summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_validate.cpp
blob: ef3b4c78cba1a577028e35daacec331719de668a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/*
 * Copyright © 2018 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "aco_ir.h"

#include <array>
#include <map>

#include "util/memstream.h"

namespace aco {

static void aco_log(Program *program, enum radv_compiler_debug_level level,
                    const char *prefix, const char *file, unsigned line,
                    const char *fmt, va_list args)
{
   char *msg;

   msg = ralloc_strdup(NULL, prefix);

   ralloc_asprintf_append(&msg, "    In file %s:%u\n", file, line);
   ralloc_asprintf_append(&msg, "    ");
   ralloc_vasprintf_append(&msg, fmt, args);

   if (program->debug.func)
      program->debug.func(program->debug.private_data, level, msg);

   fprintf(stderr, "%s\n", msg);

   ralloc_free(msg);
}

void _aco_perfwarn(Program *program, const char *file, unsigned line,
                   const char *fmt, ...)
{
   va_list args;

   va_start(args, fmt);
   aco_log(program, RADV_COMPILER_DEBUG_LEVEL_PERFWARN,
           "ACO PERFWARN:\n", file, line, fmt, args);
   va_end(args);
}

void _aco_err(Program *program, const char *file, unsigned line,
              const char *fmt, ...)
{
   va_list args;

   va_start(args, fmt);
   aco_log(program, RADV_COMPILER_DEBUG_LEVEL_ERROR,
           "ACO ERROR:\n", file, line, fmt, args);
   va_end(args);
}

bool validate_ir(Program* program)
{
   bool is_valid = true;
   auto check = [&program, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
      if (!check) {
         char *out;
         size_t outsize;
         struct u_memstream mem;
         u_memstream_open(&mem, &out, &outsize);
         FILE *const memf = u_memstream_get(&mem);

         fprintf(memf, "%s: ", msg);
         aco_print_instr(instr, memf);
         u_memstream_close(&mem);

         aco_err(program, out);
         free(out);

         is_valid = false;
      }
   };

   auto check_block = [&program, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
      if (!check) {
         aco_err(program, "%s: BB%u", msg, block->index);
         is_valid = false;
      }
   };

   for (Block& block : program->blocks) {
      for (aco_ptr<Instruction>& instr : block.instructions) {

         /* check base format */
         Format base_format = instr->format;
         base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
         base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
         if ((uint32_t)base_format & (uint32_t)Format::VOP1)
            base_format = Format::VOP1;
         else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
            base_format = Format::VOP2;
         else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
            base_format = Format::VOPC;
         else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) {
            if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
                instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
                instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
                instr->opcode == aco_opcode::v_interp_p2_f16) {
               /* v_interp_*_fp16 are considered VINTRP by the compiler but
                * they are emitted as VOP3.
                */
               base_format = Format::VOP3;
            } else {
               base_format = Format::VINTRP;
            }
         }
         check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());

         /* check VOP3 modifiers */
         if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
            check(base_format == Format::VOP2 ||
                  base_format == Format::VOP1 ||
                  base_format == Format::VOPC ||
                  base_format == Format::VINTRP,
                  "Format cannot have VOP3A/VOP3B applied", instr.get());
         }

         /* check SDWA */
         if (instr->isSDWA()) {
            check(base_format == Format::VOP2 ||
                  base_format == Format::VOP1 ||
                  base_format == Format::VOPC,
                  "Format cannot have SDWA applied", instr.get());

            check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get());

            SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
            check(sdwa->omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get());
            if (base_format == Format::VOPC) {
               check(sdwa->clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get());
               check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) ||
                     program->chip_class >= GFX9,
                     "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get());
            }

            if (instr->operands.size() >= 3) {
               check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc,
                     "3rd operand must be fixed to vcc with SDWA", instr.get());
            }
            if (instr->definitions.size() >= 2) {
               check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc,
                     "2nd definition must be fixed to vcc with SDWA", instr.get());
            }

            check(instr->opcode != aco_opcode::v_madmk_f32 &&
                  instr->opcode != aco_opcode::v_madak_f32 &&
                  instr->opcode != aco_opcode::v_madmk_f16 &&
                  instr->opcode != aco_opcode::v_madak_f16 &&
                  instr->opcode != aco_opcode::v_readfirstlane_b32 &&
                  instr->opcode != aco_opcode::v_clrexcp &&
                  instr->opcode != aco_opcode::v_swap_b32,
                  "SDWA can't be used with this opcode", instr.get());
            if (program->chip_class != GFX8) {
               check(instr->opcode != aco_opcode::v_mac_f32 &&
                     instr->opcode != aco_opcode::v_mac_f16 &&
                     instr->opcode != aco_opcode::v_fmac_f32 &&
                     instr->opcode != aco_opcode::v_fmac_f16,
                     "SDWA can't be used with this opcode", instr.get());
            }

            for (unsigned i = 0; i < MIN2(instr->operands.size(), 2); i++) {
               if (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword())
                  check((sdwa->sel[i] & sdwa_asuint) == (sdwa_isra | instr->operands[i].bytes()), "Unexpected SDWA sel for sub-dword operand", instr.get());
            }
            if (instr->definitions[0].regClass().is_subdword())
               check((sdwa->dst_sel & sdwa_asuint) == (sdwa_isra | instr->definitions[0].bytes()), "Unexpected SDWA sel for sub-dword definition", instr.get());
         }

         /* check opsel */
         if (instr->isVOP3()) {
            VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
            check(vop3->opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get());

            for (unsigned i = 0; i < 3; i++) {
               if (i >= instr->operands.size() ||
                   (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()))
                  check((vop3->opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get());
            }
            if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed())
               check((vop3->opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", instr.get());
         }

         /* check for undefs */
         for (unsigned i = 0; i < instr->operands.size(); i++) {
            if (instr->operands[i].isUndefined()) {
               bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
               bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
                                   instr->format == Format::PSEUDO_REDUCTION ||
                                   instr->opcode == aco_opcode::p_create_vector ||
                                   (flat && i == 1) || (instr->format == Format::MIMG && i == 1) ||
                                   ((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 1);
               check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
            } else {
               check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get());
            }
         }

         /* check subdword definitions */
         for (unsigned i = 0; i < instr->definitions.size(); i++) {
            if (instr->definitions[i].regClass().is_subdword())
               check(instr->format == Format::PSEUDO || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get());
         }

         if (instr->isSALU() || instr->isVALU()) {
            /* check literals */
            Operand literal(s1);
            for (unsigned i = 0; i < instr->operands.size(); i++)
            {
               Operand op = instr->operands[i];
               if (!op.isLiteral())
                  continue;

               check(instr->format == Format::SOP1 ||
                     instr->format == Format::SOP2 ||
                     instr->format == Format::SOPC ||
                     instr->format == Format::VOP1 ||
                     instr->format == Format::VOP2 ||
                     instr->format == Format::VOPC ||
                     (instr->isVOP3() && program->chip_class >= GFX10),
                     "Literal applied on wrong instruction format", instr.get());

               check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get());
               literal = op;
               check(!instr->isVALU() || instr->isVOP3() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
            }

            /* check num sgprs for VALU */
            if (instr->isVALU()) {
               bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
                                 instr->opcode == aco_opcode::v_lshrrev_b64 ||
                                 instr->opcode == aco_opcode::v_ashrrev_i64;
               unsigned const_bus_limit = 1;
               if (program->chip_class >= GFX10 && !is_shift64)
                  const_bus_limit = 2;

               uint32_t scalar_mask = instr->isVOP3() ? 0x7 : 0x5;
               if (instr->isSDWA())
                  scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4;

               if ((int) instr->format & (int) Format::VOPC ||
                   instr->opcode == aco_opcode::v_readfirstlane_b32 ||
                   instr->opcode == aco_opcode::v_readlane_b32 ||
                   instr->opcode == aco_opcode::v_readlane_b32_e64) {
                  check(instr->definitions[0].getTemp().type() == RegType::sgpr,
                        "Wrong Definition type for VALU instruction", instr.get());
               } else {
                  check(instr->definitions[0].getTemp().type() == RegType::vgpr,
                        "Wrong Definition type for VALU instruction", instr.get());
               }

               unsigned num_sgprs = 0;
               unsigned sgpr[] = {0, 0};
               for (unsigned i = 0; i < instr->operands.size(); i++)
               {
                  Operand op = instr->operands[i];
                  if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
                      instr->opcode == aco_opcode::v_readlane_b32 ||
                      instr->opcode == aco_opcode::v_readlane_b32_e64) {
                     check(i != 1 ||
                           (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
                           op.isConstant(),
                           "Must be a SGPR or a constant", instr.get());
                     check(i == 1 ||
                           (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
                           "Wrong Operand type for VALU instruction", instr.get());
                     continue;
                  }

                  if (instr->opcode == aco_opcode::v_writelane_b32 ||
                      instr->opcode == aco_opcode::v_writelane_b32_e64) {
                     check(i != 2 ||
                           (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
                           "Wrong Operand type for VALU instruction", instr.get());
                     check(i == 2 ||
                           (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
                           op.isConstant(),
                           "Must be a SGPR or a constant", instr.get());
                     continue;
                  }
                  if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
                     check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get());

                     if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
                        if (num_sgprs < 2)
                           sgpr[num_sgprs++] = op.tempId();
                     }
                  }

                  if (op.isConstant() && !op.isLiteral())
                     check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get());
               }
               check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get());
            }

            if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
               check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
               for (const Operand& op : instr->operands) {
                 check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
                       "Wrong Operand type for SALU instruction", instr.get());
            }
         }
         }

         switch (instr->format) {
         case Format::PSEUDO: {
            if (instr->opcode == aco_opcode::p_parallelcopy) {
               for (unsigned i = 0; i < instr->operands.size(); i++) {
                  if (!instr->definitions[i].regClass().is_subdword())
                     continue;
                  Operand op = instr->operands[i];
                  check(!op.isLiteral(), "Sub-dword copies cannot take literals", instr.get());
                  if (op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr))
                     check(program->chip_class >= GFX9, "Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
               }
            } else {
               bool is_subdword = false;
               bool has_const_sgpr = false;
               bool has_literal = false;
               for (Definition def : instr->definitions)
                  is_subdword |= def.regClass().is_subdword();
               for (unsigned i = 0; i < instr->operands.size(); i++) {
                  if (instr->opcode == aco_opcode::p_extract_vector && i == 1)
                     continue;
                  Operand op = instr->operands[i];
                  is_subdword |= op.hasRegClass() && op.regClass().is_subdword();
                  has_const_sgpr |= op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr);
                  has_literal |= op.isLiteral();
               }

               check(!is_subdword || !has_const_sgpr || program->chip_class >= GFX9,
                     "Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
            }

            if (instr->opcode == aco_opcode::p_create_vector) {
               unsigned size = 0;
               for (const Operand& op : instr->operands) {
                  size += op.bytes();
               }
               check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get());
               if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
                  for (const Operand& op : instr->operands) {
                     check(op.isConstant() || op.regClass().type() == RegType::sgpr,
                           "Wrong Operand type for scalar vector", instr.get());
                  }
               }
            } else if (instr->opcode == aco_opcode::p_extract_vector) {
               check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
               check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get());
               check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
                     "Cannot extract SGPR value from VGPR vector", instr.get());
            } else if (instr->opcode == aco_opcode::p_split_vector) {
               check(instr->operands[0].isTemp(), "Operand must be a temporary", instr.get());
               unsigned size = 0;
               for (const Definition& def : instr->definitions) {
                  size += def.bytes();
               }
               check(size == instr->operands[0].bytes(), "Operand size does not match definition sizes", instr.get());
               if (instr->operands[0].getTemp().type() == RegType::vgpr) {
                  for (const Definition& def : instr->definitions)
                     check(def.regClass().type() == RegType::vgpr, "Wrong Definition type for VGPR split_vector", instr.get());
               }
            } else if (instr->opcode == aco_opcode::p_parallelcopy) {
               check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
               for (unsigned i = 0; i < instr->operands.size(); i++) {
                  if (instr->operands[i].isTemp())
                     check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
                           (instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
                           "Operand and Definition types do not match", instr.get());
               }
            } else if (instr->opcode == aco_opcode::p_phi) {
               check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
               check(instr->definitions[0].getTemp().type() == RegType::vgpr, "Logical Phi Definition must be vgpr", instr.get());
            } else if (instr->opcode == aco_opcode::p_linear_phi) {
               for (const Operand& op : instr->operands)
                  check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
               check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
            }
            break;
         }
         case Format::SMEM: {
            if (instr->operands.size() >= 1)
               check((instr->operands[0].isFixed() && !instr->operands[0].isConstant()) ||
                     (instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr), "SMEM operands must be sgpr", instr.get());
            if (instr->operands.size() >= 2)
               check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
                     "SMEM offset must be constant or sgpr", instr.get());
            if (!instr->definitions.empty())
               check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
            break;
         }
         case Format::MTBUF:
         case Format::MUBUF: {
            check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
            check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr,
                  "VADDR must be in vgpr for VMEM instructions", instr.get());
            check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
            check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
            break;
         }
         case Format::MIMG: {
            check(instr->operands.size() == 3, "MIMG instructions must have exactly 3 operands", instr.get());
            check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8),
                  "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get());
            if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr)
               check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get());
            else if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr)
               check((instr->definitions.empty() || instr->definitions[0].regClass() == instr->operands[1].regClass() ||
                     instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap),
                     "MIMG operands[1] (VDATA) must be the same as definitions[0] for atomics", instr.get());
            check(instr->operands[2].hasRegClass() && instr->operands[2].regClass().type() == RegType::vgpr,
                  "MIMG operands[2] (VADDR) must be VGPR", instr.get());
            check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr),
                  "MIMG definitions[0] (VDATA) must be VGPR", instr.get());
            break;
         }
         case Format::DS: {
            for (const Operand& op : instr->operands) {
               check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
                     "Only VGPRs are valid DS instruction operands", instr.get());
            }
            if (!instr->definitions.empty())
               check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
            break;
         }
         case Format::EXP: {
            for (unsigned i = 0; i < 4; i++)
               check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
                     "Only VGPRs are valid Export arguments", instr.get());
            break;
         }
         case Format::FLAT:
            check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
            /* fallthrough */
         case Format::GLOBAL:
         case Format::SCRATCH: {
            check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
            check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
                  "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
            if (!instr->definitions.empty())
               check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
            else
               check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
            break;
         }
         default:
            break;
         }
      }
   }

   /* validate CFG */
   for (unsigned i = 0; i < program->blocks.size(); i++) {
      Block& block = program->blocks[i];
      check_block(block.index == i, "block.index must match actual index", &block);

      /* predecessors/successors should be sorted */
      for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
         check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
      for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
         check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
      for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
         check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
      for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
         check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);

      /* critical edges are not allowed */
      if (block.linear_preds.size() > 1) {
         for (unsigned pred : block.linear_preds)
            check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
         for (unsigned pred : block.logical_preds)
            check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
      }
   }

   return is_valid;
}

/* RA validation */
namespace {

struct Location {
   Location() : block(NULL), instr(NULL) {}

   Block *block;
   Instruction *instr; //NULL if it's the block's live-in
};

struct Assignment {
   Location defloc;
   Location firstloc;
   PhysReg reg;
};

bool ra_fail(Program *program, Location loc, Location loc2, const char *fmt, ...) {
   va_list args;
   va_start(args, fmt);
   char msg[1024];
   vsprintf(msg, fmt, args);
   va_end(args);

   char *out;
   size_t outsize;
   struct u_memstream mem;
   u_memstream_open(&mem, &out, &outsize);
   FILE *const memf = u_memstream_get(&mem);

   fprintf(memf, "RA error found at instruction in BB%d:\n", loc.block->index);
   if (loc.instr) {
      aco_print_instr(loc.instr, memf);
      fprintf(memf, "\n%s", msg);
   } else {
      fprintf(memf, "%s", msg);
   }
   if (loc2.block) {
      fprintf(memf, " in BB%d:\n", loc2.block->index);
      aco_print_instr(loc2.instr, memf);
   }
   fprintf(memf, "\n\n");
   u_memstream_close(&mem);

   aco_err(program, out);
   free(out);

   return true;
}

bool validate_subdword_operand(chip_class chip, const aco_ptr<Instruction>& instr, unsigned index)
{
   Operand op = instr->operands[index];
   unsigned byte = op.physReg().byte();

   if (instr->opcode == aco_opcode::p_as_uniform)
      return byte == 0;
   if (instr->format == Format::PSEUDO && chip >= GFX8)
      return true;
   if (instr->isSDWA() && (static_cast<SDWA_instruction *>(instr.get())->sel[index] & sdwa_asuint) == (sdwa_isra | op.bytes()))
      return true;
   if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1))
      return true;

   switch (instr->opcode) {
   case aco_opcode::v_cvt_f32_ubyte1:
      if (byte == 1)
         return true;
      break;
   case aco_opcode::v_cvt_f32_ubyte2:
      if (byte == 2)
         return true;
      break;
   case aco_opcode::v_cvt_f32_ubyte3:
      if (byte == 3)
         return true;
      break;
   case aco_opcode::ds_write_b8_d16_hi:
   case aco_opcode::ds_write_b16_d16_hi:
      if (byte == 2 && index == 1)
         return true;
      break;
   case aco_opcode::buffer_store_byte_d16_hi:
   case aco_opcode::buffer_store_short_d16_hi:
      if (byte == 2 && index == 3)
         return true;
      break;
   case aco_opcode::flat_store_byte_d16_hi:
   case aco_opcode::flat_store_short_d16_hi:
   case aco_opcode::scratch_store_byte_d16_hi:
   case aco_opcode::scratch_store_short_d16_hi:
   case aco_opcode::global_store_byte_d16_hi:
   case aco_opcode::global_store_short_d16_hi:
      if (byte == 2 && index == 2)
         return true;
   default:
      break;
   }

   return byte == 0;
}

bool validate_subdword_definition(chip_class chip, const aco_ptr<Instruction>& instr)
{
   Definition def = instr->definitions[0];
   unsigned byte = def.physReg().byte();

   if (instr->format == Format::PSEUDO && chip >= GFX8)
      return true;
   if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
      return true;
   if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1))
      return true;

   switch (instr->opcode) {
   case aco_opcode::buffer_load_ubyte_d16_hi:
   case aco_opcode::buffer_load_short_d16_hi:
   case aco_opcode::flat_load_ubyte_d16_hi:
   case aco_opcode::flat_load_short_d16_hi:
   case aco_opcode::scratch_load_ubyte_d16_hi:
   case aco_opcode::scratch_load_short_d16_hi:
   case aco_opcode::global_load_ubyte_d16_hi:
   case aco_opcode::global_load_short_d16_hi:
   case aco_opcode::ds_read_u8_d16_hi:
   case aco_opcode::ds_read_u16_d16_hi:
      return byte == 2;
   default:
      break;
   }

   return byte == 0;
}

unsigned get_subdword_bytes_written(Program *program, const aco_ptr<Instruction>& instr, unsigned index)
{
   chip_class chip = program->chip_class;
   Definition def = instr->definitions[index];

   if (instr->format == Format::PSEUDO)
      return chip >= GFX8 ? def.bytes() : def.size() * 4u;
   if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
      return def.bytes();

   switch (instr->opcode) {
   case aco_opcode::buffer_load_ubyte_d16:
   case aco_opcode::buffer_load_short_d16:
   case aco_opcode::flat_load_ubyte_d16:
   case aco_opcode::flat_load_short_d16:
   case aco_opcode::scratch_load_ubyte_d16:
   case aco_opcode::scratch_load_short_d16:
   case aco_opcode::global_load_ubyte_d16:
   case aco_opcode::global_load_short_d16:
   case aco_opcode::ds_read_u8_d16:
   case aco_opcode::ds_read_u16_d16:
   case aco_opcode::buffer_load_ubyte_d16_hi:
   case aco_opcode::buffer_load_short_d16_hi:
   case aco_opcode::flat_load_ubyte_d16_hi:
   case aco_opcode::flat_load_short_d16_hi:
   case aco_opcode::scratch_load_ubyte_d16_hi:
   case aco_opcode::scratch_load_short_d16_hi:
   case aco_opcode::global_load_ubyte_d16_hi:
   case aco_opcode::global_load_short_d16_hi:
   case aco_opcode::ds_read_u8_d16_hi:
   case aco_opcode::ds_read_u16_d16_hi:
      return program->sram_ecc_enabled ? 4 : 2;
   case aco_opcode::v_mad_f16:
   case aco_opcode::v_mad_u16:
   case aco_opcode::v_mad_i16:
   case aco_opcode::v_fma_f16:
   case aco_opcode::v_div_fixup_f16:
   case aco_opcode::v_interp_p2_f16:
      if (chip >= GFX9)
         return 2;
   default:
      break;
   }

   return MAX2(chip >= GFX10 ? def.bytes() : 4, instr_info.definition_size[(int)instr->opcode] / 8u);
}

} /* end namespace */

bool validate_ra(Program *program) {
   if (!(debug_flags & DEBUG_VALIDATE_RA))
      return false;

   bool err = false;
   aco::live live_vars = aco::live_var_analysis(program);
   std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());

   std::map<unsigned, Assignment> assignments;
   for (Block& block : program->blocks) {
      Location loc;
      loc.block = &block;
      for (aco_ptr<Instruction>& instr : block.instructions) {
         if (instr->opcode == aco_opcode::p_phi) {
            for (unsigned i = 0; i < instr->operands.size(); i++) {
               if (instr->operands[i].isTemp() &&
                   instr->operands[i].getTemp().type() == RegType::sgpr &&
                   instr->operands[i].isFirstKill())
                  phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
            }
         }

         loc.instr = instr.get();
         for (unsigned i = 0; i < instr->operands.size(); i++) {
            Operand& op = instr->operands[i];
            if (!op.isTemp())
               continue;
            if (!op.isFixed())
               err |= ra_fail(program, loc, Location(), "Operand %d is not assigned a register", i);
            if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
               err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
            if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) ||
                (op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
               err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
            if (op.physReg() == vcc && !program->needs_vcc)
               err |= ra_fail(program, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i);
            if (op.regClass().is_subdword() && !validate_subdword_operand(program->chip_class, instr, i))
               err |= ra_fail(program, loc, Location(), "Operand %d not aligned correctly", i);
            if (!assignments[op.tempId()].firstloc.block)
               assignments[op.tempId()].firstloc = loc;
            if (!assignments[op.tempId()].defloc.block)
               assignments[op.tempId()].reg = op.physReg();
         }

         for (unsigned i = 0; i < instr->definitions.size(); i++) {
            Definition& def = instr->definitions[i];
            if (!def.isTemp())
               continue;
            if (!def.isFixed())
               err |= ra_fail(program, loc, Location(), "Definition %d is not assigned a register", i);
            if (assignments[def.tempId()].defloc.block)
               err |= ra_fail(program, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
            if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) ||
                (def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
               err |= ra_fail(program, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
            if (def.physReg() == vcc && !program->needs_vcc)
               err |= ra_fail(program, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i);
            if (def.regClass().is_subdword() && !validate_subdword_definition(program->chip_class, instr))
               err |= ra_fail(program, loc, Location(), "Definition %d not aligned correctly", i);
            if (!assignments[def.tempId()].firstloc.block)
               assignments[def.tempId()].firstloc = loc;
            assignments[def.tempId()].defloc = loc;
            assignments[def.tempId()].reg = def.physReg();
         }
      }
   }

   for (Block& block : program->blocks) {
      Location loc;
      loc.block = &block;

      std::array<unsigned, 2048> regs; /* register file in bytes */
      regs.fill(0);

      std::set<Temp> live;
      for (unsigned id : live_vars.live_out[block.index])
         live.insert(Temp(id, program->temp_rc[id]));
      /* remove killed p_phi sgpr operands */
      for (Temp tmp : phi_sgpr_ops[block.index])
         live.erase(tmp);

      /* check live out */
      for (Temp tmp : live) {
         PhysReg reg = assignments.at(tmp.id()).reg;
         for (unsigned i = 0; i < tmp.bytes(); i++) {
            if (regs[reg.reg_b + i]) {
               err |= ra_fail(program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
            }
            regs[reg.reg_b + i] = tmp.id();
         }
      }
      regs.fill(0);

      for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
         aco_ptr<Instruction>& instr = *it;

         /* check killed p_phi sgpr operands */
         if (instr->opcode == aco_opcode::p_logical_end) {
            for (Temp tmp : phi_sgpr_ops[block.index]) {
               PhysReg reg = assignments.at(tmp.id()).reg;
               for (unsigned i = 0; i < tmp.bytes(); i++) {
                  if (regs[reg.reg_b + i])
                     err |= ra_fail(program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
               }
               live.emplace(tmp);
            }
         }

         for (const Definition& def : instr->definitions) {
            if (!def.isTemp())
               continue;
            live.erase(def.getTemp());
         }

         /* don't count phi operands as live-in, since they are actually
          * killed when they are copied at the predecessor */
         if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
            for (const Operand& op : instr->operands) {
               if (!op.isTemp())
                  continue;
               live.insert(op.getTemp());
            }
         }
      }

      for (Temp tmp : live) {
         PhysReg reg = assignments.at(tmp.id()).reg;
         for (unsigned i = 0; i < tmp.bytes(); i++)
            regs[reg.reg_b + i] = tmp.id();
      }

      for (aco_ptr<Instruction>& instr : block.instructions) {
         loc.instr = instr.get();

         /* remove killed p_phi operands from regs */
         if (instr->opcode == aco_opcode::p_logical_end) {
            for (Temp tmp : phi_sgpr_ops[block.index]) {
               PhysReg reg = assignments.at(tmp.id()).reg;
               for (unsigned i = 0; i < tmp.bytes(); i++)
                  regs[reg.reg_b + i] = 0;
            }
         }

         if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
            for (const Operand& op : instr->operands) {
               if (!op.isTemp())
                  continue;
               if (op.isFirstKillBeforeDef()) {
                  for (unsigned j = 0; j < op.getTemp().bytes(); j++)
                     regs[op.physReg().reg_b + j] = 0;
               }
            }
         }

         for (unsigned i = 0; i < instr->definitions.size(); i++) {
            Definition& def = instr->definitions[i];
            if (!def.isTemp())
               continue;
            Temp tmp = def.getTemp();
            PhysReg reg = assignments.at(tmp.id()).reg;
            for (unsigned j = 0; j < tmp.bytes(); j++) {
               if (regs[reg.reg_b + j])
                  err |= ra_fail(program, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]);
               regs[reg.reg_b + j] = tmp.id();
            }
            if (def.regClass().is_subdword() && def.bytes() < 4) {
               unsigned written = get_subdword_bytes_written(program, instr, i);
               /* If written=4, the instruction still might write the upper half. In that case, it's the lower half that isn't preserved */
               for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) {
                  unsigned written_reg = reg.reg() * 4u + j;
                  if (regs[written_reg] && regs[written_reg] != def.tempId())
                     err |= ra_fail(program, loc, assignments.at(regs[written_reg]).defloc, "Assignment of element %d of %%%d overwrites the full register taken by %%%d from instruction", i, tmp.id(), regs[written_reg]);
               }
            }
         }

         for (const Definition& def : instr->definitions) {
            if (!def.isTemp())
               continue;
            if (def.isKill()) {
               for (unsigned j = 0; j < def.getTemp().bytes(); j++)
                  regs[def.physReg().reg_b + j] = 0;
            }
         }

         if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
            for (const Operand& op : instr->operands) {
               if (!op.isTemp())
                  continue;
               if (op.isLateKill() && op.isFirstKill()) {
                  for (unsigned j = 0; j < op.getTemp().bytes(); j++)
                     regs[op.physReg().reg_b + j] = 0;
               }
            }
         }
      }
   }

   return err;
}
}