summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/swr/rasterizer/core/rasterizer_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/drivers/swr/rasterizer/core/rasterizer_impl.h')
-rw-r--r--src/gallium/drivers/swr/rasterizer/core/rasterizer_impl.h1542
1 files changed, 0 insertions, 1542 deletions
diff --git a/src/gallium/drivers/swr/rasterizer/core/rasterizer_impl.h b/src/gallium/drivers/swr/rasterizer/core/rasterizer_impl.h
deleted file mode 100644
index 2153fe653b1..00000000000
--- a/src/gallium/drivers/swr/rasterizer/core/rasterizer_impl.h
+++ /dev/null
@@ -1,1542 +0,0 @@
-/****************************************************************************
- * Copyright (C) 2014-2018 Intel Corporation. All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- *
- * @file rasterizer.cpp
- *
- * @brief Implementation for the rasterizer.
- *
- ******************************************************************************/
-
-#include <vector>
-#include <algorithm>
-
-#include "rasterizer.h"
-#include "rdtsc_core.h"
-#include "backend.h"
-#include "utils.h"
-#include "frontend.h"
-#include "tilemgr.h"
-#include "memory/tilingtraits.h"
-
-extern PFN_WORK_FUNC gRasterizerFuncs[SWR_MULTISAMPLE_TYPE_COUNT][2][2][SWR_INPUT_COVERAGE_COUNT]
- [STATE_VALID_TRI_EDGE_COUNT][2];
-
-template <uint32_t numSamples = 1>
-void GetRenderHotTiles(DRAW_CONTEXT* pDC,
- uint32_t workerId,
- uint32_t macroID,
- uint32_t x,
- uint32_t y,
- RenderOutputBuffers& renderBuffers,
- uint32_t renderTargetArrayIndex);
-template <typename RT>
-void StepRasterTileX(uint32_t colorHotTileMask, RenderOutputBuffers& buffers);
-template <typename RT>
-void StepRasterTileY(uint32_t colorHotTileMask,
- RenderOutputBuffers& buffers,
- RenderOutputBuffers& startBufferRow);
-
-#define MASKTOVEC(i3, i2, i1, i0) \
- { \
- -i0, -i1, -i2, -i3 \
- }
-static const __m256d gMaskToVecpd[] = {
- MASKTOVEC(0, 0, 0, 0),
- MASKTOVEC(0, 0, 0, 1),
- MASKTOVEC(0, 0, 1, 0),
- MASKTOVEC(0, 0, 1, 1),
- MASKTOVEC(0, 1, 0, 0),
- MASKTOVEC(0, 1, 0, 1),
- MASKTOVEC(0, 1, 1, 0),
- MASKTOVEC(0, 1, 1, 1),
- MASKTOVEC(1, 0, 0, 0),
- MASKTOVEC(1, 0, 0, 1),
- MASKTOVEC(1, 0, 1, 0),
- MASKTOVEC(1, 0, 1, 1),
- MASKTOVEC(1, 1, 0, 0),
- MASKTOVEC(1, 1, 0, 1),
- MASKTOVEC(1, 1, 1, 0),
- MASKTOVEC(1, 1, 1, 1),
-};
-
-struct POS
-{
- int32_t x, y;
-};
-
-struct EDGE
-{
- double a, b; // a, b edge coefficients in fix8
- double stepQuadX; // step to adjacent horizontal quad in fix16
- double stepQuadY; // step to adjacent vertical quad in fix16
- double stepRasterTileX; // step to adjacent horizontal raster tile in fix16
- double stepRasterTileY; // step to adjacent vertical raster tile in fix16
-
- __m256d vQuadOffsets; // offsets for 4 samples of a quad
- __m256d vRasterTileOffsets; // offsets for the 4 corners of a raster tile
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief rasterize a raster tile partially covered by the triangle
-/// @param vEdge0-2 - edge equations evaluated at sample pos at each of the 4 corners of a raster
-/// tile
-/// @param vA, vB - A & B coefs for each edge of the triangle (Ax + Bx + C)
-/// @param vStepQuad0-2 - edge equations evaluated at the UL corners of the 2x2 pixel quad.
-/// Used to step between quads when sweeping over the raster tile.
-template <uint32_t NumEdges, typename EdgeMaskT>
-INLINE uint64_t rasterizePartialTile(DRAW_CONTEXT* pDC,
- double startEdges[NumEdges],
- EDGE* pRastEdges)
-{
- uint64_t coverageMask = 0;
-
- __m256d vEdges[NumEdges];
- __m256d vStepX[NumEdges];
- __m256d vStepY[NumEdges];
-
- for (uint32_t e = 0; e < NumEdges; ++e)
- {
- // Step to the pixel sample locations of the 1st quad
- vEdges[e] = _mm256_add_pd(_mm256_set1_pd(startEdges[e]), pRastEdges[e].vQuadOffsets);
-
- // compute step to next quad (mul by 2 in x and y direction)
- vStepX[e] = _mm256_set1_pd(pRastEdges[e].stepQuadX);
- vStepY[e] = _mm256_set1_pd(pRastEdges[e].stepQuadY);
- }
-
- // fast unrolled version for 8x8 tile
-#if KNOB_TILE_X_DIM == 8 && KNOB_TILE_Y_DIM == 8
- int edgeMask[NumEdges];
- uint64_t mask;
-
- auto eval_lambda = [&](int e) { edgeMask[e] = _mm256_movemask_pd(vEdges[e]); };
- auto update_lambda = [&](int e) { mask &= edgeMask[e]; };
- auto incx_lambda = [&](int e) { vEdges[e] = _mm256_add_pd(vEdges[e], vStepX[e]); };
- auto incy_lambda = [&](int e) { vEdges[e] = _mm256_add_pd(vEdges[e], vStepY[e]); };
- auto decx_lambda = [&](int e) { vEdges[e] = _mm256_sub_pd(vEdges[e], vStepX[e]); };
-
-// evaluate which pixels in the quad are covered
-#define EVAL UnrollerLMask<0, NumEdges, 1, EdgeMaskT::value>::step(eval_lambda);
-
- // update coverage mask
- // if edge 0 is degenerate and will be skipped; init the mask
-#define UPDATE_MASK(bit) \
- if (std::is_same<EdgeMaskT, E1E2ValidT>::value || \
- std::is_same<EdgeMaskT, NoEdgesValidT>::value) \
- { \
- mask = 0xf; \
- } \
- else \
- { \
- mask = edgeMask[0]; \
- } \
- UnrollerLMask<1, NumEdges, 1, EdgeMaskT::value>::step(update_lambda); \
- coverageMask |= (mask << bit);
-
- // step in the +x direction to the next quad
-#define INCX UnrollerLMask<0, NumEdges, 1, EdgeMaskT::value>::step(incx_lambda);
-
- // step in the +y direction to the next quad
-#define INCY UnrollerLMask<0, NumEdges, 1, EdgeMaskT::value>::step(incy_lambda);
-
- // step in the -x direction to the next quad
-#define DECX UnrollerLMask<0, NumEdges, 1, EdgeMaskT::value>::step(decx_lambda);
-
- // sweep 2x2 quad back and forth through the raster tile,
- // computing coverage masks for the entire tile
-
- // raster tile
- // 0 1 2 3 4 5 6 7
- // x x
- // x x ------------------>
- // x x |
- // <-----------------x x V
- // ..
-
- // row 0
- EVAL;
- UPDATE_MASK(0);
- INCX;
- EVAL;
- UPDATE_MASK(4);
- INCX;
- EVAL;
- UPDATE_MASK(8);
- INCX;
- EVAL;
- UPDATE_MASK(12);
- INCY;
-
- // row 1
- EVAL;
- UPDATE_MASK(28);
- DECX;
- EVAL;
- UPDATE_MASK(24);
- DECX;
- EVAL;
- UPDATE_MASK(20);
- DECX;
- EVAL;
- UPDATE_MASK(16);
- INCY;
-
- // row 2
- EVAL;
- UPDATE_MASK(32);
- INCX;
- EVAL;
- UPDATE_MASK(36);
- INCX;
- EVAL;
- UPDATE_MASK(40);
- INCX;
- EVAL;
- UPDATE_MASK(44);
- INCY;
-
- // row 3
- EVAL;
- UPDATE_MASK(60);
- DECX;
- EVAL;
- UPDATE_MASK(56);
- DECX;
- EVAL;
- UPDATE_MASK(52);
- DECX;
- EVAL;
- UPDATE_MASK(48);
-#else
- uint32_t bit = 0;
- for (uint32_t y = 0; y < KNOB_TILE_Y_DIM / 2; ++y)
- {
- __m256d vStartOfRowEdge[NumEdges];
- for (uint32_t e = 0; e < NumEdges; ++e)
- {
- vStartOfRowEdge[e] = vEdges[e];
- }
-
- for (uint32_t x = 0; x < KNOB_TILE_X_DIM / 2; ++x)
- {
- int edgeMask[NumEdges];
- for (uint32_t e = 0; e < NumEdges; ++e)
- {
- edgeMask[e] = _mm256_movemask_pd(vEdges[e]);
- }
-
- uint64_t mask = edgeMask[0];
- for (uint32_t e = 1; e < NumEdges; ++e)
- {
- mask &= edgeMask[e];
- }
- coverageMask |= (mask << bit);
-
- // step to the next pixel in the x
- for (uint32_t e = 0; e < NumEdges; ++e)
- {
- vEdges[e] = _mm256_add_pd(vEdges[e], vStepX[e]);
- }
- bit += 4;
- }
-
- // step to the next row
- for (uint32_t e = 0; e < NumEdges; ++e)
- {
- vEdges[e] = _mm256_add_pd(vStartOfRowEdge[e], vStepY[e]);
- }
- }
-#endif
- return coverageMask;
-}
-// Top left rule:
-// Top: if an edge is horizontal, and it is above other edges in tri pixel space, it is a 'top' edge
-// Left: if an edge is not horizontal, and it is on the left side of the triangle in pixel space, it
-// is a 'left' edge Top left: a sample is in if it is a top or left edge. Out: !(horizontal &&
-// above) = !horizontal && below Out: !horizontal && left = !(!horizontal && left) = horizontal and
-// right
-INLINE void adjustTopLeftRuleIntFix16(const __m128i vA, const __m128i vB, __m256d& vEdge)
-{
- // if vA < 0, vC--
- // if vA == 0 && vB < 0, vC--
-
- __m256d vEdgeOut = vEdge;
- __m256d vEdgeAdjust = _mm256_sub_pd(vEdge, _mm256_set1_pd(1.0));
-
- // if vA < 0 (line is not horizontal and below)
- int msk = _mm_movemask_ps(_mm_castsi128_ps(vA));
-
- // if vA == 0 && vB < 0 (line is horizontal and we're on the left edge of a tri)
- __m128i vCmp = _mm_cmpeq_epi32(vA, _mm_setzero_si128());
- int msk2 = _mm_movemask_ps(_mm_castsi128_ps(vCmp));
- msk2 &= _mm_movemask_ps(_mm_castsi128_ps(vB));
-
- // if either of these are true and we're on the line (edge == 0), bump it outside the line
- vEdge = _mm256_blendv_pd(vEdgeOut, vEdgeAdjust, gMaskToVecpd[msk | msk2]);
-}
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief calculates difference in precision between the result of manh
-/// calculation and the edge precision, based on compile time trait values
-template <typename RT>
-constexpr int64_t ManhToEdgePrecisionAdjust()
-{
- static_assert(RT::PrecisionT::BitsT::value + RT::ConservativePrecisionT::BitsT::value >=
- RT::EdgePrecisionT::BitsT::value,
- "Inadequate precision of result of manh calculation ");
- return ((RT::PrecisionT::BitsT::value + RT::ConservativePrecisionT::BitsT::value) -
- RT::EdgePrecisionT::BitsT::value);
-}
-
-//////////////////////////////////////////////////////////////////////////
-/// @struct adjustEdgeConservative
-/// @brief Primary template definition used for partially specializing
-/// the adjustEdgeConservative function. This struct should never
-/// be instantiated.
-/// @tparam RT: rasterizer traits
-/// @tparam ConservativeEdgeOffsetT: does the edge need offsetting?
-template <typename RT, typename ConservativeEdgeOffsetT>
-struct adjustEdgeConservative
-{
- //////////////////////////////////////////////////////////////////////////
- /// @brief Performs calculations to adjust each edge of a triangle away
- /// from the pixel center by 1/2 pixel + uncertainty region in both the x and y
- /// direction.
- ///
- /// Uncertainty regions arise from fixed point rounding, which
- /// can snap a vertex +/- by min fixed point value.
- /// Adding 1/2 pixel in x/y bumps the edge equation tests out towards the pixel corners.
- /// This allows the rasterizer to test for coverage only at the pixel center,
- /// instead of having to test individual pixel corners for conservative coverage
- INLINE adjustEdgeConservative(const __m128i& vAi, const __m128i& vBi, __m256d& vEdge)
- {
- // Assumes CCW winding order. Subtracting from the evaluated edge equation moves the edge
- // away from the pixel center (in the direction of the edge normal A/B)
-
- // edge = Ax + Bx + C - (manh/e)
- // manh = manhattan distance = abs(A) + abs(B)
- // e = absolute rounding error from snapping from float to fixed point precision
-
- // 'fixed point' multiply (in double to be avx1 friendly)
- // need doubles to hold result of a fixed multiply: 16.8 * 16.9 = 32.17, for example
- __m256d vAai = _mm256_cvtepi32_pd(_mm_abs_epi32(vAi)),
- vBai = _mm256_cvtepi32_pd(_mm_abs_epi32(vBi));
- __m256d manh =
- _mm256_add_pd(_mm256_mul_pd(vAai, _mm256_set1_pd(ConservativeEdgeOffsetT::value)),
- _mm256_mul_pd(vBai, _mm256_set1_pd(ConservativeEdgeOffsetT::value)));
-
- static_assert(RT::PrecisionT::BitsT::value + RT::ConservativePrecisionT::BitsT::value >=
- RT::EdgePrecisionT::BitsT::value,
- "Inadequate precision of result of manh calculation ");
-
- // rasterizer incoming edge precision is x.16, so we need to get our edge offset into the
- // same precision since we're doing fixed math in double format, multiply by multiples of
- // 1/2 instead of a bit shift right
- manh = _mm256_mul_pd(manh, _mm256_set1_pd(ManhToEdgePrecisionAdjust<RT>() * 0.5));
-
- // move the edge away from the pixel center by the required conservative precision + 1/2
- // pixel this allows the rasterizer to do a single conservative coverage test to see if the
- // primitive intersects the pixel at all
- vEdge = _mm256_sub_pd(vEdge, manh);
- };
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief adjustEdgeConservative specialization where no edge offset is needed
-template <typename RT>
-struct adjustEdgeConservative<RT, std::integral_constant<int32_t, 0>>
-{
- INLINE adjustEdgeConservative(const __m128i& vAi, const __m128i& vBi, __m256d& vEdge){};
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief calculates the distance a degenerate BBox needs to be adjusted
-/// for conservative rast based on compile time trait values
-template <typename RT>
-constexpr int64_t ConservativeScissorOffset()
-{
- static_assert(RT::ConservativePrecisionT::BitsT::value - RT::PrecisionT::BitsT::value >= 0,
- "Rasterizer precision > conservative precision");
- // if we have a degenerate triangle, we need to compensate for adjusting the degenerate BBox
- // when calculating scissor edges
- typedef std::integral_constant<int32_t, (RT::ValidEdgeMaskT::value == ALL_EDGES_VALID) ? 0 : 1>
- DegenerateEdgeOffsetT;
- // 1/2 pixel edge offset + conservative offset - degenerateTriangle
- return RT::ConservativeEdgeOffsetT::value -
- (DegenerateEdgeOffsetT::value
- << (RT::ConservativePrecisionT::BitsT::value - RT::PrecisionT::BitsT::value));
-}
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Performs calculations to adjust each a vector of evaluated edges out
-/// from the pixel center by 1/2 pixel + uncertainty region in both the x and y
-/// direction.
-template <typename RT>
-INLINE void adjustScissorEdge(const double a, const double b, __m256d& vEdge)
-{
- int64_t aabs = std::abs(static_cast<int64_t>(a)), babs = std::abs(static_cast<int64_t>(b));
- int64_t manh =
- ((aabs * ConservativeScissorOffset<RT>()) + (babs * ConservativeScissorOffset<RT>())) >>
- ManhToEdgePrecisionAdjust<RT>();
- vEdge = _mm256_sub_pd(vEdge, _mm256_set1_pd(manh));
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Performs calculations to adjust each a scalar evaluated edge out
-/// from the pixel center by 1/2 pixel + uncertainty region in both the x and y
-/// direction.
-template <typename RT, typename OffsetT>
-INLINE double adjustScalarEdge(const double a, const double b, const double Edge)
-{
- int64_t aabs = std::abs(static_cast<int64_t>(a)), babs = std::abs(static_cast<int64_t>(b));
- int64_t manh =
- ((aabs * OffsetT::value) + (babs * OffsetT::value)) >> ManhToEdgePrecisionAdjust<RT>();
- return (Edge - manh);
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Perform any needed adjustments to evaluated triangle edges
-template <typename RT, typename EdgeOffsetT>
-struct adjustEdgesFix16
-{
- INLINE adjustEdgesFix16(const __m128i& vAi, const __m128i& vBi, __m256d& vEdge)
- {
- static_assert(
- std::is_same<typename RT::EdgePrecisionT, FixedPointTraits<Fixed_X_16>>::value,
- "Edge equation expected to be in x.16 fixed point");
-
- static_assert(RT::IsConservativeT::value,
- "Edge offset assumes conservative rasterization is enabled");
-
- // need to apply any edge offsets before applying the top-left rule
- adjustEdgeConservative<RT, EdgeOffsetT>(vAi, vBi, vEdge);
-
- adjustTopLeftRuleIntFix16(vAi, vBi, vEdge);
- }
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Perform top left adjustments to evaluated triangle edges
-template <typename RT>
-struct adjustEdgesFix16<RT, std::integral_constant<int32_t, 0>>
-{
- INLINE adjustEdgesFix16(const __m128i& vAi, const __m128i& vBi, __m256d& vEdge)
- {
- adjustTopLeftRuleIntFix16(vAi, vBi, vEdge);
- }
-};
-
-// max(abs(dz/dx), abs(dz,dy)
-INLINE float ComputeMaxDepthSlope(const SWR_TRIANGLE_DESC* pDesc)
-{
- /*
- // evaluate i,j at (0,0)
- float i00 = pDesc->I[0] * 0.0f + pDesc->I[1] * 0.0f + pDesc->I[2];
- float j00 = pDesc->J[0] * 0.0f + pDesc->J[1] * 0.0f + pDesc->J[2];
-
- // evaluate i,j at (1,0)
- float i10 = pDesc->I[0] * 1.0f + pDesc->I[1] * 0.0f + pDesc->I[2];
- float j10 = pDesc->J[0] * 1.0f + pDesc->J[1] * 0.0f + pDesc->J[2];
-
- // compute dz/dx
- float d00 = pDesc->Z[0] * i00 + pDesc->Z[1] * j00 + pDesc->Z[2];
- float d10 = pDesc->Z[0] * i10 + pDesc->Z[1] * j10 + pDesc->Z[2];
- float dzdx = abs(d10 - d00);
-
- // evaluate i,j at (0,1)
- float i01 = pDesc->I[0] * 0.0f + pDesc->I[1] * 1.0f + pDesc->I[2];
- float j01 = pDesc->J[0] * 0.0f + pDesc->J[1] * 1.0f + pDesc->J[2];
-
- float d01 = pDesc->Z[0] * i01 + pDesc->Z[1] * j01 + pDesc->Z[2];
- float dzdy = abs(d01 - d00);
- */
-
- // optimized version of above
- float dzdx = fabsf(pDesc->recipDet * (pDesc->Z[0] * pDesc->I[0] + pDesc->Z[1] * pDesc->J[0]));
- float dzdy = fabsf(pDesc->recipDet * (pDesc->Z[0] * pDesc->I[1] + pDesc->Z[1] * pDesc->J[1]));
-
- return std::max(dzdx, dzdy);
-}
-
-INLINE float
-ComputeBiasFactor(const SWR_RASTSTATE* pState, const SWR_TRIANGLE_DESC* pDesc, const float* z)
-{
- if (pState->depthFormat == R24_UNORM_X8_TYPELESS)
- {
- return (1.0f / (1 << 24));
- }
- else if (pState->depthFormat == R16_UNORM)
- {
- return (1.0f / (1 << 16));
- }
- else
- {
- SWR_ASSERT(pState->depthFormat == R32_FLOAT);
-
- // for f32 depth, factor = 2^(exponent(max(abs(z) - 23)
- float zMax = std::max(fabsf(z[0]), std::max(fabsf(z[1]), fabsf(z[2])));
- uint32_t zMaxInt = *(uint32_t*)&zMax;
- zMaxInt &= 0x7f800000;
- zMax = *(float*)&zMaxInt;
-
- return zMax * (1.0f / (1 << 23));
- }
-}
-
-INLINE float
-ComputeDepthBias(const SWR_RASTSTATE* pState, const SWR_TRIANGLE_DESC* pTri, const float* z)
-{
- if (pState->depthBias == 0 && pState->slopeScaledDepthBias == 0)
- {
- return 0.0f;
- }
-
- float scale = pState->slopeScaledDepthBias;
- if (scale != 0.0f)
- {
- scale *= ComputeMaxDepthSlope(pTri);
- }
-
- float bias = pState->depthBias;
- if (!pState->depthBiasPreAdjusted)
- {
- bias *= ComputeBiasFactor(pState, pTri, z);
- }
- bias += scale;
-
- if (pState->depthBiasClamp > 0.0f)
- {
- bias = std::min(bias, pState->depthBiasClamp);
- }
- else if (pState->depthBiasClamp < 0.0f)
- {
- bias = std::max(bias, pState->depthBiasClamp);
- }
-
- return bias;
-}
-
-// Prevent DCE by writing coverage mask from rasterizer to volatile
-#if KNOB_ENABLE_TOSS_POINTS
-__declspec(thread) volatile uint64_t gToss;
-#endif
-
-static const uint32_t vertsPerTri = 3, componentsPerAttrib = 4;
-// try to avoid _chkstk insertions; make this thread local
-static THREAD
-OSALIGNLINE(float) perspAttribsTLS[vertsPerTri * SWR_VTX_NUM_SLOTS * componentsPerAttrib];
-
-INLINE
-void ComputeEdgeData(int32_t a, int32_t b, EDGE& edge)
-{
- edge.a = a;
- edge.b = b;
-
- // compute constant steps to adjacent quads
- edge.stepQuadX = (double)((int64_t)a * (int64_t)(2 * FIXED_POINT_SCALE));
- edge.stepQuadY = (double)((int64_t)b * (int64_t)(2 * FIXED_POINT_SCALE));
-
- // compute constant steps to adjacent raster tiles
- edge.stepRasterTileX = (double)((int64_t)a * (int64_t)(KNOB_TILE_X_DIM * FIXED_POINT_SCALE));
- edge.stepRasterTileY = (double)((int64_t)b * (int64_t)(KNOB_TILE_Y_DIM * FIXED_POINT_SCALE));
-
- // compute quad offsets
- const __m256d vQuadOffsetsXIntFix8 = _mm256_set_pd(FIXED_POINT_SCALE, 0, FIXED_POINT_SCALE, 0);
- const __m256d vQuadOffsetsYIntFix8 = _mm256_set_pd(FIXED_POINT_SCALE, FIXED_POINT_SCALE, 0, 0);
-
- __m256d vQuadStepXFix16 = _mm256_mul_pd(_mm256_set1_pd(edge.a), vQuadOffsetsXIntFix8);
- __m256d vQuadStepYFix16 = _mm256_mul_pd(_mm256_set1_pd(edge.b), vQuadOffsetsYIntFix8);
- edge.vQuadOffsets = _mm256_add_pd(vQuadStepXFix16, vQuadStepYFix16);
-
- // compute raster tile offsets
- const __m256d vTileOffsetsXIntFix8 = _mm256_set_pd(
- (KNOB_TILE_X_DIM - 1) * FIXED_POINT_SCALE, 0, (KNOB_TILE_X_DIM - 1) * FIXED_POINT_SCALE, 0);
- const __m256d vTileOffsetsYIntFix8 = _mm256_set_pd(
- (KNOB_TILE_Y_DIM - 1) * FIXED_POINT_SCALE, (KNOB_TILE_Y_DIM - 1) * FIXED_POINT_SCALE, 0, 0);
-
- __m256d vTileStepXFix16 = _mm256_mul_pd(_mm256_set1_pd(edge.a), vTileOffsetsXIntFix8);
- __m256d vTileStepYFix16 = _mm256_mul_pd(_mm256_set1_pd(edge.b), vTileOffsetsYIntFix8);
- edge.vRasterTileOffsets = _mm256_add_pd(vTileStepXFix16, vTileStepYFix16);
-}
-
-INLINE
-void ComputeEdgeData(const POS& p0, const POS& p1, EDGE& edge)
-{
- ComputeEdgeData(p0.y - p1.y, p1.x - p0.x, edge);
-}
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Primary template definition used for partially specializing
-/// the UpdateEdgeMasks function. Offset evaluated edges from UL pixel
-/// corner to sample position, and test for coverage
-/// @tparam sampleCount: multisample count
-template <typename NumSamplesT>
-INLINE void UpdateEdgeMasks(const __m256d (&vEdgeTileBbox)[3],
- const __m256d* vEdgeFix16,
- int32_t& mask0,
- int32_t& mask1,
- int32_t& mask2)
-{
- __m256d vSampleBboxTest0, vSampleBboxTest1, vSampleBboxTest2;
- // evaluate edge equations at the tile multisample bounding box
- vSampleBboxTest0 = _mm256_add_pd(vEdgeTileBbox[0], vEdgeFix16[0]);
- vSampleBboxTest1 = _mm256_add_pd(vEdgeTileBbox[1], vEdgeFix16[1]);
- vSampleBboxTest2 = _mm256_add_pd(vEdgeTileBbox[2], vEdgeFix16[2]);
- mask0 = _mm256_movemask_pd(vSampleBboxTest0);
- mask1 = _mm256_movemask_pd(vSampleBboxTest1);
- mask2 = _mm256_movemask_pd(vSampleBboxTest2);
-}
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief UpdateEdgeMasks<SingleSampleT> specialization, instantiated
-/// when only rasterizing a single coverage test point
-template <>
-INLINE void UpdateEdgeMasks<SingleSampleT>(
- const __m256d (&)[3], const __m256d* vEdgeFix16, int32_t& mask0, int32_t& mask1, int32_t& mask2)
-{
- mask0 = _mm256_movemask_pd(vEdgeFix16[0]);
- mask1 = _mm256_movemask_pd(vEdgeFix16[1]);
- mask2 = _mm256_movemask_pd(vEdgeFix16[2]);
-}
-
-//////////////////////////////////////////////////////////////////////////
-/// @struct ComputeScissorEdges
-/// @brief Primary template definition. Allows the function to be generically
-/// called. When paired with below specializations, will result in an empty
-/// inlined function if scissor is not enabled
-/// @tparam RasterScissorEdgesT: is scissor enabled?
-/// @tparam IsConservativeT: is conservative rast enabled?
-/// @tparam RT: rasterizer traits
-template <typename RasterScissorEdgesT, typename IsConservativeT, typename RT>
-struct ComputeScissorEdges
-{
- INLINE ComputeScissorEdges(const SWR_RECT& triBBox,
- const SWR_RECT& scissorBBox,
- const int32_t x,
- const int32_t y,
- EDGE (&rastEdges)[RT::NumEdgesT::value],
- __m256d (&vEdgeFix16)[7]){};
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief ComputeScissorEdges<std::true_type, std::true_type, RT> partial
-/// specialization. Instantiated when conservative rast and scissor are enabled
-template <typename RT>
-struct ComputeScissorEdges<std::true_type, std::true_type, RT>
-{
- //////////////////////////////////////////////////////////////////////////
- /// @brief Intersect tri bbox with scissor, compute scissor edge vectors,
- /// evaluate edge equations and offset them away from pixel center.
- INLINE ComputeScissorEdges(const SWR_RECT& triBBox,
- const SWR_RECT& scissorBBox,
- const int32_t x,
- const int32_t y,
- EDGE (&rastEdges)[RT::NumEdgesT::value],
- __m256d (&vEdgeFix16)[7])
- {
- // if conservative rasterizing, triangle bbox intersected with scissor bbox is used
- SWR_RECT scissor;
- scissor.xmin = std::max(triBBox.xmin, scissorBBox.xmin);
- scissor.xmax = std::min(triBBox.xmax, scissorBBox.xmax);
- scissor.ymin = std::max(triBBox.ymin, scissorBBox.ymin);
- scissor.ymax = std::min(triBBox.ymax, scissorBBox.ymax);
-
- POS topLeft{scissor.xmin, scissor.ymin};
- POS bottomLeft{scissor.xmin, scissor.ymax};
- POS topRight{scissor.xmax, scissor.ymin};
- POS bottomRight{scissor.xmax, scissor.ymax};
-
- // construct 4 scissor edges in ccw direction
- ComputeEdgeData(topLeft, bottomLeft, rastEdges[3]);
- ComputeEdgeData(bottomLeft, bottomRight, rastEdges[4]);
- ComputeEdgeData(bottomRight, topRight, rastEdges[5]);
- ComputeEdgeData(topRight, topLeft, rastEdges[6]);
-
- vEdgeFix16[3] = _mm256_set1_pd((rastEdges[3].a * (x - scissor.xmin)) +
- (rastEdges[3].b * (y - scissor.ymin)));
- vEdgeFix16[4] = _mm256_set1_pd((rastEdges[4].a * (x - scissor.xmin)) +
- (rastEdges[4].b * (y - scissor.ymax)));
- vEdgeFix16[5] = _mm256_set1_pd((rastEdges[5].a * (x - scissor.xmax)) +
- (rastEdges[5].b * (y - scissor.ymax)));
- vEdgeFix16[6] = _mm256_set1_pd((rastEdges[6].a * (x - scissor.xmax)) +
- (rastEdges[6].b * (y - scissor.ymin)));
-
- // if conservative rasterizing, need to bump the scissor edges out by the conservative
- // uncertainty distance, else do nothing
- adjustScissorEdge<RT>(rastEdges[3].a, rastEdges[3].b, vEdgeFix16[3]);
- adjustScissorEdge<RT>(rastEdges[4].a, rastEdges[4].b, vEdgeFix16[4]);
- adjustScissorEdge<RT>(rastEdges[5].a, rastEdges[5].b, vEdgeFix16[5]);
- adjustScissorEdge<RT>(rastEdges[6].a, rastEdges[6].b, vEdgeFix16[6]);
-
- // Upper left rule for scissor
- vEdgeFix16[3] = _mm256_sub_pd(vEdgeFix16[3], _mm256_set1_pd(1.0));
- vEdgeFix16[6] = _mm256_sub_pd(vEdgeFix16[6], _mm256_set1_pd(1.0));
- }
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief ComputeScissorEdges<std::true_type, std::false_type, RT> partial
-/// specialization. Instantiated when scissor is enabled and conservative rast
-/// is disabled.
-template <typename RT>
-struct ComputeScissorEdges<std::true_type, std::false_type, RT>
-{
- //////////////////////////////////////////////////////////////////////////
- /// @brief Compute scissor edge vectors and evaluate edge equations
- INLINE ComputeScissorEdges(const SWR_RECT&,
- const SWR_RECT& scissorBBox,
- const int32_t x,
- const int32_t y,
- EDGE (&rastEdges)[RT::NumEdgesT::value],
- __m256d (&vEdgeFix16)[7])
- {
- const SWR_RECT& scissor = scissorBBox;
- POS topLeft{scissor.xmin, scissor.ymin};
- POS bottomLeft{scissor.xmin, scissor.ymax};
- POS topRight{scissor.xmax, scissor.ymin};
- POS bottomRight{scissor.xmax, scissor.ymax};
-
- // construct 4 scissor edges in ccw direction
- ComputeEdgeData(topLeft, bottomLeft, rastEdges[3]);
- ComputeEdgeData(bottomLeft, bottomRight, rastEdges[4]);
- ComputeEdgeData(bottomRight, topRight, rastEdges[5]);
- ComputeEdgeData(topRight, topLeft, rastEdges[6]);
-
- vEdgeFix16[3] = _mm256_set1_pd((rastEdges[3].a * (x - scissor.xmin)) +
- (rastEdges[3].b * (y - scissor.ymin)));
- vEdgeFix16[4] = _mm256_set1_pd((rastEdges[4].a * (x - scissor.xmin)) +
- (rastEdges[4].b * (y - scissor.ymax)));
- vEdgeFix16[5] = _mm256_set1_pd((rastEdges[5].a * (x - scissor.xmax)) +
- (rastEdges[5].b * (y - scissor.ymax)));
- vEdgeFix16[6] = _mm256_set1_pd((rastEdges[6].a * (x - scissor.xmax)) +
- (rastEdges[6].b * (y - scissor.ymin)));
-
- // Upper left rule for scissor
- vEdgeFix16[3] = _mm256_sub_pd(vEdgeFix16[3], _mm256_set1_pd(1.0));
- vEdgeFix16[6] = _mm256_sub_pd(vEdgeFix16[6], _mm256_set1_pd(1.0));
- }
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Primary function template for TrivialRejectTest. Should
-/// never be called, but TemplateUnroller instantiates a few unused values,
-/// so it calls a runtime assert instead of a static_assert.
-template <typename ValidEdgeMaskT>
-INLINE bool TrivialRejectTest(const int, const int, const int)
-{
- SWR_INVALID("Primary templated function should never be called");
- return false;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief E0E1ValidT specialization of TrivialRejectTest. Tests edge 0
-/// and edge 1 for trivial coverage reject
-template <>
-INLINE bool TrivialRejectTest<E0E1ValidT>(const int mask0, const int mask1, const int)
-{
- return (!(mask0 && mask1)) ? true : false;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief E0E2ValidT specialization of TrivialRejectTest. Tests edge 0
-/// and edge 2 for trivial coverage reject
-template <>
-INLINE bool TrivialRejectTest<E0E2ValidT>(const int mask0, const int, const int mask2)
-{
- return (!(mask0 && mask2)) ? true : false;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief E1E2ValidT specialization of TrivialRejectTest. Tests edge 1
-/// and edge 2 for trivial coverage reject
-template <>
-INLINE bool TrivialRejectTest<E1E2ValidT>(const int, const int mask1, const int mask2)
-{
- return (!(mask1 && mask2)) ? true : false;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief AllEdgesValidT specialization of TrivialRejectTest. Tests all
-/// primitive edges for trivial coverage reject
-template <>
-INLINE bool TrivialRejectTest<AllEdgesValidT>(const int mask0, const int mask1, const int mask2)
-{
- return (!(mask0 && mask1 && mask2)) ? true : false;
- ;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief NoEdgesValidT specialization of TrivialRejectTest. Degenerate
-/// point, so return false and rasterize against conservative BBox
-template <>
-INLINE bool TrivialRejectTest<NoEdgesValidT>(const int, const int, const int)
-{
- return false;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Primary function template for TrivialAcceptTest. Always returns
-/// false, since it will only be called for degenerate tris, and as such
-/// will never cover the entire raster tile
-template <typename ScissorEnableT>
-INLINE bool TrivialAcceptTest(const int, const int, const int)
-{
- return false;
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief AllEdgesValidT specialization for TrivialAcceptTest. Test all
-/// edge masks for a fully covered raster tile
-template <>
-INLINE bool TrivialAcceptTest<std::false_type>(const int mask0, const int mask1, const int mask2)
-{
- return ((mask0 & mask1 & mask2) == 0xf);
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Primary function template for GenerateSVInnerCoverage. Results
-/// in an empty function call if SVInnerCoverage isn't requested
-template <typename RT, typename ValidEdgeMaskT, typename InputCoverageT>
-struct GenerateSVInnerCoverage
-{
- INLINE GenerateSVInnerCoverage(DRAW_CONTEXT*, uint32_t, EDGE*, double*, uint64_t&){};
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Specialization of GenerateSVInnerCoverage where all edges
-/// are non-degenerate and SVInnerCoverage is requested. Offsets the evaluated
-/// edge values from OuterConservative to InnerConservative and rasterizes.
-template <typename RT>
-struct GenerateSVInnerCoverage<RT, AllEdgesValidT, InnerConservativeCoverageT>
-{
- INLINE GenerateSVInnerCoverage(DRAW_CONTEXT* pDC,
- uint32_t workerId,
- EDGE* pRastEdges,
- double* pStartQuadEdges,
- uint64_t& innerCoverageMask)
- {
- double startQuadEdgesAdj[RT::NumEdgesT::value];
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- startQuadEdgesAdj[e] = adjustScalarEdge<RT, typename RT::InnerConservativeEdgeOffsetT>(
- pRastEdges[e].a, pRastEdges[e].b, pStartQuadEdges[e]);
- }
-
- // not trivial accept or reject, must rasterize full tile
- RDTSC_BEGIN(pDC->pContext->pBucketMgr, BERasterizePartial, pDC->drawId);
- innerCoverageMask = rasterizePartialTile<RT::NumEdgesT::value, typename RT::ValidEdgeMaskT>(
- pDC, startQuadEdgesAdj, pRastEdges);
- RDTSC_END(pDC->pContext->pBucketMgr, BERasterizePartial, 0);
- }
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Primary function template for UpdateEdgeMasksInnerConservative. Results
-/// in an empty function call if SVInnerCoverage isn't requested
-template <typename RT, typename ValidEdgeMaskT, typename InputCoverageT>
-struct UpdateEdgeMasksInnerConservative
-{
- INLINE UpdateEdgeMasksInnerConservative(const __m256d (&vEdgeTileBbox)[3],
- const __m256d*,
- const __m128i,
- const __m128i,
- int32_t&,
- int32_t&,
- int32_t&){};
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Specialization of UpdateEdgeMasksInnerConservative where all edges
-/// are non-degenerate and SVInnerCoverage is requested. Offsets the edges
-/// evaluated at raster tile corners to inner conservative position and
-/// updates edge masks
-template <typename RT>
-struct UpdateEdgeMasksInnerConservative<RT, AllEdgesValidT, InnerConservativeCoverageT>
-{
- INLINE UpdateEdgeMasksInnerConservative(const __m256d (&vEdgeTileBbox)[3],
- const __m256d* vEdgeFix16,
- const __m128i vAi,
- const __m128i vBi,
- int32_t& mask0,
- int32_t& mask1,
- int32_t& mask2)
- {
- __m256d vTempEdge[3]{vEdgeFix16[0], vEdgeFix16[1], vEdgeFix16[2]};
-
- // instead of keeping 2 copies of evaluated edges around, just compensate for the outer
- // conservative evaluated edge when adjusting the edge in for inner conservative tests
- adjustEdgeConservative<RT, typename RT::InnerConservativeEdgeOffsetT>(
- vAi, vBi, vTempEdge[0]);
- adjustEdgeConservative<RT, typename RT::InnerConservativeEdgeOffsetT>(
- vAi, vBi, vTempEdge[1]);
- adjustEdgeConservative<RT, typename RT::InnerConservativeEdgeOffsetT>(
- vAi, vBi, vTempEdge[2]);
-
- UpdateEdgeMasks<typename RT::NumCoverageSamplesT>(
- vEdgeTileBbox, vTempEdge, mask0, mask1, mask2);
- }
-};
-
-//////////////////////////////////////////////////////////////////////////
-/// @brief Specialization of UpdateEdgeMasksInnerConservative where SVInnerCoverage
-/// is requested but at least one edge is degenerate. Since a degenerate triangle cannot
-/// cover an entire raster tile, set mask0 to 0 to force it down the
-/// rastierizePartialTile path
-template <typename RT, typename ValidEdgeMaskT>
-struct UpdateEdgeMasksInnerConservative<RT, ValidEdgeMaskT, InnerConservativeCoverageT>
-{
- INLINE UpdateEdgeMasksInnerConservative(const __m256d (&)[3],
- const __m256d*,
- const __m128i,
- const __m128i,
- int32_t& mask0,
- int32_t&,
- int32_t&)
- {
- // set one mask to zero to force the triangle down the rastierizePartialTile path
- mask0 = 0;
- }
-};
-
-template <typename RT>
-void RasterizeTriangle(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t macroTile, void* pDesc)
-{
- const TRIANGLE_WORK_DESC& workDesc = *((TRIANGLE_WORK_DESC*)pDesc);
-#if KNOB_ENABLE_TOSS_POINTS
- if (KNOB_TOSS_BIN_TRIS)
- {
- return;
- }
-#endif
- RDTSC_BEGIN(pDC->pContext->pBucketMgr, BERasterizeTriangle, pDC->drawId);
- RDTSC_BEGIN(pDC->pContext->pBucketMgr, BETriangleSetup, pDC->drawId);
-
- const API_STATE& state = GetApiState(pDC);
- const SWR_RASTSTATE& rastState = state.rastState;
- const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
-
- OSALIGNSIMD(SWR_TRIANGLE_DESC) triDesc;
- triDesc.pUserClipBuffer = workDesc.pUserClipBuffer;
-
- __m128 vX, vY, vZ, vRecipW;
-
- // pTriBuffer data layout: grouped components of the 3 triangle points and 1 don't care
- // eg: vX = [x0 x1 x2 dc]
- vX = _mm_load_ps(workDesc.pTriBuffer);
- vY = _mm_load_ps(workDesc.pTriBuffer + 4);
- vZ = _mm_load_ps(workDesc.pTriBuffer + 8);
- vRecipW = _mm_load_ps(workDesc.pTriBuffer + 12);
-
- // convert to fixed point
- static_assert(std::is_same<typename RT::PrecisionT, FixedPointTraits<Fixed_16_8>>::value,
- "Rasterizer expects 16.8 fixed point precision");
- __m128i vXi = fpToFixedPoint(vX);
- __m128i vYi = fpToFixedPoint(vY);
-
- // quantize floating point position to fixed point precision
- // to prevent attribute creep around the triangle vertices
- vX = _mm_mul_ps(_mm_cvtepi32_ps(vXi), _mm_set1_ps(1.0f / FIXED_POINT_SCALE));
- vY = _mm_mul_ps(_mm_cvtepi32_ps(vYi), _mm_set1_ps(1.0f / FIXED_POINT_SCALE));
-
- // triangle setup - A and B edge equation coefs
- __m128 vA, vB;
- triangleSetupAB(vX, vY, vA, vB);
-
- __m128i vAi, vBi;
- triangleSetupABInt(vXi, vYi, vAi, vBi);
-
- // determinant
- float det = calcDeterminantInt(vAi, vBi);
-
- // Verts in Pixel Coordinate Space at this point
- // Det > 0 = CW winding order
- // Convert CW triangles to CCW
- if (det > 0.0)
- {
- vA = _mm_mul_ps(vA, _mm_set1_ps(-1));
- vB = _mm_mul_ps(vB, _mm_set1_ps(-1));
- vAi = _mm_mullo_epi32(vAi, _mm_set1_epi32(-1));
- vBi = _mm_mullo_epi32(vBi, _mm_set1_epi32(-1));
- det = -det;
- }
-
- __m128 vC;
- // Finish triangle setup - C edge coef
- triangleSetupC(vX, vY, vA, vB, vC);
-
- if (RT::ValidEdgeMaskT::value != ALL_EDGES_VALID)
- {
- // If we have degenerate edge(s) to rasterize, set I and J coefs
- // to 0 for constant interpolation of attributes
- triDesc.I[0] = 0.0f;
- triDesc.I[1] = 0.0f;
- triDesc.I[2] = 0.0f;
- triDesc.J[0] = 0.0f;
- triDesc.J[1] = 0.0f;
- triDesc.J[2] = 0.0f;
-
- // Degenerate triangles have no area
- triDesc.recipDet = 0.0f;
- }
- else
- {
- // only extract coefs for 2 of the barycentrics; the 3rd can be
- // determined from the barycentric equation:
- // i + j + k = 1 <=> k = 1 - j - i
- _MM_EXTRACT_FLOAT(triDesc.I[0], vA, 1);
- _MM_EXTRACT_FLOAT(triDesc.I[1], vB, 1);
- _MM_EXTRACT_FLOAT(triDesc.I[2], vC, 1);
- _MM_EXTRACT_FLOAT(triDesc.J[0], vA, 2);
- _MM_EXTRACT_FLOAT(triDesc.J[1], vB, 2);
- _MM_EXTRACT_FLOAT(triDesc.J[2], vC, 2);
-
- // compute recipDet, used to calculate barycentric i and j in the backend
- triDesc.recipDet = 1.0f / det;
- }
-
- OSALIGNSIMD(float) oneOverW[4];
- _mm_store_ps(oneOverW, vRecipW);
- triDesc.OneOverW[0] = oneOverW[0] - oneOverW[2];
- triDesc.OneOverW[1] = oneOverW[1] - oneOverW[2];
- triDesc.OneOverW[2] = oneOverW[2];
-
- // calculate perspective correct coefs per vertex attrib
- float* pPerspAttribs = perspAttribsTLS;
- float* pAttribs = workDesc.pAttribs;
- triDesc.pPerspAttribs = pPerspAttribs;
- triDesc.pAttribs = pAttribs;
- float* pRecipW = workDesc.pTriBuffer + 12;
- triDesc.pRecipW = pRecipW;
- __m128 vOneOverWV0 = _mm_broadcast_ss(pRecipW);
- __m128 vOneOverWV1 = _mm_broadcast_ss(pRecipW += 1);
- __m128 vOneOverWV2 = _mm_broadcast_ss(pRecipW += 1);
- for (uint32_t i = 0; i < workDesc.numAttribs; i++)
- {
- __m128 attribA = _mm_load_ps(pAttribs);
- __m128 attribB = _mm_load_ps(pAttribs += 4);
- __m128 attribC = _mm_load_ps(pAttribs += 4);
- pAttribs += 4;
-
- attribA = _mm_mul_ps(attribA, vOneOverWV0);
- attribB = _mm_mul_ps(attribB, vOneOverWV1);
- attribC = _mm_mul_ps(attribC, vOneOverWV2);
-
- _mm_store_ps(pPerspAttribs, attribA);
- _mm_store_ps(pPerspAttribs += 4, attribB);
- _mm_store_ps(pPerspAttribs += 4, attribC);
- pPerspAttribs += 4;
- }
-
- // compute bary Z
- // zInterp = zVert0 + i(zVert1-zVert0) + j (zVert2 - zVert0)
- OSALIGNSIMD(float) a[4];
- _mm_store_ps(a, vZ);
- triDesc.Z[0] = a[0] - a[2];
- triDesc.Z[1] = a[1] - a[2];
- triDesc.Z[2] = a[2];
-
- // add depth bias
- triDesc.Z[2] += ComputeDepthBias(&rastState, &triDesc, workDesc.pTriBuffer + 8);
-
- // Calc bounding box of triangle
- OSALIGNSIMD(SWR_RECT) bbox;
- calcBoundingBoxInt(vXi, vYi, bbox);
-
- const SWR_RECT& scissorInFixedPoint =
- state.scissorsInFixedPoint[workDesc.triFlags.viewportIndex];
-
- if (RT::ValidEdgeMaskT::value != ALL_EDGES_VALID)
- {
- // If we're rasterizing a degenerate triangle, expand bounding box to guarantee the BBox is
- // valid
- bbox.xmin--;
- bbox.xmax++;
- bbox.ymin--;
- bbox.ymax++;
- SWR_ASSERT(scissorInFixedPoint.xmin >= 0 && scissorInFixedPoint.ymin >= 0,
- "Conservative rast degenerate handling requires a valid scissor rect");
- }
-
- // Intersect with scissor/viewport
- OSALIGNSIMD(SWR_RECT) intersect;
- intersect.xmin = std::max(bbox.xmin, scissorInFixedPoint.xmin);
- intersect.xmax = std::min(bbox.xmax - 1, scissorInFixedPoint.xmax);
- intersect.ymin = std::max(bbox.ymin, scissorInFixedPoint.ymin);
- intersect.ymax = std::min(bbox.ymax - 1, scissorInFixedPoint.ymax);
-
- triDesc.triFlags = workDesc.triFlags;
-
- // further constrain backend to intersecting bounding box of macro tile and scissored triangle
- // bbox
- uint32_t macroX, macroY;
- MacroTileMgr::getTileIndices(macroTile, macroX, macroY);
- int32_t macroBoxLeft = macroX * KNOB_MACROTILE_X_DIM_FIXED;
- int32_t macroBoxRight = macroBoxLeft + KNOB_MACROTILE_X_DIM_FIXED - 1;
- int32_t macroBoxTop = macroY * KNOB_MACROTILE_Y_DIM_FIXED;
- int32_t macroBoxBottom = macroBoxTop + KNOB_MACROTILE_Y_DIM_FIXED - 1;
-
- intersect.xmin = std::max(intersect.xmin, macroBoxLeft);
- intersect.ymin = std::max(intersect.ymin, macroBoxTop);
- intersect.xmax = std::min(intersect.xmax, macroBoxRight);
- intersect.ymax = std::min(intersect.ymax, macroBoxBottom);
-
- SWR_ASSERT(intersect.xmin <= intersect.xmax && intersect.ymin <= intersect.ymax &&
- intersect.xmin >= 0 && intersect.xmax >= 0 && intersect.ymin >= 0 &&
- intersect.ymax >= 0);
-
- RDTSC_END(pDC->pContext->pBucketMgr, BETriangleSetup, 0);
-
- // update triangle desc
- uint32_t minTileX = intersect.xmin >> (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
- uint32_t minTileY = intersect.ymin >> (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
- uint32_t maxTileX = intersect.xmax >> (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
- uint32_t maxTileY = intersect.ymax >> (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
- uint32_t numTilesX = maxTileX - minTileX + 1;
- uint32_t numTilesY = maxTileY - minTileY + 1;
-
- if (numTilesX == 0 || numTilesY == 0)
- {
- RDTSC_EVENT(pDC->pContext->pBucketMgr, BEEmptyTriangle, 1, 0);
- RDTSC_END(pDC->pContext->pBucketMgr, BERasterizeTriangle, 1);
- return;
- }
-
- RDTSC_BEGIN(pDC->pContext->pBucketMgr, BEStepSetup, pDC->drawId);
-
- // Step to pixel center of top-left pixel of the triangle bbox
- // Align intersect bbox (top/left) to raster tile's (top/left).
- int32_t x = AlignDown(intersect.xmin, (FIXED_POINT_SCALE * KNOB_TILE_X_DIM));
- int32_t y = AlignDown(intersect.ymin, (FIXED_POINT_SCALE * KNOB_TILE_Y_DIM));
-
- // convenience typedef
- typedef typename RT::NumCoverageSamplesT NumCoverageSamplesT;
-
- // single sample rasterization evaluates edges at pixel center,
- // multisample evaluates edges UL pixel corner and steps to each sample position
- if (std::is_same<NumCoverageSamplesT, SingleSampleT>::value)
- {
- // Add 0.5, in fixed point, to offset to pixel center
- x += (FIXED_POINT_SCALE / 2);
- y += (FIXED_POINT_SCALE / 2);
- }
-
- __m128i vTopLeftX = _mm_set1_epi32(x);
- __m128i vTopLeftY = _mm_set1_epi32(y);
-
- // evaluate edge equations at top-left pixel using 64bit math
- //
- // line = Ax + By + C
- // solving for C:
- // C = -Ax - By
- // we know x0 and y0 are on the line; plug them in:
- // C = -Ax0 - By0
- // plug C back into line equation:
- // line = Ax - By - Ax0 - By0
- // line = A(x - x0) + B(y - y0)
- // dX = (x-x0), dY = (y-y0)
- // so all this simplifies to
- // edge = A(dX) + B(dY), our first test at the top left of the bbox we're rasterizing within
-
- __m128i vDeltaX = _mm_sub_epi32(vTopLeftX, vXi);
- __m128i vDeltaY = _mm_sub_epi32(vTopLeftY, vYi);
-
- // evaluate A(dx) and B(dY) for all points
- __m256d vAipd = _mm256_cvtepi32_pd(vAi);
- __m256d vBipd = _mm256_cvtepi32_pd(vBi);
- __m256d vDeltaXpd = _mm256_cvtepi32_pd(vDeltaX);
- __m256d vDeltaYpd = _mm256_cvtepi32_pd(vDeltaY);
-
- __m256d vAiDeltaXFix16 = _mm256_mul_pd(vAipd, vDeltaXpd);
- __m256d vBiDeltaYFix16 = _mm256_mul_pd(vBipd, vDeltaYpd);
- __m256d vEdge = _mm256_add_pd(vAiDeltaXFix16, vBiDeltaYFix16);
-
- // apply any edge adjustments(top-left, crast, etc)
- adjustEdgesFix16<RT, typename RT::ConservativeEdgeOffsetT>(vAi, vBi, vEdge);
-
- // broadcast respective edge results to all lanes
- double* pEdge = (double*)&vEdge;
- __m256d vEdgeFix16[7];
- vEdgeFix16[0] = _mm256_set1_pd(pEdge[0]);
- vEdgeFix16[1] = _mm256_set1_pd(pEdge[1]);
- vEdgeFix16[2] = _mm256_set1_pd(pEdge[2]);
-
- OSALIGNSIMD(int32_t) aAi[4], aBi[4];
- _mm_store_si128((__m128i*)aAi, vAi);
- _mm_store_si128((__m128i*)aBi, vBi);
- EDGE rastEdges[RT::NumEdgesT::value];
-
- // Compute and store triangle edge data
- ComputeEdgeData(aAi[0], aBi[0], rastEdges[0]);
- ComputeEdgeData(aAi[1], aBi[1], rastEdges[1]);
- ComputeEdgeData(aAi[2], aBi[2], rastEdges[2]);
-
- // Compute and store triangle edge data if scissor needs to rasterized
- ComputeScissorEdges<typename RT::RasterizeScissorEdgesT, typename RT::IsConservativeT, RT>(
- bbox, scissorInFixedPoint, x, y, rastEdges, vEdgeFix16);
-
- // Evaluate edge equations at sample positions of each of the 4 corners of a raster tile
- // used to for testing if entire raster tile is inside a triangle
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- vEdgeFix16[e] = _mm256_add_pd(vEdgeFix16[e], rastEdges[e].vRasterTileOffsets);
- }
-
- // at this point vEdge has been evaluated at the UL pixel corners of raster tile bbox
- // step sample positions to the raster tile bbox of multisample points
- // min(xSamples),min(ySamples) ------ max(xSamples),min(ySamples)
- // | |
- // | |
- // min(xSamples),max(ySamples) ------ max(xSamples),max(ySamples)
- __m256d vEdgeTileBbox[3];
- if (NumCoverageSamplesT::value > 1)
- {
- const SWR_MULTISAMPLE_POS& samplePos = rastState.samplePositions;
- const __m128i vTileSampleBBoxXh = samplePos.TileSampleOffsetsX();
- const __m128i vTileSampleBBoxYh = samplePos.TileSampleOffsetsY();
-
- __m256d vTileSampleBBoxXFix8 = _mm256_cvtepi32_pd(vTileSampleBBoxXh);
- __m256d vTileSampleBBoxYFix8 = _mm256_cvtepi32_pd(vTileSampleBBoxYh);
-
- // step edge equation tests from Tile
- // used to for testing if entire raster tile is inside a triangle
- for (uint32_t e = 0; e < 3; ++e)
- {
- __m256d vResultAxFix16 =
- _mm256_mul_pd(_mm256_set1_pd(rastEdges[e].a), vTileSampleBBoxXFix8);
- __m256d vResultByFix16 =
- _mm256_mul_pd(_mm256_set1_pd(rastEdges[e].b), vTileSampleBBoxYFix8);
- vEdgeTileBbox[e] = _mm256_add_pd(vResultAxFix16, vResultByFix16);
-
- // adjust for msaa tile bbox edges outward for conservative rast, if enabled
- adjustEdgeConservative<RT, typename RT::ConservativeEdgeOffsetT>(
- vAi, vBi, vEdgeTileBbox[e]);
- }
- }
-
- RDTSC_END(pDC->pContext->pBucketMgr, BEStepSetup, 0);
-
- uint32_t tY = minTileY;
- uint32_t tX = minTileX;
- uint32_t maxY = maxTileY;
- uint32_t maxX = maxTileX;
-
- RenderOutputBuffers renderBuffers, currentRenderBufferRow;
- GetRenderHotTiles<RT::MT::numSamples>(pDC,
- workerId,
- macroTile,
- minTileX,
- minTileY,
- renderBuffers,
- triDesc.triFlags.renderTargetArrayIndex);
- currentRenderBufferRow = renderBuffers;
-
- // rasterize and generate coverage masks per sample
- for (uint32_t tileY = tY; tileY <= maxY; ++tileY)
- {
- __m256d vStartOfRowEdge[RT::NumEdgesT::value];
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- vStartOfRowEdge[e] = vEdgeFix16[e];
- }
-
- for (uint32_t tileX = tX; tileX <= maxX; ++tileX)
- {
- triDesc.anyCoveredSamples = 0;
-
- // is the corner of the edge outside of the raster tile? (vEdge < 0)
- int mask0, mask1, mask2;
- UpdateEdgeMasks<NumCoverageSamplesT>(vEdgeTileBbox, vEdgeFix16, mask0, mask1, mask2);
-
- for (uint32_t sampleNum = 0; sampleNum < NumCoverageSamplesT::value; sampleNum++)
- {
- // trivial reject, at least one edge has all 4 corners of raster tile outside
- bool trivialReject =
- TrivialRejectTest<typename RT::ValidEdgeMaskT>(mask0, mask1, mask2);
-
- if (!trivialReject)
- {
- // trivial accept mask
- triDesc.coverageMask[sampleNum] = 0xffffffffffffffffULL;
-
- // Update the raster tile edge masks based on inner conservative edge offsets,
- // if enabled
- UpdateEdgeMasksInnerConservative<RT,
- typename RT::ValidEdgeMaskT,
- typename RT::InputCoverageT>(
- vEdgeTileBbox, vEdgeFix16, vAi, vBi, mask0, mask1, mask2);
-
- // @todo Make this a bit smarter to allow use of trivial accept when:
- // 1) scissor/vp intersection rect is raster tile aligned
- // 2) raster tile is entirely within scissor/vp intersection rect
- if (TrivialAcceptTest<typename RT::RasterizeScissorEdgesT>(mask0, mask1, mask2))
- {
- // trivial accept, all 4 corners of all 3 edges are negative
- // i.e. raster tile completely inside triangle
- triDesc.anyCoveredSamples = triDesc.coverageMask[sampleNum];
- if (std::is_same<typename RT::InputCoverageT,
- InnerConservativeCoverageT>::value)
- {
- triDesc.innerCoverageMask = 0xffffffffffffffffULL;
- }
- RDTSC_EVENT(pDC->pContext->pBucketMgr, BETrivialAccept, 1, 0);
- }
- else
- {
- __m256d vEdgeAtSample[RT::NumEdgesT::value];
- if (std::is_same<NumCoverageSamplesT, SingleSampleT>::value)
- {
- // should get optimized out for single sample case (global value
- // numbering or copy propagation)
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- vEdgeAtSample[e] = vEdgeFix16[e];
- }
- }
- else
- {
- const SWR_MULTISAMPLE_POS& samplePos = rastState.samplePositions;
- __m128i vSampleOffsetXh = samplePos.vXi(sampleNum);
- __m128i vSampleOffsetYh = samplePos.vYi(sampleNum);
- __m256d vSampleOffsetX = _mm256_cvtepi32_pd(vSampleOffsetXh);
- __m256d vSampleOffsetY = _mm256_cvtepi32_pd(vSampleOffsetYh);
-
- // step edge equation tests from UL tile corner to pixel sample position
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- __m256d vResultAxFix16 =
- _mm256_mul_pd(_mm256_set1_pd(rastEdges[e].a), vSampleOffsetX);
- __m256d vResultByFix16 =
- _mm256_mul_pd(_mm256_set1_pd(rastEdges[e].b), vSampleOffsetY);
- vEdgeAtSample[e] = _mm256_add_pd(vResultAxFix16, vResultByFix16);
- vEdgeAtSample[e] = _mm256_add_pd(vEdgeFix16[e], vEdgeAtSample[e]);
- }
- }
-
- double startQuadEdges[RT::NumEdgesT::value];
- const __m256i vLane0Mask = _mm256_set_epi32(0, 0, 0, 0, 0, 0, -1, -1);
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- _mm256_maskstore_pd(&startQuadEdges[e], vLane0Mask, vEdgeAtSample[e]);
- }
-
- // not trivial accept or reject, must rasterize full tile
- RDTSC_BEGIN(pDC->pContext->pBucketMgr, BERasterizePartial, pDC->drawId);
- triDesc.coverageMask[sampleNum] =
- rasterizePartialTile<RT::NumEdgesT::value, typename RT::ValidEdgeMaskT>(
- pDC, startQuadEdges, rastEdges);
- RDTSC_END(pDC->pContext->pBucketMgr, BERasterizePartial, 0);
-
- triDesc.anyCoveredSamples |= triDesc.coverageMask[sampleNum];
-
- // Output SV InnerCoverage, if needed
- GenerateSVInnerCoverage<RT,
- typename RT::ValidEdgeMaskT,
- typename RT::InputCoverageT>(
- pDC, workerId, rastEdges, startQuadEdges, triDesc.innerCoverageMask);
- }
- }
- else
- {
- // if we're calculating coverage per sample, need to store it off. otherwise no
- // covered samples, don't need to do anything
- if (NumCoverageSamplesT::value > 1)
- {
- triDesc.coverageMask[sampleNum] = 0;
- }
- RDTSC_EVENT(pDC->pContext->pBucketMgr, BETrivialReject, 1, 0);
- }
- }
-
-#if KNOB_ENABLE_TOSS_POINTS
- if (KNOB_TOSS_RS)
- {
- gToss = triDesc.coverageMask[0];
- }
- else
-#endif
- if (triDesc.anyCoveredSamples)
- {
- // if conservative rast and MSAA are enabled, conservative coverage for a pixel
- // means all samples in that pixel are covered copy conservative coverage result to
- // all samples
- if (RT::IsConservativeT::value)
- {
- auto copyCoverage = [&](int sample) {
- triDesc.coverageMask[sample] = triDesc.coverageMask[0];
- };
- UnrollerL<1, RT::MT::numSamples, 1>::step(copyCoverage);
- }
-
- // Track rasterized subspans
- AR_EVENT(RasterTileCount(pDC->drawId, 1));
-
- RDTSC_BEGIN(pDC->pContext->pBucketMgr, BEPixelBackend, pDC->drawId);
- backendFuncs.pfnBackend(pDC,
- workerId,
- tileX << KNOB_TILE_X_DIM_SHIFT,
- tileY << KNOB_TILE_Y_DIM_SHIFT,
- triDesc,
- renderBuffers);
- RDTSC_END(pDC->pContext->pBucketMgr, BEPixelBackend, 0);
- }
-
- // step to the next tile in X
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- vEdgeFix16[e] =
- _mm256_add_pd(vEdgeFix16[e], _mm256_set1_pd(rastEdges[e].stepRasterTileX));
- }
- StepRasterTileX<RT>(state.colorHottileEnable, renderBuffers);
- }
-
- // step to the next tile in Y
- for (uint32_t e = 0; e < RT::NumEdgesT::value; ++e)
- {
- vEdgeFix16[e] =
- _mm256_add_pd(vStartOfRowEdge[e], _mm256_set1_pd(rastEdges[e].stepRasterTileY));
- }
- StepRasterTileY<RT>(state.colorHottileEnable, renderBuffers, currentRenderBufferRow);
- }
-
- RDTSC_END(pDC->pContext->pBucketMgr, BERasterizeTriangle, 1);
-}
-
-// Get pointers to hot tile memory for color RT, depth, stencil
-template <uint32_t numSamples>
-void GetRenderHotTiles(DRAW_CONTEXT* pDC,
- uint32_t workerId,
- uint32_t macroID,
- uint32_t tileX,
- uint32_t tileY,
- RenderOutputBuffers& renderBuffers,
- uint32_t renderTargetArrayIndex)
-{
- const API_STATE& state = GetApiState(pDC);
- SWR_CONTEXT* pContext = pDC->pContext;
- HANDLE hWorkerPrivateData = pContext->threadPool.pThreadData[workerId].pWorkerPrivateData;
-
- uint32_t mx, my;
- MacroTileMgr::getTileIndices(macroID, mx, my);
- tileX -= KNOB_MACROTILE_X_DIM_IN_TILES * mx;
- tileY -= KNOB_MACROTILE_Y_DIM_IN_TILES * my;
-
- // compute tile offset for active hottile buffers
- const uint32_t pitch = KNOB_MACROTILE_X_DIM * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp / 8;
- uint32_t offset = ComputeTileOffset2D<
- TilingTraits<SWR_TILE_SWRZ, FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp>>(
- pitch, tileX, tileY);
- offset *= numSamples;
-
- unsigned long rtSlot = 0;
- uint32_t colorHottileEnableMask = state.colorHottileEnable;
- while (_BitScanForward(&rtSlot, colorHottileEnableMask))
- {
- HOTTILE* pColor = pContext->pHotTileMgr->GetHotTile(
- pContext,
- pDC,
- hWorkerPrivateData,
- macroID,
- (SWR_RENDERTARGET_ATTACHMENT)(SWR_ATTACHMENT_COLOR0 + rtSlot),
- true,
- numSamples,
- renderTargetArrayIndex);
- renderBuffers.pColor[rtSlot] = pColor->pBuffer + offset;
- renderBuffers.pColorHotTile[rtSlot] = pColor;
-
- colorHottileEnableMask &= ~(1 << rtSlot);
- }
- if (state.depthHottileEnable)
- {
- const uint32_t pitch =
- KNOB_MACROTILE_X_DIM * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp / 8;
- uint32_t offset = ComputeTileOffset2D<
- TilingTraits<SWR_TILE_SWRZ, FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp>>(
- pitch, tileX, tileY);
- offset *= numSamples;
- HOTTILE* pDepth = pContext->pHotTileMgr->GetHotTile(pContext,
- pDC,
- hWorkerPrivateData,
- macroID,
- SWR_ATTACHMENT_DEPTH,
- true,
- numSamples,
- renderTargetArrayIndex);
- pDepth->state = HOTTILE_DIRTY;
- SWR_ASSERT(pDepth->pBuffer != nullptr);
- renderBuffers.pDepth = pDepth->pBuffer + offset;
- renderBuffers.pDepthHotTile = pDepth;
- }
- if (state.stencilHottileEnable)
- {
- const uint32_t pitch =
- KNOB_MACROTILE_X_DIM * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp / 8;
- uint32_t offset = ComputeTileOffset2D<
- TilingTraits<SWR_TILE_SWRZ, FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp>>(
- pitch, tileX, tileY);
- offset *= numSamples;
- HOTTILE* pStencil = pContext->pHotTileMgr->GetHotTile(pContext,
- pDC,
- hWorkerPrivateData,
- macroID,
- SWR_ATTACHMENT_STENCIL,
- true,
- numSamples,
- renderTargetArrayIndex);
- pStencil->state = HOTTILE_DIRTY;
- SWR_ASSERT(pStencil->pBuffer != nullptr);
- renderBuffers.pStencil = pStencil->pBuffer + offset;
- renderBuffers.pStencilHotTile = pStencil;
- }
-}
-
-template <typename RT>
-INLINE void StepRasterTileX(uint32_t colorHotTileMask, RenderOutputBuffers& buffers)
-{
- unsigned long rt = 0;
- while (_BitScanForward(&rt, colorHotTileMask))
- {
- colorHotTileMask &= ~(1 << rt);
- buffers.pColor[rt] += RT::colorRasterTileStep;
- }
-
- buffers.pDepth += RT::depthRasterTileStep;
- buffers.pStencil += RT::stencilRasterTileStep;
-}
-
-template <typename RT>
-INLINE void StepRasterTileY(uint32_t colorHotTileMask,
- RenderOutputBuffers& buffers,
- RenderOutputBuffers& startBufferRow)
-{
- unsigned long rt = 0;
- while (_BitScanForward(&rt, colorHotTileMask))
- {
- colorHotTileMask &= ~(1 << rt);
- startBufferRow.pColor[rt] += RT::colorRasterTileRowStep;
- buffers.pColor[rt] = startBufferRow.pColor[rt];
- }
- startBufferRow.pDepth += RT::depthRasterTileRowStep;
- buffers.pDepth = startBufferRow.pDepth;
-
- startBufferRow.pStencil += RT::stencilRasterTileRowStep;
- buffers.pStencil = startBufferRow.pStencil;
-}