summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/zink/zink_compiler.c
blob: 167150efa95bc2def28a1ba0df8492a0ec64102a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
/*
 * Copyright 2018 Collabora Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "zink_context.h"
#include "zink_compiler.h"
#include "zink_program.h"
#include "zink_screen.h"
#include "nir_to_spirv/nir_to_spirv.h"

#include "pipe/p_state.h"

#include "nir.h"
#include "compiler/nir/nir_builder.h"

#include "nir/tgsi_to_nir.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_from_mesa.h"

#include "util/u_memory.h"

bool
zink_lower_cubemap_to_array(nir_shader *s, uint32_t nonseamless_cube_mask);

static void
create_vs_pushconst(nir_shader *nir)
{
   nir_variable *vs_pushconst;
   /* create compatible layout for the ntv push constant loader */
   struct glsl_struct_field *fields = rzalloc_array(nir, struct glsl_struct_field, 2);
   fields[0].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[0].name = ralloc_asprintf(nir, "draw_mode_is_indexed");
   fields[0].offset = offsetof(struct zink_gfx_push_constant, draw_mode_is_indexed);
   fields[1].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[1].name = ralloc_asprintf(nir, "draw_id");
   fields[1].offset = offsetof(struct zink_gfx_push_constant, draw_id);
   vs_pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 2, "struct", false), "vs_pushconst");
   vs_pushconst->data.location = INT_MAX; //doesn't really matter
}

static void
create_cs_pushconst(nir_shader *nir)
{
   nir_variable *cs_pushconst;
   /* create compatible layout for the ntv push constant loader */
   struct glsl_struct_field *fields = rzalloc_size(nir, 1 * sizeof(struct glsl_struct_field));
   fields[0].type = glsl_array_type(glsl_uint_type(), 1, 0);
   fields[0].name = ralloc_asprintf(nir, "work_dim");
   fields[0].offset = 0;
   cs_pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 1, "struct", false), "cs_pushconst");
   cs_pushconst->data.location = INT_MAX; //doesn't really matter
}

static bool
reads_work_dim(nir_shader *shader)
{
   return BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_WORK_DIM);
}

static bool
lower_work_dim_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_work_dim)
      return false;

   if (instr->intrinsic == nir_intrinsic_load_work_dim) {
      b->cursor = nir_after_instr(&instr->instr);
      nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
      load->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
      nir_intrinsic_set_range(load, 3 * sizeof(uint32_t));
      load->num_components = 1;
      nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "work_dim");
      nir_builder_instr_insert(b, &load->instr);

      nir_ssa_def_rewrite_uses(&instr->dest.ssa, &load->dest.ssa);
   }

   return true;
}

static bool
lower_work_dim(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_KERNEL)
      return false;

   if (!reads_work_dim(shader))
      return false;

   return nir_shader_instructions_pass(shader, lower_work_dim_instr, nir_metadata_dominance, NULL);
}

static bool
lower_64bit_vertex_attribs_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_deref)
      return false;
   nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(intr->src[0].ssa->parent_instr));
   if (var->data.mode != nir_var_shader_in)
      return false;
   if (!glsl_type_is_64bit(var->type) || !glsl_type_is_vector(var->type) || glsl_get_vector_elements(var->type) < 3)
      return false;

   /* create second variable for the split */
   nir_variable *var2 = nir_variable_clone(var, b->shader);
   /* split new variable into second slot */
   var2->data.driver_location++;
   nir_shader_add_variable(b->shader, var2);

   unsigned total_num_components = glsl_get_vector_elements(var->type);
   /* new variable is the second half of the dvec */
   var2->type = glsl_vector_type(glsl_get_base_type(var->type), glsl_get_vector_elements(var->type) - 2);
   /* clamp original variable to a dvec2 */
   var->type = glsl_vector_type(glsl_get_base_type(var->type), 2);

   b->cursor = nir_after_instr(instr);

   /* this is the first load instruction for the first half of the dvec3/4 components */
   nir_ssa_def *load = nir_load_var(b, var);
   /* this is the second load instruction for the second half of the dvec3/4 components */
   nir_ssa_def *load2 = nir_load_var(b, var2);

   nir_ssa_def *def[4];
   /* create a new dvec3/4 comprised of all the loaded components from both variables */
   def[0] = nir_vector_extract(b, load, nir_imm_int(b, 0));
   def[1] = nir_vector_extract(b, load, nir_imm_int(b, 1));
   def[2] = nir_vector_extract(b, load2, nir_imm_int(b, 0));
   if (total_num_components == 4)
      def[3] = nir_vector_extract(b, load2, nir_imm_int(b, 1));
   nir_ssa_def *new_vec = nir_vec(b, def, total_num_components);
   /* use the assembled dvec3/4 for all other uses of the load */
   nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, new_vec,
                                  new_vec->parent_instr);

   /* remove the original instr and its deref chain */
   nir_instr *parent = intr->src[0].ssa->parent_instr;
   nir_instr_remove(instr);
   nir_deref_instr_remove_if_unused(nir_instr_as_deref(parent));

   return true;
}

/* mesa/gallium always provides UINT versions of 64bit formats:
 * - rewrite loads as 32bit vec loads
 * - cast back to 64bit
 */
static bool
lower_64bit_uint_attribs_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_deref)
      return false;
   nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(intr->src[0].ssa->parent_instr));
   if (var->data.mode != nir_var_shader_in)
      return false;
   if (glsl_get_bit_size(var->type) != 64 || glsl_get_base_type(var->type) >= GLSL_TYPE_SAMPLER)
      return false;

   unsigned num_components = glsl_get_vector_elements(var->type);
   enum glsl_base_type base_type;
   switch (glsl_get_base_type(var->type)) {
   case GLSL_TYPE_UINT64:
      base_type = GLSL_TYPE_UINT;
      break;
   case GLSL_TYPE_INT64:
      base_type = GLSL_TYPE_INT;
      break;
   case GLSL_TYPE_DOUBLE:
      base_type = GLSL_TYPE_FLOAT;
      break;
   default:
      unreachable("unknown 64-bit vertex attribute format!");
   }
   var->type = glsl_vector_type(base_type, num_components * 2);

   b->cursor = nir_after_instr(instr);

   nir_ssa_def *load = nir_load_var(b, var);
   nir_ssa_def *casted[2];
   for (unsigned i = 0; i < num_components; i++)
     casted[i] = nir_pack_64_2x32(b, nir_channels(b, load, BITFIELD_RANGE(i * 2, 2)));
   nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_vec(b, casted, num_components));

   /* remove the original instr and its deref chain */
   nir_instr *parent = intr->src[0].ssa->parent_instr;
   nir_instr_remove(instr);
   nir_deref_instr_remove_if_unused(nir_instr_as_deref(parent));

   return true;
}

/* "64-bit three- and four-component vectors consume two consecutive locations."
 *  - 14.1.4. Location Assignment
 *
 * this pass splits dvec3 and dvec4 vertex inputs into a dvec2 and a double/dvec2 which
 * are assigned to consecutive locations, loaded separately, and then assembled back into a
 * composite value that's used in place of the original loaded ssa src
 */
static bool
lower_64bit_vertex_attribs(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   bool progress = nir_shader_instructions_pass(shader, lower_64bit_vertex_attribs_instr, nir_metadata_dominance, NULL);
   progress |= nir_shader_instructions_pass(shader, lower_64bit_uint_attribs_instr, nir_metadata_dominance, NULL);
   return progress;
}

static bool
lower_basevertex_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_base_vertex)
      return false;

   b->cursor = nir_after_instr(&instr->instr);
   nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
   load->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
   nir_intrinsic_set_range(load, 4);
   load->num_components = 1;
   nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "draw_mode_is_indexed");
   nir_builder_instr_insert(b, &load->instr);

   nir_ssa_def *composite = nir_build_alu(b, nir_op_bcsel,
                                          nir_build_alu(b, nir_op_ieq, &load->dest.ssa, nir_imm_int(b, 1), NULL, NULL),
                                          &instr->dest.ssa,
                                          nir_imm_int(b, 0),
                                          NULL);

   nir_ssa_def_rewrite_uses_after(&instr->dest.ssa, composite,
                                  composite->parent_instr);
   return true;
}

static bool
lower_basevertex(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   if (!BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_BASE_VERTEX))
      return false;

   return nir_shader_instructions_pass(shader, lower_basevertex_instr, nir_metadata_dominance, NULL);
}


static bool
lower_drawid_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_draw_id)
      return false;

   b->cursor = nir_before_instr(&instr->instr);
   nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
   load->src[0] = nir_src_for_ssa(nir_imm_int(b, 1));
   nir_intrinsic_set_range(load, 4);
   load->num_components = 1;
   nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, "draw_id");
   nir_builder_instr_insert(b, &load->instr);

   nir_ssa_def_rewrite_uses(&instr->dest.ssa, &load->dest.ssa);

   return true;
}

static bool
lower_drawid(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;

   if (!BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
      return false;

   return nir_shader_instructions_pass(shader, lower_drawid_instr, nir_metadata_dominance, NULL);
}

static bool
lower_dual_blend(nir_shader *shader)
{
   bool progress = false;
   nir_variable *var = nir_find_variable_with_location(shader, nir_var_shader_out, FRAG_RESULT_DATA1);
   if (var) {
      var->data.location = FRAG_RESULT_DATA0;
      var->data.index = 1;
      progress = true;
   }
   nir_shader_preserve_all_metadata(shader);
   return progress;
}

void
zink_screen_init_compiler(struct zink_screen *screen)
{
   static const struct nir_shader_compiler_options
   default_options = {
      .lower_ffma16 = true,
      .lower_ffma32 = true,
      .lower_ffma64 = true,
      .lower_scmp = true,
      .lower_fdph = true,
      .lower_flrp32 = true,
      .lower_fpow = true,
      .lower_fsat = true,
      .lower_extract_byte = true,
      .lower_extract_word = true,
      .lower_insert_byte = true,
      .lower_insert_word = true,
      .lower_mul_high = true,
      .lower_rotate = true,
      .lower_uadd_carry = true,
      .lower_pack_64_2x32_split = true,
      .lower_unpack_64_2x32_split = true,
      .lower_pack_32_2x16_split = true,
      .lower_unpack_32_2x16_split = true,
      .lower_vector_cmp = true,
      .lower_int64_options = 0,
      .lower_doubles_options = 0,
      .lower_uniforms_to_ubo = true,
      .has_fsub = true,
      .has_isub = true,
      .has_txs = true,
      .lower_mul_2x32_64 = true,
      .support_16bit_alu = true, /* not quite what it sounds like */
   };

   screen->nir_options = default_options;

   if (!screen->info.feats.features.shaderInt64)
      screen->nir_options.lower_int64_options = ~0;

   if (!screen->info.feats.features.shaderFloat64) {
      screen->nir_options.lower_doubles_options = ~0;
      screen->nir_options.lower_flrp64 = true;
      screen->nir_options.lower_ffma64 = true;
   }

   /*
       The OpFRem and OpFMod instructions use cheap approximations of remainder,
       and the error can be large due to the discontinuity in trunc() and floor().
       This can produce mathematically unexpected results in some cases, such as
       FMod(x,x) computing x rather than 0, and can also cause the result to have
       a different sign than the infinitely precise result.

       -Table 84. Precision of core SPIR-V Instructions
       * for drivers that are known to have imprecise fmod for doubles, lower dmod
    */
   if (screen->info.driver_props.driverID == VK_DRIVER_ID_MESA_RADV ||
       screen->info.driver_props.driverID == VK_DRIVER_ID_AMD_OPEN_SOURCE ||
       screen->info.driver_props.driverID == VK_DRIVER_ID_AMD_PROPRIETARY)
      screen->nir_options.lower_doubles_options = nir_lower_dmod;
}

const void *
zink_get_compiler_options(struct pipe_screen *pscreen,
                          enum pipe_shader_ir ir,
                          enum pipe_shader_type shader)
{
   assert(ir == PIPE_SHADER_IR_NIR);
   return &zink_screen(pscreen)->nir_options;
}

struct nir_shader *
zink_tgsi_to_nir(struct pipe_screen *screen, const struct tgsi_token *tokens)
{
   if (zink_debug & ZINK_DEBUG_TGSI) {
      fprintf(stderr, "TGSI shader:\n---8<---\n");
      tgsi_dump_to_file(tokens, 0, stderr);
      fprintf(stderr, "---8<---\n\n");
   }

   return tgsi_to_nir(tokens, screen, false);
}

static void
optimize_nir(struct nir_shader *s)
{
   bool progress;
   do {
      progress = false;
      NIR_PASS_V(s, nir_lower_vars_to_ssa);
      NIR_PASS(progress, s, nir_copy_prop);
      NIR_PASS(progress, s, nir_opt_remove_phis);
      NIR_PASS(progress, s, nir_opt_dce);
      NIR_PASS(progress, s, nir_opt_dead_cf);
      NIR_PASS(progress, s, nir_lower_phis_to_scalar, false);
      NIR_PASS(progress, s, nir_opt_cse);
      NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
      NIR_PASS(progress, s, nir_opt_algebraic);
      NIR_PASS(progress, s, nir_opt_constant_folding);
      NIR_PASS(progress, s, nir_opt_undef);
      NIR_PASS(progress, s, zink_nir_lower_b2b);
   } while (progress);

   do {
      progress = false;
      NIR_PASS(progress, s, nir_opt_algebraic_late);
      if (progress) {
         NIR_PASS_V(s, nir_copy_prop);
         NIR_PASS_V(s, nir_opt_dce);
         NIR_PASS_V(s, nir_opt_cse);
      }
   } while (progress);
}

/* - copy the lowered fbfetch variable
 * - set the new one up as an input attachment for descriptor 0.6
 * - load it as an image
 * - overwrite the previous load
 */
static bool
lower_fbfetch_instr(nir_builder *b, nir_instr *instr, void *data)
{
   bool ms = data != NULL;
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_deref)
      return false;
   nir_variable *var = nir_deref_instr_get_variable(nir_src_as_deref(intr->src[0]));
   if (!var->data.fb_fetch_output)
      return false;
   b->cursor = nir_after_instr(instr);
   nir_variable *fbfetch = nir_variable_clone(var, b->shader);
   /* If Dim is SubpassData, ... Image Format must be Unknown
    * - SPIRV OpTypeImage specification
    */
   fbfetch->data.image.format = 0;
   fbfetch->data.index = 0; /* fix this if more than 1 fbfetch target is supported */
   fbfetch->data.mode = nir_var_uniform;
   fbfetch->data.binding = ZINK_FBFETCH_BINDING;
   fbfetch->data.binding = ZINK_FBFETCH_BINDING;
   fbfetch->data.sample = ms;
   enum glsl_sampler_dim dim = ms ? GLSL_SAMPLER_DIM_SUBPASS_MS : GLSL_SAMPLER_DIM_SUBPASS;
   fbfetch->type = glsl_image_type(dim, false, GLSL_TYPE_FLOAT);
   nir_shader_add_variable(b->shader, fbfetch);
   nir_ssa_def *deref = &nir_build_deref_var(b, fbfetch)->dest.ssa;
   nir_ssa_def *sample = ms ? nir_load_sample_id(b) : nir_ssa_undef(b, 1, 32);
   nir_ssa_def *load = nir_image_deref_load(b, 4, 32, deref, nir_imm_vec4(b, 0, 0, 0, 1), sample, nir_imm_int(b, 0));
   unsigned swiz[4] = {2, 1, 0, 3};
   nir_ssa_def *swizzle = nir_swizzle(b, load, swiz, 4);
   nir_ssa_def_rewrite_uses(&intr->dest.ssa, swizzle);
   return true;
}

static bool
lower_fbfetch(nir_shader *shader, nir_variable **fbfetch, bool ms)
{
   nir_foreach_shader_out_variable(var, shader) {
      if (var->data.fb_fetch_output) {
         *fbfetch = var;
         break;
      }
   }
   assert(*fbfetch);
   if (!*fbfetch)
      return false;
   return nir_shader_instructions_pass(shader, lower_fbfetch_instr, nir_metadata_dominance, (void*)ms);
}

/* check for a genuine gl_PointSize output vs one from nir_lower_point_size_mov */
static bool
check_psiz(struct nir_shader *s)
{
   bool have_psiz = false;
   nir_foreach_shader_out_variable(var, s) {
      if (var->data.location == VARYING_SLOT_PSIZ) {
         /* genuine PSIZ outputs will have this set */
         have_psiz |= !!var->data.explicit_location;
      }
   }
   return have_psiz;
}

static nir_variable *
find_var_with_location_frac(nir_shader *nir, unsigned location, unsigned location_frac, bool have_psiz)
{
   unsigned found = 0;
   if (!location_frac && location != VARYING_SLOT_PSIZ) {
      nir_foreach_shader_out_variable(var, nir) {
         if (var->data.location == location)
            found++;
      }
   }
   if (found) {
      /* multiple variables found for this location: find the biggest one */
      nir_variable *out = NULL;
      unsigned slots = 0;
      nir_foreach_shader_out_variable(var, nir) {
         if (var->data.location == location) {
            unsigned count_slots = glsl_count_vec4_slots(var->type, false, false);
            if (count_slots > slots) {
               slots = count_slots;
               out = var;
            }
         }
      }
      return out;
   } else {
      /* only one variable found or this is location_frac */
      nir_foreach_shader_out_variable(var, nir) {
         if (var->data.location == location &&
             (var->data.location_frac == location_frac ||
              (glsl_type_is_array(var->type) ? glsl_array_size(var->type) : glsl_get_vector_elements(var->type)) >= location_frac + 1)) {
            if (location != VARYING_SLOT_PSIZ || !have_psiz || var->data.explicit_location)
               return var;
         }
      }
   }
   return NULL;
}

static bool
is_inlined(const bool *inlined, const struct pipe_stream_output *output)
{
   for (unsigned i = 0; i < output->num_components; i++)
      if (!inlined[output->start_component + i])
         return false;
   return true;
}

static void
update_psiz_location(nir_shader *nir, nir_variable *psiz)
{
   uint32_t last_output = util_last_bit64(nir->info.outputs_written);
   if (last_output < VARYING_SLOT_VAR0)
      last_output = VARYING_SLOT_VAR0;
   else
      last_output++;
   /* this should get fixed up by slot remapping */
   psiz->data.location = last_output;
}

static const struct glsl_type *
clamp_slot_type(const struct glsl_type *type, unsigned slot)
{
   /* could be dvec/dmat/mat: each member is the same */
   const struct glsl_type *plain = glsl_without_array_or_matrix(type);
   /* determine size of each member type */
   unsigned slot_count = glsl_count_vec4_slots(plain, false, false);
   /* normalize slot idx to current type's size */
   slot %= slot_count;
   unsigned slot_components = glsl_get_components(plain);
   if (glsl_base_type_is_64bit(glsl_get_base_type(plain)))
      slot_components *= 2;
   /* create a vec4 mask of the selected slot's components out of all the components */
   uint32_t mask = BITFIELD_MASK(slot_components) & BITFIELD_RANGE(slot * 4, 4);
   /* return a vecN of the selected components */
   slot_components = util_bitcount(mask);
   return glsl_vec_type(slot_components);
}

static const struct glsl_type *
unroll_struct_type(const struct glsl_type *slot_type, unsigned *slot_idx)
{
   const struct glsl_type *type = slot_type;
   unsigned slot_count = 0;
   unsigned cur_slot = 0;
   /* iterate over all the members in the struct, stopping once the slot idx is reached */
   for (unsigned i = 0; i < glsl_get_length(slot_type) && cur_slot <= *slot_idx; i++, cur_slot += slot_count) {
      /* use array type for slot counting but return array member type for unroll */
      const struct glsl_type *arraytype = glsl_get_struct_field(slot_type, i);
      type = glsl_without_array(arraytype);
      slot_count = glsl_count_vec4_slots(arraytype, false, false);
   }
   *slot_idx -= (cur_slot - slot_count);
   if (!glsl_type_is_struct_or_ifc(type))
      /* this is a fully unrolled struct: find the number of vec components to output */
      type = clamp_slot_type(type, *slot_idx);
   return type;
}

static unsigned
get_slot_components(nir_variable *var, unsigned slot, unsigned so_slot)
{
   assert(var && slot < var->data.location + glsl_count_vec4_slots(var->type, false, false));
   const struct glsl_type *orig_type = var->type;
   const struct glsl_type *type = glsl_without_array(var->type);
   unsigned slot_idx = slot - so_slot;
   if (type != orig_type)
      slot_idx %= glsl_count_vec4_slots(type, false, false);
   /* need to find the vec4 that's being exported by this slot */
   while (glsl_type_is_struct_or_ifc(type))
      type = unroll_struct_type(type, &slot_idx);

   /* arrays here are already fully unrolled from their structs, so slot handling is implicit */
   unsigned num_components = glsl_get_components(glsl_without_array(type));
   const struct glsl_type *arraytype = orig_type;
   while (glsl_type_is_array(arraytype) && !glsl_type_is_struct_or_ifc(glsl_without_array(arraytype))) {
      num_components *= glsl_array_size(arraytype);
      arraytype = glsl_get_array_element(arraytype);
   }
   assert(num_components);
   /* gallium handles xfb in terms of 32bit units */
   if (glsl_base_type_is_64bit(glsl_get_base_type(glsl_without_array(type))))
      num_components *= 2;
   return num_components;
}

static const struct pipe_stream_output *
find_packed_output(const struct pipe_stream_output_info *so_info, uint8_t *reverse_map, unsigned slot)
{
   for (unsigned i = 0; i < so_info->num_outputs; i++) {
      const struct pipe_stream_output *packed_output = &so_info->output[i];
      if (reverse_map[packed_output->register_index] == slot)
         return packed_output;
   }
   return NULL;
}

static void
update_so_info(struct zink_shader *zs, const struct pipe_stream_output_info *so_info,
               uint64_t outputs_written, bool have_psiz)
{
   uint8_t reverse_map[VARYING_SLOT_MAX] = {0};
   unsigned slot = 0;
   /* semi-copied from iris */
   while (outputs_written) {
      int bit = u_bit_scan64(&outputs_written);
      /* PSIZ from nir_lower_point_size_mov breaks stream output, so always skip it */
      if (bit == VARYING_SLOT_PSIZ && !have_psiz)
         continue;
      reverse_map[slot++] = bit;
   }

   bool have_fake_psiz = false;
   nir_foreach_shader_out_variable(var, zs->nir) {
      var->data.explicit_xfb_buffer = 0;
      if (var->data.location == VARYING_SLOT_PSIZ && !var->data.explicit_location)
         have_fake_psiz = true;
   }

   bool inlined[VARYING_SLOT_MAX][4] = {0};
   uint64_t packed = 0;
   uint8_t packed_components[VARYING_SLOT_MAX] = {0};
   uint8_t packed_streams[VARYING_SLOT_MAX] = {0};
   uint8_t packed_buffers[VARYING_SLOT_MAX] = {0};
   uint16_t packed_offsets[VARYING_SLOT_MAX][4] = {0};
   nir_variable *psiz = NULL;
   for (unsigned i = 0; i < so_info->num_outputs; i++) {
      const struct pipe_stream_output *output = &so_info->output[i];
      unsigned slot = reverse_map[output->register_index];
      /* always set stride to be used during draw */
      zs->sinfo.so_info.stride[output->output_buffer] = so_info->stride[output->output_buffer];
      if (zs->nir->info.stage != MESA_SHADER_GEOMETRY || util_bitcount(zs->nir->info.gs.active_stream_mask) == 1) {
         nir_variable *var = NULL;
         unsigned so_slot;
         while (!var)
            var = find_var_with_location_frac(zs->nir, slot--, output->start_component, have_psiz);
         if (var->data.location == VARYING_SLOT_PSIZ)
            psiz = var;
         so_slot = slot + 1;
         slot = reverse_map[output->register_index];
         if (var->data.explicit_xfb_buffer) {
            /* handle dvec3 where gallium splits streamout over 2 registers */
            for (unsigned j = 0; j < output->num_components; j++)
               inlined[slot][output->start_component + j] = true;
         }
         if (is_inlined(inlined[slot], output))
            continue;
         bool is_struct = glsl_type_is_struct_or_ifc(glsl_without_array(var->type));
         unsigned num_components = get_slot_components(var, slot, so_slot);
         /* if this is the entire variable, try to blast it out during the initial declaration
          * structs must be handled later to ensure accurate analysis
          */
         if (!is_struct && (num_components == output->num_components || (num_components > output->num_components && output->num_components == 4))) {
            var->data.explicit_xfb_buffer = 1;
            var->data.xfb.buffer = output->output_buffer;
            var->data.xfb.stride = so_info->stride[output->output_buffer] * 4;
            var->data.offset = output->dst_offset * 4;
            var->data.stream = output->stream;
            for (unsigned j = 0; j < output->num_components; j++)
               inlined[slot][output->start_component + j] = true;
         } else {
            /* otherwise store some metadata for later */
            packed |= BITFIELD64_BIT(slot);
            packed_components[slot] += output->num_components;
            packed_streams[slot] |= BITFIELD_BIT(output->stream);
            packed_buffers[slot] |= BITFIELD_BIT(output->output_buffer);
            for (unsigned j = 0; j < output->num_components; j++)
               packed_offsets[output->register_index][j + output->start_component] = output->dst_offset + j;
         }
      }
   }

   /* if this was flagged as a packed output before, and if all the components are
    * being output with the same stream on the same buffer with increasing offsets, this entire variable
    * can be consolidated into a single output to conserve locations
    */
   for (unsigned i = 0; i < so_info->num_outputs; i++) {
      const struct pipe_stream_output *output = &so_info->output[i];
      unsigned slot = reverse_map[output->register_index];
      if (is_inlined(inlined[slot], output))
         continue;
      if (zs->nir->info.stage != MESA_SHADER_GEOMETRY || util_bitcount(zs->nir->info.gs.active_stream_mask) == 1) {
         nir_variable *var = NULL;
         while (!var)
            var = find_var_with_location_frac(zs->nir, slot--, output->start_component, have_psiz);

         unsigned num_slots = glsl_count_vec4_slots(var->type, false, false);
         /* for each variable, iterate over all the variable's slots and inline the outputs */
         for (unsigned j = 0; j < num_slots; j++) {
            slot = var->data.location + j;
            const struct pipe_stream_output *packed_output = find_packed_output(so_info, reverse_map, slot);
            if (!packed_output)
               goto out;

            /* if this slot wasn't packed or isn't in the same stream/buffer, skip consolidation */
            if (!(packed & BITFIELD64_BIT(slot)) ||
                util_bitcount(packed_streams[slot]) != 1 ||
                util_bitcount(packed_buffers[slot]) != 1)
               goto out;

            /* if all the components the variable exports to this slot aren't captured, skip consolidation */
            unsigned num_components = get_slot_components(var, slot, var->data.location);
            if (num_components != packed_components[slot])
               goto out;

            /* in order to pack the xfb output, all the offsets must be sequentially incrementing */
            uint32_t prev_offset = packed_offsets[packed_output->register_index][0];
            for (unsigned k = 1; k < num_components; k++) {
               /* if the offsets are not incrementing as expected, skip consolidation */
               if (packed_offsets[packed_output->register_index][k] != prev_offset + 1)
                  goto out;
               prev_offset = packed_offsets[packed_output->register_index][k + packed_output->start_component];
            }
         }
         /* this output can be consolidated: blast out all the data inlined */
         var->data.explicit_xfb_buffer = 1;
         var->data.xfb.buffer = output->output_buffer;
         var->data.xfb.stride = so_info->stride[output->output_buffer] * 4;
         var->data.offset = output->dst_offset * 4;
         var->data.stream = output->stream;
         /* GLSL specifies that interface blocks are split per-buffer in XFB */
         if (glsl_type_is_array(var->type) && glsl_array_size(var->type) > 1 && glsl_type_is_interface(glsl_without_array(var->type)))
            zs->sinfo.so_propagate |= BITFIELD_BIT(var->data.location - VARYING_SLOT_VAR0);
         /* mark all slot components inlined to skip subsequent loop iterations */
         for (unsigned j = 0; j < num_slots; j++) {
            slot = var->data.location + j;
            for (unsigned k = 0; k < packed_components[slot]; k++)
               inlined[slot][k] = true;
            packed &= ~BITFIELD64_BIT(slot);
         }
         continue;
      }
out:
      /* these are packed/explicit varyings which can't be exported with normal output */
      zs->sinfo.so_info.output[zs->sinfo.so_info.num_outputs] = *output;
      /* Map Gallium's condensed "slots" back to real VARYING_SLOT_* enums */
      zs->sinfo.so_info_slots[zs->sinfo.so_info.num_outputs++] = reverse_map[output->register_index];
   }
   zs->sinfo.have_xfb = zs->sinfo.so_info.num_outputs || zs->sinfo.so_propagate;
   /* ensure this doesn't get output in the shader by unsetting location */
   if (have_fake_psiz && psiz)
      update_psiz_location(zs->nir, psiz);
}

struct decompose_state {
  nir_variable **split;
  bool needs_w;
};

static bool
lower_attrib(nir_builder *b, nir_instr *instr, void *data)
{
   struct decompose_state *state = data;
   nir_variable **split = state->split;
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_deref)
      return false;
   nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
   nir_variable *var = nir_deref_instr_get_variable(deref);
   if (var != split[0])
      return false;
   unsigned num_components = glsl_get_vector_elements(split[0]->type);
   b->cursor = nir_after_instr(instr);
   nir_ssa_def *loads[4];
   for (unsigned i = 0; i < (state->needs_w ? num_components - 1 : num_components); i++)
      loads[i] = nir_load_deref(b, nir_build_deref_var(b, split[i+1]));
   if (state->needs_w) {
      /* oob load w comopnent to get correct value for int/float */
      loads[3] = nir_channel(b, loads[0], 3);
      loads[0] = nir_channel(b, loads[0], 0);
   }
   nir_ssa_def *new_load = nir_vec(b, loads, num_components);
   nir_ssa_def_rewrite_uses(&intr->dest.ssa, new_load);
   nir_instr_remove_v(instr);
   return true;
}

static bool
decompose_attribs(nir_shader *nir, uint32_t decomposed_attrs, uint32_t decomposed_attrs_without_w)
{
   uint32_t bits = 0;
   nir_foreach_variable_with_modes(var, nir, nir_var_shader_in)
      bits |= BITFIELD_BIT(var->data.driver_location);
   bits = ~bits;
   u_foreach_bit(location, decomposed_attrs | decomposed_attrs_without_w) {
      nir_variable *split[5];
      struct decompose_state state;
      state.split = split;
      nir_variable *var = nir_find_variable_with_driver_location(nir, nir_var_shader_in, location);
      assert(var);
      split[0] = var;
      bits |= BITFIELD_BIT(var->data.driver_location);
      const struct glsl_type *new_type = glsl_type_is_scalar(var->type) ? var->type : glsl_get_array_element(var->type);
      unsigned num_components = glsl_get_vector_elements(var->type);
      state.needs_w = (decomposed_attrs_without_w & BITFIELD_BIT(location)) != 0 && num_components == 4;
      for (unsigned i = 0; i < (state.needs_w ? num_components - 1 : num_components); i++) {
         split[i+1] = nir_variable_clone(var, nir);
         split[i+1]->name = ralloc_asprintf(nir, "%s_split%u", var->name, i);
         if (decomposed_attrs_without_w & BITFIELD_BIT(location))
            split[i+1]->type = !i && num_components == 4 ? var->type : new_type;
         else
            split[i+1]->type = new_type;
         split[i+1]->data.driver_location = ffs(bits) - 1;
         bits &= ~BITFIELD_BIT(split[i+1]->data.driver_location);
         nir_shader_add_variable(nir, split[i+1]);
      }
      var->data.mode = nir_var_shader_temp;
      nir_shader_instructions_pass(nir, lower_attrib, nir_metadata_dominance, &state);
   }
   nir_fixup_deref_modes(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
   optimize_nir(nir);
   return true;
}

static bool
rewrite_bo_access_instr(nir_builder *b, nir_instr *instr, void *data)
{
   struct zink_screen *screen = data;
   const bool has_int64 = screen->info.feats.features.shaderInt64;
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   b->cursor = nir_before_instr(instr);
   switch (intr->intrinsic) {
   case nir_intrinsic_load_ssbo:
   case nir_intrinsic_load_ubo: {
      /* ubo0 can have unaligned 64bit loads, particularly for bindless texture ids */
      bool force_2x32 = intr->intrinsic == nir_intrinsic_load_ubo &&
                        nir_src_as_uint(intr->src[0]) == 0 &&
                        nir_dest_bit_size(intr->dest) == 64 &&
                        nir_intrinsic_align_offset(intr) % 8 != 0;
      nir_instr_rewrite_src_ssa(instr, &intr->src[1], nir_udiv_imm(b, intr->src[1].ssa,
                                (force_2x32 ? 32 : nir_dest_bit_size(intr->dest)) / 8));
      /* if 64bit isn't supported, 64bit loads definitely aren't supported, so rewrite as 2x32 with cast and pray */
      if (force_2x32 || (nir_dest_bit_size(intr->dest) == 64 && !has_int64)) {
         /* this is always scalarized */
         assert(intr->dest.ssa.num_components == 1);
         /* rewrite as 2x32 */
         nir_ssa_def *load[2];
         for (unsigned i = 0; i < 2; i++) {
            if (intr->intrinsic == nir_intrinsic_load_ssbo)
               load[i] = nir_load_ssbo(b, 1, 32, intr->src[0].ssa, nir_iadd_imm(b, intr->src[1].ssa, i), .align_mul = 4, .align_offset = 0);
            else
               load[i] = nir_load_ubo(b, 1, 32, intr->src[0].ssa, nir_iadd_imm(b, intr->src[1].ssa, i), .align_mul = 4, .align_offset = 0, .range = 4);
            nir_intrinsic_set_access(nir_instr_as_intrinsic(load[i]->parent_instr), nir_intrinsic_access(intr));
         }
         /* cast back to 64bit */
         nir_ssa_def *casted = nir_pack_64_2x32_split(b, load[0], load[1]);
         nir_ssa_def_rewrite_uses(&intr->dest.ssa, casted);
         nir_instr_remove(instr);
      }
      return true;
   }
   case nir_intrinsic_load_shared:
      b->cursor = nir_before_instr(instr);
      nir_instr_rewrite_src_ssa(instr, &intr->src[0], nir_udiv_imm(b, intr->src[0].ssa, nir_dest_bit_size(intr->dest) / 8));
      /* if 64bit isn't supported, 64bit loads definitely aren't supported, so rewrite as 2x32 with cast and pray */
      if (nir_dest_bit_size(intr->dest) == 64 && !has_int64) {
         /* this is always scalarized */
         assert(intr->dest.ssa.num_components == 1);
         /* rewrite as 2x32 */
         nir_ssa_def *load[2];
         for (unsigned i = 0; i < 2; i++)
            load[i] = nir_load_shared(b, 1, 32, nir_iadd_imm(b, intr->src[0].ssa, i), .align_mul = 4, .align_offset = 0);
         /* cast back to 64bit */
         nir_ssa_def *casted = nir_pack_64_2x32_split(b, load[0], load[1]);
         nir_ssa_def_rewrite_uses(&intr->dest.ssa, casted);
         nir_instr_remove(instr);
         return true;
      }
      break;
   case nir_intrinsic_store_ssbo:
      b->cursor = nir_before_instr(instr);
      nir_instr_rewrite_src_ssa(instr, &intr->src[2], nir_udiv_imm(b, intr->src[2].ssa, nir_src_bit_size(intr->src[0]) / 8));
      /* if 64bit isn't supported, 64bit loads definitely aren't supported, so rewrite as 2x32 with cast and pray */
      if (nir_src_bit_size(intr->src[0]) == 64 && !has_int64) {
         /* this is always scalarized */
         assert(intr->src[0].ssa->num_components == 1);
         /* cast to 32bit: nir_unpack_64_2x32 not supported by ntv */
         nir_ssa_def *casted = nir_vec2(b, nir_u2u32(b, intr->src[0].ssa), nir_u2u32(b, nir_ushr_imm(b, intr->src[0].ssa, 32)));
         for (unsigned i = 0; i < 2; i++)
            nir_store_ssbo(b, nir_channel(b, casted, i), intr->src[1].ssa, nir_iadd_imm(b, intr->src[2].ssa, i), .align_mul = 4, .align_offset = 0);
         nir_instr_remove(instr);
      }
      return true;
   case nir_intrinsic_store_shared:
      b->cursor = nir_before_instr(instr);
      nir_instr_rewrite_src_ssa(instr, &intr->src[1], nir_udiv_imm(b, intr->src[1].ssa, nir_src_bit_size(intr->src[0]) / 8));
      /* if 64bit isn't supported, 64bit loads definitely aren't supported, so rewrite as 2x32 with cast and pray */
      if (nir_src_bit_size(intr->src[0]) == 64 && !has_int64) {
         /* this is always scalarized */
         assert(intr->src[0].ssa->num_components == 1);
         /* cast to 32bit: nir_unpack_64_2x32 not supported by ntv */
         nir_ssa_def *casted = nir_vec2(b, nir_u2u32(b, intr->src[0].ssa), nir_u2u32(b, nir_ushr_imm(b, intr->src[0].ssa, 32)));
         for (unsigned i = 0; i < 2; i++)
            nir_store_shared(b, nir_channel(b, casted, i), nir_iadd_imm(b, intr->src[1].ssa, i), .align_mul = 4, .align_offset = 0);
         nir_instr_remove(instr);
      }
      return true;
   default:
      break;
   }
   return false;
}

static bool
rewrite_bo_access(nir_shader *shader, struct zink_screen *screen)
{
   return nir_shader_instructions_pass(shader, rewrite_bo_access_instr, nir_metadata_dominance, screen);
}

struct bo_vars {
   nir_variable *ubo[PIPE_MAX_CONSTANT_BUFFERS][5];
   nir_variable *ssbo[PIPE_MAX_CONSTANT_BUFFERS][5];
};

static nir_variable *
get_bo_var(nir_shader *shader, struct bo_vars *bo, bool ssbo, unsigned idx, unsigned bit_size)
{
   nir_variable *var;
   nir_variable **arr = (nir_variable**)(ssbo ? bo->ssbo : bo->ubo);

   var = arr[idx * 5 + (bit_size >> 4)];
   if (!var) {
      arr[idx * 5 + (bit_size >> 4)] = var = nir_variable_clone(arr[idx * 5 + (32 >> 4)], shader);
      nir_shader_add_variable(shader, var);

      struct glsl_struct_field *fields = rzalloc_array(shader, struct glsl_struct_field, 2);
      fields[0].name = ralloc_strdup(shader, "base");
      fields[1].name = ralloc_strdup(shader, "unsized");
      const struct glsl_type *array_type = glsl_get_struct_field(var->type, 0);
      const struct glsl_type *type;
      const struct glsl_type *unsized = glsl_array_type(glsl_uintN_t_type(bit_size), 0, bit_size / 8);
      if (bit_size > 32) {
         assert(bit_size == 64);
         type = glsl_array_type(glsl_uintN_t_type(bit_size), glsl_get_length(array_type) / 2, bit_size / 8);
      } else {
         type = glsl_array_type(glsl_uintN_t_type(bit_size), glsl_get_length(array_type) * (32 / bit_size), bit_size / 8);
      }
      fields[0].type = type;
      fields[1].type = unsized;
      var->type = glsl_struct_type(fields, glsl_get_length(var->type), "struct", false);
   }
   return var;
}

static bool
remove_bo_access_instr(nir_builder *b, nir_instr *instr, void *data)
{
   struct bo_vars *bo = data;
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   nir_variable *var = NULL;
   nir_ssa_def *offset = NULL;
   bool is_load = true;
   b->cursor = nir_before_instr(instr);
   switch (intr->intrinsic) {
   case nir_intrinsic_store_ssbo:
      var = get_bo_var(b->shader, bo, true, nir_src_as_uint(intr->src[1]), nir_src_bit_size(intr->src[0]));
      offset = intr->src[2].ssa;
      is_load = false;
      break;
   case nir_intrinsic_load_ssbo:
      var = get_bo_var(b->shader, bo, true, nir_src_as_uint(intr->src[0]), nir_dest_bit_size(intr->dest));
      offset = intr->src[1].ssa;
      break;
   case nir_intrinsic_load_ubo:
      var = get_bo_var(b->shader, bo, false, nir_src_as_uint(intr->src[0]), nir_dest_bit_size(intr->dest));
      offset = intr->src[1].ssa;
      break;
   default:
      return false;
   }
   assert(var);
   assert(offset);
   nir_deref_instr *deref_var = nir_build_deref_struct(b, nir_build_deref_var(b, var), 0);
   assert(intr->num_components <= 2);
   if (is_load) {
      nir_ssa_def *result[2];
      for (unsigned i = 0; i < intr->num_components; i++) {
         nir_deref_instr *deref_arr = nir_build_deref_array(b, deref_var, offset);
         result[i] = nir_load_deref(b, deref_arr);
         if (intr->intrinsic == nir_intrinsic_load_ssbo)
            nir_intrinsic_set_access(nir_instr_as_intrinsic(result[i]->parent_instr), nir_intrinsic_access(intr));
         offset = nir_iadd_imm(b, offset, 1);
      }
      nir_ssa_def *load = nir_vec(b, result, intr->num_components);
      nir_ssa_def_rewrite_uses(&intr->dest.ssa, load);
   } else {
      nir_deref_instr *deref_arr = nir_build_deref_array(b, deref_var, offset);
      nir_build_store_deref(b, &deref_arr->dest.ssa, intr->src[0].ssa, BITFIELD_MASK(intr->num_components), nir_intrinsic_access(intr));
   }
   nir_instr_remove(instr);
   return true;
}

static bool
remove_bo_access(nir_shader *shader)
{
   struct bo_vars bo;
   memset(&bo, 0, sizeof(bo));
   nir_foreach_variable_with_modes(var, shader, nir_var_mem_ssbo | nir_var_mem_ubo) {
      if (var->data.mode == nir_var_mem_ssbo) {
         assert(!bo.ssbo[var->data.driver_location][32 >> 4]);
         bo.ssbo[var->data.driver_location][32 >> 4] = var;
      } else {
         assert(!bo.ubo[var->data.driver_location][32 >> 4]);
         bo.ubo[var->data.driver_location][32 >> 4] = var;
      }
   }
   return nir_shader_instructions_pass(shader, remove_bo_access_instr, nir_metadata_dominance, &bo);
}

static void
assign_producer_var_io(gl_shader_stage stage, nir_variable *var, unsigned *reserved, unsigned char *slot_map)
{
   unsigned slot = var->data.location;
   switch (slot) {
   case -1:
   case VARYING_SLOT_POS:
   case VARYING_SLOT_PNTC:
   case VARYING_SLOT_PSIZ:
   case VARYING_SLOT_LAYER:
   case VARYING_SLOT_PRIMITIVE_ID:
   case VARYING_SLOT_CLIP_DIST0:
   case VARYING_SLOT_CULL_DIST0:
   case VARYING_SLOT_VIEWPORT:
   case VARYING_SLOT_FACE:
   case VARYING_SLOT_TESS_LEVEL_OUTER:
   case VARYING_SLOT_TESS_LEVEL_INNER:
      /* use a sentinel value to avoid counting later */
      var->data.driver_location = UINT_MAX;
      break;

   default:
      if (var->data.patch) {
         assert(slot >= VARYING_SLOT_PATCH0);
         slot -= VARYING_SLOT_PATCH0;
      }
      if (slot_map[slot] == 0xff) {
         assert(*reserved < MAX_VARYING);
         slot_map[slot] = *reserved;
         if (stage == MESA_SHADER_TESS_EVAL && var->data.mode == nir_var_shader_in && !var->data.patch)
            *reserved += glsl_count_vec4_slots(glsl_get_array_element(var->type), false, false);
         else
            *reserved += glsl_count_vec4_slots(var->type, false, false);
      }
      slot = slot_map[slot];
      assert(slot < MAX_VARYING);
      var->data.driver_location = slot;
   }
}

ALWAYS_INLINE static bool
is_texcoord(gl_shader_stage stage, const nir_variable *var)
{
   if (stage != MESA_SHADER_FRAGMENT)
      return false;
   return var->data.location >= VARYING_SLOT_TEX0 && 
          var->data.location <= VARYING_SLOT_TEX7;
}

static bool
assign_consumer_var_io(gl_shader_stage stage, nir_variable *var, unsigned *reserved, unsigned char *slot_map)
{
   unsigned slot = var->data.location;
   switch (slot) {
   case VARYING_SLOT_POS:
   case VARYING_SLOT_PNTC:
   case VARYING_SLOT_PSIZ:
   case VARYING_SLOT_LAYER:
   case VARYING_SLOT_PRIMITIVE_ID:
   case VARYING_SLOT_CLIP_DIST0:
   case VARYING_SLOT_CULL_DIST0:
   case VARYING_SLOT_VIEWPORT:
   case VARYING_SLOT_FACE:
   case VARYING_SLOT_TESS_LEVEL_OUTER:
   case VARYING_SLOT_TESS_LEVEL_INNER:
      /* use a sentinel value to avoid counting later */
      var->data.driver_location = UINT_MAX;
      break;
   default:
      if (var->data.patch) {
         assert(slot >= VARYING_SLOT_PATCH0);
         slot -= VARYING_SLOT_PATCH0;
      }
      if (slot_map[slot] == (unsigned char)-1) {
         if (stage != MESA_SHADER_TESS_CTRL && !is_texcoord(stage, var))
            /* dead io */
            return false;
         /* - texcoords can't be eliminated in fs due to GL_COORD_REPLACE
          * - patch variables may be read in the workgroup
          */
         slot_map[slot] = (*reserved)++;
      }
      var->data.driver_location = slot_map[slot];
   }
   return true;
}


static bool
rewrite_and_discard_read(nir_builder *b, nir_instr *instr, void *data)
{
   nir_variable *var = data;
   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_deref)
      return false;
   nir_variable *deref_var = nir_intrinsic_get_var(intr, 0);
   if (deref_var != var)
      return false;
   nir_ssa_def *undef = nir_ssa_undef(b, nir_dest_num_components(intr->dest), nir_dest_bit_size(intr->dest));
   nir_ssa_def_rewrite_uses(&intr->dest.ssa, undef);
   return true;
}

void
zink_compiler_assign_io(nir_shader *producer, nir_shader *consumer)
{
   unsigned reserved = 0;
   unsigned char slot_map[VARYING_SLOT_MAX];
   memset(slot_map, -1, sizeof(slot_map));
   bool do_fixup = false;
   nir_shader *nir = producer->info.stage == MESA_SHADER_TESS_CTRL ? producer : consumer;
   if (consumer->info.stage != MESA_SHADER_FRAGMENT) {
      /* remove injected pointsize from all but the last vertex stage */
      nir_variable *var = nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ);
      if (var && !var->data.explicit_location) {
         var->data.mode = nir_var_shader_temp;
         nir_fixup_deref_modes(producer);
         NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
         optimize_nir(producer);
      }
   }
   if (producer->info.stage == MESA_SHADER_TESS_CTRL) {
      /* never assign from tcs -> tes, always invert */
      nir_foreach_variable_with_modes(var, consumer, nir_var_shader_in)
         assign_producer_var_io(consumer->info.stage, var, &reserved, slot_map);
      nir_foreach_variable_with_modes_safe(var, producer, nir_var_shader_out) {
         if (!assign_consumer_var_io(producer->info.stage, var, &reserved, slot_map))
            /* this is an output, nothing more needs to be done for it to be dropped */
            do_fixup = true;
      }
   } else {
      nir_foreach_variable_with_modes(var, producer, nir_var_shader_out)
         assign_producer_var_io(producer->info.stage, var, &reserved, slot_map);
      nir_foreach_variable_with_modes_safe(var, consumer, nir_var_shader_in) {
         if (!assign_consumer_var_io(consumer->info.stage, var, &reserved, slot_map)) {
            do_fixup = true;
            /* input needs to be rewritten as an undef to ensure the entire deref chain is deleted */
            nir_shader_instructions_pass(consumer, rewrite_and_discard_read, nir_metadata_dominance, var);
         }
      }
   }
   if (!do_fixup)
      return;
   nir_fixup_deref_modes(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
   optimize_nir(nir);
}

static void
zink_shader_dump(void *words, size_t size, const char *file)
{
   FILE *fp = fopen(file, "wb");
   if (fp) {
      fwrite(words, 1, size, fp);
      fclose(fp);
      fprintf(stderr, "wrote '%s'...\n", file);
   }
}

VkShaderModule
zink_shader_spirv_compile(struct zink_screen *screen, struct zink_shader *zs, struct spirv_shader *spirv)
{
   VkShaderModule mod;
   VkShaderModuleCreateInfo smci = {0};

   if (!spirv)
      spirv = zs->spirv;

   if (zink_debug & ZINK_DEBUG_SPIRV) {
      char buf[256];
      static int i;
      snprintf(buf, sizeof(buf), "dump%02d.spv", i++);
      zink_shader_dump(spirv->words, spirv->num_words * sizeof(uint32_t), buf);
   }

   smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
   smci.codeSize = spirv->num_words * sizeof(uint32_t);
   smci.pCode = spirv->words;

   VkResult ret = VKSCR(CreateShaderModule)(screen->dev, &smci, NULL, &mod);
   bool success = zink_screen_handle_vkresult(screen, ret);
   assert(success);
   return success ? mod : VK_NULL_HANDLE;
}

static bool
find_var_deref(nir_shader *nir, nir_variable *var)
{
   nir_foreach_function(function, nir) {
      if (!function->impl)
         continue;

      nir_foreach_block(block, function->impl) {
         nir_foreach_instr(instr, block) {
            if (instr->type != nir_instr_type_deref)
               continue;
            nir_deref_instr *deref = nir_instr_as_deref(instr);
            if (deref->deref_type == nir_deref_type_var && deref->var == var)
               return true;
         }
      }
   }
   return false;
}

static void
prune_io(nir_shader *nir)
{
   nir_foreach_shader_in_variable_safe(var, nir) {
      if (!find_var_deref(nir, var))
         var->data.mode = nir_var_shader_temp;
   }
   nir_foreach_shader_out_variable_safe(var, nir) {
      if (!find_var_deref(nir, var))
         var->data.mode = nir_var_shader_temp;
   }
}

VkShaderModule
zink_shader_compile(struct zink_screen *screen, struct zink_shader *zs, nir_shader *base_nir, const struct zink_shader_key *key)
{
   VkShaderModule mod = VK_NULL_HANDLE;
   struct zink_shader_info *sinfo = &zs->sinfo;
   nir_shader *nir = nir_shader_clone(NULL, base_nir);
   bool need_optimize = false;
   bool inlined_uniforms = false;

   if (key) {
      if (key->inline_uniforms) {
         NIR_PASS_V(nir, nir_inline_uniforms,
                    nir->info.num_inlinable_uniforms,
                    key->base.inlined_uniform_values,
                    nir->info.inlinable_uniform_dw_offsets);

         inlined_uniforms = true;
      }

      /* TODO: use a separate mem ctx here for ralloc */
      switch (zs->nir->info.stage) {
      case MESA_SHADER_VERTEX: {
         uint32_t decomposed_attrs = 0, decomposed_attrs_without_w = 0;
         const struct zink_vs_key *vs_key = zink_vs_key(key);
         switch (vs_key->size) {
         case 4:
            decomposed_attrs = vs_key->u32.decomposed_attrs;
            decomposed_attrs_without_w = vs_key->u32.decomposed_attrs_without_w;
            break;
         case 2:
            decomposed_attrs = vs_key->u16.decomposed_attrs;
            decomposed_attrs_without_w = vs_key->u16.decomposed_attrs_without_w;
            break;
         case 1:
            decomposed_attrs = vs_key->u8.decomposed_attrs;
            decomposed_attrs_without_w = vs_key->u8.decomposed_attrs_without_w;
            break;
         default: break;
         }
         if (decomposed_attrs || decomposed_attrs_without_w)
            NIR_PASS_V(nir, decompose_attribs, decomposed_attrs, decomposed_attrs_without_w);
         FALLTHROUGH;
      }
      case MESA_SHADER_TESS_EVAL:
      case MESA_SHADER_GEOMETRY:
         if (zink_vs_key_base(key)->last_vertex_stage) {
            if (zs->sinfo.have_xfb)
               sinfo->last_vertex = true;

            if (!zink_vs_key_base(key)->clip_halfz && screen->driver_workarounds.depth_clip_control_missing) {
               NIR_PASS_V(nir, nir_lower_clip_halfz);
            }
            if (zink_vs_key_base(key)->push_drawid) {
               NIR_PASS_V(nir, lower_drawid);
            }
         }
         break;
      case MESA_SHADER_FRAGMENT:
         if (!zink_fs_key(key)->samples &&
            nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
            /* VK will always use gl_SampleMask[] values even if sample count is 0,
            * so we need to skip this write here to mimic GL's behavior of ignoring it
            */
            nir_foreach_shader_out_variable(var, nir) {
               if (var->data.location == FRAG_RESULT_SAMPLE_MASK)
                  var->data.mode = nir_var_shader_temp;
            }
            nir_fixup_deref_modes(nir);
            NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
            need_optimize = true;
         }
         if (zink_fs_key(key)->force_dual_color_blend && nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA1)) {
            NIR_PASS_V(nir, lower_dual_blend);
         }
         if (zink_fs_key(key)->coord_replace_bits) {
            NIR_PASS_V(nir, nir_lower_texcoord_replace, zink_fs_key(key)->coord_replace_bits,
                     false, zink_fs_key(key)->coord_replace_yinvert);
         }
         if (zink_fs_key(key)->force_persample_interp || zink_fs_key(key)->fbfetch_ms) {
            nir_foreach_shader_in_variable(var, nir)
               var->data.sample = true;
            nir->info.fs.uses_sample_qualifier = true;
            nir->info.fs.uses_sample_shading = true;
         }
         if (nir->info.fs.uses_fbfetch_output) {
            nir_variable *fbfetch = NULL;
            NIR_PASS_V(nir, lower_fbfetch, &fbfetch, zink_fs_key(key)->fbfetch_ms);
            /* old variable must be deleted to avoid spirv errors */
            fbfetch->data.mode = nir_var_shader_temp;
            nir_fixup_deref_modes(nir);
            NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
            need_optimize = true;
         }
         break;
      default: break;
      }
      if (key->base.nonseamless_cube_mask) {
         NIR_PASS_V(nir, zink_lower_cubemap_to_array, key->base.nonseamless_cube_mask);
         need_optimize = true;
      }
   }
   if (screen->driconf.inline_uniforms) {
      NIR_PASS_V(nir, nir_lower_io_to_scalar, nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_shared);
      NIR_PASS_V(nir, rewrite_bo_access, screen);
      NIR_PASS_V(nir, remove_bo_access);
   }
   if (inlined_uniforms) {
      optimize_nir(nir);

      /* This must be done again. */
      NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in |
                                                       nir_var_shader_out);
   } else if (need_optimize)
      optimize_nir(nir);
   prune_io(nir);

   NIR_PASS_V(nir, nir_convert_from_ssa, true);

   struct spirv_shader *spirv = nir_to_spirv(nir, sinfo, screen->spirv_version);
   if (spirv)
      mod = zink_shader_spirv_compile(screen, zs, spirv);

   ralloc_free(nir);

   /* TODO: determine if there's any reason to cache spirv output? */
   if (zs->is_generated)
      zs->spirv = spirv;
   else
      ralloc_free(spirv);
   return mod;
}

static bool
lower_baseinstance_instr(nir_builder *b, nir_instr *instr, void *data)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   if (intr->intrinsic != nir_intrinsic_load_instance_id)
      return false;
   b->cursor = nir_after_instr(instr);
   nir_ssa_def *def = nir_isub(b, &intr->dest.ssa, nir_load_base_instance(b));
   nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, def, def->parent_instr);
   return true;
}

static bool
lower_baseinstance(nir_shader *shader)
{
   if (shader->info.stage != MESA_SHADER_VERTEX)
      return false;
   return nir_shader_instructions_pass(shader, lower_baseinstance_instr, nir_metadata_dominance, NULL);
}

bool nir_lower_dynamic_bo_access(nir_shader *shader);

/* gl_nir_lower_buffers makes variables unusable for all UBO/SSBO access
 * so instead we delete all those broken variables and just make new ones
 */
static bool
unbreak_bos(nir_shader *shader)
{
   uint32_t ssbo_used = 0;
   uint32_t ubo_used = 0;
   uint64_t max_ssbo_size = 0;
   uint64_t max_ubo_size = 0;
   bool ssbo_sizes[PIPE_MAX_SHADER_BUFFERS] = {false};

   if (!shader->info.num_ssbos && !shader->info.num_ubos && !shader->num_uniforms)
      return false;
   nir_function_impl *impl = nir_shader_get_entrypoint(shader);
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
         switch (intrin->intrinsic) {
         case nir_intrinsic_store_ssbo:
            ssbo_used |= BITFIELD_BIT(nir_src_as_uint(intrin->src[1]));
            break;

         case nir_intrinsic_get_ssbo_size: {
            uint32_t slot = nir_src_as_uint(intrin->src[0]);
            ssbo_used |= BITFIELD_BIT(slot);
            ssbo_sizes[slot] = true;
            break;
         }
         case nir_intrinsic_ssbo_atomic_add:
         case nir_intrinsic_ssbo_atomic_imin:
         case nir_intrinsic_ssbo_atomic_umin:
         case nir_intrinsic_ssbo_atomic_imax:
         case nir_intrinsic_ssbo_atomic_umax:
         case nir_intrinsic_ssbo_atomic_and:
         case nir_intrinsic_ssbo_atomic_or:
         case nir_intrinsic_ssbo_atomic_xor:
         case nir_intrinsic_ssbo_atomic_exchange:
         case nir_intrinsic_ssbo_atomic_comp_swap:
         case nir_intrinsic_ssbo_atomic_fmin:
         case nir_intrinsic_ssbo_atomic_fmax:
         case nir_intrinsic_ssbo_atomic_fcomp_swap:
         case nir_intrinsic_load_ssbo:
            ssbo_used |= BITFIELD_BIT(nir_src_as_uint(intrin->src[0]));
            break;
         case nir_intrinsic_load_ubo:
         case nir_intrinsic_load_ubo_vec4:
            ubo_used |= BITFIELD_BIT(nir_src_as_uint(intrin->src[0]));
            break;
         default:
            break;
         }
      }
   }

   nir_foreach_variable_with_modes(var, shader, nir_var_mem_ssbo | nir_var_mem_ubo) {
      const struct glsl_type *type = glsl_without_array(var->type);
      if (type_is_counter(type))
         continue;
      unsigned size = glsl_count_attribute_slots(glsl_type_is_array(var->type) ? var->type : type, false);
      if (var->data.mode == nir_var_mem_ubo)
         max_ubo_size = MAX2(max_ubo_size, size);
      else
         max_ssbo_size = MAX2(max_ssbo_size, size);
      var->data.mode = nir_var_shader_temp;
   }
   nir_fixup_deref_modes(shader);
   NIR_PASS_V(shader, nir_remove_dead_variables, nir_var_shader_temp, NULL);
   optimize_nir(shader);

   if (!ssbo_used && !ubo_used)
      return false;

   struct glsl_struct_field *fields = rzalloc_array(shader, struct glsl_struct_field, 2);
   fields[0].name = ralloc_strdup(shader, "base");
   fields[1].name = ralloc_strdup(shader, "unsized");
   if (ubo_used) {
      const struct glsl_type *ubo_type = glsl_array_type(glsl_uint_type(), max_ubo_size * 4, 4);
      fields[0].type = ubo_type;
      u_foreach_bit(slot, ubo_used) {
         char buf[64];
         snprintf(buf, sizeof(buf), "ubo_slot_%u", slot);
         nir_variable *var = nir_variable_create(shader, nir_var_mem_ubo, glsl_struct_type(fields, 1, "struct", false), buf);
         var->interface_type = var->type;
         var->data.driver_location = slot;
      }
   }
   if (ssbo_used) {
      const struct glsl_type *ssbo_type = glsl_array_type(glsl_uint_type(), max_ssbo_size * 4, 4);
      const struct glsl_type *unsized = glsl_array_type(glsl_uint_type(), 0, 4);
      fields[0].type = ssbo_type;
      u_foreach_bit(slot, ssbo_used) {
         char buf[64];
         snprintf(buf, sizeof(buf), "ssbo_slot_%u", slot);
         bool use_runtime = ssbo_sizes[slot] && max_ssbo_size;
         if (use_runtime)
            fields[1].type = unsized;
         else
            fields[1].type = NULL;
         nir_variable *var = nir_variable_create(shader, nir_var_mem_ssbo,
                                                 glsl_struct_type(fields, 1 + use_runtime, "struct", false), buf);
         var->interface_type = var->type;
         var->data.driver_location = slot;
      }
   }
   return true;
}

/* this is a "default" bindless texture used if the shader has no texture variables */
static nir_variable *
create_bindless_texture(nir_shader *nir, nir_tex_instr *tex)
{
   unsigned binding = tex->sampler_dim == GLSL_SAMPLER_DIM_BUF ? 1 : 0;
   nir_variable *var;

   const struct glsl_type *sampler_type = glsl_sampler_type(tex->sampler_dim, tex->is_shadow, tex->is_array, GLSL_TYPE_FLOAT);
   var = nir_variable_create(nir, nir_var_uniform, glsl_array_type(sampler_type, ZINK_MAX_BINDLESS_HANDLES, 0), "bindless_texture");
   var->data.descriptor_set = ZINK_DESCRIPTOR_BINDLESS;
   var->data.driver_location = var->data.binding = binding;
   return var;
}

/* this is a "default" bindless image used if the shader has no image variables */
static nir_variable *
create_bindless_image(nir_shader *nir, enum glsl_sampler_dim dim)
{
   unsigned binding = dim == GLSL_SAMPLER_DIM_BUF ? 3 : 2;
   nir_variable *var;

   const struct glsl_type *image_type = glsl_image_type(dim, false, GLSL_TYPE_FLOAT);
   var = nir_variable_create(nir, nir_var_image, glsl_array_type(image_type, ZINK_MAX_BINDLESS_HANDLES, 0), "bindless_image");
   var->data.descriptor_set = ZINK_DESCRIPTOR_BINDLESS;
   var->data.driver_location = var->data.binding = binding;
   var->data.image.format = PIPE_FORMAT_R8G8B8A8_UNORM;
   return var;
}

/* rewrite bindless instructions as array deref instructions */
static bool
lower_bindless_instr(nir_builder *b, nir_instr *in, void *data)
{
   nir_variable **bindless = data;

   if (in->type == nir_instr_type_tex) {
      nir_tex_instr *tex = nir_instr_as_tex(in);
      int idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
      if (idx == -1)
         return false;

      nir_variable *var = tex->sampler_dim == GLSL_SAMPLER_DIM_BUF ? bindless[1] : bindless[0];
      if (!var)
         var = create_bindless_texture(b->shader, tex);
      b->cursor = nir_before_instr(in);
      nir_deref_instr *deref = nir_build_deref_var(b, var);
      if (glsl_type_is_array(var->type))
         deref = nir_build_deref_array(b, deref, nir_u2uN(b, tex->src[idx].src.ssa, 32));
      nir_instr_rewrite_src_ssa(in, &tex->src[idx].src, &deref->dest.ssa);

      /* bindless sampling uses the variable type directly, which means the tex instr has to exactly
       * match up with it in contrast to normal sampler ops where things are a bit more flexible;
       * this results in cases where a shader is passed with sampler2DArray but the tex instr only has
       * 2 components, which explodes spirv compilation even though it doesn't trigger validation errors
       *
       * to fix this, pad the coord src here and fix the tex instr so that ntv will do the "right" thing
       * - Warhammer 40k: Dawn of War III
       */
      unsigned needed_components = glsl_get_sampler_coordinate_components(glsl_without_array(var->type));
      unsigned c = nir_tex_instr_src_index(tex, nir_tex_src_coord);
      unsigned coord_components = nir_src_num_components(tex->src[c].src);
      if (coord_components < needed_components) {
         nir_ssa_def *def = nir_pad_vector(b, tex->src[c].src.ssa, needed_components);
         nir_instr_rewrite_src_ssa(in, &tex->src[c].src, def);
         tex->coord_components = needed_components;
      }
      return true;
   }
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);

   nir_intrinsic_op op;
#define OP_SWAP(OP) \
   case nir_intrinsic_bindless_image_##OP: \
      op = nir_intrinsic_image_deref_##OP; \
      break;


   /* convert bindless intrinsics to deref intrinsics */
   switch (instr->intrinsic) {
   OP_SWAP(atomic_add)
   OP_SWAP(atomic_and)
   OP_SWAP(atomic_comp_swap)
   OP_SWAP(atomic_dec_wrap)
   OP_SWAP(atomic_exchange)
   OP_SWAP(atomic_fadd)
   OP_SWAP(atomic_fmax)
   OP_SWAP(atomic_fmin)
   OP_SWAP(atomic_imax)
   OP_SWAP(atomic_imin)
   OP_SWAP(atomic_inc_wrap)
   OP_SWAP(atomic_or)
   OP_SWAP(atomic_umax)
   OP_SWAP(atomic_umin)
   OP_SWAP(atomic_xor)
   OP_SWAP(format)
   OP_SWAP(load)
   OP_SWAP(order)
   OP_SWAP(samples)
   OP_SWAP(size)
   OP_SWAP(store)
   default:
      return false;
   }

   enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
   nir_variable *var = dim == GLSL_SAMPLER_DIM_BUF ? bindless[3] : bindless[2];
   if (!var)
      var = create_bindless_image(b->shader, dim);
   instr->intrinsic = op;
   b->cursor = nir_before_instr(in);
   nir_deref_instr *deref = nir_build_deref_var(b, var);
   if (glsl_type_is_array(var->type))
      deref = nir_build_deref_array(b, deref, nir_u2uN(b, instr->src[0].ssa, 32));
   nir_instr_rewrite_src_ssa(in, &instr->src[0], &deref->dest.ssa);
   return true;
}

static bool
lower_bindless(nir_shader *shader, nir_variable **bindless)
{
   if (!nir_shader_instructions_pass(shader, lower_bindless_instr, nir_metadata_dominance, bindless))
      return false;
   nir_fixup_deref_modes(shader);
   NIR_PASS_V(shader, nir_remove_dead_variables, nir_var_shader_temp, NULL);
   optimize_nir(shader);
   return true;
}

/* convert shader image/texture io variables to int64 handles for bindless indexing */
static bool
lower_bindless_io_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_load_deref &&
       instr->intrinsic != nir_intrinsic_store_deref)
      return false;

   nir_deref_instr *src_deref = nir_src_as_deref(instr->src[0]);
   nir_variable *var = nir_deref_instr_get_variable(src_deref);
   if (var->data.bindless)
      return false;
   if (var->data.mode != nir_var_shader_in && var->data.mode != nir_var_shader_out)
      return false;
   if (!glsl_type_is_image(var->type) && !glsl_type_is_sampler(var->type))
      return false;

   var->type = glsl_int64_t_type();
   var->data.bindless = 1;
   b->cursor = nir_before_instr(in);
   nir_deref_instr *deref = nir_build_deref_var(b, var);
   if (instr->intrinsic == nir_intrinsic_load_deref) {
       nir_ssa_def *def = nir_load_deref(b, deref);
       nir_instr_rewrite_src_ssa(in, &instr->src[0], def);
       nir_ssa_def_rewrite_uses(&instr->dest.ssa, def);
   } else {
      nir_store_deref(b, deref, instr->src[1].ssa, nir_intrinsic_write_mask(instr));
   }
   nir_instr_remove(in);
   nir_instr_remove(&src_deref->instr);
   return true;
}

static bool
lower_bindless_io(nir_shader *shader)
{
   return nir_shader_instructions_pass(shader, lower_bindless_io_instr, nir_metadata_dominance, NULL);
}

static uint32_t
zink_binding(gl_shader_stage stage, VkDescriptorType type, int index)
{
   if (stage == MESA_SHADER_NONE) {
      unreachable("not supported");
   } else {
      switch (type) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
         assert(index < PIPE_MAX_CONSTANT_BUFFERS);
         return (stage * PIPE_MAX_CONSTANT_BUFFERS) + index;

      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
         assert(index < PIPE_MAX_SAMPLERS);
         return (stage * PIPE_MAX_SAMPLERS) + index;

      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
         assert(index < PIPE_MAX_SHADER_BUFFERS);
         return (stage * PIPE_MAX_SHADER_BUFFERS) + index;

      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         assert(index < PIPE_MAX_SHADER_IMAGES);
         return (stage * PIPE_MAX_SHADER_IMAGES) + index;

      default:
         unreachable("unexpected type");
      }
   }
}

static void
handle_bindless_var(nir_shader *nir, nir_variable *var, const struct glsl_type *type, nir_variable **bindless)
{
   if (glsl_type_is_struct(type)) {
      for (unsigned i = 0; i < glsl_get_length(type); i++)
         handle_bindless_var(nir, var, glsl_get_struct_field(type, i), bindless);
      return;
   }

   /* just a random scalar in a struct */
   if (!glsl_type_is_image(type) && !glsl_type_is_sampler(type))
      return;

   VkDescriptorType vktype = glsl_type_is_image(type) ? zink_image_type(type) : zink_sampler_type(type);
   unsigned binding;
   switch (vktype) {
      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
         binding = 0;
         break;
      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
         binding = 1;
         break;
      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
         binding = 2;
         break;
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         binding = 3;
         break;
      default:
         unreachable("unknown");
   }
   if (!bindless[binding]) {
      bindless[binding] = nir_variable_clone(var, nir);
      bindless[binding]->data.bindless = 0;
      bindless[binding]->data.descriptor_set = ZINK_DESCRIPTOR_BINDLESS;
      bindless[binding]->type = glsl_array_type(type, ZINK_MAX_BINDLESS_HANDLES, 0);
      bindless[binding]->data.driver_location = bindless[binding]->data.binding = binding;
      if (!bindless[binding]->data.image.format)
         bindless[binding]->data.image.format = PIPE_FORMAT_R8G8B8A8_UNORM;
      nir_shader_add_variable(nir, bindless[binding]);
   } else {
      assert(glsl_get_sampler_dim(glsl_without_array(bindless[binding]->type)) == glsl_get_sampler_dim(glsl_without_array(var->type)));
   }
   var->data.mode = nir_var_shader_temp;
}

static enum pipe_prim_type
prim_to_pipe(enum shader_prim primitive_type)
{
   switch (primitive_type) {
   case SHADER_PRIM_POINTS:
      return PIPE_PRIM_POINTS;
   case SHADER_PRIM_LINES:
   case SHADER_PRIM_LINE_LOOP:
   case SHADER_PRIM_LINE_STRIP:
   case SHADER_PRIM_LINES_ADJACENCY:
   case SHADER_PRIM_LINE_STRIP_ADJACENCY:
      return PIPE_PRIM_LINES;
   default:
      return PIPE_PRIM_TRIANGLES;
   }
}

static enum pipe_prim_type
tess_prim_to_pipe(enum tess_primitive_mode prim_mode)
{
   switch (prim_mode) {
   case TESS_PRIMITIVE_ISOLINES:
      return PIPE_PRIM_LINES;
   default:
      return PIPE_PRIM_TRIANGLES;
   }
}

static enum pipe_prim_type
get_shader_base_prim_type(struct nir_shader *nir)
{
   switch (nir->info.stage) {
   case MESA_SHADER_GEOMETRY:
      return prim_to_pipe(nir->info.gs.output_primitive);
   case MESA_SHADER_TESS_EVAL:
      return nir->info.tess.point_mode ? PIPE_PRIM_POINTS : tess_prim_to_pipe(nir->info.tess._primitive_mode);
   default:
      break;
   }
   return PIPE_PRIM_MAX;
}

static bool
convert_1d_shadow_tex(nir_builder *b, nir_instr *instr, void *data)
{
   struct zink_screen *screen = data;
   if (instr->type != nir_instr_type_tex)
      return false;
   nir_tex_instr *tex = nir_instr_as_tex(instr);
   if (tex->sampler_dim != GLSL_SAMPLER_DIM_1D || !tex->is_shadow)
      return false;
   if (tex->is_sparse && screen->need_2D_sparse) {
      /* no known case of this exists: only nvidia can hit it, and nothing uses it */
      mesa_loge("unhandled/unsupported 1D sparse texture!");
      abort();
   }
   tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
   b->cursor = nir_before_instr(instr);
   tex->coord_components++;
   unsigned srcs[] = {
      nir_tex_src_coord,
      nir_tex_src_offset,
      nir_tex_src_ddx,
      nir_tex_src_ddy,
   };
   for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++) {
      unsigned c = nir_tex_instr_src_index(tex, srcs[i]);
      if (c == -1)
         continue;
      if (tex->src[c].src.ssa->num_components == tex->coord_components)
         continue;
      nir_ssa_def *def;
      nir_ssa_def *zero = nir_imm_zero(b, 1, tex->src[c].src.ssa->bit_size);
      if (tex->src[c].src.ssa->num_components == 1)
         def = nir_vec2(b, tex->src[c].src.ssa, zero);
      else
         def = nir_vec3(b, nir_channel(b, tex->src[c].src.ssa, 0), zero, nir_channel(b, tex->src[c].src.ssa, 1));
      nir_instr_rewrite_src_ssa(instr, &tex->src[c].src, def);
   }
   b->cursor = nir_after_instr(instr);
   unsigned needed_components = nir_tex_instr_dest_size(tex);
   unsigned num_components = tex->dest.ssa.num_components;
   if (needed_components > num_components) {
      tex->dest.ssa.num_components = needed_components;
      assert(num_components < 3);
      /* take either xz or just x since this is promoted to 2D from 1D */
      uint32_t mask = num_components == 2 ? (1|4) : 1;
      nir_ssa_def *dst = nir_channels(b, &tex->dest.ssa, mask);
      nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, dst, dst->parent_instr);
   }
   return true;
}

static bool
lower_1d_shadow(nir_shader *shader, struct zink_screen *screen)
{
   bool found = false;
   nir_foreach_variable_with_modes(var, shader, nir_var_uniform | nir_var_image) {
      const struct glsl_type *type = glsl_without_array(var->type);
      unsigned length = glsl_get_length(var->type);
      if (!glsl_type_is_sampler(type) || !glsl_sampler_type_is_shadow(type) || glsl_get_sampler_dim(type) != GLSL_SAMPLER_DIM_1D)
         continue;
      const struct glsl_type *sampler = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, true, glsl_sampler_type_is_array(type), glsl_get_sampler_result_type(type));
      var->type = type != var->type ? glsl_array_type(sampler, length, glsl_get_explicit_stride(var->type)) : sampler;

      found = true;
   }
   if (found)
      nir_shader_instructions_pass(shader, convert_1d_shadow_tex, nir_metadata_dominance, screen);
   return found;
}

static void
scan_nir(struct zink_screen *screen, nir_shader *shader, struct zink_shader *zs)
{
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;
      nir_foreach_block_safe(block, function->impl) {
         nir_foreach_instr_safe(instr, block) {
            if (instr->type == nir_instr_type_tex) {
               nir_tex_instr *tex = nir_instr_as_tex(instr);
               zs->sinfo.have_sparse |= tex->is_sparse;
            }
            if (instr->type != nir_instr_type_intrinsic)
               continue;
            nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
            if (intr->intrinsic == nir_intrinsic_image_deref_load ||
                intr->intrinsic == nir_intrinsic_image_deref_sparse_load ||
                intr->intrinsic == nir_intrinsic_image_deref_store ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_add ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_imin ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_umin ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_imax ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_umax ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_and ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_or ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_xor ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_exchange ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap ||
                intr->intrinsic == nir_intrinsic_image_deref_atomic_fadd ||
                intr->intrinsic == nir_intrinsic_image_deref_size ||
                intr->intrinsic == nir_intrinsic_image_deref_samples ||
                intr->intrinsic == nir_intrinsic_image_deref_format ||
                intr->intrinsic == nir_intrinsic_image_deref_order) {

                nir_variable *var =
                   nir_deref_instr_get_variable(nir_src_as_deref(intr->src[0]));

                /* Structs have been lowered already, so get_aoa_size is sufficient. */
                const unsigned size =
                   glsl_type_is_array(var->type) ? glsl_get_aoa_size(var->type) : 1;
                unsigned mask = ((1ull << MAX2(size, 1)) - 1) << var->data.binding;

                shader->info.images_used |= mask;
            }
            if (intr->intrinsic == nir_intrinsic_is_sparse_texels_resident ||
                intr->intrinsic == nir_intrinsic_image_deref_sparse_load)
               zs->sinfo.have_sparse = true;

            static bool warned = false;
            if (!screen->info.have_EXT_shader_atomic_float && !screen->is_cpu && !warned) {
               switch (intr->intrinsic) {
               case nir_intrinsic_image_deref_atomic_add:
               case nir_intrinsic_image_deref_atomic_exchange: {
                  nir_variable *var = nir_intrinsic_get_var(intr, 0);
                  if (util_format_is_float(var->data.image.format))
                     fprintf(stderr, "zink: Vulkan driver missing VK_EXT_shader_atomic_float but attempting to do atomic ops!\n");
                  break;
               }
               default:
                  break;
               }
            }
         }
      }
   }
}

static bool
lower_sparse_instr(nir_builder *b, nir_instr *in, void *data)
{
   if (in->type != nir_instr_type_intrinsic)
      return false;
   nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in);
   if (instr->intrinsic != nir_intrinsic_is_sparse_texels_resident)
      return false;

   /* vulkan vec can only be a vec4, but this is (maybe) vec5,
    * so just rewrite as the first component since ntv is going to use a different
    * method for storing the residency value anyway
    */
   b->cursor = nir_before_instr(&instr->instr);
   nir_instr *parent = instr->src[0].ssa->parent_instr;
   assert(parent->type == nir_instr_type_alu);
   nir_alu_instr *alu = nir_instr_as_alu(parent);
   nir_ssa_def_rewrite_uses_after(instr->src[0].ssa, nir_channel(b, alu->src[0].src.ssa, 0), parent);
   nir_instr_remove(parent);
   return true;
}

static bool
lower_sparse(nir_shader *shader)
{
   return nir_shader_instructions_pass(shader, lower_sparse_instr, nir_metadata_dominance, NULL);
}

struct zink_shader *
zink_shader_create(struct zink_screen *screen, struct nir_shader *nir,
                   const struct pipe_stream_output_info *so_info)
{
   struct zink_shader *ret = CALLOC_STRUCT(zink_shader);
   bool have_psiz = false;

   ret->hash = _mesa_hash_pointer(ret);
   ret->reduced_prim = get_shader_base_prim_type(nir);

   ret->programs = _mesa_pointer_set_create(NULL);
   simple_mtx_init(&ret->lock, mtx_plain);

   nir_variable_mode indirect_derefs_modes = nir_var_function_temp;
   if (nir->info.stage == MESA_SHADER_TESS_CTRL ||
       nir->info.stage == MESA_SHADER_TESS_EVAL)
      indirect_derefs_modes |= nir_var_shader_in | nir_var_shader_out;

   NIR_PASS_V(nir, nir_lower_indirect_derefs, indirect_derefs_modes,
              UINT32_MAX);

   if (nir->info.stage == MESA_SHADER_VERTEX)
      create_vs_pushconst(nir);
   else if (nir->info.stage == MESA_SHADER_TESS_CTRL ||
            nir->info.stage == MESA_SHADER_TESS_EVAL)
      NIR_PASS_V(nir, nir_lower_io_arrays_to_elements_no_indirects, false);
   else if (nir->info.stage == MESA_SHADER_KERNEL)
      create_cs_pushconst(nir);

   if (nir->info.stage < MESA_SHADER_FRAGMENT)
      have_psiz = check_psiz(nir);
   NIR_PASS_V(nir, lower_basevertex);
   NIR_PASS_V(nir, lower_work_dim);
   NIR_PASS_V(nir, nir_lower_regs_to_ssa);
   NIR_PASS_V(nir, lower_baseinstance);
   NIR_PASS_V(nir, lower_sparse);

   if (screen->need_2D_zs)
      NIR_PASS_V(nir, lower_1d_shadow, screen);

   {
      nir_lower_subgroups_options subgroup_options = {0};
      subgroup_options.lower_to_scalar = true;
      subgroup_options.subgroup_size = screen->info.props11.subgroupSize;
      subgroup_options.ballot_bit_size = 32;
      subgroup_options.ballot_components = 4;
      subgroup_options.lower_subgroup_masks = true;
      NIR_PASS_V(nir, nir_lower_subgroups, &subgroup_options);
   }

   optimize_nir(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
   NIR_PASS_V(nir, nir_lower_discard_if);
   NIR_PASS_V(nir, nir_lower_fragcolor,
         nir->info.fs.color_is_dual_source ? 1 : 8);
   NIR_PASS_V(nir, lower_64bit_vertex_attribs);
   NIR_PASS_V(nir, unbreak_bos);
   /* run in compile if there could be inlined uniforms */
   if (!screen->driconf.inline_uniforms) {
      NIR_PASS_V(nir, nir_lower_io_to_scalar, nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_shared);
      NIR_PASS_V(nir, rewrite_bo_access, screen);
      NIR_PASS_V(nir, remove_bo_access);
   }

   if (zink_debug & ZINK_DEBUG_NIR) {
      fprintf(stderr, "NIR shader:\n---8<---\n");
      nir_print_shader(nir, stderr);
      fprintf(stderr, "---8<---\n");
   }

   nir_variable *bindless[4] = {0};
   bool has_bindless_io = false;
   nir_foreach_variable_with_modes(var, nir, nir_var_shader_in | nir_var_shader_out) {
      if (glsl_type_is_image(var->type) || glsl_type_is_sampler(var->type)) {
         has_bindless_io = true;
         break;
      }
   }
   if (has_bindless_io)
      NIR_PASS_V(nir, lower_bindless_io);

   optimize_nir(nir);
   prune_io(nir);

   scan_nir(screen, nir, ret);

   foreach_list_typed_reverse_safe(nir_variable, var, node, &nir->variables) {
      if (_nir_shader_variable_has_mode(var, nir_var_uniform |
                                        nir_var_image |
                                        nir_var_mem_ubo |
                                        nir_var_mem_ssbo)) {
         enum zink_descriptor_type ztype;
         const struct glsl_type *type = glsl_without_array(var->type);
         if (var->data.mode == nir_var_mem_ubo) {
            ztype = ZINK_DESCRIPTOR_TYPE_UBO;
            /* buffer 0 is a push descriptor */
            var->data.descriptor_set = !!var->data.driver_location;
            var->data.binding = !var->data.driver_location ? nir->info.stage :
                                zink_binding(nir->info.stage,
                                             VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                                             var->data.driver_location);
            assert(var->data.driver_location || var->data.binding < 10);
            VkDescriptorType vktype = !var->data.driver_location ? VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC : VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
            int binding = var->data.binding;

            ret->bindings[ztype][ret->num_bindings[ztype]].index = var->data.driver_location;
            ret->bindings[ztype][ret->num_bindings[ztype]].binding = binding;
            ret->bindings[ztype][ret->num_bindings[ztype]].type = vktype;
            ret->bindings[ztype][ret->num_bindings[ztype]].size = 1;
            ret->ubos_used |= (1 << ret->bindings[ztype][ret->num_bindings[ztype]].index);
            ret->num_bindings[ztype]++;
         } else if (var->data.mode == nir_var_mem_ssbo) {
            ztype = ZINK_DESCRIPTOR_TYPE_SSBO;
            var->data.descriptor_set = ztype + 1;
            var->data.binding = zink_binding(nir->info.stage,
                                             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
                                             var->data.driver_location);
            ret->bindings[ztype][ret->num_bindings[ztype]].index = var->data.driver_location;
            ret->ssbos_used |= (1 << ret->bindings[ztype][ret->num_bindings[ztype]].index);
            ret->bindings[ztype][ret->num_bindings[ztype]].binding = var->data.binding;
            ret->bindings[ztype][ret->num_bindings[ztype]].type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
            ret->bindings[ztype][ret->num_bindings[ztype]].size = 1;
            ret->num_bindings[ztype]++;
         } else {
            assert(var->data.mode == nir_var_uniform ||
                   var->data.mode == nir_var_image);
            if (var->data.bindless) {
               ret->bindless = true;
               handle_bindless_var(nir, var, type, bindless);
            } else if (glsl_type_is_sampler(type) || glsl_type_is_image(type)) {
               VkDescriptorType vktype = glsl_type_is_image(type) ? zink_image_type(type) : zink_sampler_type(type);
               ztype = zink_desc_type_from_vktype(vktype);
               if (vktype == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER)
                  ret->num_texel_buffers++;
               var->data.driver_location = var->data.binding;
               var->data.descriptor_set = ztype + 1;
               var->data.binding = zink_binding(nir->info.stage, vktype, var->data.driver_location);
               ret->bindings[ztype][ret->num_bindings[ztype]].index = var->data.driver_location;
               ret->bindings[ztype][ret->num_bindings[ztype]].binding = var->data.binding;
               ret->bindings[ztype][ret->num_bindings[ztype]].type = vktype;
               if (glsl_type_is_array(var->type))
                  ret->bindings[ztype][ret->num_bindings[ztype]].size = glsl_get_aoa_size(var->type);
               else
                  ret->bindings[ztype][ret->num_bindings[ztype]].size = 1;
               ret->num_bindings[ztype]++;
            }
         }
      }
   }
   bool bindless_lowered = false;
   NIR_PASS(bindless_lowered, nir, lower_bindless, bindless);
   ret->bindless |= bindless_lowered;

   ret->nir = nir;
   if (so_info && nir->info.outputs_written && nir->info.has_transform_feedback_varyings)
      update_so_info(ret, so_info, nir->info.outputs_written, have_psiz);
   else if (have_psiz) {
      bool have_fake_psiz = false;
      nir_variable *psiz = NULL;
      nir_foreach_shader_out_variable(var, nir) {
         if (var->data.location == VARYING_SLOT_PSIZ) {
            if (!var->data.explicit_location)
               have_fake_psiz = true;
            else
               psiz = var;
         }
      }
      if (have_fake_psiz && psiz) {
         psiz->data.mode = nir_var_shader_temp;
         nir_fixup_deref_modes(nir);
         NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
      }
   }

   return ret;
}

char *
zink_shader_finalize(struct pipe_screen *pscreen, void *nirptr)
{
   struct zink_screen *screen = zink_screen(pscreen);
   nir_shader *nir = nirptr;

   nir_lower_tex_options tex_opts = {0};
   /*
      Sampled Image must be an object whose type is OpTypeSampledImage.
      The Dim operand of the underlying OpTypeImage must be 1D, 2D, 3D,
      or Rect, and the Arrayed and MS operands must be 0.
      - SPIRV, OpImageSampleProj* opcodes
    */
   tex_opts.lower_txp = BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE) |
                        BITFIELD_BIT(GLSL_SAMPLER_DIM_MS);
   tex_opts.lower_txp_array = true;
   if (!screen->info.feats.features.shaderImageGatherExtended)
      tex_opts.lower_tg4_offsets = true;
   NIR_PASS_V(nir, nir_lower_tex, &tex_opts);
   NIR_PASS_V(nir, nir_lower_uniforms_to_ubo, true, false);
   if (nir->info.stage == MESA_SHADER_GEOMETRY)
      NIR_PASS_V(nir, nir_lower_gs_intrinsics, nir_lower_gs_intrinsics_per_stream);
   optimize_nir(nir);
   if (nir->info.num_ubos || nir->info.num_ssbos)
      NIR_PASS_V(nir, nir_lower_dynamic_bo_access);
   nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
   if (screen->driconf.inline_uniforms)
      nir_find_inlinable_uniforms(nir);

   return NULL;
}

void
zink_shader_free(struct zink_context *ctx, struct zink_shader *shader)
{
   set_foreach(shader->programs, entry) {
      if (shader->nir->info.stage == MESA_SHADER_COMPUTE) {
         struct zink_compute_program *comp = (void*)entry->key;
         if (!comp->base.removed) {
            _mesa_hash_table_remove_key(&ctx->compute_program_cache, comp->shader);
            comp->base.removed = true;
         }
         comp->shader = NULL;
         zink_compute_program_reference(ctx, &comp, NULL);
      } else {
         struct zink_gfx_program *prog = (void*)entry->key;
         enum pipe_shader_type pstage = pipe_shader_type_from_mesa(shader->nir->info.stage);
         assert(pstage < ZINK_SHADER_COUNT);
         if (!prog->base.removed && (shader->nir->info.stage != MESA_SHADER_TESS_CTRL || !shader->is_generated)) {
            _mesa_hash_table_remove_key(&ctx->program_cache[prog->stages_present >> 2], prog->shaders);
            prog->base.removed = true;
         }
         prog->shaders[pstage] = NULL;
         if (shader->nir->info.stage == MESA_SHADER_TESS_EVAL && shader->generated)
            /* automatically destroy generated tcs shaders when tes is destroyed */
            zink_shader_free(ctx, shader->generated);
         zink_gfx_program_reference(ctx, &prog, NULL);
      }
   }
   _mesa_set_destroy(shader->programs, NULL);
   ralloc_free(shader->nir);
   ralloc_free(shader->spirv);
   FREE(shader);
}


VkShaderModule
zink_shader_tcs_compile(struct zink_screen *screen, struct zink_shader *zs, unsigned patch_vertices)
{
   assert(zs->nir->info.stage == MESA_SHADER_TESS_CTRL);
   /* shortcut all the nir passes since we just have to change this one word */
   zs->spirv->words[zs->spirv->tcs_vertices_out_word] = patch_vertices;
   return zink_shader_spirv_compile(screen, zs, NULL);
}

/* creating a passthrough tcs shader that's roughly:

#version 150
#extension GL_ARB_tessellation_shader : require

in vec4 some_var[gl_MaxPatchVertices];
out vec4 some_var_out;

layout(push_constant) uniform tcsPushConstants {
    layout(offset = 0) float TessLevelInner[2];
    layout(offset = 8) float TessLevelOuter[4];
} u_tcsPushConstants;
layout(vertices = $vertices_per_patch) out;
void main()
{
  gl_TessLevelInner = u_tcsPushConstants.TessLevelInner;
  gl_TessLevelOuter = u_tcsPushConstants.TessLevelOuter;
  some_var_out = some_var[gl_InvocationID];
}

*/
struct zink_shader *
zink_shader_tcs_create(struct zink_screen *screen, struct zink_shader *vs, unsigned vertices_per_patch)
{
   struct zink_shader *ret = CALLOC_STRUCT(zink_shader);
   ret->hash = _mesa_hash_pointer(ret);
   ret->programs = _mesa_pointer_set_create(NULL);
   simple_mtx_init(&ret->lock, mtx_plain);

   nir_shader *nir = nir_shader_create(NULL, MESA_SHADER_TESS_CTRL, &screen->nir_options, NULL);
   nir_function *fn = nir_function_create(nir, "main");
   fn->is_entrypoint = true;
   nir_function_impl *impl = nir_function_impl_create(fn);

   nir_builder b;
   nir_builder_init(&b, impl);
   b.cursor = nir_before_block(nir_start_block(impl));

   nir_ssa_def *invocation_id = nir_load_invocation_id(&b);

   nir_foreach_shader_out_variable(var, vs->nir) {
      const struct glsl_type *type = var->type;
      const struct glsl_type *in_type = var->type;
      const struct glsl_type *out_type = var->type;
      char buf[1024];
      snprintf(buf, sizeof(buf), "%s_out", var->name);
      in_type = glsl_array_type(type, 32 /* MAX_PATCH_VERTICES */, 0);
      out_type = glsl_array_type(type, vertices_per_patch, 0);

      nir_variable *in = nir_variable_create(nir, nir_var_shader_in, in_type, var->name);
      nir_variable *out = nir_variable_create(nir, nir_var_shader_out, out_type, buf);
      out->data.location = in->data.location = var->data.location;
      out->data.location_frac = in->data.location_frac = var->data.location_frac;

      /* gl_in[] receives values from equivalent built-in output
         variables written by the vertex shader (section 2.14.7).  Each array
         element of gl_in[] is a structure holding values for a specific vertex of
         the input patch.  The length of gl_in[] is equal to the
         implementation-dependent maximum patch size (gl_MaxPatchVertices).
         - ARB_tessellation_shader
       */
      /* we need to load the invocation-specific value of the vertex output and then store it to the per-patch output */
      nir_deref_instr *in_array_var = nir_build_deref_array(&b, nir_build_deref_var(&b, in), invocation_id);
      nir_ssa_def *load = nir_load_deref(&b, in_array_var);
      nir_deref_instr *out_array_var = nir_build_deref_array(&b, nir_build_deref_var(&b, out), invocation_id);
      nir_store_deref(&b, out_array_var, load, 0xff);
   }
   nir_variable *gl_TessLevelInner = nir_variable_create(nir, nir_var_shader_out, glsl_array_type(glsl_float_type(), 2, 0), "gl_TessLevelInner");
   gl_TessLevelInner->data.location = VARYING_SLOT_TESS_LEVEL_INNER;
   gl_TessLevelInner->data.patch = 1;
   nir_variable *gl_TessLevelOuter = nir_variable_create(nir, nir_var_shader_out, glsl_array_type(glsl_float_type(), 4, 0), "gl_TessLevelOuter");
   gl_TessLevelOuter->data.location = VARYING_SLOT_TESS_LEVEL_OUTER;
   gl_TessLevelOuter->data.patch = 1;

   /* hacks so we can size these right for now */
   struct glsl_struct_field *fields = rzalloc_array(nir, struct glsl_struct_field, 3);
   /* just use a single blob for padding here because it's easier */
   fields[0].type = glsl_array_type(glsl_uint_type(), offsetof(struct zink_gfx_push_constant, default_inner_level) / 4, 0);
   fields[0].name = ralloc_asprintf(nir, "padding");
   fields[0].offset = 0;
   fields[1].type = glsl_array_type(glsl_uint_type(), 2, 0);
   fields[1].name = ralloc_asprintf(nir, "gl_TessLevelInner");
   fields[1].offset = offsetof(struct zink_gfx_push_constant, default_inner_level);
   fields[2].type = glsl_array_type(glsl_uint_type(), 4, 0);
   fields[2].name = ralloc_asprintf(nir, "gl_TessLevelOuter");
   fields[2].offset = offsetof(struct zink_gfx_push_constant, default_outer_level);
   nir_variable *pushconst = nir_variable_create(nir, nir_var_mem_push_const,
                                                 glsl_struct_type(fields, 3, "struct", false), "pushconst");
   pushconst->data.location = VARYING_SLOT_VAR0;

   nir_ssa_def *load_inner = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 1), .base = 1, .range = 8);
   nir_ssa_def *load_outer = nir_load_push_constant(&b, 4, 32, nir_imm_int(&b, 2), .base = 2, .range = 16);

   for (unsigned i = 0; i < 2; i++) {
      nir_deref_instr *store_idx = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, gl_TessLevelInner), i);
      nir_store_deref(&b, store_idx, nir_channel(&b, load_inner, i), 0xff);
   }
   for (unsigned i = 0; i < 4; i++) {
      nir_deref_instr *store_idx = nir_build_deref_array_imm(&b, nir_build_deref_var(&b, gl_TessLevelOuter), i);
      nir_store_deref(&b, store_idx, nir_channel(&b, load_outer, i), 0xff);
   }

   nir->info.tess.tcs_vertices_out = vertices_per_patch;
   nir_validate_shader(nir, "created");

   NIR_PASS_V(nir, nir_lower_regs_to_ssa);
   optimize_nir(nir);
   NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
   NIR_PASS_V(nir, nir_convert_from_ssa, true);

   ret->nir = nir;
   ret->is_generated = true;
   return ret;
}