summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/freedreno/ir3/ir3_ra.c
blob: eaf3b3c35e835ce103af83b6edf4db45846bb5c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */

/*
 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Rob Clark <robclark@freedesktop.org>
 */

#include "util/u_math.h"
#include "util/register_allocate.h"
#include "util/ralloc.h"
#include "util/bitset.h"

#include "ir3.h"
#include "ir3_compiler.h"

/*
 * Register Assignment:
 *
 * Uses the register_allocate util, which implements graph coloring
 * algo with interference classes.  To handle the cases where we need
 * consecutive registers (for example, texture sample instructions),
 * we model these as larger (double/quad/etc) registers which conflict
 * with the corresponding registers in other classes.
 *
 * Additionally we create additional classes for half-regs, which
 * do not conflict with the full-reg classes.  We do need at least
 * sizes 1-4 (to deal w/ texture sample instructions output to half-
 * reg).  At the moment we don't create the higher order half-reg
 * classes as half-reg frequently does not have enough precision
 * for texture coords at higher resolutions.
 *
 * There are some additional cases that we need to handle specially,
 * as the graph coloring algo doesn't understand "partial writes".
 * For example, a sequence like:
 *
 *   add r0.z, ...
 *   sam (f32)(xy)r0.x, ...
 *   ...
 *   sam (f32)(xyzw)r0.w, r0.x, ...  ; 3d texture, so r0.xyz are coord
 *
 * In this scenario, we treat r0.xyz as class size 3, which is written
 * (from a use/def perspective) at the 'add' instruction and ignore the
 * subsequent partial writes to r0.xy.  So the 'add r0.z, ...' is the
 * defining instruction, as it is the first to partially write r0.xyz.
 *
 * Note i965 has a similar scenario, which they solve with a virtual
 * LOAD_PAYLOAD instruction which gets turned into multiple MOV's after
 * register assignment.  But for us that is horrible from a scheduling
 * standpoint.  Instead what we do is use idea of 'definer' instruction.
 * Ie. the first instruction (lowest ip) to write to the array is the
 * one we consider from use/def perspective when building interference
 * graph.  (Other instructions which write other array elements just
 * define the variable some more.)
 */

static const unsigned class_sizes[] = {
	1, 2, 3, 4,
	4 + 4, /* txd + 1d/2d */
	4 + 6, /* txd + 3d */
	/* temporary: until we can assign arrays, create classes so we
	 * can round up array to fit.  NOTE with tgsi arrays should
	 * really all be multiples of four:
	 */
	4 * 4,
	4 * 8,
	4 * 16,
	4 * 32,

};
#define class_count ARRAY_SIZE(class_sizes)

static const unsigned half_class_sizes[] = {
	1, 2, 3, 4,
};
#define half_class_count  ARRAY_SIZE(half_class_sizes)
#define total_class_count (class_count + half_class_count)

/* Below a0.x are normal regs.  RA doesn't need to assign a0.x/p0.x. */
#define NUM_REGS             (4 * (REG_A0 - 1))
/* Number of virtual regs in a given class: */
#define CLASS_REGS(i)        (NUM_REGS - (class_sizes[i] - 1))
#define HALF_CLASS_REGS(i)   (NUM_REGS - (half_class_sizes[i] - 1))

/* register-set, created one time, used for all shaders: */
struct ir3_ra_reg_set {
	struct ra_regs *regs;
	unsigned int classes[class_count];
	unsigned int half_classes[half_class_count];
	/* maps flat virtual register space to base gpr: */
	uint16_t *ra_reg_to_gpr;
	/* maps cls,gpr to flat virtual register space: */
	uint16_t **gpr_to_ra_reg;
};

/* One-time setup of RA register-set, which describes all the possible
 * "virtual" registers and their interferences.  Ie. double register
 * occupies (and conflicts with) two single registers, and so forth.
 * Since registers do not need to be aligned to their class size, they
 * can conflict with other registers in the same class too.  Ie:
 *
 *    Single (base) |  Double
 *    --------------+---------------
 *       R0         |  D0
 *       R1         |  D0 D1
 *       R2         |     D1 D2
 *       R3         |        D2
 *           .. and so on..
 *
 * (NOTE the disassembler uses notation like r0.x/y/z/w but those are
 * really just four scalar registers.  Don't let that confuse you.)
 */
struct ir3_ra_reg_set *
ir3_ra_alloc_reg_set(void *memctx)
{
	struct ir3_ra_reg_set *set = rzalloc(memctx, struct ir3_ra_reg_set);
	unsigned ra_reg_count, reg, first_half_reg;
	unsigned int **q_values;

	/* calculate # of regs across all classes: */
	ra_reg_count = 0;
	for (unsigned i = 0; i < class_count; i++)
		ra_reg_count += CLASS_REGS(i);
	for (unsigned i = 0; i < half_class_count; i++)
		ra_reg_count += HALF_CLASS_REGS(i);

	/* allocate and populate q_values: */
	q_values = ralloc_array(set, unsigned *, total_class_count);
	for (unsigned i = 0; i < class_count; i++) {
		q_values[i] = rzalloc_array(q_values, unsigned, total_class_count);

		/* From register_allocate.c:
		 *
		 * q(B,C) (indexed by C, B is this register class) in
		 * Runeson/Nyström paper.  This is "how many registers of B could
		 * the worst choice register from C conflict with".
		 *
		 * If we just let the register allocation algorithm compute these
		 * values, is extremely expensive.  However, since all of our
		 * registers are laid out, we can very easily compute them
		 * ourselves.  View the register from C as fixed starting at GRF n
		 * somewhere in the middle, and the register from B as sliding back
		 * and forth.  Then the first register to conflict from B is the
		 * one starting at n - class_size[B] + 1 and the last register to
		 * conflict will start at n + class_size[B] - 1.  Therefore, the
		 * number of conflicts from B is class_size[B] + class_size[C] - 1.
		 *
		 *   +-+-+-+-+-+-+     +-+-+-+-+-+-+
		 * B | | | | | |n| --> | | | | | | |
		 *   +-+-+-+-+-+-+     +-+-+-+-+-+-+
		 *             +-+-+-+-+-+
		 * C           |n| | | | |
		 *             +-+-+-+-+-+
		 *
		 * (Idea copied from brw_fs_reg_allocate.cpp)
		 */
		for (unsigned j = 0; j < class_count; j++)
			q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
	}

	for (unsigned i = class_count; i < total_class_count; i++) {
		q_values[i] = ralloc_array(q_values, unsigned, total_class_count);

		/* see comment above: */
		for (unsigned j = class_count; j < total_class_count; j++) {
			q_values[i][j] = half_class_sizes[i - class_count] +
					half_class_sizes[j - class_count] - 1;
		}
	}

	/* allocate the reg-set.. */
	set->regs = ra_alloc_reg_set(set, ra_reg_count);
	set->ra_reg_to_gpr = ralloc_array(set, uint16_t, ra_reg_count);
	set->gpr_to_ra_reg = ralloc_array(set, uint16_t *, total_class_count);

	/* .. and classes */
	reg = 0;
	for (unsigned i = 0; i < class_count; i++) {
		set->classes[i] = ra_alloc_reg_class(set->regs);

		set->gpr_to_ra_reg[i] = ralloc_array(set, uint16_t, CLASS_REGS(i));

		for (unsigned j = 0; j < CLASS_REGS(i); j++) {
			ra_class_add_reg(set->regs, set->classes[i], reg);

			set->ra_reg_to_gpr[reg] = j;
			set->gpr_to_ra_reg[i][j] = reg;

			for (unsigned br = j; br < j + class_sizes[i]; br++)
				ra_add_transitive_reg_conflict(set->regs, br, reg);

			reg++;
		}
	}

	first_half_reg = reg;

	for (unsigned i = 0; i < half_class_count; i++) {
		set->half_classes[i] = ra_alloc_reg_class(set->regs);

		set->gpr_to_ra_reg[class_count + i] =
				ralloc_array(set, uint16_t, CLASS_REGS(i));

		for (unsigned j = 0; j < HALF_CLASS_REGS(i); j++) {
			ra_class_add_reg(set->regs, set->half_classes[i], reg);

			set->ra_reg_to_gpr[reg] = j;
			set->gpr_to_ra_reg[class_count + i][j] = reg;

			for (unsigned br = j; br < j + half_class_sizes[i]; br++)
				ra_add_transitive_reg_conflict(set->regs, br + first_half_reg, reg);

			reg++;
		}
	}

	ra_set_finalize(set->regs, q_values);

	ralloc_free(q_values);

	return set;
}

/* additional block-data (per-block) */
struct ir3_ra_block_data {
	BITSET_WORD *def;        /* variables defined before used in block */
	BITSET_WORD *use;        /* variables used before defined in block */
	BITSET_WORD *livein;     /* which defs reach entry point of block */
	BITSET_WORD *liveout;    /* which defs reach exit point of block */
};

/* additional instruction-data (per-instruction) */
struct ir3_ra_instr_data {
	/* cached instruction 'definer' info: */
	struct ir3_instruction *defn;
	int off, sz, cls;
};

/* register-assign context, per-shader */
struct ir3_ra_ctx {
	struct ir3 *ir;
	enum shader_t type;
	bool frag_face;

	struct ir3_ra_reg_set *set;
	struct ra_graph *g;
	unsigned alloc_count;
	unsigned class_alloc_count[total_class_count];
	unsigned class_base[total_class_count];
	unsigned instr_cnt;
	unsigned *def, *use;     /* def/use table */
	struct ir3_ra_instr_data *instrd;
};

static bool
is_half(struct ir3_instruction *instr)
{
	return !!(instr->regs[0]->flags & IR3_REG_HALF);
}

static int
size_to_class(unsigned sz, bool half)
{
	if (half) {
		for (unsigned i = 0; i < half_class_count; i++)
			if (half_class_sizes[i] >= sz)
				return i + class_count;
	} else {
		for (unsigned i = 0; i < class_count; i++)
			if (class_sizes[i] >= sz)
				return i;
	}
	debug_assert(0);
	return -1;
}

static bool
is_temp(struct ir3_register *reg)
{
	if (reg->flags & (IR3_REG_CONST | IR3_REG_IMMED))
		return false;
	if ((reg->num == regid(REG_A0, 0)) ||
			(reg->num == regid(REG_P0, 0)))
		return false;
	return true;
}

static bool
writes_gpr(struct ir3_instruction *instr)
{
	if (is_store(instr))
		return false;
	/* is dest a normal temp register: */
	return is_temp(instr->regs[0]);
}

static struct ir3_instruction *
get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
		int *sz, int *off)
{
	struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
	struct ir3_instruction *d = NULL;

	if (instr->fanin)
		return get_definer(ctx, instr->fanin, sz, off);

	if (id->defn) {
		*sz = id->sz;
		*off = id->off;
		return id->defn;
	}

	if (is_meta(instr) && (instr->opc == OPC_META_FI)) {
		/* What about the case where collect is subset of array, we
		 * need to find the distance between where actual array starts
		 * and fanin..  that probably doesn't happen currently.
		 */
		struct ir3_register *src;
		int dsz, doff;

		/* note: don't use foreach_ssa_src as this gets called once
		 * while assigning regs (which clears SSA flag)
		 */
		foreach_src_n(src, n, instr) {
			struct ir3_instruction *dd;
			if (!src->instr)
				continue;

			dd = get_definer(ctx, src->instr, &dsz, &doff);

			if ((!d) || (dd->ip < d->ip)) {
				d = dd;
				*sz = dsz;
				*off = doff - n;
			}
		}

	} else if (instr->cp.right || instr->cp.left) {
		/* covers also the meta:fo case, which ends up w/ single
		 * scalar instructions for each component:
		 */
		struct ir3_instruction *f = ir3_neighbor_first(instr);

		/* by definition, the entire sequence forms one linked list
		 * of single scalar register nodes (even if some of them may
		 * be fanouts from a texture sample (for example) instr.  We
		 * just need to walk the list finding the first element of
		 * the group defined (lowest ip)
		 */
		int cnt = 0;

		d = f;
		while (f) {
			if (f->ip < d->ip)
				d = f;
			if (f == instr)
				*off = cnt;
			f = f->cp.right;
			cnt++;
		}

		*sz = cnt;

	} else {
		/* second case is looking directly at the instruction which
		 * produces multiple values (eg, texture sample), rather
		 * than the fanout nodes that point back to that instruction.
		 * This isn't quite right, because it may be part of a larger
		 * group, such as:
		 *
		 *     sam (f32)(xyzw)r0.x, ...
		 *     add r1.x, ...
		 *     add r1.y, ...
		 *     sam (f32)(xyzw)r2.x, r0.w  <-- (r0.w, r1.x, r1.y)
		 *
		 * need to come up with a better way to handle that case.
		 */
		if (instr->address) {
			*sz = instr->regs[0]->size;
		} else {
			*sz = util_last_bit(instr->regs[0]->wrmask);
		}
		*off = 0;
		d = instr;
	}

	if (d->regs[0]->flags & IR3_REG_PHI_SRC) {
		struct ir3_instruction *phi = d->regs[0]->instr;
		struct ir3_instruction *dd;
		int dsz, doff;

		dd = get_definer(ctx, phi, &dsz, &doff);

		*sz = MAX2(*sz, dsz);
		*off = doff;

		if (dd->ip < d->ip) {
			d = dd;
		}
	}

	if (is_meta(d) && (d->opc == OPC_META_PHI)) {
		/* we have already inserted parallel-copies into
		 * the phi, so we don't need to chase definers
		 */
		struct ir3_register *src;
		struct ir3_instruction *dd = d;

		/* note: don't use foreach_ssa_src as this gets called once
		 * while assigning regs (which clears SSA flag)
		 */
		foreach_src(src, d) {
			if (!src->instr)
				continue;
			if (src->instr->ip < dd->ip)
				dd = src->instr;
		}

		d = dd;
	}

	if (is_meta(d) && (d->opc == OPC_META_FO)) {
		struct ir3_instruction *dd;
		int dsz, doff;

		dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);

		/* by definition, should come before: */
		debug_assert(dd->ip < d->ip);

		*sz = MAX2(*sz, dsz);

		/* Fanout's are grouped, so *off should already valid */

		d = dd;
	}

	id->defn = d;
	id->sz = *sz;
	id->off = *off;

	return d;
}

static void
ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
{
	list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
		struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
		if (instr->regs_count == 0)
			continue;
		/* couple special cases: */
		if (writes_addr(instr) || writes_pred(instr)) {
			id->cls = -1;
			continue;
		}
		id->defn = get_definer(ctx, instr, &id->sz, &id->off);
		id->cls = size_to_class(id->sz, is_half(id->defn));
	}
}

/* give each instruction a name (and ip), and count up the # of names
 * of each class
 */
static void
ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
{
	list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
		struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];

#ifdef DEBUG
		instr->name = ~0;
#endif

		ctx->instr_cnt++;

		if (instr->regs_count == 0)
			continue;

		if (!writes_gpr(instr))
			continue;

		if (id->defn != instr)
			continue;

		/* arrays which don't fit in one of the pre-defined class
		 * sizes are pre-colored:
		 *
		 * TODO but we still need to allocate names for them, don't we??
		 */
		if (id->cls >= 0) {
			instr->name = ctx->class_alloc_count[id->cls]++;
			ctx->alloc_count++;
		}
	}
}

static void
ra_init(struct ir3_ra_ctx *ctx)
{
	unsigned n;

	ir3_clear_mark(ctx->ir);
	n = ir3_count_instructions(ctx->ir);

	ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);

	list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
		ra_block_find_definers(ctx, block);
	}

	list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
		ra_block_name_instructions(ctx, block);
	}

	/* figure out the base register name for each class.  The
	 * actual ra name is class_base[cls] + instr->name;
	 */
	ctx->class_base[0] = 0;
	for (unsigned i = 1; i < total_class_count; i++) {
		ctx->class_base[i] = ctx->class_base[i-1] +
				ctx->class_alloc_count[i-1];
	}

	ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
	ralloc_steal(ctx->g, ctx->instrd);
	ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
	ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
}

static unsigned
ra_name(struct ir3_ra_ctx *ctx, int cls, struct ir3_instruction *defn)
{
	unsigned name;
	debug_assert(cls >= 0);
	name = ctx->class_base[cls] + defn->name;
	debug_assert(name < ctx->alloc_count);
	return name;
}

static void
ra_destroy(struct ir3_ra_ctx *ctx)
{
	ralloc_free(ctx->g);
}

static void
ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
{
	struct ir3_ra_block_data *bd;
	unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);

	bd = rzalloc(ctx->g, struct ir3_ra_block_data);

	bd->def     = rzalloc_array(bd, BITSET_WORD, bitset_words);
	bd->use     = rzalloc_array(bd, BITSET_WORD, bitset_words);
	bd->livein  = rzalloc_array(bd, BITSET_WORD, bitset_words);
	bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);

	block->bd = bd;

	list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
		struct ir3_instruction *src;

		if (instr->regs_count == 0)
			continue;

		/* There are a couple special cases to deal with here:
		 *
		 * fanout: used to split values from a higher class to a lower
		 *     class, for example split the results of a texture fetch
		 *     into individual scalar values;  We skip over these from
		 *     a 'def' perspective, and for a 'use' we walk the chain
		 *     up to the defining instruction.
		 *
		 * fanin: used to collect values from lower class and assemble
		 *     them together into a higher class, for example arguments
		 *     to texture sample instructions;  We consider these to be
		 *     defined at the earliest fanin source.
		 *
		 * phi: used to merge values from different flow control paths
		 *     to the same reg.  Consider defined at earliest phi src,
		 *     and update all the other phi src's (which may come later
		 *     in the program) as users to extend the var's live range.
		 *
		 * Most of this, other than phi, is completely handled in the
		 * get_definer() helper.
		 *
		 * In either case, we trace the instruction back to the original
		 * definer and consider that as the def/use ip.
		 */

		if (writes_gpr(instr)) {
			struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];

			if (id->defn == instr) {
				/* arrays which don't fit in one of the pre-defined class
				 * sizes are pre-colored:
				 */
				if (id->cls >= 0) {
					unsigned name = ra_name(ctx, id->cls, id->defn);

					ctx->def[name] = id->defn->ip;
					ctx->use[name] = id->defn->ip;

					/* since we are in SSA at this point: */
					debug_assert(!BITSET_TEST(bd->use, name));

					BITSET_SET(bd->def, name);

					if (is_half(id->defn)) {
						ra_set_node_class(ctx->g, name,
								ctx->set->half_classes[id->cls - class_count]);
					} else {
						ra_set_node_class(ctx->g, name,
								ctx->set->classes[id->cls]);
					}

					/* extend the live range for phi srcs, which may come
					 * from the bottom of the loop
					 */
					if (id->defn->regs[0]->flags & IR3_REG_PHI_SRC) {
						struct ir3_instruction *phi = id->defn->regs[0]->instr;
						foreach_ssa_src(src, phi) {
							/* if src is after phi, then we need to extend
							 * the liverange to the end of src's block:
							 */
							if (src->ip > phi->ip) {
								struct ir3_instruction *last =
									list_last_entry(&src->block->instr_list,
										struct ir3_instruction, node);
								ctx->use[name] = MAX2(ctx->use[name], last->ip);
							}
						}
					}
				}
			}
		}

		foreach_ssa_src(src, instr) {
			if (writes_gpr(src)) {
				struct ir3_ra_instr_data *id = &ctx->instrd[src->ip];

				if (id->cls >= 0) {
					unsigned name = ra_name(ctx, id->cls, id->defn);
					ctx->use[name] = MAX2(ctx->use[name], instr->ip);
					if (!BITSET_TEST(bd->def, name))
						BITSET_SET(bd->use, name);
				}
			}
		}
	}
}

static bool
ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
{
	unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
	bool progress = false;

	list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
		struct ir3_ra_block_data *bd = block->bd;

		/* update livein: */
		for (unsigned i = 0; i < bitset_words; i++) {
			BITSET_WORD new_livein =
				(bd->use[i] | (bd->liveout[i] & ~bd->def[i]));

			if (new_livein & ~bd->livein[i]) {
				bd->livein[i] |= new_livein;
				progress = true;
			}
		}

		/* update liveout: */
		for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
			struct ir3_block *succ = block->successors[j];
			struct ir3_ra_block_data *succ_bd;

			if (!succ)
				continue;

			succ_bd = succ->bd;

			for (unsigned i = 0; i < bitset_words; i++) {
				BITSET_WORD new_liveout =
					(succ_bd->livein[i] & ~bd->liveout[i]);

				if (new_liveout) {
					bd->liveout[i] |= new_liveout;
					progress = true;
				}
			}
		}
	}

	return progress;
}

static void
ra_add_interference(struct ir3_ra_ctx *ctx)
{
	struct ir3 *ir = ctx->ir;

	/* compute live ranges (use/def) on a block level, also updating
	 * block's def/use bitmasks (used below to calculate per-block
	 * livein/liveout):
	 */
	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
		ra_block_compute_live_ranges(ctx, block);
	}

	/* update per-block livein/liveout: */
	while (ra_compute_livein_liveout(ctx)) {}

	/* extend start/end ranges based on livein/liveout info from cfg: */
	unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
		struct ir3_ra_block_data *bd = block->bd;

		for (unsigned i = 0; i < bitset_words; i++) {
			if (BITSET_TEST(bd->livein, i)) {
				ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
				ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
			}

			if (BITSET_TEST(bd->liveout, i)) {
				ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
				ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
			}
		}
	}

	/* need to fix things up to keep outputs live: */
	for (unsigned i = 0; i < ir->noutputs; i++) {
		struct ir3_instruction *instr = ir->outputs[i];
		struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];

		if (id->cls >= 0) {
			unsigned name = ra_name(ctx, id->cls, id->defn);
			ctx->use[name] = ctx->instr_cnt;
		}
	}

	for (unsigned i = 0; i < ctx->alloc_count; i++) {
		for (unsigned j = 0; j < ctx->alloc_count; j++) {
			if (!((ctx->def[i] >= ctx->use[j]) ||
					(ctx->def[j] >= ctx->use[i]))) {
				ra_add_node_interference(ctx->g, i, j);
			}
		}
	}
}

/* some instructions need fix-up if dst register is half precision: */
static void fixup_half_instr_dst(struct ir3_instruction *instr)
{
	switch (instr->category) {
	case 1: /* move instructions */
		instr->cat1.dst_type = half_type(instr->cat1.dst_type);
		break;
	case 3:
		switch (instr->opc) {
		case OPC_MAD_F32:
			instr->opc = OPC_MAD_F16;
			break;
		case OPC_SEL_B32:
			instr->opc = OPC_SEL_B16;
			break;
		case OPC_SEL_S32:
			instr->opc = OPC_SEL_S16;
			break;
		case OPC_SEL_F32:
			instr->opc = OPC_SEL_F16;
			break;
		case OPC_SAD_S32:
			instr->opc = OPC_SAD_S16;
			break;
		/* instructions may already be fixed up: */
		case OPC_MAD_F16:
		case OPC_SEL_B16:
		case OPC_SEL_S16:
		case OPC_SEL_F16:
		case OPC_SAD_S16:
			break;
		default:
			assert(0);
			break;
		}
		break;
	case 5:
		instr->cat5.type = half_type(instr->cat5.type);
		break;
	}
}
/* some instructions need fix-up if src register is half precision: */
static void fixup_half_instr_src(struct ir3_instruction *instr)
{
	switch (instr->category) {
	case 1: /* move instructions */
		instr->cat1.src_type = half_type(instr->cat1.src_type);
		break;
	}
}

static void
reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
		struct ir3_instruction *instr)
{
	struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];

	if (id->cls >= 0) {
		unsigned name = ra_name(ctx, id->cls, id->defn);
		unsigned r = ra_get_node_reg(ctx->g, name);
		unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;

		if (reg->flags & IR3_REG_RELATIV)
			num += reg->offset;

		reg->num = num;
		reg->flags &= ~(IR3_REG_SSA | IR3_REG_PHI_SRC);

		if (is_half(id->defn))
			reg->flags |= IR3_REG_HALF;
	}
}

static void
ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
{
	list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
		struct ir3_register *reg;

		if (instr->regs_count == 0)
			continue;

		if (writes_gpr(instr)) {
			reg_assign(ctx, instr->regs[0], instr);
			if (instr->regs[0]->flags & IR3_REG_HALF)
				fixup_half_instr_dst(instr);
		}

		foreach_src_n(reg, n, instr) {
			struct ir3_instruction *src = reg->instr;
			if (!src)
				continue;

			reg_assign(ctx, instr->regs[n+1], src);
			if (instr->regs[n+1]->flags & IR3_REG_HALF)
				fixup_half_instr_src(instr);
		}
	}
}

static int
ra_alloc(struct ir3_ra_ctx *ctx)
{
	/* frag shader inputs get pre-assigned, since we have some
	 * constraints/unknowns about setup for some of these regs:
	 */
	if (ctx->type == SHADER_FRAGMENT) {
		struct ir3 *ir = ctx->ir;
		unsigned i = 0, j;
		if (ctx->frag_face && (i < ir->ninputs) && ir->inputs[i]) {
			struct ir3_instruction *instr = ir->inputs[i];
			int cls = size_to_class(1, true);
			unsigned name = ra_name(ctx, cls, instr);
			unsigned reg = ctx->set->gpr_to_ra_reg[cls][0];

			/* if we have frag_face, it gets hr0.x */
			ra_set_node_reg(ctx->g, name, reg);
			i += 4;
		}

		for (j = 0; i < ir->ninputs; i++) {
			struct ir3_instruction *instr = ir->inputs[i];
			if (instr) {
				struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];

				if (id->defn == instr) {
					unsigned name, reg;

					name = ra_name(ctx, id->cls, id->defn);
					reg = ctx->set->gpr_to_ra_reg[id->cls][j];

					ra_set_node_reg(ctx->g, name, reg);
					j += id->sz;
				}
			}
		}
	}

	if (!ra_allocate(ctx->g))
		return -1;

	list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
		ra_block_alloc(ctx, block);
	}

	return 0;
}

int ir3_ra(struct ir3 *ir, enum shader_t type,
		bool frag_coord, bool frag_face)
{
	struct ir3_ra_ctx ctx = {
			.ir = ir,
			.type = type,
			.frag_face = frag_face,
			.set = ir->compiler->set,
	};
	int ret;

	ra_init(&ctx);
	ra_add_interference(&ctx);
	ret = ra_alloc(&ctx);
	ra_destroy(&ctx);

	return ret;
}