summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_linking_helpers.c
blob: 187098cafe941a257197026bc42ca81d022d3597 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir.h"
#include "nir_builder.h"
#include "util/set.h"
#include "util/hash_table.h"

/* This file contains various little helpers for doing simple linking in
 * NIR.  Eventually, we'll probably want a full-blown varying packing
 * implementation in here.  Right now, it just deletes unused things.
 */

/**
 * Returns the bits in the inputs_read, or outputs_written
 * bitfield corresponding to this variable.
 */
static uint64_t
get_variable_io_mask(nir_variable *var, gl_shader_stage stage)
{
   if (var->data.location < 0)
      return 0;

   unsigned location = var->data.patch ?
      var->data.location - VARYING_SLOT_PATCH0 : var->data.location;

   assert(var->data.mode == nir_var_shader_in ||
          var->data.mode == nir_var_shader_out);
   assert(var->data.location >= 0);
   assert(location < 64);

   const struct glsl_type *type = var->type;
   if (nir_is_arrayed_io(var, stage) || var->data.per_view) {
      assert(glsl_type_is_array(type));
      type = glsl_get_array_element(type);
   }

   unsigned slots = glsl_count_attribute_slots(type, false);
   return BITFIELD64_MASK(slots) << location;
}

static bool
is_non_generic_patch_var(nir_variable *var)
{
   return var->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
          var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER ||
          var->data.location == VARYING_SLOT_BOUNDING_BOX0 ||
          var->data.location == VARYING_SLOT_BOUNDING_BOX1;
}

static uint8_t
get_num_components(nir_variable *var)
{
   if (glsl_type_is_struct_or_ifc(glsl_without_array(var->type)))
      return 4;

   return glsl_get_vector_elements(glsl_without_array(var->type));
}

static void
tcs_add_output_reads(nir_shader *shader, uint64_t *read, uint64_t *patches_read)
{
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      nir_foreach_block(block, function->impl) {
         nir_foreach_instr(instr, block) {
            if (instr->type != nir_instr_type_intrinsic)
               continue;

            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
            if (intrin->intrinsic != nir_intrinsic_load_deref)
               continue;

            nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
            if (!nir_deref_mode_is(deref, nir_var_shader_out))
               continue;

            nir_variable *var = nir_deref_instr_get_variable(deref);
            for (unsigned i = 0; i < get_num_components(var); i++) {
               if (var->data.patch) {
                  if (is_non_generic_patch_var(var))
                     continue;

                  patches_read[var->data.location_frac + i] |=
                     get_variable_io_mask(var, shader->info.stage);
               } else {
                  read[var->data.location_frac + i] |=
                     get_variable_io_mask(var, shader->info.stage);
               }
            }
         }
      }
   }
}

/**
 * Helper for removing unused shader I/O variables, by demoting them to global
 * variables (which may then by dead code eliminated).
 *
 * Example usage is:
 *
 * progress = nir_remove_unused_io_vars(producer, nir_var_shader_out,
 *                                      read, patches_read) ||
 *                                      progress;
 *
 * The "used" should be an array of 4 uint64_ts (probably of VARYING_BIT_*)
 * representing each .location_frac used.  Note that for vector variables,
 * only the first channel (.location_frac) is examined for deciding if the
 * variable is used!
 */
bool
nir_remove_unused_io_vars(nir_shader *shader,
                          nir_variable_mode mode,
                          uint64_t *used_by_other_stage,
                          uint64_t *used_by_other_stage_patches)
{
   bool progress = false;
   uint64_t *used;

   assert(mode == nir_var_shader_in || mode == nir_var_shader_out);

   nir_foreach_variable_with_modes_safe(var, shader, mode) {
      if (var->data.patch)
         used = used_by_other_stage_patches;
      else
         used = used_by_other_stage;

      if (var->data.location < VARYING_SLOT_VAR0 && var->data.location >= 0)
         if (shader->info.stage != MESA_SHADER_MESH || var->data.location != VARYING_SLOT_PRIMITIVE_ID)
            continue;

      if (var->data.always_active_io)
         continue;

      if (var->data.explicit_xfb_buffer)
         continue;

      uint64_t other_stage = used[var->data.location_frac];

      if (!(other_stage & get_variable_io_mask(var, shader->info.stage))) {
         /* This one is invalid, make it a global variable instead */
         var->data.location = 0;
         var->data.mode = nir_var_shader_temp;

         progress = true;
      }
   }

   if (progress)
      nir_fixup_deref_modes(shader);

   return progress;
}

bool
nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer)
{
   assert(producer->info.stage != MESA_SHADER_FRAGMENT);
   assert(consumer->info.stage != MESA_SHADER_VERTEX);

   uint64_t read[4] = { 0 }, written[4] = { 0 };
   uint64_t patches_read[4] = { 0 }, patches_written[4] = { 0 };

   nir_foreach_shader_out_variable(var, producer) {
      for (unsigned i = 0; i < get_num_components(var); i++) {
         if (var->data.patch) {
            if (is_non_generic_patch_var(var))
               continue;

            patches_written[var->data.location_frac + i] |=
               get_variable_io_mask(var, producer->info.stage);
         } else {
            written[var->data.location_frac + i] |=
               get_variable_io_mask(var, producer->info.stage);
         }
      }
   }

   nir_foreach_shader_in_variable(var, consumer) {
      for (unsigned i = 0; i < get_num_components(var); i++) {
         if (var->data.patch) {
            if (is_non_generic_patch_var(var))
               continue;

            patches_read[var->data.location_frac + i] |=
               get_variable_io_mask(var, consumer->info.stage);
         } else {
            read[var->data.location_frac + i] |=
               get_variable_io_mask(var, consumer->info.stage);
         }
      }
   }

   /* Each TCS invocation can read data written by other TCS invocations,
    * so even if the outputs are not used by the TES we must also make
    * sure they are not read by the TCS before demoting them to globals.
    */
   if (producer->info.stage == MESA_SHADER_TESS_CTRL)
      tcs_add_output_reads(producer, read, patches_read);

   bool progress = false;
   progress = nir_remove_unused_io_vars(producer, nir_var_shader_out, read,
                                        patches_read);

   progress = nir_remove_unused_io_vars(consumer, nir_var_shader_in, written,
                                        patches_written) || progress;

   return progress;
}

static uint8_t
get_interp_type(nir_variable *var, const struct glsl_type *type,
                bool default_to_smooth_interp)
{
   if (var->data.per_primitive)
      return INTERP_MODE_NONE;
   if (glsl_type_is_integer(type))
      return INTERP_MODE_FLAT;
   else if (var->data.interpolation != INTERP_MODE_NONE)
      return var->data.interpolation;
   else if (default_to_smooth_interp)
      return INTERP_MODE_SMOOTH;
   else
      return INTERP_MODE_NONE;
}

#define INTERPOLATE_LOC_SAMPLE 0
#define INTERPOLATE_LOC_CENTROID 1
#define INTERPOLATE_LOC_CENTER 2

static uint8_t
get_interp_loc(nir_variable *var)
{
   if (var->data.sample)
      return INTERPOLATE_LOC_SAMPLE;
   else if (var->data.centroid)
      return INTERPOLATE_LOC_CENTROID;
   else
      return INTERPOLATE_LOC_CENTER;
}

static bool
is_packing_supported_for_type(const struct glsl_type *type)
{
   /* We ignore complex types such as arrays, matrices, structs and bitsizes
    * other then 32bit. All other vector types should have been split into
    * scalar variables by the lower_io_to_scalar pass. The only exception
    * should be OpenGL xfb varyings.
    * TODO: add support for more complex types?
    */
   return glsl_type_is_scalar(type) && glsl_type_is_32bit(type);
}

struct assigned_comps
{
   uint8_t comps;
   uint8_t interp_type;
   uint8_t interp_loc;
   bool is_32bit;
   bool is_mediump;
   bool is_per_primitive;
};

/* Packing arrays and dual slot varyings is difficult so to avoid complex
 * algorithms this function just assigns them their existing location for now.
 * TODO: allow better packing of complex types.
 */
static void
get_unmoveable_components_masks(nir_shader *shader,
                                nir_variable_mode mode,
                                struct assigned_comps *comps,
                                gl_shader_stage stage,
                                bool default_to_smooth_interp)
{
   nir_foreach_variable_with_modes_safe(var, shader, mode) {
      assert(var->data.location >= 0);

      /* Only remap things that aren't built-ins. */
      if (var->data.location >= VARYING_SLOT_VAR0 &&
          var->data.location - VARYING_SLOT_VAR0 < MAX_VARYINGS_INCL_PATCH) {

         const struct glsl_type *type = var->type;
         if (nir_is_arrayed_io(var, stage) || var->data.per_view) {
            assert(glsl_type_is_array(type));
            type = glsl_get_array_element(type);
         }

         /* If we can pack this varying then don't mark the components as
          * used.
          */
         if (is_packing_supported_for_type(type))
            continue;

         unsigned location = var->data.location - VARYING_SLOT_VAR0;

         unsigned elements =
            glsl_type_is_vector_or_scalar(glsl_without_array(type)) ?
            glsl_get_vector_elements(glsl_without_array(type)) : 4;

         bool dual_slot = glsl_type_is_dual_slot(glsl_without_array(type));
         unsigned slots = glsl_count_attribute_slots(type, false);
         unsigned dmul = glsl_type_is_64bit(glsl_without_array(type)) ? 2 : 1;
         unsigned comps_slot2 = 0;
         for (unsigned i = 0; i < slots; i++) {
            if (dual_slot) {
               if (i & 1) {
                  comps[location + i].comps |= ((1 << comps_slot2) - 1);
               } else {
                  unsigned num_comps = 4 - var->data.location_frac;
                  comps_slot2 = (elements * dmul) - num_comps;

                  /* Assume ARB_enhanced_layouts packing rules for doubles */
                  assert(var->data.location_frac == 0 ||
                         var->data.location_frac == 2);
                  assert(comps_slot2 <= 4);

                  comps[location + i].comps |=
                     ((1 << num_comps) - 1) << var->data.location_frac;
               }
            } else {
               comps[location + i].comps |=
                  ((1 << (elements * dmul)) - 1) << var->data.location_frac;
            }

            comps[location + i].interp_type =
               get_interp_type(var, type, default_to_smooth_interp);
            comps[location + i].interp_loc = get_interp_loc(var);
            comps[location + i].is_32bit =
               glsl_type_is_32bit(glsl_without_array(type));
            comps[location + i].is_mediump =
               var->data.precision == GLSL_PRECISION_MEDIUM ||
               var->data.precision == GLSL_PRECISION_LOW;
            comps[location + i].is_per_primitive = var->data.per_primitive;
         }
      }
   }
}

struct varying_loc
{
   uint8_t component;
   uint32_t location;
};

static void
mark_all_used_slots(nir_variable *var, uint64_t *slots_used,
                    uint64_t slots_used_mask, unsigned num_slots)
{
   unsigned loc_offset = var->data.patch ? VARYING_SLOT_PATCH0 : 0;

   slots_used[var->data.patch ? 1 : 0] |= slots_used_mask &
      BITFIELD64_RANGE(var->data.location - loc_offset, num_slots);
}

static void
mark_used_slot(nir_variable *var, uint64_t *slots_used, unsigned offset)
{
   unsigned loc_offset = var->data.patch ? VARYING_SLOT_PATCH0 : 0;

   slots_used[var->data.patch ? 1 : 0] |=
      BITFIELD64_BIT(var->data.location - loc_offset + offset);
}

static void
remap_slots_and_components(nir_shader *shader, nir_variable_mode mode,
                           struct varying_loc (*remap)[4],
                           uint64_t *slots_used, uint64_t *out_slots_read,
                           uint32_t *p_slots_used, uint32_t *p_out_slots_read)
 {
   const gl_shader_stage stage = shader->info.stage;
   uint64_t out_slots_read_tmp[2] = {0};
   uint64_t slots_used_tmp[2] = {0};

   /* We don't touch builtins so just copy the bitmask */
   slots_used_tmp[0] = *slots_used & BITFIELD64_RANGE(0, VARYING_SLOT_VAR0);

   nir_foreach_variable_with_modes(var, shader, mode) {
      assert(var->data.location >= 0);

      /* Only remap things that aren't built-ins */
      if (var->data.location >= VARYING_SLOT_VAR0 &&
          var->data.location - VARYING_SLOT_VAR0 < MAX_VARYINGS_INCL_PATCH) {

         const struct glsl_type *type = var->type;
         if (nir_is_arrayed_io(var, stage) || var->data.per_view) {
            assert(glsl_type_is_array(type));
            type = glsl_get_array_element(type);
         }

         unsigned num_slots = glsl_count_attribute_slots(type, false);
         bool used_across_stages = false;
         bool outputs_read = false;

         unsigned location = var->data.location - VARYING_SLOT_VAR0;
         struct varying_loc *new_loc = &remap[location][var->data.location_frac];

         unsigned loc_offset = var->data.patch ? VARYING_SLOT_PATCH0 : 0;
         uint64_t used = var->data.patch ? *p_slots_used : *slots_used;
         uint64_t outs_used =
            var->data.patch ? *p_out_slots_read : *out_slots_read;
         uint64_t slots =
            BITFIELD64_RANGE(var->data.location - loc_offset, num_slots);

         if (slots & used)
            used_across_stages = true;

         if (slots & outs_used)
            outputs_read = true;

         if (new_loc->location) {
            var->data.location = new_loc->location;
            var->data.location_frac = new_loc->component;
         }

         if (var->data.always_active_io) {
            /* We can't apply link time optimisations (specifically array
             * splitting) to these so we need to copy the existing mask
             * otherwise we will mess up the mask for things like partially
             * marked arrays.
             */
            if (used_across_stages)
               mark_all_used_slots(var, slots_used_tmp, used, num_slots);

            if (outputs_read) {
               mark_all_used_slots(var, out_slots_read_tmp, outs_used,
                                   num_slots);
            }
         } else {
            for (unsigned i = 0; i < num_slots; i++) {
               if (used_across_stages)
                  mark_used_slot(var, slots_used_tmp, i);

               if (outputs_read)
                  mark_used_slot(var, out_slots_read_tmp, i);
            }
         }
      }
   }

   *slots_used = slots_used_tmp[0];
   *out_slots_read = out_slots_read_tmp[0];
   *p_slots_used = slots_used_tmp[1];
   *p_out_slots_read = out_slots_read_tmp[1];
}

struct varying_component {
   nir_variable *var;
   uint8_t interp_type;
   uint8_t interp_loc;
   bool is_32bit;
   bool is_patch;
   bool is_per_primitive;
   bool is_mediump;
   bool is_intra_stage_only;
   bool initialised;
};

static int
cmp_varying_component(const void *comp1_v, const void *comp2_v)
{
   struct varying_component *comp1 = (struct varying_component *) comp1_v;
   struct varying_component *comp2 = (struct varying_component *) comp2_v;

   /* We want patches to be order at the end of the array */
   if (comp1->is_patch != comp2->is_patch)
      return comp1->is_patch ? 1 : -1;

   /* Sort per-primitive outputs after per-vertex ones to allow
    * better compaction when they are mixed in the shader's source.
    */
   if (comp1->is_per_primitive != comp2->is_per_primitive)
      return comp1->is_per_primitive ? 1 : -1;

   /* We want to try to group together TCS outputs that are only read by other
    * TCS invocations and not consumed by the follow stage.
    */
   if (comp1->is_intra_stage_only != comp2->is_intra_stage_only)
      return comp1->is_intra_stage_only ? 1 : -1;

   /* Group mediump varyings together. */
   if (comp1->is_mediump != comp2->is_mediump)
      return comp1->is_mediump ? 1 : -1;

   /* We can only pack varyings with matching interpolation types so group
    * them together.
    */
   if (comp1->interp_type != comp2->interp_type)
      return comp1->interp_type - comp2->interp_type;

   /* Interpolation loc must match also. */
   if (comp1->interp_loc != comp2->interp_loc)
      return comp1->interp_loc - comp2->interp_loc;

   /* If everything else matches just use the original location to sort */
   const struct nir_variable_data *const data1 = &comp1->var->data;
   const struct nir_variable_data *const data2 = &comp2->var->data;
   if (data1->location != data2->location)
      return data1->location - data2->location;
   return (int)data1->location_frac - (int)data2->location_frac;
}

static void
gather_varying_component_info(nir_shader *producer, nir_shader *consumer,
                              struct varying_component **varying_comp_info,
                              unsigned *varying_comp_info_size,
                              bool default_to_smooth_interp)
{
   unsigned store_varying_info_idx[MAX_VARYINGS_INCL_PATCH][4] = {{0}};
   unsigned num_of_comps_to_pack = 0;

   /* Count the number of varying that can be packed and create a mapping
    * of those varyings to the array we will pass to qsort.
    */
   nir_foreach_shader_out_variable(var, producer) {

      /* Only remap things that aren't builtins. */
      if (var->data.location >= VARYING_SLOT_VAR0 &&
          var->data.location - VARYING_SLOT_VAR0 < MAX_VARYINGS_INCL_PATCH) {

         /* We can't repack xfb varyings. */
         if (var->data.always_active_io)
            continue;

         const struct glsl_type *type = var->type;
         if (nir_is_arrayed_io(var, producer->info.stage) || var->data.per_view) {
            assert(glsl_type_is_array(type));
            type = glsl_get_array_element(type);
         }

         if (!is_packing_supported_for_type(type))
            continue;

         unsigned loc = var->data.location - VARYING_SLOT_VAR0;
         store_varying_info_idx[loc][var->data.location_frac] =
            ++num_of_comps_to_pack;
      }
   }

   *varying_comp_info_size = num_of_comps_to_pack;
   *varying_comp_info = rzalloc_array(NULL, struct varying_component,
                                      num_of_comps_to_pack);

   nir_function_impl *impl = nir_shader_get_entrypoint(consumer);

   /* Walk over the shader and populate the varying component info array */
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         if (intr->intrinsic != nir_intrinsic_load_deref &&
             intr->intrinsic != nir_intrinsic_interp_deref_at_centroid &&
             intr->intrinsic != nir_intrinsic_interp_deref_at_sample &&
             intr->intrinsic != nir_intrinsic_interp_deref_at_offset &&
             intr->intrinsic != nir_intrinsic_interp_deref_at_vertex)
            continue;

         nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
         if (!nir_deref_mode_is(deref, nir_var_shader_in))
            continue;

         /* We only remap things that aren't builtins. */
         nir_variable *in_var = nir_deref_instr_get_variable(deref);
         if (in_var->data.location < VARYING_SLOT_VAR0)
            continue;

         unsigned location = in_var->data.location - VARYING_SLOT_VAR0;
         if (location >= MAX_VARYINGS_INCL_PATCH)
            continue;

         unsigned var_info_idx =
            store_varying_info_idx[location][in_var->data.location_frac];
         if (!var_info_idx)
            continue;

         struct varying_component *vc_info =
            &(*varying_comp_info)[var_info_idx-1];

         if (!vc_info->initialised) {
            const struct glsl_type *type = in_var->type;
            if (nir_is_arrayed_io(in_var, consumer->info.stage) ||
                in_var->data.per_view) {
               assert(glsl_type_is_array(type));
               type = glsl_get_array_element(type);
            }

            vc_info->var = in_var;
            vc_info->interp_type =
               get_interp_type(in_var, type, default_to_smooth_interp);
            vc_info->interp_loc = get_interp_loc(in_var);
            vc_info->is_32bit = glsl_type_is_32bit(type);
            vc_info->is_patch = in_var->data.patch;
            vc_info->is_per_primitive = in_var->data.per_primitive;
            vc_info->is_mediump = !producer->options->linker_ignore_precision &&
               (in_var->data.precision == GLSL_PRECISION_MEDIUM ||
                in_var->data.precision == GLSL_PRECISION_LOW);
            vc_info->is_intra_stage_only = false;
            vc_info->initialised = true;
         }
      }
   }

   /* Walk over the shader and populate the varying component info array
    * for varyings which are read by other TCS instances but are not consumed
    * by the TES.
    */
   if (producer->info.stage == MESA_SHADER_TESS_CTRL) {
      impl = nir_shader_get_entrypoint(producer);

      nir_foreach_block(block, impl) {
         nir_foreach_instr(instr, block) {
            if (instr->type != nir_instr_type_intrinsic)
               continue;

            nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
            if (intr->intrinsic != nir_intrinsic_load_deref)
               continue;

            nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
            if (!nir_deref_mode_is(deref, nir_var_shader_out))
               continue;

            /* We only remap things that aren't builtins. */
            nir_variable *out_var = nir_deref_instr_get_variable(deref);
            if (out_var->data.location < VARYING_SLOT_VAR0)
               continue;

            unsigned location = out_var->data.location - VARYING_SLOT_VAR0;
            if (location >= MAX_VARYINGS_INCL_PATCH)
               continue;

            unsigned var_info_idx =
               store_varying_info_idx[location][out_var->data.location_frac];
            if (!var_info_idx) {
               /* Something went wrong, the shader interfaces didn't match, so
                * abandon packing. This can happen for example when the
                * inputs are scalars but the outputs are struct members.
                */
               *varying_comp_info_size = 0;
               break;
            }

            struct varying_component *vc_info =
               &(*varying_comp_info)[var_info_idx-1];

            if (!vc_info->initialised) {
               const struct glsl_type *type = out_var->type;
               if (nir_is_arrayed_io(out_var, producer->info.stage)) {
                  assert(glsl_type_is_array(type));
                  type = glsl_get_array_element(type);
               }

               vc_info->var = out_var;
               vc_info->interp_type =
                  get_interp_type(out_var, type, default_to_smooth_interp);
               vc_info->interp_loc = get_interp_loc(out_var);
               vc_info->is_32bit = glsl_type_is_32bit(type);
               vc_info->is_patch = out_var->data.patch;
               vc_info->is_per_primitive = out_var->data.per_primitive;
               vc_info->is_mediump = !producer->options->linker_ignore_precision &&
                  (out_var->data.precision == GLSL_PRECISION_MEDIUM ||
                   out_var->data.precision == GLSL_PRECISION_LOW);
               vc_info->is_intra_stage_only = true;
               vc_info->initialised = true;
            }
         }
      }
   }

   for (unsigned i = 0; i < *varying_comp_info_size; i++ ) {
      struct varying_component *vc_info = &(*varying_comp_info)[i];
      if (!vc_info->initialised) {
         /* Something went wrong, the shader interfaces didn't match, so
          * abandon packing. This can happen for example when the outputs are
          * scalars but the inputs are struct members.
          */
         *varying_comp_info_size = 0;
         break;
      }
   }
}

static bool
allow_pack_interp_type(nir_pack_varying_options options, int type)
{
   int sel;

   switch (type) {
   case INTERP_MODE_NONE:
      sel = nir_pack_varying_interp_mode_none;
      break;
   case INTERP_MODE_SMOOTH:
      sel = nir_pack_varying_interp_mode_smooth;
      break;
   case INTERP_MODE_FLAT:
      sel = nir_pack_varying_interp_mode_flat;
      break;
   case INTERP_MODE_NOPERSPECTIVE:
      sel = nir_pack_varying_interp_mode_noperspective;
      break;
   default:
      return false;
   }

   return options & sel;
}

static bool
allow_pack_interp_loc(nir_pack_varying_options options, int loc)
{
   int sel;

   switch (loc) {
   case INTERPOLATE_LOC_SAMPLE:
      sel = nir_pack_varying_interp_loc_sample;
      break;
   case INTERPOLATE_LOC_CENTROID:
      sel = nir_pack_varying_interp_loc_centroid;
      break;
   case INTERPOLATE_LOC_CENTER:
      sel = nir_pack_varying_interp_loc_center;
      break;
   default:
      return false;
   }

   return options & sel;
}

static void
assign_remap_locations(struct varying_loc (*remap)[4],
                       struct assigned_comps *assigned_comps,
                       struct varying_component *info,
                       unsigned *cursor, unsigned *comp,
                       unsigned max_location,
                       nir_pack_varying_options options)
{
   unsigned tmp_cursor = *cursor;
   unsigned tmp_comp = *comp;

   for (; tmp_cursor < max_location; tmp_cursor++) {

      if (assigned_comps[tmp_cursor].comps) {
         /* Don't pack per-primitive and per-vertex varyings together. */
         if (assigned_comps[tmp_cursor].is_per_primitive != info->is_per_primitive) {
            tmp_comp = 0;
            continue;
         }

         /* We can only pack varyings with matching precision. */
         if (assigned_comps[tmp_cursor].is_mediump != info->is_mediump) {
            tmp_comp = 0;
            continue;
         }

         /* We can only pack varyings with matching interpolation type
          * if driver does not support it.
          */
         if (assigned_comps[tmp_cursor].interp_type != info->interp_type &&
             (!allow_pack_interp_type(options, assigned_comps[tmp_cursor].interp_type) ||
              !allow_pack_interp_type(options, info->interp_type))) {
            tmp_comp = 0;
            continue;
         }

         /* We can only pack varyings with matching interpolation location
          * if driver does not support it.
          */
         if (assigned_comps[tmp_cursor].interp_loc != info->interp_loc &&
             (!allow_pack_interp_loc(options, assigned_comps[tmp_cursor].interp_loc) ||
              !allow_pack_interp_loc(options, info->interp_loc))) {
            tmp_comp = 0;
            continue;
         }

         /* We can only pack varyings with matching types, and the current
          * algorithm only supports packing 32-bit.
          */
         if (!assigned_comps[tmp_cursor].is_32bit) {
            tmp_comp = 0;
            continue;
         }

         while (tmp_comp < 4 &&
                (assigned_comps[tmp_cursor].comps & (1 << tmp_comp))) {
            tmp_comp++;
         }
      }

      if (tmp_comp == 4) {
         tmp_comp = 0;
         continue;
      }

      unsigned location = info->var->data.location - VARYING_SLOT_VAR0;

      /* Once we have assigned a location mark it as used */
      assigned_comps[tmp_cursor].comps |= (1 << tmp_comp);
      assigned_comps[tmp_cursor].interp_type = info->interp_type;
      assigned_comps[tmp_cursor].interp_loc = info->interp_loc;
      assigned_comps[tmp_cursor].is_32bit = info->is_32bit;
      assigned_comps[tmp_cursor].is_mediump = info->is_mediump;
      assigned_comps[tmp_cursor].is_per_primitive = info->is_per_primitive;

      /* Assign remap location */
      remap[location][info->var->data.location_frac].component = tmp_comp++;
      remap[location][info->var->data.location_frac].location =
         tmp_cursor + VARYING_SLOT_VAR0;

      break;
   }

   *cursor = tmp_cursor;
   *comp = tmp_comp;
}

/* If there are empty components in the slot compact the remaining components
 * as close to component 0 as possible. This will make it easier to fill the
 * empty components with components from a different slot in a following pass.
 */
static void
compact_components(nir_shader *producer, nir_shader *consumer,
                   struct assigned_comps *assigned_comps,
                   bool default_to_smooth_interp)
{
   struct varying_loc remap[MAX_VARYINGS_INCL_PATCH][4] = {{{0}, {0}}};
   struct varying_component *varying_comp_info;
   unsigned varying_comp_info_size;

   /* Gather varying component info */
   gather_varying_component_info(producer, consumer, &varying_comp_info,
                                 &varying_comp_info_size,
                                 default_to_smooth_interp);

   /* Sort varying components. */
   qsort(varying_comp_info, varying_comp_info_size,
         sizeof(struct varying_component), cmp_varying_component);

   nir_pack_varying_options options = consumer->options->pack_varying_options;

   unsigned cursor = 0;
   unsigned comp = 0;

   /* Set the remap array based on the sorted components */
   for (unsigned i = 0; i < varying_comp_info_size; i++ ) {
      struct varying_component *info = &varying_comp_info[i];

      assert(info->is_patch || cursor < MAX_VARYING);
      if (info->is_patch) {
         /* The list should be sorted with all non-patch inputs first followed
          * by patch inputs.  When we hit our first patch input, we need to
          * reset the cursor to MAX_VARYING so we put them in the right slot.
          */
         if (cursor < MAX_VARYING) {
            cursor = MAX_VARYING;
            comp = 0;
         }

         assign_remap_locations(remap, assigned_comps, info,
                                &cursor, &comp, MAX_VARYINGS_INCL_PATCH,
                                options);
      } else {
         assign_remap_locations(remap, assigned_comps, info,
                                &cursor, &comp, MAX_VARYING,
                                options);

         /* Check if we failed to assign a remap location. This can happen if
          * for example there are a bunch of unmovable components with
          * mismatching interpolation types causing us to skip over locations
          * that would have been useful for packing later components.
          * The solution is to iterate over the locations again (this should
          * happen very rarely in practice).
          */
         if (cursor == MAX_VARYING) {
            cursor = 0;
            comp = 0;
            assign_remap_locations(remap, assigned_comps, info,
                                   &cursor, &comp, MAX_VARYING,
                                   options);
         }
      }
   }

   ralloc_free(varying_comp_info);

   uint64_t zero = 0;
   uint32_t zero32 = 0;
   remap_slots_and_components(consumer, nir_var_shader_in, remap,
                              &consumer->info.inputs_read, &zero,
                              &consumer->info.patch_inputs_read, &zero32);
   remap_slots_and_components(producer, nir_var_shader_out, remap,
                              &producer->info.outputs_written,
                              &producer->info.outputs_read,
                              &producer->info.patch_outputs_written,
                              &producer->info.patch_outputs_read);
}

/* We assume that this has been called more-or-less directly after
 * remove_unused_varyings.  At this point, all of the varyings that we
 * aren't going to be using have been completely removed and the
 * inputs_read and outputs_written fields in nir_shader_info reflect
 * this.  Therefore, the total set of valid slots is the OR of the two
 * sets of varyings;  this accounts for varyings which one side may need
 * to read/write even if the other doesn't.  This can happen if, for
 * instance, an array is used indirectly from one side causing it to be
 * unsplittable but directly from the other.
 */
void
nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
                     bool default_to_smooth_interp)
{
   assert(producer->info.stage != MESA_SHADER_FRAGMENT);
   assert(consumer->info.stage != MESA_SHADER_VERTEX);

   struct assigned_comps assigned_comps[MAX_VARYINGS_INCL_PATCH] = {{0}};

   get_unmoveable_components_masks(producer, nir_var_shader_out,
                                   assigned_comps,
                                   producer->info.stage,
                                   default_to_smooth_interp);
   get_unmoveable_components_masks(consumer, nir_var_shader_in,
                                   assigned_comps,
                                   consumer->info.stage,
                                   default_to_smooth_interp);

   compact_components(producer, consumer, assigned_comps,
                      default_to_smooth_interp);
}

/*
 * Mark XFB varyings as always_active_io in the consumer so the linking opts
 * don't touch them.
 */
void
nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer)
{
   nir_variable *input_vars[MAX_VARYING] = { 0 };

   nir_foreach_shader_in_variable(var, consumer) {
      if (var->data.location >= VARYING_SLOT_VAR0 &&
          var->data.location - VARYING_SLOT_VAR0 < MAX_VARYING) {

         unsigned location = var->data.location - VARYING_SLOT_VAR0;
         input_vars[location] = var;
      }
   }

   nir_foreach_shader_out_variable(var, producer) {
      if (var->data.location >= VARYING_SLOT_VAR0 &&
          var->data.location - VARYING_SLOT_VAR0 < MAX_VARYING) {

         if (!var->data.always_active_io)
            continue;

         unsigned location = var->data.location - VARYING_SLOT_VAR0;
         if (input_vars[location]) {
            input_vars[location]->data.always_active_io = true;
         }
      }
   }
}

static bool
does_varying_match(nir_variable *out_var, nir_variable *in_var)
{
   return in_var->data.location == out_var->data.location &&
          in_var->data.location_frac == out_var->data.location_frac;
}

static nir_variable *
get_matching_input_var(nir_shader *consumer, nir_variable *out_var)
{
   nir_foreach_shader_in_variable(var, consumer) {
      if (does_varying_match(out_var, var))
         return var;
   }

   return NULL;
}

static bool
can_replace_varying(nir_variable *out_var)
{
   /* Skip types that require more complex handling.
    * TODO: add support for these types.
    */
   if (glsl_type_is_array(out_var->type) ||
       glsl_type_is_dual_slot(out_var->type) ||
       glsl_type_is_matrix(out_var->type) ||
       glsl_type_is_struct_or_ifc(out_var->type))
      return false;

   /* Limit this pass to scalars for now to keep things simple. Most varyings
    * should have been lowered to scalars at this point anyway.
    */
   if (!glsl_type_is_scalar(out_var->type))
      return false;

   if (out_var->data.location < VARYING_SLOT_VAR0 ||
       out_var->data.location - VARYING_SLOT_VAR0 >= MAX_VARYING)
      return false;

   return true;
}

static bool
replace_varying_input_by_constant_load(nir_shader *shader,
                                       nir_intrinsic_instr *store_intr)
{
   nir_function_impl *impl = nir_shader_get_entrypoint(shader);

   nir_builder b;
   nir_builder_init(&b, impl);

   nir_variable *out_var =
      nir_deref_instr_get_variable(nir_src_as_deref(store_intr->src[0]));

   bool progress = false;
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         if (intr->intrinsic != nir_intrinsic_load_deref)
            continue;

         nir_deref_instr *in_deref = nir_src_as_deref(intr->src[0]);
         if (!nir_deref_mode_is(in_deref, nir_var_shader_in))
            continue;

         nir_variable *in_var = nir_deref_instr_get_variable(in_deref);

         if (!does_varying_match(out_var, in_var))
            continue;

         b.cursor = nir_before_instr(instr);

         nir_load_const_instr *out_const =
            nir_instr_as_load_const(store_intr->src[1].ssa->parent_instr);

         /* Add new const to replace the input */
         nir_ssa_def *nconst = nir_build_imm(&b, store_intr->num_components,
                                             intr->dest.ssa.bit_size,
                                             out_const->value);

         nir_ssa_def_rewrite_uses(&intr->dest.ssa, nconst);

         progress = true;
      }
   }

   return progress;
}

static bool
replace_duplicate_input(nir_shader *shader, nir_variable *input_var,
                         nir_intrinsic_instr *dup_store_intr)
{
   assert(input_var);

   nir_function_impl *impl = nir_shader_get_entrypoint(shader);

   nir_builder b;
   nir_builder_init(&b, impl);

   nir_variable *dup_out_var =
      nir_deref_instr_get_variable(nir_src_as_deref(dup_store_intr->src[0]));

   bool progress = false;
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         if (intr->intrinsic != nir_intrinsic_load_deref)
            continue;

         nir_deref_instr *in_deref = nir_src_as_deref(intr->src[0]);
         if (!nir_deref_mode_is(in_deref, nir_var_shader_in))
            continue;

         nir_variable *in_var = nir_deref_instr_get_variable(in_deref);

         if (!does_varying_match(dup_out_var, in_var) ||
             in_var->data.interpolation != input_var->data.interpolation ||
             get_interp_loc(in_var) != get_interp_loc(input_var))
            continue;

         b.cursor = nir_before_instr(instr);

         nir_ssa_def *load = nir_load_var(&b, input_var);
         nir_ssa_def_rewrite_uses(&intr->dest.ssa, load);

         progress = true;
      }
   }

   return progress;
}

static bool
is_direct_uniform_load(nir_ssa_def *def, nir_ssa_scalar *s)
{
   /* def is sure to be scalar as can_replace_varying() filter out vector case. */
   assert(def->num_components == 1);

   /* Uniform load may hide behind some move instruction for converting
    * vector to scalar:
    *
    *     vec1 32 ssa_1 = deref_var &color (uniform vec3)
    *     vec3 32 ssa_2 = intrinsic load_deref (ssa_1) (0)
    *     vec1 32 ssa_3 = mov ssa_2.x
    *     vec1 32 ssa_4 = deref_var &color_out (shader_out float)
    *     intrinsic store_deref (ssa_4, ssa_3) (1, 0)
    */
   *s = nir_ssa_scalar_resolved(def, 0);

   nir_ssa_def *ssa = s->def;
   if (ssa->parent_instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(ssa->parent_instr);
   if (intr->intrinsic != nir_intrinsic_load_deref)
      return false;

   nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
   /* TODO: support nir_var_mem_ubo. */
   if (!nir_deref_mode_is(deref, nir_var_uniform))
      return false;

   /* Does not support indirect uniform load. */
   return !nir_deref_instr_has_indirect(deref);
}

static nir_variable *
get_uniform_var_in_consumer(nir_shader *consumer,
                            nir_variable *var_in_producer)
{
   /* Find if uniform already exists in consumer. */
   nir_variable *new_var = NULL;
   nir_foreach_uniform_variable(v, consumer) {
      if (!strcmp(var_in_producer->name, v->name)) {
         new_var = v;
         break;
      }
   }

   /* Create a variable if not exist. */
   if (!new_var) {
      new_var = nir_variable_clone(var_in_producer, consumer);
      nir_shader_add_variable(consumer, new_var);
   }

   return new_var;
}

static nir_deref_instr *
clone_deref_instr(nir_builder *b, nir_variable *var, nir_deref_instr *deref)
{
   if (deref->deref_type == nir_deref_type_var)
       return nir_build_deref_var(b, var);

   nir_deref_instr *parent_deref = nir_deref_instr_parent(deref);
   nir_deref_instr *parent = clone_deref_instr(b, var, parent_deref);

   /* Build array and struct deref instruction.
    * "deref" instr is sure to be direct (see is_direct_uniform_load()).
    */
   switch (deref->deref_type) {
   case nir_deref_type_array: {
      nir_load_const_instr *index =
         nir_instr_as_load_const(deref->arr.index.ssa->parent_instr);
      return nir_build_deref_array_imm(b, parent, index->value->i64);
   }
   case nir_deref_type_ptr_as_array: {
      nir_load_const_instr *index =
         nir_instr_as_load_const(deref->arr.index.ssa->parent_instr);
      nir_ssa_def *ssa = nir_imm_intN_t(b, index->value->i64,
                                        parent->dest.ssa.bit_size);
      return nir_build_deref_ptr_as_array(b, parent, ssa);
   }
   case nir_deref_type_struct:
      return nir_build_deref_struct(b, parent, deref->strct.index);
   default:
      unreachable("invalid type");
      return NULL;
   }
}

static bool
replace_varying_input_by_uniform_load(nir_shader *shader,
                                      nir_intrinsic_instr *store_intr,
                                      nir_ssa_scalar *scalar)
{
   nir_function_impl *impl = nir_shader_get_entrypoint(shader);

   nir_builder b;
   nir_builder_init(&b, impl);

   nir_variable *out_var =
      nir_deref_instr_get_variable(nir_src_as_deref(store_intr->src[0]));

   nir_intrinsic_instr *load = nir_instr_as_intrinsic(scalar->def->parent_instr);
   nir_deref_instr *deref = nir_src_as_deref(load->src[0]);
   nir_variable *uni_var = nir_deref_instr_get_variable(deref);
   uni_var = get_uniform_var_in_consumer(shader, uni_var);

   bool progress = false;
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         if (intr->intrinsic != nir_intrinsic_load_deref)
            continue;

         nir_deref_instr *in_deref = nir_src_as_deref(intr->src[0]);
         if (!nir_deref_mode_is(in_deref, nir_var_shader_in))
            continue;

         nir_variable *in_var = nir_deref_instr_get_variable(in_deref);

         if (!does_varying_match(out_var, in_var))
            continue;

         b.cursor = nir_before_instr(instr);

         /* Clone instructions start from deref load to variable deref. */
         nir_deref_instr *uni_deref = clone_deref_instr(&b, uni_var, deref);
         nir_ssa_def *uni_def = nir_load_deref(&b, uni_deref);

         /* Add a vector to scalar move if uniform is a vector. */
         if (uni_def->num_components > 1) {
            nir_alu_src src = {0};
            src.src = nir_src_for_ssa(uni_def);
            src.swizzle[0] = scalar->comp;
            uni_def = nir_mov_alu(&b, src, 1);
         }

         /* Replace load input with load uniform. */
         nir_ssa_def_rewrite_uses(&intr->dest.ssa, uni_def);

         progress = true;
      }
   }

   return progress;
}

/* The GLSL ES 3.20 spec says:
 *
 * "The precision of a vertex output does not need to match the precision of
 * the corresponding fragment input. The minimum precision at which vertex
 * outputs are interpolated is the minimum of the vertex output precision and
 * the fragment input precision, with the exception that for highp,
 * implementations do not have to support full IEEE 754 precision." (9.1 "Input
 * Output Matching by Name in Linked Programs")
 *
 * To implement this, when linking shaders we will take the minimum precision
 * qualifier (allowing drivers to interpolate at lower precision). For
 * input/output between non-fragment stages (e.g. VERTEX to GEOMETRY), the spec
 * requires we use the *last* specified precision if there is a conflict.
 *
 * Precisions are ordered as (NONE, HIGH, MEDIUM, LOW). If either precision is
 * NONE, we'll return the other precision, since there is no conflict.
 * Otherwise for fragment interpolation, we'll pick the smallest of (HIGH,
 * MEDIUM, LOW) by picking the maximum of the raw values - note the ordering is
 * "backwards". For non-fragment stages, we'll pick the latter precision to
 * comply with the spec. (Note that the order matters.)
 *
 * For streamout, "Variables declared with lowp or mediump precision are
 * promoted to highp before being written." (12.2 "Transform Feedback", p. 341
 * of OpenGL ES 3.2 specification). So drivers should promote them
 * the transform feedback memory store, but not the output store.
 */

static unsigned
nir_link_precision(unsigned producer, unsigned consumer, bool fs)
{
   if (producer == GLSL_PRECISION_NONE)
      return consumer;
   else if (consumer == GLSL_PRECISION_NONE)
      return producer;
   else
      return fs ? MAX2(producer, consumer) : consumer;
}

void
nir_link_varying_precision(nir_shader *producer, nir_shader *consumer)
{
   bool frag = consumer->info.stage == MESA_SHADER_FRAGMENT;

   nir_foreach_shader_out_variable(producer_var, producer) {
      /* Skip if the slot is not assigned */
      if (producer_var->data.location < 0)
         continue;

      nir_variable *consumer_var = nir_find_variable_with_location(consumer,
            nir_var_shader_in, producer_var->data.location);

      /* Skip if the variable will be eliminated */
      if (!consumer_var)
         continue;

      /* Now we have a pair of variables. Let's pick the smaller precision. */
      unsigned precision_1 = producer_var->data.precision;
      unsigned precision_2 = consumer_var->data.precision;
      unsigned minimum = nir_link_precision(precision_1, precision_2, frag);

      /* Propagate the new precision */
      producer_var->data.precision = consumer_var->data.precision = minimum;
   }
}

bool
nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer)
{
   /* TODO: Add support for more shader stage combinations */
   if (consumer->info.stage != MESA_SHADER_FRAGMENT ||
       (producer->info.stage != MESA_SHADER_VERTEX &&
        producer->info.stage != MESA_SHADER_TESS_EVAL))
      return false;

   bool progress = false;

   nir_function_impl *impl = nir_shader_get_entrypoint(producer);

   struct hash_table *varying_values = _mesa_pointer_hash_table_create(NULL);

   /* If we find a store in the last block of the producer we can be sure this
    * is the only possible value for this output.
    */
   nir_block *last_block = nir_impl_last_block(impl);
   nir_foreach_instr_reverse(instr, last_block) {
      if (instr->type != nir_instr_type_intrinsic)
         continue;

      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);

      if (intr->intrinsic != nir_intrinsic_store_deref)
         continue;

      nir_deref_instr *out_deref = nir_src_as_deref(intr->src[0]);
      if (!nir_deref_mode_is(out_deref, nir_var_shader_out))
         continue;

      nir_variable *out_var = nir_deref_instr_get_variable(out_deref);
      if (!can_replace_varying(out_var))
         continue;

      nir_ssa_def *ssa = intr->src[1].ssa;
      if (ssa->parent_instr->type == nir_instr_type_load_const) {
         progress |= replace_varying_input_by_constant_load(consumer, intr);
         continue;
      }

      nir_ssa_scalar uni_scalar;
      if (is_direct_uniform_load(ssa, &uni_scalar)) {
         if (consumer->options->lower_varying_from_uniform) {
            progress |= replace_varying_input_by_uniform_load(consumer, intr,
                                                              &uni_scalar);
            continue;
         } else {
            nir_variable *in_var = get_matching_input_var(consumer, out_var);
            /* The varying is loaded from same uniform, so no need to do any
             * interpolation. Mark it as flat explicitly.
             */
            if (in_var && in_var->data.interpolation <= INTERP_MODE_NOPERSPECTIVE) {
               in_var->data.interpolation = INTERP_MODE_FLAT;
               out_var->data.interpolation = INTERP_MODE_FLAT;
            }
         }
      }

      struct hash_entry *entry = _mesa_hash_table_search(varying_values, ssa);
      if (entry) {
         progress |= replace_duplicate_input(consumer,
                                             (nir_variable *) entry->data,
                                             intr);
      } else {
         nir_variable *in_var = get_matching_input_var(consumer, out_var);
         if (in_var) {
            _mesa_hash_table_insert(varying_values, ssa, in_var);
         }
      }
   }

   _mesa_hash_table_destroy(varying_values, NULL);

   return progress;
}

/* TODO any better helper somewhere to sort a list? */

static void
insert_sorted(struct exec_list *var_list, nir_variable *new_var)
{
   nir_foreach_variable_in_list(var, var_list) {
      /* Use the `per_primitive` bool to sort per-primitive variables
       * to the end of the list, so they get the last driver locations
       * by nir_assign_io_var_locations.
       *
       * This is done because AMD HW requires that per-primitive outputs
       * are the last params.
       * In the future we can add an option for this, if needed by other HW.
       */
      if (new_var->data.per_primitive < var->data.per_primitive ||
          (new_var->data.per_primitive == var->data.per_primitive &&
           var->data.location > new_var->data.location)) {
         exec_node_insert_node_before(&var->node, &new_var->node);
         return;
      }
   }
   exec_list_push_tail(var_list, &new_var->node);
}

static void
sort_varyings(nir_shader *shader, nir_variable_mode mode,
              struct exec_list *sorted_list)
{
   exec_list_make_empty(sorted_list);
   nir_foreach_variable_with_modes_safe(var, shader, mode) {
      exec_node_remove(&var->node);
      insert_sorted(sorted_list, var);
   }
}

void
nir_assign_io_var_locations(nir_shader *shader, nir_variable_mode mode,
                            unsigned *size, gl_shader_stage stage)
{
   unsigned location = 0;
   unsigned assigned_locations[VARYING_SLOT_TESS_MAX];
   uint64_t processed_locs[2] = {0};

   struct exec_list io_vars;
   sort_varyings(shader, mode, &io_vars);

   int ASSERTED last_loc = 0;
   bool ASSERTED last_per_prim = false;
   bool last_partial = false;
   nir_foreach_variable_in_list(var, &io_vars) {
      const struct glsl_type *type = var->type;
      if (nir_is_arrayed_io(var, stage)) {
         assert(glsl_type_is_array(type));
         type = glsl_get_array_element(type);
      }

      int base;
      if (var->data.mode == nir_var_shader_in && stage == MESA_SHADER_VERTEX)
         base = VERT_ATTRIB_GENERIC0;
      else if (var->data.mode == nir_var_shader_out &&
               stage == MESA_SHADER_FRAGMENT)
         base = FRAG_RESULT_DATA0;
      else
         base = VARYING_SLOT_VAR0;

      unsigned var_size, driver_size;
      if (var->data.compact) {
         /* If we are inside a partial compact,
          * don't allow another compact to be in this slot
          * if it starts at component 0.
          */
         if (last_partial && var->data.location_frac == 0) {
            location++;
         }

         /* compact variables must be arrays of scalars */
         assert(!var->data.per_view);
         assert(glsl_type_is_array(type));
         assert(glsl_type_is_scalar(glsl_get_array_element(type)));
         unsigned start = 4 * location + var->data.location_frac;
         unsigned end = start + glsl_get_length(type);
         var_size = driver_size = end / 4 - location;
         last_partial = end % 4 != 0;
      } else {
         /* Compact variables bypass the normal varying compacting pass,
          * which means they cannot be in the same vec4 slot as a normal
          * variable. If part of the current slot is taken up by a compact
          * variable, we need to go to the next one.
          */
         if (last_partial) {
            location++;
            last_partial = false;
         }

         /* per-view variables have an extra array dimension, which is ignored
          * when counting user-facing slots (var->data.location), but *not*
          * with driver slots (var->data.driver_location). That is, each user
          * slot maps to multiple driver slots.
          */
         driver_size = glsl_count_attribute_slots(type, false);
         if (var->data.per_view) {
            assert(glsl_type_is_array(type));
            var_size =
               glsl_count_attribute_slots(glsl_get_array_element(type), false);
         } else {
            var_size = driver_size;
         }
      }

      /* Builtins don't allow component packing so we only need to worry about
       * user defined varyings sharing the same location.
       */
      bool processed = false;
      if (var->data.location >= base) {
         unsigned glsl_location = var->data.location - base;

         for (unsigned i = 0; i < var_size; i++) {
            if (processed_locs[var->data.index] &
                ((uint64_t)1 << (glsl_location + i)))
               processed = true;
            else
               processed_locs[var->data.index] |=
                  ((uint64_t)1 << (glsl_location + i));
         }
      }

      /* Because component packing allows varyings to share the same location
       * we may have already have processed this location.
       */
      if (processed) {
         /* TODO handle overlapping per-view variables */
         assert(!var->data.per_view);
         unsigned driver_location = assigned_locations[var->data.location];
         var->data.driver_location = driver_location;

         /* An array may be packed such that is crosses multiple other arrays
          * or variables, we need to make sure we have allocated the elements
          * consecutively if the previously proccessed var was shorter than
          * the current array we are processing.
          *
          * NOTE: The code below assumes the var list is ordered in ascending
          * location order, but per-vertex/per-primitive outputs may be
          * grouped separately.
          */
         assert(last_loc <= var->data.location ||
                last_per_prim != var->data.per_primitive);
         last_loc = var->data.location;
         last_per_prim = var->data.per_primitive;
         unsigned last_slot_location = driver_location + var_size;
         if (last_slot_location > location) {
            unsigned num_unallocated_slots = last_slot_location - location;
            unsigned first_unallocated_slot = var_size - num_unallocated_slots;
            for (unsigned i = first_unallocated_slot; i < var_size; i++) {
               assigned_locations[var->data.location + i] = location;
               location++;
            }
         }
         continue;
      }

      for (unsigned i = 0; i < var_size; i++) {
         assigned_locations[var->data.location + i] = location + i;
      }

      var->data.driver_location = location;
      location += driver_size;
   }

   if (last_partial)
      location++;

   exec_list_append(&shader->variables, &io_vars);
   *size = location;
}

static uint64_t
get_linked_variable_location(unsigned location, bool patch)
{
   if (!patch)
      return location;

   /* Reserve locations 0...3 for special patch variables
    * like tess factors and bounding boxes, and the generic patch
    * variables will come after them.
    */
   if (location >= VARYING_SLOT_PATCH0)
      return location - VARYING_SLOT_PATCH0 + 4;
   else if (location >= VARYING_SLOT_TESS_LEVEL_OUTER &&
            location <= VARYING_SLOT_BOUNDING_BOX1)
      return location - VARYING_SLOT_TESS_LEVEL_OUTER;
   else
      unreachable("Unsupported variable in get_linked_variable_location.");
}

static uint64_t
get_linked_variable_io_mask(nir_variable *variable, gl_shader_stage stage)
{
   const struct glsl_type *type = variable->type;

   if (nir_is_arrayed_io(variable, stage)) {
      assert(glsl_type_is_array(type));
      type = glsl_get_array_element(type);
   }

   unsigned slots = glsl_count_attribute_slots(type, false);
   if (variable->data.compact) {
      unsigned component_count = variable->data.location_frac + glsl_get_length(type);
      slots = DIV_ROUND_UP(component_count, 4);
   }

   uint64_t mask = u_bit_consecutive64(0, slots);
   return mask;
}

nir_linked_io_var_info
nir_assign_linked_io_var_locations(nir_shader *producer, nir_shader *consumer)
{
   assert(producer);
   assert(consumer);

   uint64_t producer_output_mask = 0;
   uint64_t producer_patch_output_mask = 0;

   nir_foreach_shader_out_variable(variable, producer) {
      uint64_t mask = get_linked_variable_io_mask(variable, producer->info.stage);
      uint64_t loc = get_linked_variable_location(variable->data.location, variable->data.patch);

      if (variable->data.patch)
         producer_patch_output_mask |= mask << loc;
      else
         producer_output_mask |= mask << loc;
   }

   uint64_t consumer_input_mask = 0;
   uint64_t consumer_patch_input_mask = 0;

   nir_foreach_shader_in_variable(variable, consumer) {
      uint64_t mask = get_linked_variable_io_mask(variable, consumer->info.stage);
      uint64_t loc = get_linked_variable_location(variable->data.location, variable->data.patch);

      if (variable->data.patch)
         consumer_patch_input_mask |= mask << loc;
      else
         consumer_input_mask |= mask << loc;
   }

   uint64_t io_mask = producer_output_mask | consumer_input_mask;
   uint64_t patch_io_mask = producer_patch_output_mask | consumer_patch_input_mask;

   nir_foreach_shader_out_variable(variable, producer) {
      uint64_t loc = get_linked_variable_location(variable->data.location, variable->data.patch);

      if (variable->data.patch)
         variable->data.driver_location = util_bitcount64(patch_io_mask & u_bit_consecutive64(0, loc));
      else
         variable->data.driver_location = util_bitcount64(io_mask & u_bit_consecutive64(0, loc));
   }

   nir_foreach_shader_in_variable(variable, consumer) {
      uint64_t loc = get_linked_variable_location(variable->data.location, variable->data.patch);

      if (variable->data.patch)
         variable->data.driver_location = util_bitcount64(patch_io_mask & u_bit_consecutive64(0, loc));
      else
         variable->data.driver_location = util_bitcount64(io_mask & u_bit_consecutive64(0, loc));
   }

   nir_linked_io_var_info result = {
      .num_linked_io_vars = util_bitcount64(io_mask),
      .num_linked_patch_io_vars = util_bitcount64(patch_io_mask),
   };

   return result;
}