[1]),
                                    T::MultisampleT::Y(sampleNum[0]));
    // add sample offset to UL pixel corner
    vXSample = _simd_add_ps(vXSamplePosUL, vXSample);
    vYSample = _simd_add_ps(vYSamplePosUL, vYSample);

    // Case (1) and case (3b) - All samples covered or not covered with full SampleMask
    static const __m256i vFullyCoveredMask = T::MultisampleT::FullSampleMask();
    __m256i vInputCoveragei =  _mm256_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]);
    __m256i vAllSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vFullyCoveredMask);

    static const __m256i vZero = _simd_setzero_si();
    const __m256i vSampleMask = _simd_and_si(_simd_set1_epi32(sampleMask), vFullyCoveredMask);
    __m256i vNoSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vZero);
    __m256i vIsFullSampleMask = _simd_cmpeq_epi32(vSampleMask, vFullyCoveredMask);
    __m256i vCase3b = _simd_and_si(vNoSamplesCovered, vIsFullSampleMask);

    __m256i vEvalAtCenter = _simd_or_si(vAllSamplesCovered, vCase3b);

    // set the centroid position based on results from above
    psContext.vX.centroid = _simd_blendv_ps(vXSample, psContext.vX.center, _simd_castsi_ps(vEvalAtCenter));
    psContext.vY.centroid = _simd_blendv_ps(vYSample, psContext.vY.center, _simd_castsi_ps(vEvalAtCenter));

    // Case (3a) No samples covered and partial sample mask
    __m256i vSomeSampleMaskSamples = _simd_cmplt_epi32(vSampleMask, vFullyCoveredMask);
    // sample mask should never be all 0's for this case, but handle it anyways
    unsigned long firstCoveredSampleMaskSample = 0;
    (sampleMask > 0) ? (_BitScanForward(&firstCoveredSampleMaskSample, sampleMask)) : (firstCoveredSampleMaskSample = 0);

    __m256i vCase3a = _simd_and_si(vNoSamplesCovered, vSomeSampleMaskSamples);

    vXSample = _simd_set1_ps(T::MultisampleT::X(firstCoveredSampleMaskSample));
    vYSample = _simd_set1_ps(T::MultisampleT::Y(firstCoveredSampleMaskSample));

    // blend in case 3a pixel locations
    psContext.vX.centroid = _simd_blendv_ps(psContext.vX.centroid, vXSample, _simd_castsi_ps(vCase3a));
    psContext.vY.centroid = _simd_blendv_ps(psContext.vY.centroid, vYSample, _simd_castsi_ps(vCase3a));
}

INLINE void CalcCentroidBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext,
                                     const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
{
    // evaluate I,J
    psContext.vI.centroid = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.centroid, psContext.vY.centroid);
    psContext.vJ.centroid = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.centroid, psContext.vY.centroid);
    psContext.vI.centroid = _simd_mul_ps(psContext.vI.centroid, coeffs.vRecipDet);
    psContext.vJ.centroid = _simd_mul_ps(psContext.vJ.centroid, coeffs.vRecipDet);

    // interpolate 1/w
    psContext.vOneOverW.centroid = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.centroid, psContext.vJ.centroid);
}

INLINE simdmask CalcDepthBoundsAcceptMask(simdscalar z, float minz, float maxz)
{
    const simdscalar minzMask = _simd_cmpge_ps(z, _simd_set1_ps(minz));
    const simdscalar maxzMask = _simd_cmple_ps(z, _simd_set1_ps(maxz));

    return _simd_movemask_ps(_simd_and_ps(minzMask, maxzMask));
}

template<typename T>
INLINE uint32_t GetNumOMSamples(SWR_MULTISAMPLE_COUNT blendSampleCount)
{
    // RT has to be single sample if we're in forcedMSAA mode
    if(T::bForcedSampleCount && (T::MultisampleT::sampleCount > SWR_MULTISAMPLE_1X))
    {
        return 1;
    }
    // unless we're forced to single sample, in which case we run the OM at the sample count of the RT
    else if(T::bForcedSampleCount && (T::MultisampleT::sampleCount == SWR_MULTISAMPLE_1X))
    {
        return GetNumSamples(blendSampleCount);
    }
    // else we're in normal MSAA mode and rasterizer and OM are running at the same sample count
    else
    {
        return T::MultisampleT::numSamples;
    }
}

template<typename T>
struct PixelRateZTestLoop
{
    PixelRateZTestLoop(DRAW_CONTEXT *DC, uint32_t _workerId, const SWR_TRIANGLE_DESC &Work, const BarycentricCoeffs& Coeffs, const API_STATE& apiState,
                       uint8_t*& depthBase, uint8_t*& stencilBase, const uint8_t ClipDistanceMask) :
                       pDC(DC), workerId(_workerId), work(Work), coeffs(Coeffs), state(apiState), psState(apiState.psState),
                       clipDistanceMask(ClipDistanceMask), pDepthBase(depthBase), pStencilBase(stencilBase) {};
           
    INLINE
    uint32_t operator()(simdscalar& activeLanes, SWR_PS_CONTEXT& psContext, 
                        const CORE_BUCKETS BEDepthBucket, uint32_t currentSimdIn8x8 = 0)
    {
        SWR_CONTEXT *pContext = pDC->pContext;

        uint32_t statCount = 0;
        simdscalar anyDepthSamplePassed = _simd_setzero_ps();
        for(uint32_t sample = 0; sample < T::MultisampleT::numCoverageSamples; sample++)
        {
            const uint8_t *pCoverageMask = (uint8_t*)&work.coverageMask[sample];
            vCoverageMask[sample] = _simd_and_ps(activeLanes, vMask(pCoverageMask[currentSimdIn8x8] & MASK));

            if(!_simd_movemask_ps(vCoverageMask[sample]))
            {
                vCoverageMask[sample] = depthPassMask[sample] = stencilPassMask[sample] = _simd_setzero_ps();
                continue;
            }

            AR_BEGIN(BEBarycentric, pDC->drawId);
            // calculate per sample positions
            psContext.vX.sample = _simd_add_ps(psContext.vX.UL, T::MultisampleT::vX(sample));
            psContext.vY.sample = _simd_add_ps(psContext.vY.UL, T::MultisampleT::vY(sample));

            // calc I & J per sample
            CalcSampleBarycentrics(coeffs, psContext);

            if(psState.writesODepth)
            {
                // broadcast and test oDepth(psContext.vZ) written from the PS for each sample
                vZ[sample] = psContext.vZ;
            }
            else
            {
                vZ[sample] = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
                vZ[sample] = state.pfnQuantizeDepth(vZ[sample]);
            }
            AR_END(BEBarycentric, 0);

            ///@todo: perspective correct vs non-perspective correct clipping?
            // if clip distances are enabled, we need to interpolate for each sample
            if(clipDistanceMask)
            {
                uint8_t clipMask = ComputeUserClipMask(clipDistanceMask, work.pUserClipBuffer,
                                                       psContext.vI.sample, psContext.vJ.sample);
                vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(~clipMask));
            }

            // offset depth/stencil buffers current sample
            uint8_t *pDepthSample = pDepthBase + RasterTileDepthOffset(sample);
            uint8_t * pStencilSample = pStencilBase + RasterTileStencilOffset(sample);

            if (state.depthHottileEnable && state.depthBoundsState.depthBoundsTestEnable)
            {
                static_assert(KNOB_DEPTH_HOT_TILE_FORMAT == R32_FLOAT, "Unsupported depth hot tile format");

                const simdscalar z = _simd_load_ps(reinterpret_cast<const float *>(pDepthSample));

                const float minz = state.depthBoundsState.depthBoundsTestMinValue;
                const float maxz = state.depthBoundsState.depthBoundsTestMaxValue;

                vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(CalcDepthBoundsAcceptMask(z, minz, maxz)));
            }

            // ZTest for this sample
            ///@todo Need to uncomment out this bucket.
            //AR_BEGIN(BEDepthBucket, pDC->drawId);
            depthPassMask[sample] = vCoverageMask[sample];
            stencilPassMask[sample] = vCoverageMask[sample];
            depthPassMask[sample] = DepthStencilTest(&state, work.triFlags.frontFacing, work.triFlags.viewportIndex,
                                                     vZ[sample], pDepthSample, vCoverageMask[sample], 
                                                     pStencilSample, &stencilPassMask[sample]);
            //AR_END(BEDepthBucket, 0);

            // early-exit if no pixels passed depth or earlyZ is forced on
            if(psState.forceEarlyZ || !_simd_movemask_ps(depthPassMask[sample]))
            {
                DepthStencilWrite(&state.vp[work.triFlags.viewportIndex], &state.depthStencilState, work.triFlags.frontFacing, vZ[sample],
                                  pDepthSample, depthPassMask[sample], vCoverageMask[sample], pStencilSample, stencilPassMask[sample]);

                if(!_simd_movemask_ps(depthPassMask[sample]))
                {
                    continue;
                }
            }
            anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, depthPassMask[sample]);
            uint32_t statMask = _simd_movemask_ps(depthPassMask[sample]);
            statCount += _mm_popcnt_u32(statMask);
        }

        activeLanes = _simd_and_ps(anyDepthSamplePassed, activeLanes);
        // return number of samples that passed depth and coverage
        return statCount;
    }

    // saved depth/stencil/coverage masks and interpolated Z used in OM and DepthWrite
    simdscalar vZ[T::MultisampleT::numCoverageSamples];
    simdscalar vCoverageMask[T::MultisampleT::numCoverageSamples];
    simdscalar depthPassMask[T::MultisampleT::numCoverageSamples];
    simdscalar stencilPassMask[T::MultisampleT::numCoverageSamples];

private:
    // functor inputs
    DRAW_CONTEXT* pDC;
    uint32_t workerId;

    const SWR_TRIANGLE_DESC& work;
    const BarycentricCoeffs& coeffs;
    const API_STATE& state;
    const SWR_PS_STATE& psState;
    const uint8_t clipDistanceMask;
    uint8_t*& pDepthBase;
    uint8_t*& pStencilBase;
};

INLINE void CalcPixelBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
{
    // evaluate I,J
    psContext.vI.center = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.center, psContext.vY.center);
    psContext.vJ.center = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.center, psContext.vY.center);
    psContext.vI.center = _simd_mul_ps(psContext.vI.center, coeffs.vRecipDet);
    psContext.vJ.center = _simd_mul_ps(psContext.vJ.center, coeffs.vRecipDet);

    // interpolate 1/w
    psContext.vOneOverW.center = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.center, psContext.vJ.center);
}

INLINE void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
{
    // evaluate I,J
    psContext.vI.sample = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.sample, psContext.vY.sample);
    psContext.vJ.sample = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.sample, psContext.vY.sample);
    psContext.vI.sample = _simd_mul_ps(psContext.vI.sample, coeffs.vRecipDet);
    psContext.vJ.sample = _simd_mul_ps(psContext.vJ.sample, coeffs.vRecipDet);

    // interpolate 1/w
    psContext.vOneOverW.sample = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.sample, psContext.vJ.sample);
}

INLINE void OutputMerger(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
                         const PFN_BLEND_JIT_FUNC (&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask, const uint32_t NumRT)
{
    // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
    const uint32_t rasterTileColorOffset = RasterTileColorOffset(sample);
    simdvector blendOut;

    for(uint32_t rt = 0; rt < NumRT; ++rt)
    {
        uint8_t *pColorSample = pColorBase[rt] + rasterTileColorOffset;

        const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];
        // pfnBlendFunc may not update all channels.  Initialize with PS output.
        /// TODO: move this into the blend JIT.
        blendOut = psContext.shaded[rt];

        // Blend outputs and update coverage mask for alpha test
        if(pfnBlendFunc[rt] != nullptr)
        {
            pfnBlendFunc[rt](
                pBlendState,
                psContext.shaded[rt],
                psContext.shaded[1],
                sample,
                pColorSample,
                blendOut,
                &psContext.oMask,
                (simdscalari*)&coverageMask);
        }

        // final write mask 
        simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));

        ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
        static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");

        const uint32_t simd = KNOB_SIMD_WIDTH * sizeof(float);

        // store with color mask
        if(!pRTBlend->writeDisableRed)
        {
            _simd_maskstore_ps((float*)pColorSample, outputMask, blendOut.x);
        }
        if(!pRTBlend->writeDisableGreen)
        {
            _simd_maskstore_ps((float*)(pColorSample + simd), outputMask, blendOut.y);
        }
        if(!pRTBlend->writeDisableBlue)
        {
            _simd_maskstore_ps((float*)(pColorSample + simd * 2), outputMask, blendOut.z);
        }
        if(!pRTBlend->writeDisableAlpha)
        {
            _simd_maskstore_ps((float*)(pColorSample + simd * 3), outputMask, blendOut.w);
        }
    }
}

#if USE_8x2_TILE_BACKEND
INLINE void OutputMerger(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
    const PFN_BLEND_JIT_FUNC(&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask, const uint32_t NumRT, bool useAlternateOffset)
{
    assert(sample == 0); // will need up upate Raster Tile Color Offsets to support more than single sample here..

    // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
    uint32_t rasterTileColorOffset = RasterTileColorOffset(sample);

    if (useAlternateOffset)
    {
        rasterTileColorOffset += sizeof(simdscalar);
    }

    simdvector blendSrc;
    simdvector blendOut;

    for (uint32_t rt = 0; rt < NumRT; ++rt)
    {
        simdscalar *pColorSample = reinterpret_cast<simdscalar *>(pColorBase[rt] + rasterTileColorOffset);

        const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];
        // pfnBlendFunc may not update all channels.  Initialize with PS output.
        /// TODO: move this into the blend JIT.
        blendOut = psContext.shaded[rt];

        blendSrc[0] = pColorSample[0];
        blendSrc[1] = pColorSample[2];
        blendSrc[2] = pColorSample[4];
        blendSrc[3] = pColorSample[6];

        // Blend outputs and update coverage mask for alpha test
        if (pfnBlendFunc[rt] != nullptr)
        {
            pfnBlendFunc[rt](
                pBlendState,
                psContext.shaded[rt],
                psContext.shaded[1],
                sample,
                reinterpret_cast<uint8_t *>(&blendSrc),
                blendOut,
                &psContext.oMask,
                reinterpret_cast<simdscalari *>(&coverageMask));
        }

        // final write mask 
        simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));

        ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
        static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");

        // store with color mask
        if (!pRTBlend->writeDisableRed)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[0]), outputMask, blendOut.x);
        }
        if (!pRTBlend->writeDisableGreen)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[2]), outputMask, blendOut.y);
        }
        if (!pRTBlend->writeDisableBlue)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[4]), outputMask, blendOut.z);
        }
        if (!pRTBlend->writeDisableAlpha)
        {
            _simd_maskstore_ps(reinterpret_cast<float *>(&pColorSample[6]), outputMask, blendOut.w);
        }
    }
}

#endif
template<uint32_t sampleCountT = SWR_MULTISAMPLE_1X, uint32_t samplePattern = SWR_MSAA_STANDARD_PATTERN,
         uint32_t coverage = 0, uint32_t centroid = 0, uint32_t forced = 0, uint32_t canEarlyZ = 0>
struct SwrBackendTraits
{
    static const bool bIsStandardPattern = (samplePattern == SWR_MSAA_STANDARD_PATTERN);
    static const uint32_t InputCoverage = coverage;
    static const bool bCentroidPos = (centroid == 1);
    static const bool bForcedSampleCount = (forced == 1);
    static const bool bCanEarlyZ = (canEarlyZ == 1);
    typedef MultisampleTraits<(SWR_MULTISAMPLE_COUNT)sampleCountT, (bIsStandardPattern) ? SWR_MSAA_STANDARD_PATTERN : SWR_MSAA_CENTER_PATTERN> MultisampleT;
};