summaryrefslogtreecommitdiff
path: root/gs/base/gscie.c
diff options
context:
space:
mode:
Diffstat (limited to 'gs/base/gscie.c')
-rw-r--r--gs/base/gscie.c1603
1 files changed, 1603 insertions, 0 deletions
diff --git a/gs/base/gscie.c b/gs/base/gscie.c
new file mode 100644
index 000000000..7bee78be0
--- /dev/null
+++ b/gs/base/gscie.c
@@ -0,0 +1,1603 @@
+/* Copyright (C) 2001-2006 Artifex Software, Inc.
+ All Rights Reserved.
+
+ This software is provided AS-IS with no warranty, either express or
+ implied.
+
+ This software is distributed under license and may not be copied, modified
+ or distributed except as expressly authorized under the terms of that
+ license. Refer to licensing information at http://www.artifex.com/
+ or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
+ San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
+*/
+
+/* $Id$ */
+/* CIE color rendering cache management */
+#include "math_.h"
+#include "memory_.h"
+#include "gx.h"
+#include "gserrors.h"
+#include "gsstruct.h"
+#include "gsmatrix.h" /* for gscolor2.h */
+#include "gxcspace.h" /* for gxcie.c */
+#include "gscolor2.h" /* for gs_set/currentcolorrendering */
+#include "gxarith.h"
+#include "gxcie.h"
+#include "gxdevice.h" /* for gxcmap.h */
+#include "gxcmap.h"
+#include "gzstate.h"
+#include "gsicc.h"
+
+/*
+ * Define whether to optimize the CIE mapping process by combining steps.
+ * This should only be disabled (commented out) for debugging.
+ */
+#define OPTIMIZE_CIE_MAPPING
+
+/* Forward references */
+static int cie_joint_caches_init(gx_cie_joint_caches *,
+ const gs_cie_common *,
+ gs_cie_render *);
+static void cie_joint_caches_complete(gx_cie_joint_caches *,
+ const gs_cie_common *,
+ const gs_cie_abc *,
+ const gs_cie_render *);
+static void cie_cache_restrict(cie_cache_floats *, const gs_range *);
+static void cie_mult3(const gs_vector3 *, const gs_matrix3 *,
+ gs_vector3 *);
+static void cie_matrix_mult3(const gs_matrix3 *, const gs_matrix3 *,
+ gs_matrix3 *);
+static void cie_invert3(const gs_matrix3 *, gs_matrix3 *);
+static void cie_matrix_init(gs_matrix3 *);
+
+/* Allocator structure types */
+private_st_joint_caches();
+extern_st(st_imager_state);
+
+#define RESTRICTED_INDEX(v, n, itemp)\
+ ((uint)(itemp = (int)(v)) >= (n) ?\
+ (itemp < 0 ? 0 : (n) - 1) : itemp)
+
+/* Define cache interpolation threshold values. */
+#ifdef CIE_CACHE_INTERPOLATE
+# ifdef CIE_INTERPOLATE_THRESHOLD
+# define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD
+# else
+# define CACHE_THRESHOLD 0 /* always interpolate */
+# endif
+#else
+# define CACHE_THRESHOLD 1.0e6 /* never interpolate */
+#endif
+#ifdef CIE_RENDER_TABLE_INTERPOLATE
+# define RENDER_TABLE_THRESHOLD 0
+#else
+# define RENDER_TABLE_THRESHOLD 1.0e6
+#endif
+
+/*
+ * Determine whether a function is a linear transformation of the form
+ * f(x) = scale * x + origin.
+ */
+static bool
+cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf)
+{
+ double origin = pcf->values[0];
+ double diff = pcf->values[countof(pcf->values) - 1] - origin;
+ double scale = diff / (countof(pcf->values) - 1);
+ int i;
+ double test = origin + scale;
+
+ for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale)
+ if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values))
+ return (params->is_linear = false);
+ params->origin = origin - pcf->params.base;
+ params->scale =
+ diff * pcf->params.factor / (countof(pcf->values) - 1);
+ return (params->is_linear = true);
+}
+
+static void
+cache_set_linear(cie_cache_floats *pcf)
+{
+ if (pcf->params.is_identity) {
+ if_debug1('c', "[c]is_linear(0x%lx) = true (is_identity)\n",
+ (ulong)pcf);
+ pcf->params.linear.is_linear = true;
+ pcf->params.linear.origin = 0;
+ pcf->params.linear.scale = 1;
+ } else if (cache_is_linear(&pcf->params.linear, pcf)) {
+ if (pcf->params.linear.origin == 0 &&
+ fabs(pcf->params.linear.scale - 1) < 0.00001)
+ pcf->params.is_identity = true;
+ if_debug4('c',
+ "[c]is_linear(0x%lx) = true, origin = %g, scale = %g%s\n",
+ (ulong)pcf, pcf->params.linear.origin,
+ pcf->params.linear.scale,
+ (pcf->params.is_identity ? " (=> is_identity)" : ""));
+ }
+#ifdef DEBUG
+ else
+ if_debug1('c', "[c]linear(0x%lx) = false\n", (ulong)pcf);
+#endif
+}
+static void
+cache3_set_linear(gx_cie_vector_cache3_t *pvc)
+{
+ cache_set_linear(&pvc->caches[0].floats);
+ cache_set_linear(&pvc->caches[1].floats);
+ cache_set_linear(&pvc->caches[2].floats);
+}
+
+#ifdef DEBUG
+static void
+if_debug_vector3(const char *str, const gs_vector3 *vec)
+{
+ if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w);
+}
+static void
+if_debug_matrix3(const char *str, const gs_matrix3 *mat)
+{
+ if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str,
+ mat->cu.u, mat->cu.v, mat->cu.w,
+ mat->cv.u, mat->cv.v, mat->cv.w,
+ mat->cw.u, mat->cw.v, mat->cw.w);
+}
+#else
+# define if_debug_vector3(str, vec) DO_NOTHING
+# define if_debug_matrix3(str, mat) DO_NOTHING
+#endif
+
+/* ------ Default values for CIE dictionary elements ------ */
+
+/* Default transformation procedures. */
+
+static float
+a_identity(floatp in, const gs_cie_a * pcie)
+{
+ return in;
+}
+static float
+a_from_cache(floatp in, const gs_cie_a * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats);
+}
+
+static float
+abc_identity(floatp in, const gs_cie_abc * pcie)
+{
+ return in;
+}
+static float
+abc_from_cache_0(floatp in, const gs_cie_abc * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats);
+}
+static float
+abc_from_cache_1(floatp in, const gs_cie_abc * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats);
+}
+static float
+abc_from_cache_2(floatp in, const gs_cie_abc * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats);
+}
+
+static float
+def_identity(floatp in, const gs_cie_def * pcie)
+{
+ return in;
+}
+static float
+def_from_cache_0(floatp in, const gs_cie_def * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats);
+}
+static float
+def_from_cache_1(floatp in, const gs_cie_def * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats);
+}
+static float
+def_from_cache_2(floatp in, const gs_cie_def * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats);
+}
+
+static float
+defg_identity(floatp in, const gs_cie_defg * pcie)
+{
+ return in;
+}
+static float
+defg_from_cache_0(floatp in, const gs_cie_defg * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats);
+}
+static float
+defg_from_cache_1(floatp in, const gs_cie_defg * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats);
+}
+static float
+defg_from_cache_2(floatp in, const gs_cie_defg * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats);
+}
+static float
+defg_from_cache_3(floatp in, const gs_cie_defg * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats);
+}
+
+static float
+common_identity(floatp in, const gs_cie_common * pcie)
+{
+ return in;
+}
+static float
+lmn_from_cache_0(floatp in, const gs_cie_common * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats);
+}
+static float
+lmn_from_cache_1(floatp in, const gs_cie_common * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats);
+}
+static float
+lmn_from_cache_2(floatp in, const gs_cie_common * pcie)
+{
+ return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats);
+}
+
+/* Transformation procedures for accessing an already-loaded cache. */
+
+float
+gs_cie_cached_value(floatp in, const cie_cache_floats *pcache)
+{
+ /*
+ * We need to get the same results when we sample an already-loaded
+ * cache, so we need to round the index just a tiny bit.
+ */
+ int index =
+ (int)((in - pcache->params.base) * pcache->params.factor + 0.0001);
+
+ CIE_CLAMP_INDEX(index);
+ return pcache->values[index];
+}
+
+/* Default vectors and matrices. */
+
+const gs_range3 Range3_default = {
+ { {0, 1}, {0, 1}, {0, 1} }
+};
+const gs_range4 Range4_default = {
+ { {0, 1}, {0, 1}, {0, 1}, {0, 1} }
+};
+const gs_cie_defg_proc4 DecodeDEFG_default = {
+ {defg_identity, defg_identity, defg_identity, defg_identity}
+};
+const gs_cie_defg_proc4 DecodeDEFG_from_cache = {
+ {defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3}
+};
+const gs_cie_def_proc3 DecodeDEF_default = {
+ {def_identity, def_identity, def_identity}
+};
+const gs_cie_def_proc3 DecodeDEF_from_cache = {
+ {def_from_cache_0, def_from_cache_1, def_from_cache_2}
+};
+const gs_cie_abc_proc3 DecodeABC_default = {
+ {abc_identity, abc_identity, abc_identity}
+};
+const gs_cie_abc_proc3 DecodeABC_from_cache = {
+ {abc_from_cache_0, abc_from_cache_1, abc_from_cache_2}
+};
+const gs_cie_common_proc3 DecodeLMN_default = {
+ {common_identity, common_identity, common_identity}
+};
+const gs_cie_common_proc3 DecodeLMN_from_cache = {
+ {lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2}
+};
+const gs_matrix3 Matrix3_default = {
+ {1, 0, 0},
+ {0, 1, 0},
+ {0, 0, 1},
+ 1 /*true */
+};
+const gs_range RangeA_default = {0, 1};
+const gs_cie_a_proc DecodeA_default = a_identity;
+const gs_cie_a_proc DecodeA_from_cache = a_from_cache;
+const gs_vector3 MatrixA_default = {1, 1, 1};
+const gs_vector3 BlackPoint_default = {0, 0, 0};
+
+/* Initialize a CIE color. */
+/* This only happens on setcolorspace. */
+void
+gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs)
+{
+ gx_init_paint_4(pcc, pcs);
+ /* (0...) may not be within the range of allowable values. */
+ (*pcs->type->restrict_color)(pcc, pcs);
+}
+
+/* Restrict CIE colors. */
+
+static inline void
+cie_restrict(float *pv, const gs_range *range)
+{
+ if (*pv <= range->rmin)
+ *pv = range->rmin;
+ else if (*pv >= range->rmax)
+ *pv = range->rmax;
+}
+
+void
+gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs)
+{
+ const gs_cie_defg *pcie = pcs->params.defg;
+
+ cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]);
+ cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]);
+ cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]);
+ cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]);
+}
+void
+gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs)
+{
+ const gs_cie_def *pcie = pcs->params.def;
+
+ cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]);
+ cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]);
+ cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]);
+}
+void
+gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs)
+{
+ const gs_cie_abc *pcie = pcs->params.abc;
+
+ cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]);
+ cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]);
+ cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]);
+}
+void
+gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs)
+{
+ const gs_cie_a *pcie = pcs->params.a;
+
+ cie_restrict(&pcc->paint.values[0], &pcie->RangeA);
+}
+
+/* ================ Table setup ================ */
+
+/* ------ Install a CIE color space ------ */
+
+static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *,
+ const cie_cache_floats *, floatp);
+static bool cie_cache_mult3(gx_cie_vector_cache3_t *,
+ const gs_matrix3 *, floatp);
+
+int
+gx_install_cie_abc(gs_cie_abc *pcie, gs_state * pgs)
+{
+ if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC);
+ cie_matrix_init(&pcie->MatrixABC);
+ CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges,
+ &pcie->DecodeABC, DecodeABC_default, pcie,
+ "DecodeABC");
+ gx_cie_load_common_cache(&pcie->common, pgs);
+ gs_cie_abc_complete(pcie);
+ return gs_cie_cs_complete(pgs, true);
+}
+
+int
+gx_install_CIEDEFG(gs_color_space * pcs, gs_state * pgs)
+{
+ gs_cie_defg *pcie = pcs->params.defg;
+
+#if ENABLE_CUSTOM_COLOR_CALLBACK
+ {
+ /*
+ * Check if we want to use the callback color processing for this
+ * color space.
+ */
+ client_custom_color_params_t * pcb =
+ (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback;
+
+ if (pcb != NULL) {
+ if (pcb->client_procs->install_CIEBasedDEFG(pcb, pcs, pgs))
+ /* Exit if the client will handle the colorspace completely */
+ return 0;
+ }
+ }
+#endif
+ CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges,
+ &pcie->DecodeDEFG, DecodeDEFG_default, pcie,
+ "DecodeDEFG");
+ return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
+}
+
+int
+gx_install_CIEDEF(gs_color_space * pcs, gs_state * pgs)
+{
+ gs_cie_def *pcie = pcs->params.def;
+
+#if ENABLE_CUSTOM_COLOR_CALLBACK
+ {
+ /*
+ * Check if we want to use the callback color processing for this
+ * color space.
+ */
+ client_custom_color_params_t * pcb =
+ (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback;
+
+ if (pcb != NULL) {
+ if (pcb->client_procs->install_CIEBasedDEF(pcb, pcs, pgs))
+ /* Exit if the client will handle the colorspace completely */
+ return 0;
+ }
+ }
+#endif
+ CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges,
+ &pcie->DecodeDEF, DecodeDEF_default, pcie,
+ "DecodeDEF");
+ return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
+}
+
+int
+gx_install_CIEABC(gs_color_space * pcs, gs_state * pgs)
+{
+#if ENABLE_CUSTOM_COLOR_CALLBACK
+ {
+ /*
+ * Check if we want to use the callback color processing for this
+ * color space.
+ */
+ client_custom_color_params_t * pcb =
+ (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback;
+
+ if (pcb != NULL) {
+ if (pcb->client_procs->install_CIEBasedABC(pcb, pcs, pgs))
+ /* Exit if the client will handle the colorspace completely */
+ return 0;
+ }
+ }
+#endif
+ return gx_install_cie_abc(pcs->params.abc, pgs);
+}
+
+int
+gx_install_CIEA(gs_color_space * pcs, gs_state * pgs)
+{
+ gs_cie_a *pcie = pcs->params.a;
+ gs_sample_loop_params_t lp;
+ int i;
+
+#if ENABLE_CUSTOM_COLOR_CALLBACK
+ {
+ /*
+ * Check if we want to use the callback color processing for this
+ * color space.
+ */
+ client_custom_color_params_t * pcb =
+ (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback;
+
+ if (pcb != NULL) {
+ if (pcb->client_procs->install_CIEBasedA(pcb, pcs, pgs))
+ /* Exit if the client will handle the colorspace completely */
+ return 0;
+ }
+ }
+#endif
+ gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp,
+ &pcie->RangeA, "DecodeA");
+ for (i = 0; i <= lp.N; ++i) {
+ float in = SAMPLE_LOOP_VALUE(i, lp);
+
+ pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie);
+ if_debug3('C', "[C]DecodeA[%d] = %g => %g\n",
+ i, in, pcie->caches.DecodeA.floats.values[i]);
+ }
+ gx_cie_load_common_cache(&pcie->common, pgs);
+ gs_cie_a_complete(pcie);
+ return gs_cie_cs_complete(pgs, true);
+}
+
+/* Load the common caches when installing the color space. */
+/* This routine is exported for the benefit of gsicc.c */
+void
+gx_cie_load_common_cache(gs_cie_common * pcie, gs_state * pgs)
+{
+ if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN);
+ cie_matrix_init(&pcie->MatrixLMN);
+ CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges,
+ &pcie->DecodeLMN, DecodeLMN_default, pcie,
+ "DecodeLMN");
+}
+
+/* Complete loading the common caches. */
+/* This routine is exported for the benefit of gsicc.c */
+void
+gx_cie_common_complete(gs_cie_common *pcie)
+{
+ int i;
+
+ for (i = 0; i < 3; ++i)
+ cache_set_linear(&pcie->caches.DecodeLMN[i].floats);
+}
+
+/*
+ * Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to
+ * the dimensions of Table.
+ */
+static void
+gs_cie_defx_scale(float *values, const gs_range *range, int dim)
+{
+ double scale = (dim - 1.0) / (range->rmax - range->rmin);
+ int i;
+
+ for (i = 0; i < gx_cie_cache_size; ++i) {
+ float value = values[i];
+
+ values[i] =
+ (value <= range->rmin ? 0 :
+ value >= range->rmax ? dim - 1 :
+ (value - range->rmin) * scale);
+ }
+}
+
+/* Complete loading a CIEBasedDEFG color space. */
+/* This routine is NOT idempotent. */
+void
+gs_cie_defg_complete(gs_cie_defg * pcie)
+{
+ int j;
+
+ for (j = 0; j < 4; ++j)
+ gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values,
+ &pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]);
+ gs_cie_abc_complete((gs_cie_abc *)pcie);
+}
+
+/* Complete loading a CIEBasedDEF color space. */
+/* This routine is NOT idempotent. */
+void
+gs_cie_def_complete(gs_cie_def * pcie)
+{
+ int j;
+
+ for (j = 0; j < 3; ++j)
+ gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values,
+ &pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]);
+ gs_cie_abc_complete((gs_cie_abc *)pcie);
+}
+
+/* Complete loading a CIEBasedABC color space. */
+/* This routine is idempotent. */
+void
+gs_cie_abc_complete(gs_cie_abc * pcie)
+{
+ cache3_set_linear(&pcie->caches.DecodeABC);
+ pcie->caches.skipABC =
+ cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC,
+ CACHE_THRESHOLD);
+ gx_cie_common_complete((gs_cie_common *)pcie);
+}
+
+/* Complete loading a CIEBasedA color space. */
+/* This routine is idempotent. */
+void
+gs_cie_a_complete(gs_cie_a * pcie)
+{
+ cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA,
+ &pcie->caches.DecodeA.floats,
+ CACHE_THRESHOLD);
+ cache_set_linear(&pcie->caches.DecodeA.floats);
+ gx_cie_common_complete((gs_cie_common *)pcie);
+}
+
+/*
+ * Set the ranges where interpolation is required in a vector cache.
+ * This procedure is idempotent.
+ */
+typedef struct cie_cache_range_temp_s {
+ cie_cached_value prev;
+ int imin, imax;
+} cie_cache_range_temp_t;
+static inline void
+check_interpolation_required(cie_cache_range_temp_t *pccr,
+ cie_cached_value cur, int i, floatp threshold)
+{
+ cie_cached_value prev = pccr->prev;
+
+ if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) {
+ if (i - 1 < pccr->imin)
+ pccr->imin = i - 1;
+ if (i > pccr->imax)
+ pccr->imax = i;
+ }
+ pccr->prev = cur;
+}
+static void
+cie_cache_set_interpolation(gx_cie_vector_cache *pcache, floatp threshold)
+{
+ cie_cached_value base = pcache->vecs.params.base;
+ cie_cached_value factor = pcache->vecs.params.factor;
+ cie_cache_range_temp_t temp[3];
+ int i, j;
+
+ for (j = 0; j < 3; ++j)
+ temp[j].imin = gx_cie_cache_size, temp[j].imax = -1;
+ temp[0].prev = pcache->vecs.values[0].u;
+ temp[1].prev = pcache->vecs.values[0].v;
+ temp[2].prev = pcache->vecs.values[0].w;
+
+ for (i = 0; i < gx_cie_cache_size; ++i) {
+ check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i,
+ threshold);
+ check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i,
+ threshold);
+ check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i,
+ threshold);
+ }
+
+ for (j = 0; j < 3; ++j) {
+ pcache->vecs.params.interpolation_ranges[j].rmin =
+ base + (cie_cached_value)((double)temp[j].imin / factor);
+ pcache->vecs.params.interpolation_ranges[j].rmax =
+ base + (cie_cached_value)((double)temp[j].imax / factor);
+ if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j,
+ cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin),
+ cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax));
+ }
+
+}
+
+/*
+ * Convert a scalar cache to a vector cache by multiplying the scalar
+ * values by a vector. Also set the range where interpolation is needed.
+ * This procedure is idempotent.
+ */
+static void
+cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec,
+ const cie_cache_floats * pcf, floatp threshold)
+{
+ float u = pvec->u, v = pvec->v, w = pvec->w;
+ int i;
+
+ pcache->vecs.params.base = float2cie_cached(pcf->params.base);
+ pcache->vecs.params.factor = float2cie_cached(pcf->params.factor);
+ pcache->vecs.params.limit =
+ float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor +
+ pcf->params.base);
+ for (i = 0; i < gx_cie_cache_size; ++i) {
+ float f = pcf->values[i];
+
+ pcache->vecs.values[i].u = float2cie_cached(f * u);
+ pcache->vecs.values[i].v = float2cie_cached(f * v);
+ pcache->vecs.values[i].w = float2cie_cached(f * w);
+ }
+ cie_cache_set_interpolation(pcache, threshold);
+}
+
+/*
+ * Set the interpolation ranges in a 3-vector cache, based on the ranges in
+ * the individual vector caches. This procedure is idempotent.
+ */
+static void
+cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc)
+{
+ int j, k;
+
+ /* Iterate over output components. */
+ for (j = 0; j < 3; ++j) {
+ /* Iterate over sub-caches. */
+ cie_interpolation_range_t *p =
+ &pvc->caches[0].vecs.params.interpolation_ranges[j];
+ cie_cached_value rmin = p->rmin, rmax = p->rmax;
+
+ for (k = 1; k < 3; ++k) {
+ p = &pvc->caches[k].vecs.params.interpolation_ranges[j];
+ rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax);
+ }
+ pvc->interpolation_ranges[j].rmin = rmin;
+ pvc->interpolation_ranges[j].rmax = rmax;
+ if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n",
+ j, rmin, rmax);
+ }
+}
+
+/*
+ * Convert 3 scalar caches to vector caches by multiplying by a matrix.
+ * Return true iff the resulting cache is an identity transformation.
+ * This procedure is idempotent.
+ */
+static bool
+cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat,
+ floatp threshold)
+{
+ cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold);
+ cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold);
+ cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold);
+ cie_cache3_set_interpolation(pvc);
+ return pmat->is_identity & pvc->caches[0].floats.params.is_identity &
+ pvc->caches[1].floats.params.is_identity &
+ pvc->caches[2].floats.params.is_identity;
+}
+
+/* ------ Install a rendering dictionary ------ */
+
+/* setcolorrendering */
+int
+gs_setcolorrendering(gs_state * pgs, gs_cie_render * pcrd)
+{
+ int code = gs_cie_render_complete(pcrd);
+ const gs_cie_render *pcrd_old = pgs->cie_render;
+ bool joint_ok;
+
+ if (code < 0)
+ return code;
+ if (pcrd_old != 0 && pcrd->id == pcrd_old->id)
+ return 0; /* detect needless reselecting */
+ joint_ok =
+ pcrd_old != 0 &&
+#define CRD_SAME(elt) !memcmp(&pcrd->elt, &pcrd_old->elt, sizeof(pcrd->elt))
+ CRD_SAME(points.WhitePoint) && CRD_SAME(points.BlackPoint) &&
+ CRD_SAME(MatrixPQR) && CRD_SAME(RangePQR) &&
+ CRD_SAME(TransformPQR);
+#undef CRD_SAME
+ rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering");
+ /* Initialize the joint caches if needed. */
+ if (!joint_ok)
+ code = gs_cie_cs_complete(pgs, true);
+ gx_unset_dev_color(pgs);
+ return code;
+}
+
+/* currentcolorrendering */
+const gs_cie_render *
+gs_currentcolorrendering(const gs_state * pgs)
+{
+ return pgs->cie_render;
+}
+
+/* Unshare (allocating if necessary) the joint caches. */
+gx_cie_joint_caches *
+gx_unshare_cie_caches(gs_state * pgs)
+{
+ gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
+
+ rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches,
+ &st_joint_caches, pgs->memory,
+ return 0, "gx_unshare_cie_caches");
+ if (pgs->cie_joint_caches != pjc) {
+ pjc = pgs->cie_joint_caches;
+ pjc->cspace_id = pjc->render_id = gs_no_id;
+ pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT;
+ }
+ return pjc;
+}
+
+gx_cie_joint_caches *
+gx_currentciecaches(gs_state * pgs)
+{
+ return pgs->cie_joint_caches;
+}
+
+/* Compute the parameters for loading a cache, setting base and factor. */
+/* This procedure is idempotent. */
+void
+gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp,
+ const gs_range * domain, client_name_t cname)
+{
+ /*
+ We need to map the values in the range [domain->rmin..domain->rmax].
+ However, if rmin < 0 < rmax and the function is non-linear, this can
+ lead to anomalies at zero, which is the default value for CIE colors.
+ The "correct" way to approach this is to run the mapping functions on
+ demand, but we don't want to deal with the complexities of the
+ callbacks this would involve (especially in the middle of rendering
+ images); instead, we adjust the range so that zero maps precisely to a
+ cache slot. Define:
+
+ A = domain->rmin;
+ B = domain->rmax;
+ N = gx_cie_cache_size - 1;
+
+ R = B - A;
+ h(v) = N * (v - A) / R; // the index of v in the cache
+ X = h(0).
+
+ If X is not an integer, we can decrease A and/increase B to make it
+ one. Let A' and B' be the adjusted values of A and B respectively,
+ and let K be the integer derived from X (either floor(X) or ceil(X)).
+ Define
+
+ f(K) = (K * B' + (N - K) * A') / N).
+
+ We want f(K) = 0. This occurs precisely when, for any real number
+ C != 0,
+
+ A' = -K * C;
+ B' = (N - K) * C.
+
+ In order to ensure A' <= A and B' >= B, we require
+
+ C >= -A / K;
+ C >= B / (N - K).
+
+ Since A' and B' must be exactly representable as floats, we round C
+ upward to ensure that it has no more than M mantissa bits, where
+
+ M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)).
+ */
+ float A = domain->rmin, B = domain->rmax;
+ double R = B - A, delta;
+#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */
+#define N NN
+#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE
+
+ /* Adjust the range if necessary. */
+ if (A < 0 && B >= 0) {
+ const double X = -N * A / R; /* know X > 0 */
+ /* Choose K to minimize range expansion. */
+ const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */
+ const double Ca = -A / K, Cb = B / (N - K); /* know Ca, Cb > 0 */
+ double C = max(Ca, Cb); /* know C > 0 */
+ const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N;
+ int cexp;
+ const double cfrac = frexp(C, &cexp);
+
+ if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n",
+ A, B, X, K);
+ /* Round C to no more than M significant bits. See above. */
+ C = ldexp(ceil(ldexp(cfrac, M)), cexp - M);
+ /* Finally, compute A' and B'. */
+ A = -K * C;
+ B = (N - K) * C;
+ if_debug2('c', "[c] => %8g, %8g\n", A, B);
+ R = B - A;
+ }
+ delta = R / N;
+#ifdef CIE_CACHE_INTERPOLATE
+ pcache->base = A; /* no rounding */
+#else
+ pcache->base = A - delta / 2; /* so lookup will round */
+#endif
+ /*
+ * If size of the domain is zero, then use 1.0 as the scaling
+ * factor. This prevents divide by zero errors in later calculations.
+ * This should only occurs with zero matrices. It does occur with
+ * Genoa test file 050-01.ps.
+ */
+ pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R);
+ if_debug4('c', "[c]cache %s 0x%lx base=%g, factor=%g\n",
+ (const char *)cname, (ulong) pcache,
+ pcache->base, pcache->factor);
+ pslp->A = A;
+ pslp->B = B;
+#undef N
+ pslp->N = NN;
+#undef NN
+}
+
+/* ------ Complete a rendering structure ------ */
+
+/*
+ * Compute the derived values in a CRD that don't involve the cached
+ * procedure values. This procedure is idempotent.
+ */
+static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *,
+ gs_range3 *);
+int
+gs_cie_render_init(gs_cie_render * pcrd)
+{
+ gs_matrix3 PQR_inverse;
+
+ if (pcrd->status >= CIE_RENDER_STATUS_INITED)
+ return 0; /* init already done */
+ if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN);
+ cie_matrix_init(&pcrd->MatrixLMN);
+ if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC);
+ cie_matrix_init(&pcrd->MatrixABC);
+ if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR);
+ cie_matrix_init(&pcrd->MatrixPQR);
+ cie_invert3(&pcrd->MatrixPQR, &PQR_inverse);
+ cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse,
+ &pcrd->MatrixPQR_inverse_LMN);
+ cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN,
+ &pcrd->DomainLMN);
+ cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC,
+ &pcrd->DomainABC);
+ cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr);
+ cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr);
+ pcrd->status = CIE_RENDER_STATUS_INITED;
+ return 0;
+}
+
+/*
+ * Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
+ * load the caches. This procedure is idempotent.
+ */
+int
+gs_cie_render_sample(gs_cie_render * pcrd)
+{
+ int code;
+
+ if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED)
+ return 0; /* sampling already done */
+ code = gs_cie_render_init(pcrd);
+ if (code < 0)
+ return code;
+ CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges,
+ &pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN");
+ cache3_set_linear(&pcrd->caches.EncodeLMN);
+ CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges,
+ &pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC");
+ if (pcrd->RenderTable.lookup.table != 0) {
+ int i, j, m = pcrd->RenderTable.lookup.m;
+ gs_sample_loop_params_t lp;
+ bool is_identity = true;
+
+ for (j = 0; j < m; j++) {
+ gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params,
+ &lp, &Range3_default.ranges[0],
+ "RenderTableT");
+ is_identity &= pcrd->RenderTable.T.procs[j] ==
+ RenderTableT_default.procs[j];
+ }
+ pcrd->caches.RenderTableT_is_identity = is_identity;
+ /*
+ * Unfortunately, we defined the first argument of the RenderTable
+ * T procedures as being a byte, limiting the number of distinct
+ * cache entries to 256 rather than gx_cie_cache_size.
+ * We confine this decision to this loop, rather than propagating
+ * it to the procedures that use the cached data, so that we can
+ * change it more easily at some future time.
+ */
+ for (i = 0; i < gx_cie_cache_size; i++) {
+#if gx_cie_log2_cache_size >= 8
+ byte value = i >> (gx_cie_log2_cache_size - 8);
+#else
+ byte value = (i << (8 - gx_cie_log2_cache_size)) +
+ (i >> (gx_cie_log2_cache_size * 2 - 8));
+#endif
+ for (j = 0; j < m; j++) {
+ pcrd->caches.RenderTableT[j].fracs.values[i] =
+ (*pcrd->RenderTable.T.procs[j])(value, pcrd);
+ if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n",
+ i, j,
+ frac2float(pcrd->caches.RenderTableT[j].fracs.values[i]));
+ }
+ }
+ }
+ pcrd->status = CIE_RENDER_STATUS_SAMPLED;
+ return 0;
+}
+
+/* Transform a set of ranges. */
+static void
+cie_transform_range(const gs_range3 * in, floatp mu, floatp mv, floatp mw,
+ gs_range * out)
+{
+ float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax;
+ float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax;
+ float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax;
+ float temp;
+
+ if (umin > umax)
+ temp = umin, umin = umax, umax = temp;
+ if (vmin > vmax)
+ temp = vmin, vmin = vmax, vmax = temp;
+ if (wmin > wmax)
+ temp = wmin, wmin = wmax, wmax = temp;
+ out->rmin = umin + vmin + wmin;
+ out->rmax = umax + vmax + wmax;
+}
+static void
+cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat,
+ gs_range3 * out)
+{
+ cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u,
+ &out->ranges[0]);
+ cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v,
+ &out->ranges[1]);
+ cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w,
+ &out->ranges[2]);
+}
+
+/*
+ * Finish preparing a CRD for installation, by restricting and/or
+ * transforming the cached procedure values.
+ * This procedure is idempotent.
+ */
+int
+gs_cie_render_complete(gs_cie_render * pcrd)
+{
+ int code;
+
+ if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED)
+ return 0; /* completion already done */
+ code = gs_cie_render_sample(pcrd);
+ if (code < 0)
+ return code;
+ /*
+ * Since range restriction happens immediately after
+ * the cache lookup, we can save a step by restricting
+ * the values in the cache entries.
+ *
+ * If there is no lookup table, we want the final ABC values
+ * to be fracs; if there is a table, we want them to be
+ * appropriately scaled ints.
+ */
+ pcrd->MatrixABCEncode = pcrd->MatrixABC;
+ {
+ int c;
+ double f;
+
+ for (c = 0; c < 3; c++) {
+ gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c];
+
+ cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats,
+ &pcrd->RangeLMN.ranges[c]);
+ cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats,
+ &pcrd->RangeABC.ranges[c]);
+ if (pcrd->RenderTable.lookup.table == 0) {
+ cie_cache_restrict(&pcache->floats,
+ &Range3_default.ranges[0]);
+ gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs);
+ pcache->fixeds.fracs.params.is_identity = false;
+ } else {
+ int i;
+ int n = pcrd->RenderTable.lookup.dims[c];
+
+#ifdef CIE_RENDER_TABLE_INTERPOLATE
+# define SCALED_INDEX(f, n, itemp)\
+ RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\
+ (n) << _cie_interpolate_bits, itemp)
+#else
+ int m = pcrd->RenderTable.lookup.m;
+ int k =
+ (c == 0 ? 1 : c == 1 ?
+ m * pcrd->RenderTable.lookup.dims[2] : m);
+# define SCALED_INDEX(f, n, itemp)\
+ (RESTRICTED_INDEX(f, n, itemp) * k)
+#endif
+ const gs_range *prange = pcrd->RangeABC.ranges + c;
+ double scale = (n - 1) / (prange->rmax - prange->rmin);
+
+ for (i = 0; i < gx_cie_cache_size; ++i) {
+ float v =
+ (pcache->floats.values[i] - prange->rmin) * scale
+#ifndef CIE_RENDER_TABLE_INTERPOLATE
+ + 0.5
+#endif
+ ;
+ int itemp;
+
+ if_debug5('c',
+ "[c]cache[%d][%d] = %g => %g => %d\n",
+ c, i, pcache->floats.values[i], v,
+ SCALED_INDEX(v, n, itemp));
+ pcache->fixeds.ints.values[i] =
+ SCALED_INDEX(v, n, itemp);
+ }
+ pcache->fixeds.ints.params = pcache->floats.params;
+ pcache->fixeds.ints.params.is_identity = false;
+#undef SCALED_INDEX
+ }
+ }
+ /* Fold the scaling of the EncodeABC cache index */
+ /* into MatrixABC. */
+#define MABC(i, t)\
+ f = pcrd->caches.EncodeABC[i].floats.params.factor;\
+ pcrd->MatrixABCEncode.cu.t *= f;\
+ pcrd->MatrixABCEncode.cv.t *= f;\
+ pcrd->MatrixABCEncode.cw.t *= f;\
+ pcrd->EncodeABC_base[i] =\
+ float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f)
+ MABC(0, u);
+ MABC(1, v);
+ MABC(2, w);
+#undef MABC
+ pcrd->MatrixABCEncode.is_identity = 0;
+ }
+ cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode,
+ CACHE_THRESHOLD);
+ pcrd->status = CIE_RENDER_STATUS_COMPLETED;
+ return 0;
+}
+
+/* Apply a range restriction to a cache. */
+static void
+cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange)
+{
+ int i;
+
+ for (i = 0; i < gx_cie_cache_size; i++) {
+ float v = pcache->values[i];
+
+ if (v < prange->rmin)
+ pcache->values[i] = prange->rmin;
+ else if (v > prange->rmax)
+ pcache->values[i] = prange->rmax;
+ }
+}
+
+/* Convert a cache from floats to fracs. */
+/* Note that the two may be aliased. */
+void
+gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs)
+{
+ int i;
+
+ /* Loop from bottom to top so that we don't */
+ /* overwrite elements before they're used. */
+ for (i = 0; i < gx_cie_cache_size; ++i)
+ pfracs->values[i] = float2frac(pfloats->values[i]);
+ pfracs->params = pfloats->params;
+}
+
+/* ------ Fill in the joint cache ------ */
+
+/* If the current color space is a CIE space, or has a CIE base space, */
+/* return a pointer to the common part of the space; otherwise return 0. */
+static const gs_cie_common *
+cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc)
+{
+ const gs_color_space *pcs = pcs_orig;
+
+ *ppabc = 0;
+ do {
+ switch (pcs->type->index) {
+ case gs_color_space_index_CIEDEF:
+ *ppabc = (const gs_cie_abc *)pcs->params.def;
+ return &pcs->params.def->common;
+ case gs_color_space_index_CIEDEFG:
+ *ppabc = (const gs_cie_abc *)pcs->params.defg;
+ return &pcs->params.defg->common;
+ case gs_color_space_index_CIEABC:
+ *ppabc = pcs->params.abc;
+ return &pcs->params.abc->common;
+ case gs_color_space_index_CIEA:
+ return &pcs->params.a->common;
+ case gs_color_space_index_CIEICC:
+ return &pcs->params.icc.picc_info->common;
+ default:
+ pcs = gs_cspace_base_space(pcs);
+ break;
+ }
+ } while (pcs != 0);
+
+ return 0;
+}
+const gs_cie_common *
+gs_cie_cs_common(const gs_state * pgs)
+{
+ const gs_cie_abc *ignore_pabc;
+
+ return cie_cs_common_abc(pgs->color_space, &ignore_pabc);
+}
+
+/*
+ * Mark the joint caches as needing completion. This is done lazily,
+ * when a color is being mapped. However, make sure the joint caches
+ * exist now.
+ */
+int
+gs_cie_cs_complete(gs_state * pgs, bool init)
+{
+ gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs);
+
+ if (pjc == 0)
+ return_error(gs_error_VMerror);
+ pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED);
+ return 0;
+}
+/* Actually complete the joint caches. */
+int
+gs_cie_jc_complete(const gs_imager_state *pis, const gs_color_space *pcs)
+{
+ const gs_cie_abc *pabc;
+ const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc);
+ gs_cie_render *pcrd = pis->cie_render;
+ gx_cie_joint_caches *pjc = pis->cie_joint_caches;
+
+ if (pjc->cspace_id == pcs->id &&
+ pjc->render_id == pcrd->id)
+ pjc->status = pjc->id_status;
+ switch (pjc->status) {
+ case CIE_JC_STATUS_BUILT: {
+ int code = cie_joint_caches_init(pjc, common, pcrd);
+
+ if (code < 0)
+ return code;
+ }
+ /* falls through */
+ case CIE_JC_STATUS_INITED:
+ cie_joint_caches_complete(pjc, common, pabc, pcrd);
+ pjc->cspace_id = pcs->id;
+ pjc->render_id = pcrd->id;
+ pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED;
+ /* falls through */
+ case CIE_JC_STATUS_COMPLETED:
+ break;
+ }
+ return 0;
+}
+
+/*
+ * Compute the source and destination WhitePoint and BlackPoint for
+ * the TransformPQR procedure.
+ */
+int
+gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
+ const gs_cie_common * pcie,
+ const gs_cie_render * pcrd)
+{
+ gs_cie_wbsd *pwbsd = &pjc->points_sd;
+
+ pwbsd->ws.xyz = pcie->points.WhitePoint;
+ cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr);
+ pwbsd->bs.xyz = pcie->points.BlackPoint;
+ cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr);
+ pwbsd->wd.xyz = pcrd->points.WhitePoint;
+ pwbsd->wd.pqr = pcrd->wdpqr;
+ pwbsd->bd.xyz = pcrd->points.BlackPoint;
+ pwbsd->bd.pqr = pcrd->bdpqr;
+ return 0;
+}
+
+/*
+ * Sample the TransformPQR procedure for the joint caches.
+ * This routine is idempotent.
+ */
+static int
+cie_joint_caches_init(gx_cie_joint_caches * pjc,
+ const gs_cie_common * pcie,
+ gs_cie_render * pcrd)
+{
+ bool is_identity;
+ int j;
+
+ gs_cie_compute_points_sd(pjc, pcie, pcrd);
+ /*
+ * If a client pre-loaded the cache, we can't adjust the range.
+ * ****** WRONG ******
+ */
+ if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc)
+ return 0;
+ is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc;
+ for (j = 0; j < 3; j++) {
+ int i;
+ gs_sample_loop_params_t lp;
+
+ gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp,
+ &pcrd->RangePQR.ranges[j], "TransformPQR");
+ for (i = 0; i <= lp.N; ++i) {
+ float in = SAMPLE_LOOP_VALUE(i, lp);
+ float out;
+ int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd,
+ pcrd, &out);
+
+ if (code < 0)
+ return code;
+ pjc->TransformPQR.caches[j].floats.values[i] = out;
+ if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n",
+ j, i, in, out);
+ }
+ pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity;
+ }
+ return 0;
+}
+
+/*
+ * Complete the loading of the joint caches.
+ * This routine is idempotent.
+ */
+static void
+cie_joint_caches_complete(gx_cie_joint_caches * pjc,
+ const gs_cie_common * pcie,
+ const gs_cie_abc * pabc /* NULL if CIEA */,
+ const gs_cie_render * pcrd)
+{
+ gs_matrix3 mat3, mat2;
+ gs_matrix3 MatrixLMN_PQR;
+ int j;
+
+ pjc->remap_finish = gx_cie_real_remap_finish;
+
+ /*
+ * We number the pipeline steps as follows:
+ * 1 - DecodeABC/MatrixABC
+ * 2 - DecodeLMN/MatrixLMN/MatrixPQR
+ * 3 - TransformPQR/MatrixPQR'/MatrixLMN
+ * 4 - EncodeLMN/MatrixABC
+ * 5 - EncodeABC, RenderTable (we don't do anything with this here)
+ * We work from back to front, combining steps where possible.
+ * Currently we only combine steps if a procedure is the identity
+ * transform, but we could do it whenever the procedure is linear.
+ * A project for another day....
+ */
+
+ /* Step 4 */
+
+#ifdef OPTIMIZE_CIE_MAPPING
+ if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity &&
+ pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity &&
+ pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity
+ ) {
+ /* Fold step 4 into step 3. */
+ if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n");
+ cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN,
+ &mat3);
+ pjc->skipEncodeLMN = true;
+ } else
+#endif /* OPTIMIZE_CIE_MAPPING */
+ {
+ if_debug0('c', "[c]EncodeLMN is not identity.\n");
+ mat3 = pcrd->MatrixPQR_inverse_LMN;
+ pjc->skipEncodeLMN = false;
+ }
+
+ /* Step 3 */
+
+ cache3_set_linear(&pjc->TransformPQR);
+ cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN,
+ &MatrixLMN_PQR);
+
+#ifdef OPTIMIZE_CIE_MAPPING
+ if (pjc->TransformPQR.caches[0].floats.params.is_identity &
+ pjc->TransformPQR.caches[1].floats.params.is_identity &
+ pjc->TransformPQR.caches[2].floats.params.is_identity
+ ) {
+ /* Fold step 3 into step 2. */
+ if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n");
+ cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2);
+ pjc->skipPQR = true;
+ } else
+#endif /* OPTIMIZE_CIE_MAPPING */
+ {
+ if_debug0('c', "[c]TransformPQR is not identity.\n");
+ mat2 = MatrixLMN_PQR;
+ for (j = 0; j < 3; j++) {
+ cie_cache_restrict(&pjc->TransformPQR.caches[j].floats,
+ &pcrd->RangePQR.ranges[j]);
+ }
+ cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD);
+ pjc->skipPQR = false;
+ }
+
+ /* Steps 2 & 1 */
+
+#ifdef OPTIMIZE_CIE_MAPPING
+ if (pcie->caches.DecodeLMN[0].floats.params.is_identity &
+ pcie->caches.DecodeLMN[1].floats.params.is_identity &
+ pcie->caches.DecodeLMN[2].floats.params.is_identity
+ ) {
+ if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n");
+ if (!pabc) {
+ pjc->skipDecodeLMN = mat2.is_identity;
+ pjc->skipDecodeABC = false;
+ if (!pjc->skipDecodeLMN) {
+ for (j = 0; j < 3; j++) {
+ cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
+ &pcie->caches.DecodeLMN[j].floats,
+ CACHE_THRESHOLD);
+ }
+ cie_cache3_set_interpolation(&pjc->DecodeLMN);
+ }
+ } else {
+ /*
+ * Fold step 2 into step 1. This is a little different because
+ * the data for step 1 are in the color space structure.
+ */
+ gs_matrix3 mat1;
+
+ cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1);
+ for (j = 0; j < 3; j++) {
+ cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j,
+ &pabc->caches.DecodeABC.caches[j].floats,
+ CACHE_THRESHOLD);
+ }
+ cie_cache3_set_interpolation(&pjc->DecodeLMN);
+ pjc->skipDecodeLMN = false;
+ pjc->skipDecodeABC = true;
+ }
+ } else
+#endif /* OPTIMIZE_CIE_MAPPING */
+ {
+ if_debug0('c', "[c]DecodeLMN is not identity.\n");
+ for (j = 0; j < 3; j++) {
+ cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
+ &pcie->caches.DecodeLMN[j].floats,
+ CACHE_THRESHOLD);
+ }
+ cie_cache3_set_interpolation(&pjc->DecodeLMN);
+ pjc->skipDecodeLMN = false;
+ pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
+ }
+
+}
+
+/*
+ * Initialize (just enough of) an imager state so that "concretizing" colors
+ * using this imager state will do only the CIE->XYZ mapping. This is a
+ * semi-hack for the PDF writer.
+ */
+int
+gx_cie_to_xyz_alloc(gs_imager_state **ppis, const gs_color_space *pcs,
+ gs_memory_t *mem)
+{
+ /*
+ * In addition to the imager state itself, we need the joint caches.
+ */
+ gs_imager_state *pis =
+ gs_alloc_struct(mem, gs_imager_state, &st_imager_state,
+ "gx_cie_to_xyz_alloc(imager state)");
+ gx_cie_joint_caches *pjc;
+ const gs_cie_abc *pabc;
+ const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc);
+ int j;
+
+ if (pis == 0)
+ return_error(gs_error_VMerror);
+ memset(pis, 0, sizeof(*pis)); /* mostly paranoia */
+ pis->memory = mem;
+ gs_imager_state_initialize(pis, mem);
+
+ pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches,
+ "gx_cie_to_xyz_free(joint caches)");
+ if (pjc == 0) {
+ gs_free_object(mem, pis, "gx_cie_to_xyz_alloc(imager state)");
+ return_error(gs_error_VMerror);
+ }
+
+ /*
+ * Perform an abbreviated version of cie_joint_caches_complete.
+ * Don't bother with any optimizations.
+ */
+ for (j = 0; j < 3; j++) {
+ cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j,
+ &pcie->caches.DecodeLMN[j].floats,
+ CACHE_THRESHOLD);
+ }
+ cie_cache3_set_interpolation(&pjc->DecodeLMN);
+ pjc->skipDecodeLMN = false;
+ pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
+ /* Mark the joint caches as completed. */
+ pjc->remap_finish = gx_cie_xyz_remap_finish;
+ pjc->cspace_id = pcs->id;
+ pjc->status = CIE_JC_STATUS_COMPLETED;
+ pis->cie_joint_caches = pjc;
+ pis->cie_to_xyz = true;
+ *ppis = pis;
+ return 0;
+}
+void
+gx_cie_to_xyz_free(gs_imager_state *pis)
+{
+ gs_memory_t *mem = pis->memory;
+
+ gs_free_object(mem, pis->cie_joint_caches,
+ "gx_cie_to_xyz_free(joint caches)");
+ gs_free_object(mem, pis, "gx_cie_to_xyz_free(imager state)");
+}
+
+/* ================ Utilities ================ */
+
+/* Multiply a vector by a matrix. */
+/* Note that we are computing M * V where v is a column vector. */
+static void
+cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
+ gs_vector3 * out)
+{
+ if_debug_vector3("[c]mult", in);
+ if_debug_matrix3(" *", mat);
+ {
+ float u = in->u, v = in->v, w = in->w;
+
+ out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u);
+ out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v);
+ out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w);
+ }
+ if_debug_vector3(" =", out);
+}
+
+/*
+ * Multiply two matrices. Note that the composition of the transformations
+ * M1 followed by M2 is M2 * M1, not M1 * M2. (See gscie.h for details.)
+ */
+static void
+cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc)
+{
+ gs_matrix3 mprod;
+ gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc);
+
+ if_debug_matrix3("[c]matrix_mult", ma);
+ if_debug_matrix3(" *", mb);
+ cie_mult3(&mb->cu, ma, &mp->cu);
+ cie_mult3(&mb->cv, ma, &mp->cv);
+ cie_mult3(&mb->cw, ma, &mp->cw);
+ cie_matrix_init(mp);
+ if_debug_matrix3(" =", mp);
+ if (mp != mc)
+ *mc = *mp;
+}
+
+/* Invert a matrix. */
+/* The output must not be an alias for the input. */
+static void
+cie_invert3(const gs_matrix3 *in, gs_matrix3 *out)
+{ /* This is a brute force algorithm; maybe there are better. */
+ /* We label the array elements */
+ /* [ A B C ] */
+ /* [ D E F ] */
+ /* [ G H I ] */
+#define A cu.u
+#define B cv.u
+#define C cw.u
+#define D cu.v
+#define E cv.v
+#define F cw.v
+#define G cu.w
+#define H cv.w
+#define I cw.w
+ double coA = in->E * in->I - in->F * in->H;
+ double coB = in->F * in->G - in->D * in->I;
+ double coC = in->D * in->H - in->E * in->G;
+ double det = in->A * coA + in->B * coB + in->C * coC;
+
+ if_debug_matrix3("[c]invert", in);
+ out->A = coA / det;
+ out->D = coB / det;
+ out->G = coC / det;
+ out->B = (in->C * in->H - in->B * in->I) / det;
+ out->E = (in->A * in->I - in->C * in->G) / det;
+ out->H = (in->B * in->G - in->A * in->H) / det;
+ out->C = (in->B * in->F - in->C * in->E) / det;
+ out->F = (in->C * in->D - in->A * in->F) / det;
+ out->I = (in->A * in->E - in->B * in->D) / det;
+ if_debug_matrix3(" =", out);
+#undef A
+#undef B
+#undef C
+#undef D
+#undef E
+#undef F
+#undef G
+#undef H
+#undef I
+ out->is_identity = in->is_identity;
+}
+
+/* Set the is_identity flag that accelerates multiplication. */
+static void
+cie_matrix_init(register gs_matrix3 * mat)
+{
+ mat->is_identity =
+ mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
+ mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
+ mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
+}
+
+bool
+gx_color_space_needs_cie_caches(const gs_color_space * pcs)
+{
+ switch (pcs->type->index) {
+ case gs_color_space_index_CIEDEFG:
+ case gs_color_space_index_CIEDEF:
+ case gs_color_space_index_CIEABC:
+ case gs_color_space_index_CIEA:
+ case gs_color_space_index_CIEICC:
+ return true;
+ case gs_color_space_index_DevicePixel:
+ case gs_color_space_index_DeviceN:
+ case gs_color_space_index_Separation:
+ case gs_color_space_index_Indexed:
+ case gs_color_space_index_Pattern:
+ return gx_color_space_needs_cie_caches(pcs->base_space);
+ default:
+ return false;
+ }
+}