diff options
Diffstat (limited to 'gs/base/gscie.c')
-rw-r--r-- | gs/base/gscie.c | 1603 |
1 files changed, 1603 insertions, 0 deletions
diff --git a/gs/base/gscie.c b/gs/base/gscie.c new file mode 100644 index 000000000..7bee78be0 --- /dev/null +++ b/gs/base/gscie.c @@ -0,0 +1,1603 @@ +/* Copyright (C) 2001-2006 Artifex Software, Inc. + All Rights Reserved. + + This software is provided AS-IS with no warranty, either express or + implied. + + This software is distributed under license and may not be copied, modified + or distributed except as expressly authorized under the terms of that + license. Refer to licensing information at http://www.artifex.com/ + or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, + San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information. +*/ + +/* $Id$ */ +/* CIE color rendering cache management */ +#include "math_.h" +#include "memory_.h" +#include "gx.h" +#include "gserrors.h" +#include "gsstruct.h" +#include "gsmatrix.h" /* for gscolor2.h */ +#include "gxcspace.h" /* for gxcie.c */ +#include "gscolor2.h" /* for gs_set/currentcolorrendering */ +#include "gxarith.h" +#include "gxcie.h" +#include "gxdevice.h" /* for gxcmap.h */ +#include "gxcmap.h" +#include "gzstate.h" +#include "gsicc.h" + +/* + * Define whether to optimize the CIE mapping process by combining steps. + * This should only be disabled (commented out) for debugging. + */ +#define OPTIMIZE_CIE_MAPPING + +/* Forward references */ +static int cie_joint_caches_init(gx_cie_joint_caches *, + const gs_cie_common *, + gs_cie_render *); +static void cie_joint_caches_complete(gx_cie_joint_caches *, + const gs_cie_common *, + const gs_cie_abc *, + const gs_cie_render *); +static void cie_cache_restrict(cie_cache_floats *, const gs_range *); +static void cie_mult3(const gs_vector3 *, const gs_matrix3 *, + gs_vector3 *); +static void cie_matrix_mult3(const gs_matrix3 *, const gs_matrix3 *, + gs_matrix3 *); +static void cie_invert3(const gs_matrix3 *, gs_matrix3 *); +static void cie_matrix_init(gs_matrix3 *); + +/* Allocator structure types */ +private_st_joint_caches(); +extern_st(st_imager_state); + +#define RESTRICTED_INDEX(v, n, itemp)\ + ((uint)(itemp = (int)(v)) >= (n) ?\ + (itemp < 0 ? 0 : (n) - 1) : itemp) + +/* Define cache interpolation threshold values. */ +#ifdef CIE_CACHE_INTERPOLATE +# ifdef CIE_INTERPOLATE_THRESHOLD +# define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD +# else +# define CACHE_THRESHOLD 0 /* always interpolate */ +# endif +#else +# define CACHE_THRESHOLD 1.0e6 /* never interpolate */ +#endif +#ifdef CIE_RENDER_TABLE_INTERPOLATE +# define RENDER_TABLE_THRESHOLD 0 +#else +# define RENDER_TABLE_THRESHOLD 1.0e6 +#endif + +/* + * Determine whether a function is a linear transformation of the form + * f(x) = scale * x + origin. + */ +static bool +cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf) +{ + double origin = pcf->values[0]; + double diff = pcf->values[countof(pcf->values) - 1] - origin; + double scale = diff / (countof(pcf->values) - 1); + int i; + double test = origin + scale; + + for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale) + if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values)) + return (params->is_linear = false); + params->origin = origin - pcf->params.base; + params->scale = + diff * pcf->params.factor / (countof(pcf->values) - 1); + return (params->is_linear = true); +} + +static void +cache_set_linear(cie_cache_floats *pcf) +{ + if (pcf->params.is_identity) { + if_debug1('c', "[c]is_linear(0x%lx) = true (is_identity)\n", + (ulong)pcf); + pcf->params.linear.is_linear = true; + pcf->params.linear.origin = 0; + pcf->params.linear.scale = 1; + } else if (cache_is_linear(&pcf->params.linear, pcf)) { + if (pcf->params.linear.origin == 0 && + fabs(pcf->params.linear.scale - 1) < 0.00001) + pcf->params.is_identity = true; + if_debug4('c', + "[c]is_linear(0x%lx) = true, origin = %g, scale = %g%s\n", + (ulong)pcf, pcf->params.linear.origin, + pcf->params.linear.scale, + (pcf->params.is_identity ? " (=> is_identity)" : "")); + } +#ifdef DEBUG + else + if_debug1('c', "[c]linear(0x%lx) = false\n", (ulong)pcf); +#endif +} +static void +cache3_set_linear(gx_cie_vector_cache3_t *pvc) +{ + cache_set_linear(&pvc->caches[0].floats); + cache_set_linear(&pvc->caches[1].floats); + cache_set_linear(&pvc->caches[2].floats); +} + +#ifdef DEBUG +static void +if_debug_vector3(const char *str, const gs_vector3 *vec) +{ + if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w); +} +static void +if_debug_matrix3(const char *str, const gs_matrix3 *mat) +{ + if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str, + mat->cu.u, mat->cu.v, mat->cu.w, + mat->cv.u, mat->cv.v, mat->cv.w, + mat->cw.u, mat->cw.v, mat->cw.w); +} +#else +# define if_debug_vector3(str, vec) DO_NOTHING +# define if_debug_matrix3(str, mat) DO_NOTHING +#endif + +/* ------ Default values for CIE dictionary elements ------ */ + +/* Default transformation procedures. */ + +static float +a_identity(floatp in, const gs_cie_a * pcie) +{ + return in; +} +static float +a_from_cache(floatp in, const gs_cie_a * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats); +} + +static float +abc_identity(floatp in, const gs_cie_abc * pcie) +{ + return in; +} +static float +abc_from_cache_0(floatp in, const gs_cie_abc * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats); +} +static float +abc_from_cache_1(floatp in, const gs_cie_abc * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats); +} +static float +abc_from_cache_2(floatp in, const gs_cie_abc * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats); +} + +static float +def_identity(floatp in, const gs_cie_def * pcie) +{ + return in; +} +static float +def_from_cache_0(floatp in, const gs_cie_def * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats); +} +static float +def_from_cache_1(floatp in, const gs_cie_def * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats); +} +static float +def_from_cache_2(floatp in, const gs_cie_def * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats); +} + +static float +defg_identity(floatp in, const gs_cie_defg * pcie) +{ + return in; +} +static float +defg_from_cache_0(floatp in, const gs_cie_defg * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats); +} +static float +defg_from_cache_1(floatp in, const gs_cie_defg * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats); +} +static float +defg_from_cache_2(floatp in, const gs_cie_defg * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats); +} +static float +defg_from_cache_3(floatp in, const gs_cie_defg * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats); +} + +static float +common_identity(floatp in, const gs_cie_common * pcie) +{ + return in; +} +static float +lmn_from_cache_0(floatp in, const gs_cie_common * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats); +} +static float +lmn_from_cache_1(floatp in, const gs_cie_common * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats); +} +static float +lmn_from_cache_2(floatp in, const gs_cie_common * pcie) +{ + return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats); +} + +/* Transformation procedures for accessing an already-loaded cache. */ + +float +gs_cie_cached_value(floatp in, const cie_cache_floats *pcache) +{ + /* + * We need to get the same results when we sample an already-loaded + * cache, so we need to round the index just a tiny bit. + */ + int index = + (int)((in - pcache->params.base) * pcache->params.factor + 0.0001); + + CIE_CLAMP_INDEX(index); + return pcache->values[index]; +} + +/* Default vectors and matrices. */ + +const gs_range3 Range3_default = { + { {0, 1}, {0, 1}, {0, 1} } +}; +const gs_range4 Range4_default = { + { {0, 1}, {0, 1}, {0, 1}, {0, 1} } +}; +const gs_cie_defg_proc4 DecodeDEFG_default = { + {defg_identity, defg_identity, defg_identity, defg_identity} +}; +const gs_cie_defg_proc4 DecodeDEFG_from_cache = { + {defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3} +}; +const gs_cie_def_proc3 DecodeDEF_default = { + {def_identity, def_identity, def_identity} +}; +const gs_cie_def_proc3 DecodeDEF_from_cache = { + {def_from_cache_0, def_from_cache_1, def_from_cache_2} +}; +const gs_cie_abc_proc3 DecodeABC_default = { + {abc_identity, abc_identity, abc_identity} +}; +const gs_cie_abc_proc3 DecodeABC_from_cache = { + {abc_from_cache_0, abc_from_cache_1, abc_from_cache_2} +}; +const gs_cie_common_proc3 DecodeLMN_default = { + {common_identity, common_identity, common_identity} +}; +const gs_cie_common_proc3 DecodeLMN_from_cache = { + {lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2} +}; +const gs_matrix3 Matrix3_default = { + {1, 0, 0}, + {0, 1, 0}, + {0, 0, 1}, + 1 /*true */ +}; +const gs_range RangeA_default = {0, 1}; +const gs_cie_a_proc DecodeA_default = a_identity; +const gs_cie_a_proc DecodeA_from_cache = a_from_cache; +const gs_vector3 MatrixA_default = {1, 1, 1}; +const gs_vector3 BlackPoint_default = {0, 0, 0}; + +/* Initialize a CIE color. */ +/* This only happens on setcolorspace. */ +void +gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs) +{ + gx_init_paint_4(pcc, pcs); + /* (0...) may not be within the range of allowable values. */ + (*pcs->type->restrict_color)(pcc, pcs); +} + +/* Restrict CIE colors. */ + +static inline void +cie_restrict(float *pv, const gs_range *range) +{ + if (*pv <= range->rmin) + *pv = range->rmin; + else if (*pv >= range->rmax) + *pv = range->rmax; +} + +void +gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs) +{ + const gs_cie_defg *pcie = pcs->params.defg; + + cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]); + cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]); + cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]); + cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]); +} +void +gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs) +{ + const gs_cie_def *pcie = pcs->params.def; + + cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]); + cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]); + cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]); +} +void +gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs) +{ + const gs_cie_abc *pcie = pcs->params.abc; + + cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]); + cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]); + cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]); +} +void +gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs) +{ + const gs_cie_a *pcie = pcs->params.a; + + cie_restrict(&pcc->paint.values[0], &pcie->RangeA); +} + +/* ================ Table setup ================ */ + +/* ------ Install a CIE color space ------ */ + +static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *, + const cie_cache_floats *, floatp); +static bool cie_cache_mult3(gx_cie_vector_cache3_t *, + const gs_matrix3 *, floatp); + +int +gx_install_cie_abc(gs_cie_abc *pcie, gs_state * pgs) +{ + if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC); + cie_matrix_init(&pcie->MatrixABC); + CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges, + &pcie->DecodeABC, DecodeABC_default, pcie, + "DecodeABC"); + gx_cie_load_common_cache(&pcie->common, pgs); + gs_cie_abc_complete(pcie); + return gs_cie_cs_complete(pgs, true); +} + +int +gx_install_CIEDEFG(gs_color_space * pcs, gs_state * pgs) +{ + gs_cie_defg *pcie = pcs->params.defg; + +#if ENABLE_CUSTOM_COLOR_CALLBACK + { + /* + * Check if we want to use the callback color processing for this + * color space. + */ + client_custom_color_params_t * pcb = + (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback; + + if (pcb != NULL) { + if (pcb->client_procs->install_CIEBasedDEFG(pcb, pcs, pgs)) + /* Exit if the client will handle the colorspace completely */ + return 0; + } + } +#endif + CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges, + &pcie->DecodeDEFG, DecodeDEFG_default, pcie, + "DecodeDEFG"); + return gx_install_cie_abc((gs_cie_abc *)pcie, pgs); +} + +int +gx_install_CIEDEF(gs_color_space * pcs, gs_state * pgs) +{ + gs_cie_def *pcie = pcs->params.def; + +#if ENABLE_CUSTOM_COLOR_CALLBACK + { + /* + * Check if we want to use the callback color processing for this + * color space. + */ + client_custom_color_params_t * pcb = + (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback; + + if (pcb != NULL) { + if (pcb->client_procs->install_CIEBasedDEF(pcb, pcs, pgs)) + /* Exit if the client will handle the colorspace completely */ + return 0; + } + } +#endif + CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges, + &pcie->DecodeDEF, DecodeDEF_default, pcie, + "DecodeDEF"); + return gx_install_cie_abc((gs_cie_abc *)pcie, pgs); +} + +int +gx_install_CIEABC(gs_color_space * pcs, gs_state * pgs) +{ +#if ENABLE_CUSTOM_COLOR_CALLBACK + { + /* + * Check if we want to use the callback color processing for this + * color space. + */ + client_custom_color_params_t * pcb = + (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback; + + if (pcb != NULL) { + if (pcb->client_procs->install_CIEBasedABC(pcb, pcs, pgs)) + /* Exit if the client will handle the colorspace completely */ + return 0; + } + } +#endif + return gx_install_cie_abc(pcs->params.abc, pgs); +} + +int +gx_install_CIEA(gs_color_space * pcs, gs_state * pgs) +{ + gs_cie_a *pcie = pcs->params.a; + gs_sample_loop_params_t lp; + int i; + +#if ENABLE_CUSTOM_COLOR_CALLBACK + { + /* + * Check if we want to use the callback color processing for this + * color space. + */ + client_custom_color_params_t * pcb = + (client_custom_color_params_t *) pgs->memory->gs_lib_ctx->custom_color_callback; + + if (pcb != NULL) { + if (pcb->client_procs->install_CIEBasedA(pcb, pcs, pgs)) + /* Exit if the client will handle the colorspace completely */ + return 0; + } + } +#endif + gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp, + &pcie->RangeA, "DecodeA"); + for (i = 0; i <= lp.N; ++i) { + float in = SAMPLE_LOOP_VALUE(i, lp); + + pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie); + if_debug3('C', "[C]DecodeA[%d] = %g => %g\n", + i, in, pcie->caches.DecodeA.floats.values[i]); + } + gx_cie_load_common_cache(&pcie->common, pgs); + gs_cie_a_complete(pcie); + return gs_cie_cs_complete(pgs, true); +} + +/* Load the common caches when installing the color space. */ +/* This routine is exported for the benefit of gsicc.c */ +void +gx_cie_load_common_cache(gs_cie_common * pcie, gs_state * pgs) +{ + if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN); + cie_matrix_init(&pcie->MatrixLMN); + CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges, + &pcie->DecodeLMN, DecodeLMN_default, pcie, + "DecodeLMN"); +} + +/* Complete loading the common caches. */ +/* This routine is exported for the benefit of gsicc.c */ +void +gx_cie_common_complete(gs_cie_common *pcie) +{ + int i; + + for (i = 0; i < 3; ++i) + cache_set_linear(&pcie->caches.DecodeLMN[i].floats); +} + +/* + * Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to + * the dimensions of Table. + */ +static void +gs_cie_defx_scale(float *values, const gs_range *range, int dim) +{ + double scale = (dim - 1.0) / (range->rmax - range->rmin); + int i; + + for (i = 0; i < gx_cie_cache_size; ++i) { + float value = values[i]; + + values[i] = + (value <= range->rmin ? 0 : + value >= range->rmax ? dim - 1 : + (value - range->rmin) * scale); + } +} + +/* Complete loading a CIEBasedDEFG color space. */ +/* This routine is NOT idempotent. */ +void +gs_cie_defg_complete(gs_cie_defg * pcie) +{ + int j; + + for (j = 0; j < 4; ++j) + gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values, + &pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]); + gs_cie_abc_complete((gs_cie_abc *)pcie); +} + +/* Complete loading a CIEBasedDEF color space. */ +/* This routine is NOT idempotent. */ +void +gs_cie_def_complete(gs_cie_def * pcie) +{ + int j; + + for (j = 0; j < 3; ++j) + gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values, + &pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]); + gs_cie_abc_complete((gs_cie_abc *)pcie); +} + +/* Complete loading a CIEBasedABC color space. */ +/* This routine is idempotent. */ +void +gs_cie_abc_complete(gs_cie_abc * pcie) +{ + cache3_set_linear(&pcie->caches.DecodeABC); + pcie->caches.skipABC = + cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC, + CACHE_THRESHOLD); + gx_cie_common_complete((gs_cie_common *)pcie); +} + +/* Complete loading a CIEBasedA color space. */ +/* This routine is idempotent. */ +void +gs_cie_a_complete(gs_cie_a * pcie) +{ + cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA, + &pcie->caches.DecodeA.floats, + CACHE_THRESHOLD); + cache_set_linear(&pcie->caches.DecodeA.floats); + gx_cie_common_complete((gs_cie_common *)pcie); +} + +/* + * Set the ranges where interpolation is required in a vector cache. + * This procedure is idempotent. + */ +typedef struct cie_cache_range_temp_s { + cie_cached_value prev; + int imin, imax; +} cie_cache_range_temp_t; +static inline void +check_interpolation_required(cie_cache_range_temp_t *pccr, + cie_cached_value cur, int i, floatp threshold) +{ + cie_cached_value prev = pccr->prev; + + if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) { + if (i - 1 < pccr->imin) + pccr->imin = i - 1; + if (i > pccr->imax) + pccr->imax = i; + } + pccr->prev = cur; +} +static void +cie_cache_set_interpolation(gx_cie_vector_cache *pcache, floatp threshold) +{ + cie_cached_value base = pcache->vecs.params.base; + cie_cached_value factor = pcache->vecs.params.factor; + cie_cache_range_temp_t temp[3]; + int i, j; + + for (j = 0; j < 3; ++j) + temp[j].imin = gx_cie_cache_size, temp[j].imax = -1; + temp[0].prev = pcache->vecs.values[0].u; + temp[1].prev = pcache->vecs.values[0].v; + temp[2].prev = pcache->vecs.values[0].w; + + for (i = 0; i < gx_cie_cache_size; ++i) { + check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i, + threshold); + check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i, + threshold); + check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i, + threshold); + } + + for (j = 0; j < 3; ++j) { + pcache->vecs.params.interpolation_ranges[j].rmin = + base + (cie_cached_value)((double)temp[j].imin / factor); + pcache->vecs.params.interpolation_ranges[j].rmax = + base + (cie_cached_value)((double)temp[j].imax / factor); + if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j, + cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin), + cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax)); + } + +} + +/* + * Convert a scalar cache to a vector cache by multiplying the scalar + * values by a vector. Also set the range where interpolation is needed. + * This procedure is idempotent. + */ +static void +cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec, + const cie_cache_floats * pcf, floatp threshold) +{ + float u = pvec->u, v = pvec->v, w = pvec->w; + int i; + + pcache->vecs.params.base = float2cie_cached(pcf->params.base); + pcache->vecs.params.factor = float2cie_cached(pcf->params.factor); + pcache->vecs.params.limit = + float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor + + pcf->params.base); + for (i = 0; i < gx_cie_cache_size; ++i) { + float f = pcf->values[i]; + + pcache->vecs.values[i].u = float2cie_cached(f * u); + pcache->vecs.values[i].v = float2cie_cached(f * v); + pcache->vecs.values[i].w = float2cie_cached(f * w); + } + cie_cache_set_interpolation(pcache, threshold); +} + +/* + * Set the interpolation ranges in a 3-vector cache, based on the ranges in + * the individual vector caches. This procedure is idempotent. + */ +static void +cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc) +{ + int j, k; + + /* Iterate over output components. */ + for (j = 0; j < 3; ++j) { + /* Iterate over sub-caches. */ + cie_interpolation_range_t *p = + &pvc->caches[0].vecs.params.interpolation_ranges[j]; + cie_cached_value rmin = p->rmin, rmax = p->rmax; + + for (k = 1; k < 3; ++k) { + p = &pvc->caches[k].vecs.params.interpolation_ranges[j]; + rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax); + } + pvc->interpolation_ranges[j].rmin = rmin; + pvc->interpolation_ranges[j].rmax = rmax; + if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n", + j, rmin, rmax); + } +} + +/* + * Convert 3 scalar caches to vector caches by multiplying by a matrix. + * Return true iff the resulting cache is an identity transformation. + * This procedure is idempotent. + */ +static bool +cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat, + floatp threshold) +{ + cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold); + cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold); + cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold); + cie_cache3_set_interpolation(pvc); + return pmat->is_identity & pvc->caches[0].floats.params.is_identity & + pvc->caches[1].floats.params.is_identity & + pvc->caches[2].floats.params.is_identity; +} + +/* ------ Install a rendering dictionary ------ */ + +/* setcolorrendering */ +int +gs_setcolorrendering(gs_state * pgs, gs_cie_render * pcrd) +{ + int code = gs_cie_render_complete(pcrd); + const gs_cie_render *pcrd_old = pgs->cie_render; + bool joint_ok; + + if (code < 0) + return code; + if (pcrd_old != 0 && pcrd->id == pcrd_old->id) + return 0; /* detect needless reselecting */ + joint_ok = + pcrd_old != 0 && +#define CRD_SAME(elt) !memcmp(&pcrd->elt, &pcrd_old->elt, sizeof(pcrd->elt)) + CRD_SAME(points.WhitePoint) && CRD_SAME(points.BlackPoint) && + CRD_SAME(MatrixPQR) && CRD_SAME(RangePQR) && + CRD_SAME(TransformPQR); +#undef CRD_SAME + rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering"); + /* Initialize the joint caches if needed. */ + if (!joint_ok) + code = gs_cie_cs_complete(pgs, true); + gx_unset_dev_color(pgs); + return code; +} + +/* currentcolorrendering */ +const gs_cie_render * +gs_currentcolorrendering(const gs_state * pgs) +{ + return pgs->cie_render; +} + +/* Unshare (allocating if necessary) the joint caches. */ +gx_cie_joint_caches * +gx_unshare_cie_caches(gs_state * pgs) +{ + gx_cie_joint_caches *pjc = pgs->cie_joint_caches; + + rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches, + &st_joint_caches, pgs->memory, + return 0, "gx_unshare_cie_caches"); + if (pgs->cie_joint_caches != pjc) { + pjc = pgs->cie_joint_caches; + pjc->cspace_id = pjc->render_id = gs_no_id; + pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT; + } + return pjc; +} + +gx_cie_joint_caches * +gx_currentciecaches(gs_state * pgs) +{ + return pgs->cie_joint_caches; +} + +/* Compute the parameters for loading a cache, setting base and factor. */ +/* This procedure is idempotent. */ +void +gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp, + const gs_range * domain, client_name_t cname) +{ + /* + We need to map the values in the range [domain->rmin..domain->rmax]. + However, if rmin < 0 < rmax and the function is non-linear, this can + lead to anomalies at zero, which is the default value for CIE colors. + The "correct" way to approach this is to run the mapping functions on + demand, but we don't want to deal with the complexities of the + callbacks this would involve (especially in the middle of rendering + images); instead, we adjust the range so that zero maps precisely to a + cache slot. Define: + + A = domain->rmin; + B = domain->rmax; + N = gx_cie_cache_size - 1; + + R = B - A; + h(v) = N * (v - A) / R; // the index of v in the cache + X = h(0). + + If X is not an integer, we can decrease A and/increase B to make it + one. Let A' and B' be the adjusted values of A and B respectively, + and let K be the integer derived from X (either floor(X) or ceil(X)). + Define + + f(K) = (K * B' + (N - K) * A') / N). + + We want f(K) = 0. This occurs precisely when, for any real number + C != 0, + + A' = -K * C; + B' = (N - K) * C. + + In order to ensure A' <= A and B' >= B, we require + + C >= -A / K; + C >= B / (N - K). + + Since A' and B' must be exactly representable as floats, we round C + upward to ensure that it has no more than M mantissa bits, where + + M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)). + */ + float A = domain->rmin, B = domain->rmax; + double R = B - A, delta; +#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */ +#define N NN +#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE + + /* Adjust the range if necessary. */ + if (A < 0 && B >= 0) { + const double X = -N * A / R; /* know X > 0 */ + /* Choose K to minimize range expansion. */ + const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */ + const double Ca = -A / K, Cb = B / (N - K); /* know Ca, Cb > 0 */ + double C = max(Ca, Cb); /* know C > 0 */ + const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N; + int cexp; + const double cfrac = frexp(C, &cexp); + + if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n", + A, B, X, K); + /* Round C to no more than M significant bits. See above. */ + C = ldexp(ceil(ldexp(cfrac, M)), cexp - M); + /* Finally, compute A' and B'. */ + A = -K * C; + B = (N - K) * C; + if_debug2('c', "[c] => %8g, %8g\n", A, B); + R = B - A; + } + delta = R / N; +#ifdef CIE_CACHE_INTERPOLATE + pcache->base = A; /* no rounding */ +#else + pcache->base = A - delta / 2; /* so lookup will round */ +#endif + /* + * If size of the domain is zero, then use 1.0 as the scaling + * factor. This prevents divide by zero errors in later calculations. + * This should only occurs with zero matrices. It does occur with + * Genoa test file 050-01.ps. + */ + pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R); + if_debug4('c', "[c]cache %s 0x%lx base=%g, factor=%g\n", + (const char *)cname, (ulong) pcache, + pcache->base, pcache->factor); + pslp->A = A; + pslp->B = B; +#undef N + pslp->N = NN; +#undef NN +} + +/* ------ Complete a rendering structure ------ */ + +/* + * Compute the derived values in a CRD that don't involve the cached + * procedure values. This procedure is idempotent. + */ +static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *, + gs_range3 *); +int +gs_cie_render_init(gs_cie_render * pcrd) +{ + gs_matrix3 PQR_inverse; + + if (pcrd->status >= CIE_RENDER_STATUS_INITED) + return 0; /* init already done */ + if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN); + cie_matrix_init(&pcrd->MatrixLMN); + if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC); + cie_matrix_init(&pcrd->MatrixABC); + if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR); + cie_matrix_init(&pcrd->MatrixPQR); + cie_invert3(&pcrd->MatrixPQR, &PQR_inverse); + cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse, + &pcrd->MatrixPQR_inverse_LMN); + cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN, + &pcrd->DomainLMN); + cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC, + &pcrd->DomainABC); + cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr); + cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr); + pcrd->status = CIE_RENDER_STATUS_INITED; + return 0; +} + +/* + * Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and + * load the caches. This procedure is idempotent. + */ +int +gs_cie_render_sample(gs_cie_render * pcrd) +{ + int code; + + if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED) + return 0; /* sampling already done */ + code = gs_cie_render_init(pcrd); + if (code < 0) + return code; + CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges, + &pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN"); + cache3_set_linear(&pcrd->caches.EncodeLMN); + CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges, + &pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC"); + if (pcrd->RenderTable.lookup.table != 0) { + int i, j, m = pcrd->RenderTable.lookup.m; + gs_sample_loop_params_t lp; + bool is_identity = true; + + for (j = 0; j < m; j++) { + gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params, + &lp, &Range3_default.ranges[0], + "RenderTableT"); + is_identity &= pcrd->RenderTable.T.procs[j] == + RenderTableT_default.procs[j]; + } + pcrd->caches.RenderTableT_is_identity = is_identity; + /* + * Unfortunately, we defined the first argument of the RenderTable + * T procedures as being a byte, limiting the number of distinct + * cache entries to 256 rather than gx_cie_cache_size. + * We confine this decision to this loop, rather than propagating + * it to the procedures that use the cached data, so that we can + * change it more easily at some future time. + */ + for (i = 0; i < gx_cie_cache_size; i++) { +#if gx_cie_log2_cache_size >= 8 + byte value = i >> (gx_cie_log2_cache_size - 8); +#else + byte value = (i << (8 - gx_cie_log2_cache_size)) + + (i >> (gx_cie_log2_cache_size * 2 - 8)); +#endif + for (j = 0; j < m; j++) { + pcrd->caches.RenderTableT[j].fracs.values[i] = + (*pcrd->RenderTable.T.procs[j])(value, pcrd); + if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n", + i, j, + frac2float(pcrd->caches.RenderTableT[j].fracs.values[i])); + } + } + } + pcrd->status = CIE_RENDER_STATUS_SAMPLED; + return 0; +} + +/* Transform a set of ranges. */ +static void +cie_transform_range(const gs_range3 * in, floatp mu, floatp mv, floatp mw, + gs_range * out) +{ + float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax; + float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax; + float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax; + float temp; + + if (umin > umax) + temp = umin, umin = umax, umax = temp; + if (vmin > vmax) + temp = vmin, vmin = vmax, vmax = temp; + if (wmin > wmax) + temp = wmin, wmin = wmax, wmax = temp; + out->rmin = umin + vmin + wmin; + out->rmax = umax + vmax + wmax; +} +static void +cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat, + gs_range3 * out) +{ + cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u, + &out->ranges[0]); + cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v, + &out->ranges[1]); + cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w, + &out->ranges[2]); +} + +/* + * Finish preparing a CRD for installation, by restricting and/or + * transforming the cached procedure values. + * This procedure is idempotent. + */ +int +gs_cie_render_complete(gs_cie_render * pcrd) +{ + int code; + + if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED) + return 0; /* completion already done */ + code = gs_cie_render_sample(pcrd); + if (code < 0) + return code; + /* + * Since range restriction happens immediately after + * the cache lookup, we can save a step by restricting + * the values in the cache entries. + * + * If there is no lookup table, we want the final ABC values + * to be fracs; if there is a table, we want them to be + * appropriately scaled ints. + */ + pcrd->MatrixABCEncode = pcrd->MatrixABC; + { + int c; + double f; + + for (c = 0; c < 3; c++) { + gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c]; + + cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats, + &pcrd->RangeLMN.ranges[c]); + cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats, + &pcrd->RangeABC.ranges[c]); + if (pcrd->RenderTable.lookup.table == 0) { + cie_cache_restrict(&pcache->floats, + &Range3_default.ranges[0]); + gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs); + pcache->fixeds.fracs.params.is_identity = false; + } else { + int i; + int n = pcrd->RenderTable.lookup.dims[c]; + +#ifdef CIE_RENDER_TABLE_INTERPOLATE +# define SCALED_INDEX(f, n, itemp)\ + RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\ + (n) << _cie_interpolate_bits, itemp) +#else + int m = pcrd->RenderTable.lookup.m; + int k = + (c == 0 ? 1 : c == 1 ? + m * pcrd->RenderTable.lookup.dims[2] : m); +# define SCALED_INDEX(f, n, itemp)\ + (RESTRICTED_INDEX(f, n, itemp) * k) +#endif + const gs_range *prange = pcrd->RangeABC.ranges + c; + double scale = (n - 1) / (prange->rmax - prange->rmin); + + for (i = 0; i < gx_cie_cache_size; ++i) { + float v = + (pcache->floats.values[i] - prange->rmin) * scale +#ifndef CIE_RENDER_TABLE_INTERPOLATE + + 0.5 +#endif + ; + int itemp; + + if_debug5('c', + "[c]cache[%d][%d] = %g => %g => %d\n", + c, i, pcache->floats.values[i], v, + SCALED_INDEX(v, n, itemp)); + pcache->fixeds.ints.values[i] = + SCALED_INDEX(v, n, itemp); + } + pcache->fixeds.ints.params = pcache->floats.params; + pcache->fixeds.ints.params.is_identity = false; +#undef SCALED_INDEX + } + } + /* Fold the scaling of the EncodeABC cache index */ + /* into MatrixABC. */ +#define MABC(i, t)\ + f = pcrd->caches.EncodeABC[i].floats.params.factor;\ + pcrd->MatrixABCEncode.cu.t *= f;\ + pcrd->MatrixABCEncode.cv.t *= f;\ + pcrd->MatrixABCEncode.cw.t *= f;\ + pcrd->EncodeABC_base[i] =\ + float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f) + MABC(0, u); + MABC(1, v); + MABC(2, w); +#undef MABC + pcrd->MatrixABCEncode.is_identity = 0; + } + cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode, + CACHE_THRESHOLD); + pcrd->status = CIE_RENDER_STATUS_COMPLETED; + return 0; +} + +/* Apply a range restriction to a cache. */ +static void +cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange) +{ + int i; + + for (i = 0; i < gx_cie_cache_size; i++) { + float v = pcache->values[i]; + + if (v < prange->rmin) + pcache->values[i] = prange->rmin; + else if (v > prange->rmax) + pcache->values[i] = prange->rmax; + } +} + +/* Convert a cache from floats to fracs. */ +/* Note that the two may be aliased. */ +void +gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs) +{ + int i; + + /* Loop from bottom to top so that we don't */ + /* overwrite elements before they're used. */ + for (i = 0; i < gx_cie_cache_size; ++i) + pfracs->values[i] = float2frac(pfloats->values[i]); + pfracs->params = pfloats->params; +} + +/* ------ Fill in the joint cache ------ */ + +/* If the current color space is a CIE space, or has a CIE base space, */ +/* return a pointer to the common part of the space; otherwise return 0. */ +static const gs_cie_common * +cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc) +{ + const gs_color_space *pcs = pcs_orig; + + *ppabc = 0; + do { + switch (pcs->type->index) { + case gs_color_space_index_CIEDEF: + *ppabc = (const gs_cie_abc *)pcs->params.def; + return &pcs->params.def->common; + case gs_color_space_index_CIEDEFG: + *ppabc = (const gs_cie_abc *)pcs->params.defg; + return &pcs->params.defg->common; + case gs_color_space_index_CIEABC: + *ppabc = pcs->params.abc; + return &pcs->params.abc->common; + case gs_color_space_index_CIEA: + return &pcs->params.a->common; + case gs_color_space_index_CIEICC: + return &pcs->params.icc.picc_info->common; + default: + pcs = gs_cspace_base_space(pcs); + break; + } + } while (pcs != 0); + + return 0; +} +const gs_cie_common * +gs_cie_cs_common(const gs_state * pgs) +{ + const gs_cie_abc *ignore_pabc; + + return cie_cs_common_abc(pgs->color_space, &ignore_pabc); +} + +/* + * Mark the joint caches as needing completion. This is done lazily, + * when a color is being mapped. However, make sure the joint caches + * exist now. + */ +int +gs_cie_cs_complete(gs_state * pgs, bool init) +{ + gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs); + + if (pjc == 0) + return_error(gs_error_VMerror); + pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED); + return 0; +} +/* Actually complete the joint caches. */ +int +gs_cie_jc_complete(const gs_imager_state *pis, const gs_color_space *pcs) +{ + const gs_cie_abc *pabc; + const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc); + gs_cie_render *pcrd = pis->cie_render; + gx_cie_joint_caches *pjc = pis->cie_joint_caches; + + if (pjc->cspace_id == pcs->id && + pjc->render_id == pcrd->id) + pjc->status = pjc->id_status; + switch (pjc->status) { + case CIE_JC_STATUS_BUILT: { + int code = cie_joint_caches_init(pjc, common, pcrd); + + if (code < 0) + return code; + } + /* falls through */ + case CIE_JC_STATUS_INITED: + cie_joint_caches_complete(pjc, common, pabc, pcrd); + pjc->cspace_id = pcs->id; + pjc->render_id = pcrd->id; + pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED; + /* falls through */ + case CIE_JC_STATUS_COMPLETED: + break; + } + return 0; +} + +/* + * Compute the source and destination WhitePoint and BlackPoint for + * the TransformPQR procedure. + */ +int +gs_cie_compute_points_sd(gx_cie_joint_caches *pjc, + const gs_cie_common * pcie, + const gs_cie_render * pcrd) +{ + gs_cie_wbsd *pwbsd = &pjc->points_sd; + + pwbsd->ws.xyz = pcie->points.WhitePoint; + cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr); + pwbsd->bs.xyz = pcie->points.BlackPoint; + cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr); + pwbsd->wd.xyz = pcrd->points.WhitePoint; + pwbsd->wd.pqr = pcrd->wdpqr; + pwbsd->bd.xyz = pcrd->points.BlackPoint; + pwbsd->bd.pqr = pcrd->bdpqr; + return 0; +} + +/* + * Sample the TransformPQR procedure for the joint caches. + * This routine is idempotent. + */ +static int +cie_joint_caches_init(gx_cie_joint_caches * pjc, + const gs_cie_common * pcie, + gs_cie_render * pcrd) +{ + bool is_identity; + int j; + + gs_cie_compute_points_sd(pjc, pcie, pcrd); + /* + * If a client pre-loaded the cache, we can't adjust the range. + * ****** WRONG ****** + */ + if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc) + return 0; + is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc; + for (j = 0; j < 3; j++) { + int i; + gs_sample_loop_params_t lp; + + gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp, + &pcrd->RangePQR.ranges[j], "TransformPQR"); + for (i = 0; i <= lp.N; ++i) { + float in = SAMPLE_LOOP_VALUE(i, lp); + float out; + int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd, + pcrd, &out); + + if (code < 0) + return code; + pjc->TransformPQR.caches[j].floats.values[i] = out; + if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n", + j, i, in, out); + } + pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity; + } + return 0; +} + +/* + * Complete the loading of the joint caches. + * This routine is idempotent. + */ +static void +cie_joint_caches_complete(gx_cie_joint_caches * pjc, + const gs_cie_common * pcie, + const gs_cie_abc * pabc /* NULL if CIEA */, + const gs_cie_render * pcrd) +{ + gs_matrix3 mat3, mat2; + gs_matrix3 MatrixLMN_PQR; + int j; + + pjc->remap_finish = gx_cie_real_remap_finish; + + /* + * We number the pipeline steps as follows: + * 1 - DecodeABC/MatrixABC + * 2 - DecodeLMN/MatrixLMN/MatrixPQR + * 3 - TransformPQR/MatrixPQR'/MatrixLMN + * 4 - EncodeLMN/MatrixABC + * 5 - EncodeABC, RenderTable (we don't do anything with this here) + * We work from back to front, combining steps where possible. + * Currently we only combine steps if a procedure is the identity + * transform, but we could do it whenever the procedure is linear. + * A project for another day.... + */ + + /* Step 4 */ + +#ifdef OPTIMIZE_CIE_MAPPING + if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity && + pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity && + pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity + ) { + /* Fold step 4 into step 3. */ + if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n"); + cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN, + &mat3); + pjc->skipEncodeLMN = true; + } else +#endif /* OPTIMIZE_CIE_MAPPING */ + { + if_debug0('c', "[c]EncodeLMN is not identity.\n"); + mat3 = pcrd->MatrixPQR_inverse_LMN; + pjc->skipEncodeLMN = false; + } + + /* Step 3 */ + + cache3_set_linear(&pjc->TransformPQR); + cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN, + &MatrixLMN_PQR); + +#ifdef OPTIMIZE_CIE_MAPPING + if (pjc->TransformPQR.caches[0].floats.params.is_identity & + pjc->TransformPQR.caches[1].floats.params.is_identity & + pjc->TransformPQR.caches[2].floats.params.is_identity + ) { + /* Fold step 3 into step 2. */ + if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n"); + cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2); + pjc->skipPQR = true; + } else +#endif /* OPTIMIZE_CIE_MAPPING */ + { + if_debug0('c', "[c]TransformPQR is not identity.\n"); + mat2 = MatrixLMN_PQR; + for (j = 0; j < 3; j++) { + cie_cache_restrict(&pjc->TransformPQR.caches[j].floats, + &pcrd->RangePQR.ranges[j]); + } + cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD); + pjc->skipPQR = false; + } + + /* Steps 2 & 1 */ + +#ifdef OPTIMIZE_CIE_MAPPING + if (pcie->caches.DecodeLMN[0].floats.params.is_identity & + pcie->caches.DecodeLMN[1].floats.params.is_identity & + pcie->caches.DecodeLMN[2].floats.params.is_identity + ) { + if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n"); + if (!pabc) { + pjc->skipDecodeLMN = mat2.is_identity; + pjc->skipDecodeABC = false; + if (!pjc->skipDecodeLMN) { + for (j = 0; j < 3; j++) { + cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j, + &pcie->caches.DecodeLMN[j].floats, + CACHE_THRESHOLD); + } + cie_cache3_set_interpolation(&pjc->DecodeLMN); + } + } else { + /* + * Fold step 2 into step 1. This is a little different because + * the data for step 1 are in the color space structure. + */ + gs_matrix3 mat1; + + cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1); + for (j = 0; j < 3; j++) { + cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j, + &pabc->caches.DecodeABC.caches[j].floats, + CACHE_THRESHOLD); + } + cie_cache3_set_interpolation(&pjc->DecodeLMN); + pjc->skipDecodeLMN = false; + pjc->skipDecodeABC = true; + } + } else +#endif /* OPTIMIZE_CIE_MAPPING */ + { + if_debug0('c', "[c]DecodeLMN is not identity.\n"); + for (j = 0; j < 3; j++) { + cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j, + &pcie->caches.DecodeLMN[j].floats, + CACHE_THRESHOLD); + } + cie_cache3_set_interpolation(&pjc->DecodeLMN); + pjc->skipDecodeLMN = false; + pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC; + } + +} + +/* + * Initialize (just enough of) an imager state so that "concretizing" colors + * using this imager state will do only the CIE->XYZ mapping. This is a + * semi-hack for the PDF writer. + */ +int +gx_cie_to_xyz_alloc(gs_imager_state **ppis, const gs_color_space *pcs, + gs_memory_t *mem) +{ + /* + * In addition to the imager state itself, we need the joint caches. + */ + gs_imager_state *pis = + gs_alloc_struct(mem, gs_imager_state, &st_imager_state, + "gx_cie_to_xyz_alloc(imager state)"); + gx_cie_joint_caches *pjc; + const gs_cie_abc *pabc; + const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc); + int j; + + if (pis == 0) + return_error(gs_error_VMerror); + memset(pis, 0, sizeof(*pis)); /* mostly paranoia */ + pis->memory = mem; + gs_imager_state_initialize(pis, mem); + + pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches, + "gx_cie_to_xyz_free(joint caches)"); + if (pjc == 0) { + gs_free_object(mem, pis, "gx_cie_to_xyz_alloc(imager state)"); + return_error(gs_error_VMerror); + } + + /* + * Perform an abbreviated version of cie_joint_caches_complete. + * Don't bother with any optimizations. + */ + for (j = 0; j < 3; j++) { + cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j, + &pcie->caches.DecodeLMN[j].floats, + CACHE_THRESHOLD); + } + cie_cache3_set_interpolation(&pjc->DecodeLMN); + pjc->skipDecodeLMN = false; + pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC; + /* Mark the joint caches as completed. */ + pjc->remap_finish = gx_cie_xyz_remap_finish; + pjc->cspace_id = pcs->id; + pjc->status = CIE_JC_STATUS_COMPLETED; + pis->cie_joint_caches = pjc; + pis->cie_to_xyz = true; + *ppis = pis; + return 0; +} +void +gx_cie_to_xyz_free(gs_imager_state *pis) +{ + gs_memory_t *mem = pis->memory; + + gs_free_object(mem, pis->cie_joint_caches, + "gx_cie_to_xyz_free(joint caches)"); + gs_free_object(mem, pis, "gx_cie_to_xyz_free(imager state)"); +} + +/* ================ Utilities ================ */ + +/* Multiply a vector by a matrix. */ +/* Note that we are computing M * V where v is a column vector. */ +static void +cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat, + gs_vector3 * out) +{ + if_debug_vector3("[c]mult", in); + if_debug_matrix3(" *", mat); + { + float u = in->u, v = in->v, w = in->w; + + out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u); + out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v); + out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w); + } + if_debug_vector3(" =", out); +} + +/* + * Multiply two matrices. Note that the composition of the transformations + * M1 followed by M2 is M2 * M1, not M1 * M2. (See gscie.h for details.) + */ +static void +cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc) +{ + gs_matrix3 mprod; + gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc); + + if_debug_matrix3("[c]matrix_mult", ma); + if_debug_matrix3(" *", mb); + cie_mult3(&mb->cu, ma, &mp->cu); + cie_mult3(&mb->cv, ma, &mp->cv); + cie_mult3(&mb->cw, ma, &mp->cw); + cie_matrix_init(mp); + if_debug_matrix3(" =", mp); + if (mp != mc) + *mc = *mp; +} + +/* Invert a matrix. */ +/* The output must not be an alias for the input. */ +static void +cie_invert3(const gs_matrix3 *in, gs_matrix3 *out) +{ /* This is a brute force algorithm; maybe there are better. */ + /* We label the array elements */ + /* [ A B C ] */ + /* [ D E F ] */ + /* [ G H I ] */ +#define A cu.u +#define B cv.u +#define C cw.u +#define D cu.v +#define E cv.v +#define F cw.v +#define G cu.w +#define H cv.w +#define I cw.w + double coA = in->E * in->I - in->F * in->H; + double coB = in->F * in->G - in->D * in->I; + double coC = in->D * in->H - in->E * in->G; + double det = in->A * coA + in->B * coB + in->C * coC; + + if_debug_matrix3("[c]invert", in); + out->A = coA / det; + out->D = coB / det; + out->G = coC / det; + out->B = (in->C * in->H - in->B * in->I) / det; + out->E = (in->A * in->I - in->C * in->G) / det; + out->H = (in->B * in->G - in->A * in->H) / det; + out->C = (in->B * in->F - in->C * in->E) / det; + out->F = (in->C * in->D - in->A * in->F) / det; + out->I = (in->A * in->E - in->B * in->D) / det; + if_debug_matrix3(" =", out); +#undef A +#undef B +#undef C +#undef D +#undef E +#undef F +#undef G +#undef H +#undef I + out->is_identity = in->is_identity; +} + +/* Set the is_identity flag that accelerates multiplication. */ +static void +cie_matrix_init(register gs_matrix3 * mat) +{ + mat->is_identity = + mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) && + mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) && + mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v); +} + +bool +gx_color_space_needs_cie_caches(const gs_color_space * pcs) +{ + switch (pcs->type->index) { + case gs_color_space_index_CIEDEFG: + case gs_color_space_index_CIEDEF: + case gs_color_space_index_CIEABC: + case gs_color_space_index_CIEA: + case gs_color_space_index_CIEICC: + return true; + case gs_color_space_index_DevicePixel: + case gs_color_space_index_DeviceN: + case gs_color_space_index_Separation: + case gs_color_space_index_Indexed: + case gs_color_space_index_Pattern: + return gx_color_space_needs_cie_caches(pcs->base_space); + default: + return false; + } +} |