summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/cell/ppu/cell_gen_fragment.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/drivers/cell/ppu/cell_gen_fragment.c')
-rw-r--r--src/gallium/drivers/cell/ppu/cell_gen_fragment.c2189
1 files changed, 0 insertions, 2189 deletions
diff --git a/src/gallium/drivers/cell/ppu/cell_gen_fragment.c b/src/gallium/drivers/cell/ppu/cell_gen_fragment.c
deleted file mode 100644
index 76a85178007..00000000000
--- a/src/gallium/drivers/cell/ppu/cell_gen_fragment.c
+++ /dev/null
@@ -1,2189 +0,0 @@
-/**************************************************************************
- *
- * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
- * All Rights Reserved.
- * Copyright 2009 VMware, Inc. All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sub license, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice (including the
- * next paragraph) shall be included in all copies or substantial portions
- * of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
- * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
- * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- **************************************************************************/
-
-/**
- * Generate SPU per-fragment code (actually per-quad code).
- * \author Brian Paul
- * \author Bob Ellison
- */
-
-
-#include "pipe/p_defines.h"
-#include "pipe/p_state.h"
-#include "rtasm/rtasm_ppc_spe.h"
-#include "cell_context.h"
-#include "cell_gen_fragment.h"
-
-
-
-/** Do extra optimizations? */
-#define OPTIMIZATIONS 1
-
-
-/**
- * Generate SPE code to perform Z/depth testing.
- *
- * \param dsa Gallium depth/stencil/alpha state to gen code for
- * \param f SPE function to append instruction onto.
- * \param mask_reg register containing quad/pixel "alive" mask (in/out)
- * \param ifragZ_reg register containing integer fragment Z values (in)
- * \param ifbZ_reg register containing integer frame buffer Z values (in/out)
- * \param zmask_reg register containing result of Z test/comparison (out)
- *
- * Returns TRUE if the Z-buffer needs to be updated.
- */
-static boolean
-gen_depth_test(struct spe_function *f,
- const struct pipe_depth_stencil_alpha_state *dsa,
- int mask_reg, int ifragZ_reg, int ifbZ_reg, int zmask_reg)
-{
- /* NOTE: we use clgt below, not cgt, because we want to compare _unsigned_
- * quantities. This only makes a difference for 32-bit Z values though.
- */
- ASSERT(dsa->depth.enabled);
-
- switch (dsa->depth.func) {
- case PIPE_FUNC_EQUAL:
- /* zmask = (ifragZ == ref) */
- spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg);
- /* mask = (mask & zmask) */
- spe_and(f, mask_reg, mask_reg, zmask_reg);
- break;
-
- case PIPE_FUNC_NOTEQUAL:
- /* zmask = (ifragZ == ref) */
- spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg);
- /* mask = (mask & ~zmask) */
- spe_andc(f, mask_reg, mask_reg, zmask_reg);
- break;
-
- case PIPE_FUNC_GREATER:
- /* zmask = (ifragZ > ref) */
- spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg);
- /* mask = (mask & zmask) */
- spe_and(f, mask_reg, mask_reg, zmask_reg);
- break;
-
- case PIPE_FUNC_LESS:
- /* zmask = (ref > ifragZ) */
- spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg);
- /* mask = (mask & zmask) */
- spe_and(f, mask_reg, mask_reg, zmask_reg);
- break;
-
- case PIPE_FUNC_LEQUAL:
- /* zmask = (ifragZ > ref) */
- spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg);
- /* mask = (mask & ~zmask) */
- spe_andc(f, mask_reg, mask_reg, zmask_reg);
- break;
-
- case PIPE_FUNC_GEQUAL:
- /* zmask = (ref > ifragZ) */
- spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg);
- /* mask = (mask & ~zmask) */
- spe_andc(f, mask_reg, mask_reg, zmask_reg);
- break;
-
- case PIPE_FUNC_NEVER:
- spe_il(f, mask_reg, 0); /* mask = {0,0,0,0} */
- spe_move(f, zmask_reg, mask_reg); /* zmask = mask */
- break;
-
- case PIPE_FUNC_ALWAYS:
- /* mask unchanged */
- spe_il(f, zmask_reg, ~0); /* zmask = {~0,~0,~0,~0} */
- break;
-
- default:
- ASSERT(0);
- break;
- }
-
- if (dsa->depth.writemask) {
- /*
- * If (ztest passed) {
- * framebufferZ = fragmentZ;
- * }
- * OR,
- * framebufferZ = (ztest_passed ? fragmentZ : framebufferZ;
- */
- spe_selb(f, ifbZ_reg, ifbZ_reg, ifragZ_reg, mask_reg);
- return TRUE;
- }
-
- return FALSE;
-}
-
-
-/**
- * Generate SPE code to perform alpha testing.
- *
- * \param dsa Gallium depth/stencil/alpha state to gen code for
- * \param f SPE function to append instruction onto.
- * \param mask_reg register containing quad/pixel "alive" mask (in/out)
- * \param fragA_reg register containing four fragment alpha values (in)
- */
-static void
-gen_alpha_test(const struct pipe_depth_stencil_alpha_state *dsa,
- struct spe_function *f, int mask_reg, int fragA_reg)
-{
- int ref_reg = spe_allocate_available_register(f);
- int amask_reg = spe_allocate_available_register(f);
-
- ASSERT(dsa->alpha.enabled);
-
- if ((dsa->alpha.func != PIPE_FUNC_NEVER) &&
- (dsa->alpha.func != PIPE_FUNC_ALWAYS)) {
- /* load/splat the alpha reference float value */
- spe_load_float(f, ref_reg, dsa->alpha.ref_value);
- }
-
- /* emit code to do the alpha comparison, updating 'mask' */
- switch (dsa->alpha.func) {
- case PIPE_FUNC_EQUAL:
- /* amask = (fragA == ref) */
- spe_fceq(f, amask_reg, fragA_reg, ref_reg);
- /* mask = (mask & amask) */
- spe_and(f, mask_reg, mask_reg, amask_reg);
- break;
-
- case PIPE_FUNC_NOTEQUAL:
- /* amask = (fragA == ref) */
- spe_fceq(f, amask_reg, fragA_reg, ref_reg);
- /* mask = (mask & ~amask) */
- spe_andc(f, mask_reg, mask_reg, amask_reg);
- break;
-
- case PIPE_FUNC_GREATER:
- /* amask = (fragA > ref) */
- spe_fcgt(f, amask_reg, fragA_reg, ref_reg);
- /* mask = (mask & amask) */
- spe_and(f, mask_reg, mask_reg, amask_reg);
- break;
-
- case PIPE_FUNC_LESS:
- /* amask = (ref > fragA) */
- spe_fcgt(f, amask_reg, ref_reg, fragA_reg);
- /* mask = (mask & amask) */
- spe_and(f, mask_reg, mask_reg, amask_reg);
- break;
-
- case PIPE_FUNC_LEQUAL:
- /* amask = (fragA > ref) */
- spe_fcgt(f, amask_reg, fragA_reg, ref_reg);
- /* mask = (mask & ~amask) */
- spe_andc(f, mask_reg, mask_reg, amask_reg);
- break;
-
- case PIPE_FUNC_GEQUAL:
- /* amask = (ref > fragA) */
- spe_fcgt(f, amask_reg, ref_reg, fragA_reg);
- /* mask = (mask & ~amask) */
- spe_andc(f, mask_reg, mask_reg, amask_reg);
- break;
-
- case PIPE_FUNC_NEVER:
- spe_il(f, mask_reg, 0); /* mask = [0,0,0,0] */
- break;
-
- case PIPE_FUNC_ALWAYS:
- /* no-op, mask unchanged */
- break;
-
- default:
- ASSERT(0);
- break;
- }
-
-#if OPTIMIZATIONS
- /* if mask == {0,0,0,0} we're all done, return */
- {
- /* re-use amask reg here */
- int tmp_reg = amask_reg;
- /* tmp[0] = (mask[0] | mask[1] | mask[2] | mask[3]) */
- spe_orx(f, tmp_reg, mask_reg);
- /* if tmp[0] == 0 then return from function call */
- spe_biz(f, tmp_reg, SPE_REG_RA, 0, 0);
- }
-#endif
-
- spe_release_register(f, ref_reg);
- spe_release_register(f, amask_reg);
-}
-
-
-/**
- * This pair of functions is used inline to allocate and deallocate
- * optional constant registers. Once a constant is discovered to be
- * needed, we will likely need it again, so we don't want to deallocate
- * it and have to allocate and load it again unnecessarily.
- */
-static INLINE void
-setup_optional_register(struct spe_function *f,
- int *r)
-{
- if (*r < 0)
- *r = spe_allocate_available_register(f);
-}
-
-static INLINE void
-release_optional_register(struct spe_function *f,
- int r)
-{
- if (r >= 0)
- spe_release_register(f, r);
-}
-
-static INLINE void
-setup_const_register(struct spe_function *f,
- int *r,
- float value)
-{
- if (*r >= 0)
- return;
- setup_optional_register(f, r);
- spe_load_float(f, *r, value);
-}
-
-static INLINE void
-release_const_register(struct spe_function *f,
- int r)
-{
- release_optional_register(f, r);
-}
-
-
-
-/**
- * Unpack/convert framebuffer colors from four 32-bit packed colors
- * (fbRGBA) to four float RGBA vectors (fbR, fbG, fbB, fbA).
- * Each 8-bit color component is expanded into a float in [0.0, 1.0].
- */
-static void
-unpack_colors(struct spe_function *f,
- enum pipe_format color_format,
- int fbRGBA_reg,
- int fbR_reg, int fbG_reg, int fbB_reg, int fbA_reg)
-{
- int mask0_reg = spe_allocate_available_register(f);
- int mask1_reg = spe_allocate_available_register(f);
- int mask2_reg = spe_allocate_available_register(f);
- int mask3_reg = spe_allocate_available_register(f);
-
- spe_load_int(f, mask0_reg, 0xff);
- spe_load_int(f, mask1_reg, 0xff00);
- spe_load_int(f, mask2_reg, 0xff0000);
- spe_load_int(f, mask3_reg, 0xff000000);
-
- spe_comment(f, 0, "Unpack framebuffer colors, convert to floats");
-
- switch (color_format) {
- case PIPE_FORMAT_B8G8R8A8_UNORM:
- /* fbB = fbRGBA & mask */
- spe_and(f, fbB_reg, fbRGBA_reg, mask0_reg);
-
- /* fbG = fbRGBA & mask */
- spe_and(f, fbG_reg, fbRGBA_reg, mask1_reg);
-
- /* fbR = fbRGBA & mask */
- spe_and(f, fbR_reg, fbRGBA_reg, mask2_reg);
-
- /* fbA = fbRGBA & mask */
- spe_and(f, fbA_reg, fbRGBA_reg, mask3_reg);
-
- /* fbG = fbG >> 8 */
- spe_roti(f, fbG_reg, fbG_reg, -8);
-
- /* fbR = fbR >> 16 */
- spe_roti(f, fbR_reg, fbR_reg, -16);
-
- /* fbA = fbA >> 24 */
- spe_roti(f, fbA_reg, fbA_reg, -24);
- break;
-
- case PIPE_FORMAT_A8R8G8B8_UNORM:
- /* fbA = fbRGBA & mask */
- spe_and(f, fbA_reg, fbRGBA_reg, mask0_reg);
-
- /* fbR = fbRGBA & mask */
- spe_and(f, fbR_reg, fbRGBA_reg, mask1_reg);
-
- /* fbG = fbRGBA & mask */
- spe_and(f, fbG_reg, fbRGBA_reg, mask2_reg);
-
- /* fbB = fbRGBA & mask */
- spe_and(f, fbB_reg, fbRGBA_reg, mask3_reg);
-
- /* fbR = fbR >> 8 */
- spe_roti(f, fbR_reg, fbR_reg, -8);
-
- /* fbG = fbG >> 16 */
- spe_roti(f, fbG_reg, fbG_reg, -16);
-
- /* fbB = fbB >> 24 */
- spe_roti(f, fbB_reg, fbB_reg, -24);
- break;
-
- default:
- ASSERT(0);
- }
-
- /* convert int[4] in [0,255] to float[4] in [0.0, 1.0] */
- spe_cuflt(f, fbR_reg, fbR_reg, 8);
- spe_cuflt(f, fbG_reg, fbG_reg, 8);
- spe_cuflt(f, fbB_reg, fbB_reg, 8);
- spe_cuflt(f, fbA_reg, fbA_reg, 8);
-
- spe_release_register(f, mask0_reg);
- spe_release_register(f, mask1_reg);
- spe_release_register(f, mask2_reg);
- spe_release_register(f, mask3_reg);
-}
-
-
-/**
- * Generate SPE code to implement the given blend mode for a quad of pixels.
- * \param f SPE function to append instruction onto.
- * \param fragR_reg register with fragment red values (float) (in/out)
- * \param fragG_reg register with fragment green values (float) (in/out)
- * \param fragB_reg register with fragment blue values (float) (in/out)
- * \param fragA_reg register with fragment alpha values (float) (in/out)
- * \param fbRGBA_reg register with packed framebuffer colors (integer) (in)
- */
-static void
-gen_blend(const struct pipe_blend_state *blend,
- const struct pipe_blend_color *blend_color,
- struct spe_function *f,
- enum pipe_format color_format,
- int fragR_reg, int fragG_reg, int fragB_reg, int fragA_reg,
- int fbRGBA_reg)
-{
- int term1R_reg = spe_allocate_available_register(f);
- int term1G_reg = spe_allocate_available_register(f);
- int term1B_reg = spe_allocate_available_register(f);
- int term1A_reg = spe_allocate_available_register(f);
-
- int term2R_reg = spe_allocate_available_register(f);
- int term2G_reg = spe_allocate_available_register(f);
- int term2B_reg = spe_allocate_available_register(f);
- int term2A_reg = spe_allocate_available_register(f);
-
- int fbR_reg = spe_allocate_available_register(f);
- int fbG_reg = spe_allocate_available_register(f);
- int fbB_reg = spe_allocate_available_register(f);
- int fbA_reg = spe_allocate_available_register(f);
-
- int tmp_reg = spe_allocate_available_register(f);
-
- /* Optional constant registers we might or might not end up using;
- * if we do use them, make sure we only allocate them once by
- * keeping a flag on each one.
- */
- int one_reg = -1;
- int constR_reg = -1, constG_reg = -1, constB_reg = -1, constA_reg = -1;
-
- ASSERT(blend->rt[0].blend_enable);
-
- /* packed RGBA -> float colors */
- unpack_colors(f, color_format, fbRGBA_reg,
- fbR_reg, fbG_reg, fbB_reg, fbA_reg);
-
- /*
- * Compute Src RGB terms. We're actually looking for the value
- * of (the appropriate RGB factors) * (the incoming source RGB color),
- * because in some cases (like PIPE_BLENDFACTOR_ONE and
- * PIPE_BLENDFACTOR_ZERO) we can avoid doing unnecessary math.
- */
- switch (blend->rt[0].rgb_src_factor) {
- case PIPE_BLENDFACTOR_ONE:
- /* factors = (1,1,1), so term = (R,G,B) */
- spe_move(f, term1R_reg, fragR_reg);
- spe_move(f, term1G_reg, fragG_reg);
- spe_move(f, term1B_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_ZERO:
- /* factors = (0,0,0), so term = (0,0,0) */
- spe_load_float(f, term1R_reg, 0.0f);
- spe_load_float(f, term1G_reg, 0.0f);
- spe_load_float(f, term1B_reg, 0.0f);
- break;
- case PIPE_BLENDFACTOR_SRC_COLOR:
- /* factors = (R,G,B), so term = (R*R, G*G, B*B) */
- spe_fm(f, term1R_reg, fragR_reg, fragR_reg);
- spe_fm(f, term1G_reg, fragG_reg, fragG_reg);
- spe_fm(f, term1B_reg, fragB_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_SRC_ALPHA:
- /* factors = (A,A,A), so term = (R*A, G*A, B*A) */
- spe_fm(f, term1R_reg, fragR_reg, fragA_reg);
- spe_fm(f, term1G_reg, fragG_reg, fragA_reg);
- spe_fm(f, term1B_reg, fragB_reg, fragA_reg);
- break;
- case PIPE_BLENDFACTOR_INV_SRC_COLOR:
- /* factors = (1-R,1-G,1-B), so term = (R*(1-R), G*(1-G), B*(1-B))
- * or in other words term = (R-R*R, G-G*G, B-B*B)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term1R_reg, fragR_reg, fragR_reg, fragR_reg);
- spe_fnms(f, term1G_reg, fragG_reg, fragG_reg, fragG_reg);
- spe_fnms(f, term1B_reg, fragB_reg, fragB_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_DST_COLOR:
- /* factors = (Rfb,Gfb,Bfb), so term = (R*Rfb, G*Gfb, B*Bfb) */
- spe_fm(f, term1R_reg, fragR_reg, fbR_reg);
- spe_fm(f, term1G_reg, fragG_reg, fbG_reg);
- spe_fm(f, term1B_reg, fragB_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_INV_DST_COLOR:
- /* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (R*(1-Rfb),G*(1-Gfb),B*(1-Bfb))
- * or term = (R-R*Rfb, G-G*Gfb, B-B*Bfb)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term1R_reg, fragR_reg, fbR_reg, fragR_reg);
- spe_fnms(f, term1G_reg, fragG_reg, fbG_reg, fragG_reg);
- spe_fnms(f, term1B_reg, fragB_reg, fbB_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
- /* factors = (1-A,1-A,1-A), so term = (R*(1-A),G*(1-A),B*(1-A))
- * or term = (R-R*A,G-G*A,B-B*A)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term1R_reg, fragR_reg, fragA_reg, fragR_reg);
- spe_fnms(f, term1G_reg, fragG_reg, fragA_reg, fragG_reg);
- spe_fnms(f, term1B_reg, fragB_reg, fragA_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_DST_ALPHA:
- /* factors = (Afb, Afb, Afb), so term = (R*Afb, G*Afb, B*Afb) */
- spe_fm(f, term1R_reg, fragR_reg, fbA_reg);
- spe_fm(f, term1G_reg, fragG_reg, fbA_reg);
- spe_fm(f, term1B_reg, fragB_reg, fbA_reg);
- break;
- case PIPE_BLENDFACTOR_INV_DST_ALPHA:
- /* factors = (1-Afb, 1-Afb, 1-Afb), so term = (R*(1-Afb),G*(1-Afb),B*(1-Afb))
- * or term = (R-R*Afb,G-G*Afb,b-B*Afb)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term1R_reg, fragR_reg, fbA_reg, fragR_reg);
- spe_fnms(f, term1G_reg, fragG_reg, fbA_reg, fragG_reg);
- spe_fnms(f, term1B_reg, fragB_reg, fbA_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_CONST_COLOR:
- /* We need the optional constant color registers */
- setup_const_register(f, &constR_reg, blend_color->color[0]);
- setup_const_register(f, &constG_reg, blend_color->color[1]);
- setup_const_register(f, &constB_reg, blend_color->color[2]);
- /* now, factor = (Rc,Gc,Bc), so term = (R*Rc,G*Gc,B*Bc) */
- spe_fm(f, term1R_reg, fragR_reg, constR_reg);
- spe_fm(f, term1G_reg, fragG_reg, constG_reg);
- spe_fm(f, term1B_reg, fragB_reg, constB_reg);
- break;
- case PIPE_BLENDFACTOR_CONST_ALPHA:
- /* we'll need the optional constant alpha register */
- setup_const_register(f, &constA_reg, blend_color->color[3]);
- /* factor = (Ac,Ac,Ac), so term = (R*Ac,G*Ac,B*Ac) */
- spe_fm(f, term1R_reg, fragR_reg, constA_reg);
- spe_fm(f, term1G_reg, fragG_reg, constA_reg);
- spe_fm(f, term1B_reg, fragB_reg, constA_reg);
- break;
- case PIPE_BLENDFACTOR_INV_CONST_COLOR:
- /* We need the optional constant color registers */
- setup_const_register(f, &constR_reg, blend_color->color[0]);
- setup_const_register(f, &constG_reg, blend_color->color[1]);
- setup_const_register(f, &constB_reg, blend_color->color[2]);
- /* factor = (1-Rc,1-Gc,1-Bc), so term = (R*(1-Rc),G*(1-Gc),B*(1-Bc))
- * or term = (R-R*Rc, G-G*Gc, B-B*Bc)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term1R_reg, fragR_reg, constR_reg, fragR_reg);
- spe_fnms(f, term1G_reg, fragG_reg, constG_reg, fragG_reg);
- spe_fnms(f, term1B_reg, fragB_reg, constB_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
- /* We need the optional constant color registers */
- setup_const_register(f, &constR_reg, blend_color->color[0]);
- setup_const_register(f, &constG_reg, blend_color->color[1]);
- setup_const_register(f, &constB_reg, blend_color->color[2]);
- /* factor = (1-Ac,1-Ac,1-Ac), so term = (R*(1-Ac),G*(1-Ac),B*(1-Ac))
- * or term = (R-R*Ac,G-G*Ac,B-B*Ac)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term1R_reg, fragR_reg, constA_reg, fragR_reg);
- spe_fnms(f, term1G_reg, fragG_reg, constA_reg, fragG_reg);
- spe_fnms(f, term1B_reg, fragB_reg, constA_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
- /* We'll need the optional {1,1,1,1} register */
- setup_const_register(f, &one_reg, 1.0f);
- /* factor = (min(A,1-Afb),min(A,1-Afb),min(A,1-Afb)), so
- * term = (R*min(A,1-Afb), G*min(A,1-Afb), B*min(A,1-Afb))
- * We could expand the term (as a*min(b,c) == min(a*b,a*c)
- * as long as a is positive), but then we'd have to do three
- * spe_float_min() functions instead of one, so this is simpler.
- */
- /* tmp = 1 - Afb */
- spe_fs(f, tmp_reg, one_reg, fbA_reg);
- /* tmp = min(A,tmp) */
- spe_float_min(f, tmp_reg, fragA_reg, tmp_reg);
- /* term = R*tmp */
- spe_fm(f, term1R_reg, fragR_reg, tmp_reg);
- spe_fm(f, term1G_reg, fragG_reg, tmp_reg);
- spe_fm(f, term1B_reg, fragB_reg, tmp_reg);
- break;
-
- /* These are special D3D cases involving a second color output
- * from the fragment shader. I'm not sure we can support them
- * yet... XXX
- */
- case PIPE_BLENDFACTOR_SRC1_COLOR:
- case PIPE_BLENDFACTOR_SRC1_ALPHA:
- case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
- case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
-
- default:
- ASSERT(0);
- }
-
- /*
- * Compute Src Alpha term. Like the above, we're looking for
- * the full term A*factor, not just the factor itself, because
- * in many cases we can avoid doing unnecessary multiplies.
- */
- switch (blend->rt[0].alpha_src_factor) {
- case PIPE_BLENDFACTOR_ZERO:
- /* factor = 0, so term = 0 */
- spe_load_float(f, term1A_reg, 0.0f);
- break;
-
- case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* fall through */
- case PIPE_BLENDFACTOR_ONE:
- /* factor = 1, so term = A */
- spe_move(f, term1A_reg, fragA_reg);
- break;
-
- case PIPE_BLENDFACTOR_SRC_COLOR:
- /* factor = A, so term = A*A */
- spe_fm(f, term1A_reg, fragA_reg, fragA_reg);
- break;
- case PIPE_BLENDFACTOR_SRC_ALPHA:
- spe_fm(f, term1A_reg, fragA_reg, fragA_reg);
- break;
-
- case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_INV_SRC_COLOR:
- /* factor = 1-A, so term = A*(1-A) = A-A*A */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term1A_reg, fragA_reg, fragA_reg, fragA_reg);
- break;
-
- case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_DST_COLOR:
- /* factor = Afb, so term = A*Afb */
- spe_fm(f, term1A_reg, fragA_reg, fbA_reg);
- break;
-
- case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_INV_DST_COLOR:
- /* factor = 1-Afb, so term = A*(1-Afb) = A - A*Afb */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term1A_reg, fragA_reg, fbA_reg, fragA_reg);
- break;
-
- case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_CONST_COLOR:
- /* We need the optional constA_reg register */
- setup_const_register(f, &constA_reg, blend_color->color[3]);
- /* factor = Ac, so term = A*Ac */
- spe_fm(f, term1A_reg, fragA_reg, constA_reg);
- break;
-
- case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_INV_CONST_COLOR:
- /* We need the optional constA_reg register */
- setup_const_register(f, &constA_reg, blend_color->color[3]);
- /* factor = 1-Ac, so term = A*(1-Ac) = A-A*Ac */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term1A_reg, fragA_reg, constA_reg, fragA_reg);
- break;
-
- /* These are special D3D cases involving a second color output
- * from the fragment shader. I'm not sure we can support them
- * yet... XXX
- */
- case PIPE_BLENDFACTOR_SRC1_COLOR:
- case PIPE_BLENDFACTOR_SRC1_ALPHA:
- case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
- case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
- default:
- ASSERT(0);
- }
-
- /*
- * Compute Dest RGB term. Like the above, we're looking for
- * the full term (Rfb,Gfb,Bfb)*(factor), not just the factor itself, because
- * in many cases we can avoid doing unnecessary multiplies.
- */
- switch (blend->rt[0].rgb_dst_factor) {
- case PIPE_BLENDFACTOR_ONE:
- /* factors = (1,1,1), so term = (Rfb,Gfb,Bfb) */
- spe_move(f, term2R_reg, fbR_reg);
- spe_move(f, term2G_reg, fbG_reg);
- spe_move(f, term2B_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_ZERO:
- /* factor s= (0,0,0), so term = (0,0,0) */
- spe_load_float(f, term2R_reg, 0.0f);
- spe_load_float(f, term2G_reg, 0.0f);
- spe_load_float(f, term2B_reg, 0.0f);
- break;
- case PIPE_BLENDFACTOR_SRC_COLOR:
- /* factors = (R,G,B), so term = (R*Rfb, G*Gfb, B*Bfb) */
- spe_fm(f, term2R_reg, fbR_reg, fragR_reg);
- spe_fm(f, term2G_reg, fbG_reg, fragG_reg);
- spe_fm(f, term2B_reg, fbB_reg, fragB_reg);
- break;
- case PIPE_BLENDFACTOR_INV_SRC_COLOR:
- /* factors = (1-R,1-G,1-B), so term = (Rfb*(1-R), Gfb*(1-G), Bfb*(1-B))
- * or in other words term = (Rfb-Rfb*R, Gfb-Gfb*G, Bfb-Bfb*B)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term2R_reg, fragR_reg, fbR_reg, fbR_reg);
- spe_fnms(f, term2G_reg, fragG_reg, fbG_reg, fbG_reg);
- spe_fnms(f, term2B_reg, fragB_reg, fbB_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_SRC_ALPHA:
- /* factors = (A,A,A), so term = (Rfb*A, Gfb*A, Bfb*A) */
- spe_fm(f, term2R_reg, fbR_reg, fragA_reg);
- spe_fm(f, term2G_reg, fbG_reg, fragA_reg);
- spe_fm(f, term2B_reg, fbB_reg, fragA_reg);
- break;
- case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
- /* factors = (1-A,1-A,1-A) so term = (Rfb-Rfb*A,Gfb-Gfb*A,Bfb-Bfb*A) */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term2R_reg, fbR_reg, fragA_reg, fbR_reg);
- spe_fnms(f, term2G_reg, fbG_reg, fragA_reg, fbG_reg);
- spe_fnms(f, term2B_reg, fbB_reg, fragA_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_DST_COLOR:
- /* factors = (Rfb,Gfb,Bfb), so term = (Rfb*Rfb, Gfb*Gfb, Bfb*Bfb) */
- spe_fm(f, term2R_reg, fbR_reg, fbR_reg);
- spe_fm(f, term2G_reg, fbG_reg, fbG_reg);
- spe_fm(f, term2B_reg, fbB_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_INV_DST_COLOR:
- /* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (Rfb*(1-Rfb),Gfb*(1-Gfb),Bfb*(1-Bfb))
- * or term = (Rfb-Rfb*Rfb, Gfb-Gfb*Gfb, Bfb-Bfb*Bfb)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term2R_reg, fbR_reg, fbR_reg, fbR_reg);
- spe_fnms(f, term2G_reg, fbG_reg, fbG_reg, fbG_reg);
- spe_fnms(f, term2B_reg, fbB_reg, fbB_reg, fbB_reg);
- break;
-
- case PIPE_BLENDFACTOR_DST_ALPHA:
- /* factors = (Afb, Afb, Afb), so term = (Rfb*Afb, Gfb*Afb, Bfb*Afb) */
- spe_fm(f, term2R_reg, fbR_reg, fbA_reg);
- spe_fm(f, term2G_reg, fbG_reg, fbA_reg);
- spe_fm(f, term2B_reg, fbB_reg, fbA_reg);
- break;
- case PIPE_BLENDFACTOR_INV_DST_ALPHA:
- /* factors = (1-Afb, 1-Afb, 1-Afb), so term = (Rfb*(1-Afb),Gfb*(1-Afb),Bfb*(1-Afb))
- * or term = (Rfb-Rfb*Afb,Gfb-Gfb*Afb,Bfb-Bfb*Afb)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term2R_reg, fbR_reg, fbA_reg, fbR_reg);
- spe_fnms(f, term2G_reg, fbG_reg, fbA_reg, fbG_reg);
- spe_fnms(f, term2B_reg, fbB_reg, fbA_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_CONST_COLOR:
- /* We need the optional constant color registers */
- setup_const_register(f, &constR_reg, blend_color->color[0]);
- setup_const_register(f, &constG_reg, blend_color->color[1]);
- setup_const_register(f, &constB_reg, blend_color->color[2]);
- /* now, factor = (Rc,Gc,Bc), so term = (Rfb*Rc,Gfb*Gc,Bfb*Bc) */
- spe_fm(f, term2R_reg, fbR_reg, constR_reg);
- spe_fm(f, term2G_reg, fbG_reg, constG_reg);
- spe_fm(f, term2B_reg, fbB_reg, constB_reg);
- break;
- case PIPE_BLENDFACTOR_CONST_ALPHA:
- /* we'll need the optional constant alpha register */
- setup_const_register(f, &constA_reg, blend_color->color[3]);
- /* factor = (Ac,Ac,Ac), so term = (Rfb*Ac,Gfb*Ac,Bfb*Ac) */
- spe_fm(f, term2R_reg, fbR_reg, constA_reg);
- spe_fm(f, term2G_reg, fbG_reg, constA_reg);
- spe_fm(f, term2B_reg, fbB_reg, constA_reg);
- break;
- case PIPE_BLENDFACTOR_INV_CONST_COLOR:
- /* We need the optional constant color registers */
- setup_const_register(f, &constR_reg, blend_color->color[0]);
- setup_const_register(f, &constG_reg, blend_color->color[1]);
- setup_const_register(f, &constB_reg, blend_color->color[2]);
- /* factor = (1-Rc,1-Gc,1-Bc), so term = (Rfb*(1-Rc),Gfb*(1-Gc),Bfb*(1-Bc))
- * or term = (Rfb-Rfb*Rc, Gfb-Gfb*Gc, Bfb-Bfb*Bc)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term2R_reg, fbR_reg, constR_reg, fbR_reg);
- spe_fnms(f, term2G_reg, fbG_reg, constG_reg, fbG_reg);
- spe_fnms(f, term2B_reg, fbB_reg, constB_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
- /* We need the optional constant color registers */
- setup_const_register(f, &constR_reg, blend_color->color[0]);
- setup_const_register(f, &constG_reg, blend_color->color[1]);
- setup_const_register(f, &constB_reg, blend_color->color[2]);
- /* factor = (1-Ac,1-Ac,1-Ac), so term = (Rfb*(1-Ac),Gfb*(1-Ac),Bfb*(1-Ac))
- * or term = (Rfb-Rfb*Ac,Gfb-Gfb*Ac,Bfb-Bfb*Ac)
- * fnms(a,b,c,d) computes a = d - b*c
- */
- spe_fnms(f, term2R_reg, fbR_reg, constA_reg, fbR_reg);
- spe_fnms(f, term2G_reg, fbG_reg, constA_reg, fbG_reg);
- spe_fnms(f, term2B_reg, fbB_reg, constA_reg, fbB_reg);
- break;
- case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest RGB */
- ASSERT(0);
- break;
-
- /* These are special D3D cases involving a second color output
- * from the fragment shader. I'm not sure we can support them
- * yet... XXX
- */
- case PIPE_BLENDFACTOR_SRC1_COLOR:
- case PIPE_BLENDFACTOR_SRC1_ALPHA:
- case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
- case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
-
- default:
- ASSERT(0);
- }
-
- /*
- * Compute Dest Alpha term. Like the above, we're looking for
- * the full term Afb*factor, not just the factor itself, because
- * in many cases we can avoid doing unnecessary multiplies.
- */
- switch (blend->rt[0].alpha_dst_factor) {
- case PIPE_BLENDFACTOR_ONE:
- /* factor = 1, so term = Afb */
- spe_move(f, term2A_reg, fbA_reg);
- break;
- case PIPE_BLENDFACTOR_ZERO:
- /* factor = 0, so term = 0 */
- spe_load_float(f, term2A_reg, 0.0f);
- break;
-
- case PIPE_BLENDFACTOR_SRC_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_SRC_COLOR:
- /* factor = A, so term = Afb*A */
- spe_fm(f, term2A_reg, fbA_reg, fragA_reg);
- break;
-
- case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_INV_SRC_COLOR:
- /* factor = 1-A, so term = Afb*(1-A) = Afb-Afb*A */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term2A_reg, fbA_reg, fragA_reg, fbA_reg);
- break;
-
- case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_DST_COLOR:
- /* factor = Afb, so term = Afb*Afb */
- spe_fm(f, term2A_reg, fbA_reg, fbA_reg);
- break;
-
- case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_INV_DST_COLOR:
- /* factor = 1-Afb, so term = Afb*(1-Afb) = Afb - Afb*Afb */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term2A_reg, fbA_reg, fbA_reg, fbA_reg);
- break;
-
- case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_CONST_COLOR:
- /* We need the optional constA_reg register */
- setup_const_register(f, &constA_reg, blend_color->color[3]);
- /* factor = Ac, so term = Afb*Ac */
- spe_fm(f, term2A_reg, fbA_reg, constA_reg);
- break;
-
- case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */
- case PIPE_BLENDFACTOR_INV_CONST_COLOR:
- /* We need the optional constA_reg register */
- setup_const_register(f, &constA_reg, blend_color->color[3]);
- /* factor = 1-Ac, so term = Afb*(1-Ac) = Afb-Afb*Ac */
- /* fnms(a,b,c,d) computes a = d - b*c */
- spe_fnms(f, term2A_reg, fbA_reg, constA_reg, fbA_reg);
- break;
-
- case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest alpha */
- ASSERT(0);
- break;
-
- /* These are special D3D cases involving a second color output
- * from the fragment shader. I'm not sure we can support them
- * yet... XXX
- */
- case PIPE_BLENDFACTOR_SRC1_COLOR:
- case PIPE_BLENDFACTOR_SRC1_ALPHA:
- case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
- case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
- default:
- ASSERT(0);
- }
-
- /*
- * Combine Src/Dest RGB terms as per the blend equation.
- */
- switch (blend->rt[0].rgb_func) {
- case PIPE_BLEND_ADD:
- spe_fa(f, fragR_reg, term1R_reg, term2R_reg);
- spe_fa(f, fragG_reg, term1G_reg, term2G_reg);
- spe_fa(f, fragB_reg, term1B_reg, term2B_reg);
- break;
- case PIPE_BLEND_SUBTRACT:
- spe_fs(f, fragR_reg, term1R_reg, term2R_reg);
- spe_fs(f, fragG_reg, term1G_reg, term2G_reg);
- spe_fs(f, fragB_reg, term1B_reg, term2B_reg);
- break;
- case PIPE_BLEND_REVERSE_SUBTRACT:
- spe_fs(f, fragR_reg, term2R_reg, term1R_reg);
- spe_fs(f, fragG_reg, term2G_reg, term1G_reg);
- spe_fs(f, fragB_reg, term2B_reg, term1B_reg);
- break;
- case PIPE_BLEND_MIN:
- spe_float_min(f, fragR_reg, term1R_reg, term2R_reg);
- spe_float_min(f, fragG_reg, term1G_reg, term2G_reg);
- spe_float_min(f, fragB_reg, term1B_reg, term2B_reg);
- break;
- case PIPE_BLEND_MAX:
- spe_float_max(f, fragR_reg, term1R_reg, term2R_reg);
- spe_float_max(f, fragG_reg, term1G_reg, term2G_reg);
- spe_float_max(f, fragB_reg, term1B_reg, term2B_reg);
- break;
- default:
- ASSERT(0);
- }
-
- /*
- * Combine Src/Dest A term
- */
- switch (blend->rt[0].alpha_func) {
- case PIPE_BLEND_ADD:
- spe_fa(f, fragA_reg, term1A_reg, term2A_reg);
- break;
- case PIPE_BLEND_SUBTRACT:
- spe_fs(f, fragA_reg, term1A_reg, term2A_reg);
- break;
- case PIPE_BLEND_REVERSE_SUBTRACT:
- spe_fs(f, fragA_reg, term2A_reg, term1A_reg);
- break;
- case PIPE_BLEND_MIN:
- spe_float_min(f, fragA_reg, term1A_reg, term2A_reg);
- break;
- case PIPE_BLEND_MAX:
- spe_float_max(f, fragA_reg, term1A_reg, term2A_reg);
- break;
- default:
- ASSERT(0);
- }
-
- spe_release_register(f, term1R_reg);
- spe_release_register(f, term1G_reg);
- spe_release_register(f, term1B_reg);
- spe_release_register(f, term1A_reg);
-
- spe_release_register(f, term2R_reg);
- spe_release_register(f, term2G_reg);
- spe_release_register(f, term2B_reg);
- spe_release_register(f, term2A_reg);
-
- spe_release_register(f, fbR_reg);
- spe_release_register(f, fbG_reg);
- spe_release_register(f, fbB_reg);
- spe_release_register(f, fbA_reg);
-
- spe_release_register(f, tmp_reg);
-
- /* Free any optional registers that actually got used */
- release_const_register(f, one_reg);
- release_const_register(f, constR_reg);
- release_const_register(f, constG_reg);
- release_const_register(f, constB_reg);
- release_const_register(f, constA_reg);
-}
-
-
-static void
-gen_logicop(const struct pipe_blend_state *blend,
- struct spe_function *f,
- int fragRGBA_reg, int fbRGBA_reg)
-{
- /* We've got four 32-bit RGBA packed pixels in each of
- * fragRGBA_reg and fbRGBA_reg, not sets of floating-point
- * reds, greens, blues, and alphas.
- * */
- ASSERT(blend->logicop_enable);
-
- switch(blend->logicop_func) {
- case PIPE_LOGICOP_CLEAR: /* 0 */
- spe_zero(f, fragRGBA_reg);
- break;
- case PIPE_LOGICOP_NOR: /* ~(s | d) */
- spe_nor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_AND_INVERTED: /* ~s & d */
- /* andc R, A, B computes R = A & ~B */
- spe_andc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg);
- break;
- case PIPE_LOGICOP_COPY_INVERTED: /* ~s */
- spe_complement(f, fragRGBA_reg, fragRGBA_reg);
- break;
- case PIPE_LOGICOP_AND_REVERSE: /* s & ~d */
- /* andc R, A, B computes R = A & ~B */
- spe_andc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_INVERT: /* ~d */
- /* Note that (A nor A) == ~(A|A) == ~A */
- spe_nor(f, fragRGBA_reg, fbRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_XOR: /* s ^ d */
- spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_NAND: /* ~(s & d) */
- spe_nand(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_AND: /* s & d */
- spe_and(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_EQUIV: /* ~(s ^ d) */
- spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- spe_complement(f, fragRGBA_reg, fragRGBA_reg);
- break;
- case PIPE_LOGICOP_NOOP: /* d */
- spe_move(f, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_OR_INVERTED: /* ~s | d */
- /* orc R, A, B computes R = A | ~B */
- spe_orc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg);
- break;
- case PIPE_LOGICOP_COPY: /* s */
- break;
- case PIPE_LOGICOP_OR_REVERSE: /* s | ~d */
- /* orc R, A, B computes R = A | ~B */
- spe_orc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_OR: /* s | d */
- spe_or(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
- break;
- case PIPE_LOGICOP_SET: /* 1 */
- spe_load_int(f, fragRGBA_reg, 0xffffffff);
- break;
- default:
- ASSERT(0);
- }
-}
-
-
-/**
- * Generate code to pack a quad of float colors into four 32-bit integers.
- *
- * \param f SPE function to append instruction onto.
- * \param color_format the dest color packing format
- * \param r_reg register containing four red values (in/clobbered)
- * \param g_reg register containing four green values (in/clobbered)
- * \param b_reg register containing four blue values (in/clobbered)
- * \param a_reg register containing four alpha values (in/clobbered)
- * \param rgba_reg register to store the packed RGBA colors (out)
- */
-static void
-gen_pack_colors(struct spe_function *f,
- enum pipe_format color_format,
- int r_reg, int g_reg, int b_reg, int a_reg,
- int rgba_reg)
-{
- int rg_reg = spe_allocate_available_register(f);
- int ba_reg = spe_allocate_available_register(f);
-
- /* Convert float[4] in [0.0,1.0] to int[4] in [0,~0], with clamping */
- spe_cfltu(f, r_reg, r_reg, 32);
- spe_cfltu(f, g_reg, g_reg, 32);
- spe_cfltu(f, b_reg, b_reg, 32);
- spe_cfltu(f, a_reg, a_reg, 32);
-
- /* Shift the most significant bytes to the least significant positions.
- * I.e.: reg = reg >> 24
- */
- spe_rotmi(f, r_reg, r_reg, -24);
- spe_rotmi(f, g_reg, g_reg, -24);
- spe_rotmi(f, b_reg, b_reg, -24);
- spe_rotmi(f, a_reg, a_reg, -24);
-
- /* Shift the color bytes according to the surface format */
- if (color_format == PIPE_FORMAT_B8G8R8A8_UNORM) {
- spe_roti(f, g_reg, g_reg, 8); /* green <<= 8 */
- spe_roti(f, r_reg, r_reg, 16); /* red <<= 16 */
- spe_roti(f, a_reg, a_reg, 24); /* alpha <<= 24 */
- }
- else if (color_format == PIPE_FORMAT_A8R8G8B8_UNORM) {
- spe_roti(f, r_reg, r_reg, 8); /* red <<= 8 */
- spe_roti(f, g_reg, g_reg, 16); /* green <<= 16 */
- spe_roti(f, b_reg, b_reg, 24); /* blue <<= 24 */
- }
- else {
- ASSERT(0);
- }
-
- /* Merge red, green, blue, alpha registers to make packed RGBA colors.
- * Eg: after shifting according to color_format we might have:
- * R = {0x00ff0000, 0x00110000, 0x00220000, 0x00330000}
- * G = {0x0000ff00, 0x00004400, 0x00005500, 0x00006600}
- * B = {0x000000ff, 0x00000077, 0x00000088, 0x00000099}
- * A = {0xff000000, 0xaa000000, 0xbb000000, 0xcc000000}
- * OR-ing all those together gives us four packed colors:
- * RGBA = {0xffffffff, 0xaa114477, 0xbb225588, 0xcc336699}
- */
- spe_or(f, rg_reg, r_reg, g_reg);
- spe_or(f, ba_reg, a_reg, b_reg);
- spe_or(f, rgba_reg, rg_reg, ba_reg);
-
- spe_release_register(f, rg_reg);
- spe_release_register(f, ba_reg);
-}
-
-
-static void
-gen_colormask(struct spe_function *f,
- uint colormask,
- enum pipe_format color_format,
- int fragRGBA_reg, int fbRGBA_reg)
-{
- /* We've got four 32-bit RGBA packed pixels in each of
- * fragRGBA_reg and fbRGBA_reg, not sets of floating-point
- * reds, greens, blues, and alphas. Further, the pixels
- * are packed according to the given color format, not
- * necessarily RGBA...
- */
- uint r_mask;
- uint g_mask;
- uint b_mask;
- uint a_mask;
-
- /* Calculate exactly where the bits for any particular color
- * end up, so we can mask them correctly.
- */
- switch(color_format) {
- case PIPE_FORMAT_B8G8R8A8_UNORM:
- /* ARGB */
- a_mask = 0xff000000;
- r_mask = 0x00ff0000;
- g_mask = 0x0000ff00;
- b_mask = 0x000000ff;
- break;
- case PIPE_FORMAT_A8R8G8B8_UNORM:
- /* BGRA */
- b_mask = 0xff000000;
- g_mask = 0x00ff0000;
- r_mask = 0x0000ff00;
- a_mask = 0x000000ff;
- break;
- default:
- ASSERT(0);
- }
-
- /* For each R, G, B, and A component we're supposed to mask out,
- * clear its bits. Then our mask operation later will work
- * as expected.
- */
- if (!(colormask & PIPE_MASK_R)) {
- r_mask = 0;
- }
- if (!(colormask & PIPE_MASK_G)) {
- g_mask = 0;
- }
- if (!(colormask & PIPE_MASK_B)) {
- b_mask = 0;
- }
- if (!(colormask & PIPE_MASK_A)) {
- a_mask = 0;
- }
-
- /* Get a temporary register to hold the mask that will be applied
- * to the fragment
- */
- int colormask_reg = spe_allocate_available_register(f);
-
- /* The actual mask we're going to use is an OR of the remaining R, G, B,
- * and A masks. Load the result value into our temporary register.
- */
- spe_load_uint(f, colormask_reg, r_mask | g_mask | b_mask | a_mask);
-
- /* Use the mask register to select between the fragment color
- * values and the frame buffer color values. Wherever the
- * mask has a 0 bit, the current frame buffer color should override
- * the fragment color. Wherever the mask has a 1 bit, the
- * fragment color should persevere. The Select Bits (selb rt, rA, rB, rM)
- * instruction will select bits from its first operand rA wherever the
- * the mask bits rM are 0, and from its second operand rB wherever the
- * mask bits rM are 1. That means that the frame buffer color is the
- * first operand, and the fragment color the second.
- */
- spe_selb(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg, colormask_reg);
-
- /* Release the temporary register and we're done */
- spe_release_register(f, colormask_reg);
-}
-
-
-/**
- * This function is annoyingly similar to gen_depth_test(), above, except
- * that instead of comparing two varying values (i.e. fragment and buffer),
- * we're comparing a varying value with a static value. As such, we have
- * access to the Compare Immediate instructions where we don't in
- * gen_depth_test(), which is what makes us very different.
- *
- * There's some added complexity if there's a non-trivial state->mask
- * value; then stencil and reference both must be masked
- *
- * The return value in the stencil_pass_reg is a bitmask of valid
- * fragments that also passed the stencil test. The bitmask of valid
- * fragments that failed would be found in
- * (fragment_mask_reg & ~stencil_pass_reg).
- */
-static void
-gen_stencil_test(struct spe_function *f,
- const struct pipe_stencil_state *state,
- const unsigned ref_value,
- uint stencil_max_value,
- int fragment_mask_reg,
- int fbS_reg,
- int stencil_pass_reg)
-{
- /* Generate code that puts the set of passing fragments into the
- * stencil_pass_reg register, taking into account whether each fragment
- * was active to begin with.
- */
- switch (state->func) {
- case PIPE_FUNC_EQUAL:
- if (state->valuemask == stencil_max_value) {
- /* stencil_pass = fragment_mask & (s == reference) */
- spe_compare_equal_uint(f, stencil_pass_reg, fbS_reg, ref_value);
- spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- }
- else {
- /* stencil_pass = fragment_mask & ((s&mask) == (reference&mask)) */
- uint tmp_masked_stencil = spe_allocate_available_register(f);
- spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
- spe_compare_equal_uint(f, stencil_pass_reg, tmp_masked_stencil,
- state->valuemask & ref_value);
- spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_masked_stencil);
- }
- break;
-
- case PIPE_FUNC_NOTEQUAL:
- if (state->valuemask == stencil_max_value) {
- /* stencil_pass = fragment_mask & ~(s == reference) */
- spe_compare_equal_uint(f, stencil_pass_reg, fbS_reg, ref_value);
- spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- }
- else {
- /* stencil_pass = fragment_mask & ~((s&mask) == (reference&mask)) */
- int tmp_masked_stencil = spe_allocate_available_register(f);
- spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
- spe_compare_equal_uint(f, stencil_pass_reg, tmp_masked_stencil,
- state->valuemask & ref_value);
- spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_masked_stencil);
- }
- break;
-
- case PIPE_FUNC_LESS:
- if (state->valuemask == stencil_max_value) {
- /* stencil_pass = fragment_mask & (reference < s) */
- spe_compare_greater_uint(f, stencil_pass_reg, fbS_reg, ref_value);
- spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- }
- else {
- /* stencil_pass = fragment_mask & ((reference&mask) < (s & mask)) */
- int tmp_masked_stencil = spe_allocate_available_register(f);
- spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
- spe_compare_greater_uint(f, stencil_pass_reg, tmp_masked_stencil,
- state->valuemask & ref_value);
- spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_masked_stencil);
- }
- break;
-
- case PIPE_FUNC_GREATER:
- if (state->valuemask == stencil_max_value) {
- /* stencil_pass = fragment_mask & (reference > s) */
- /* There's no convenient Compare Less Than Immediate instruction, so
- * we'll have to do this one the harder way, by loading a register and
- * comparing directly. Compare Logical Greater Than Word (clgt)
- * treats its operands as unsigned - no sign extension.
- */
- int tmp_reg = spe_allocate_available_register(f);
- spe_load_uint(f, tmp_reg, ref_value);
- spe_clgt(f, stencil_pass_reg, tmp_reg, fbS_reg);
- spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_reg);
- }
- else {
- /* stencil_pass = fragment_mask & ((reference&mask) > (s&mask)) */
- int tmp_reg = spe_allocate_available_register(f);
- int tmp_masked_stencil = spe_allocate_available_register(f);
- spe_load_uint(f, tmp_reg, state->valuemask & ref_value);
- spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
- spe_clgt(f, stencil_pass_reg, tmp_reg, tmp_masked_stencil);
- spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_reg);
- spe_release_register(f, tmp_masked_stencil);
- }
- break;
-
- case PIPE_FUNC_GEQUAL:
- if (state->valuemask == stencil_max_value) {
- /* stencil_pass = fragment_mask & (reference >= s)
- * = fragment_mask & ~(s > reference) */
- spe_compare_greater_uint(f, stencil_pass_reg, fbS_reg,
- ref_value);
- spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- }
- else {
- /* stencil_pass = fragment_mask & ~((s&mask) > (reference&mask)) */
- int tmp_masked_stencil = spe_allocate_available_register(f);
- spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
- spe_compare_greater_uint(f, stencil_pass_reg, tmp_masked_stencil,
- state->valuemask & ref_value);
- spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_masked_stencil);
- }
- break;
-
- case PIPE_FUNC_LEQUAL:
- if (state->valuemask == stencil_max_value) {
- /* stencil_pass = fragment_mask & (reference <= s) ]
- * = fragment_mask & ~(reference > s) */
- /* As above, we have to do this by loading a register */
- int tmp_reg = spe_allocate_available_register(f);
- spe_load_uint(f, tmp_reg, ref_value);
- spe_clgt(f, stencil_pass_reg, tmp_reg, fbS_reg);
- spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_reg);
- }
- else {
- /* stencil_pass = fragment_mask & ~((reference&mask) > (s&mask)) */
- int tmp_reg = spe_allocate_available_register(f);
- int tmp_masked_stencil = spe_allocate_available_register(f);
- spe_load_uint(f, tmp_reg, ref_value & state->valuemask);
- spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
- spe_clgt(f, stencil_pass_reg, tmp_reg, tmp_masked_stencil);
- spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
- spe_release_register(f, tmp_reg);
- spe_release_register(f, tmp_masked_stencil);
- }
- break;
-
- case PIPE_FUNC_NEVER:
- /* stencil_pass = fragment_mask & 0 = 0 */
- spe_load_uint(f, stencil_pass_reg, 0);
- break;
-
- case PIPE_FUNC_ALWAYS:
- /* stencil_pass = fragment_mask & 1 = fragment_mask */
- spe_move(f, stencil_pass_reg, fragment_mask_reg);
- break;
- }
-
- /* The fragments that passed the stencil test are now in stencil_pass_reg.
- * The fragments that failed would be (fragment_mask_reg & ~stencil_pass_reg).
- */
-}
-
-
-/**
- * This function generates code that calculates a set of new stencil values
- * given the earlier values and the operation to apply. It does not
- * apply any tests. It is intended to be called up to 3 times
- * (for the stencil fail operation, for the stencil pass-z fail operation,
- * and for the stencil pass-z pass operation) to collect up to three
- * possible sets of values, and for the caller to combine them based
- * on the result of the tests.
- *
- * stencil_max_value should be (2^n - 1) where n is the number of bits
- * in the stencil buffer - in other words, it should be usable as a mask.
- */
-static void
-gen_stencil_values(struct spe_function *f,
- uint stencil_op,
- uint stencil_ref_value,
- uint stencil_max_value,
- int fbS_reg,
- int newS_reg)
-{
- /* The code below assumes that newS_reg and fbS_reg are not the same
- * register; if they can be, the calculations below will have to use
- * an additional temporary register. For now, mark the assumption
- * with an assertion that will fail if they are the same.
- */
- ASSERT(fbS_reg != newS_reg);
-
- /* The code also assumes that the stencil_max_value is of the form
- * 2^n-1 and can therefore be used as a mask for the valid bits in
- * addition to a maximum. Make sure this is the case as well.
- * The clever math below exploits the fact that incrementing a
- * binary number serves to flip all the bits of a number starting at
- * the LSB and continuing to (and including) the first zero bit
- * found. That means that a number and its increment will always
- * have at least one bit in common (the high order bit, if nothing
- * else) *unless* the number is zero, *or* the number is of a form
- * consisting of some number of 1s in the low-order bits followed
- * by nothing but 0s in the high-order bits. The latter case
- * implies it's of the form 2^n-1.
- */
- ASSERT(stencil_max_value > 0 && ((stencil_max_value + 1) & stencil_max_value) == 0);
-
- switch(stencil_op) {
- case PIPE_STENCIL_OP_KEEP:
- /* newS = S */
- spe_move(f, newS_reg, fbS_reg);
- break;
-
- case PIPE_STENCIL_OP_ZERO:
- /* newS = 0 */
- spe_zero(f, newS_reg);
- break;
-
- case PIPE_STENCIL_OP_REPLACE:
- /* newS = stencil reference value */
- spe_load_uint(f, newS_reg, stencil_ref_value);
- break;
-
- case PIPE_STENCIL_OP_INCR: {
- /* newS = (s == max ? max : s + 1) */
- int equals_reg = spe_allocate_available_register(f);
-
- spe_compare_equal_uint(f, equals_reg, fbS_reg, stencil_max_value);
- /* Add Word Immediate computes rT = rA + 10-bit signed immediate */
- spe_ai(f, newS_reg, fbS_reg, 1);
- /* Select from the current value or the new value based on the equality test */
- spe_selb(f, newS_reg, newS_reg, fbS_reg, equals_reg);
-
- spe_release_register(f, equals_reg);
- break;
- }
- case PIPE_STENCIL_OP_DECR: {
- /* newS = (s == 0 ? 0 : s - 1) */
- int equals_reg = spe_allocate_available_register(f);
-
- spe_compare_equal_uint(f, equals_reg, fbS_reg, 0);
- /* Add Word Immediate with a (-1) value works */
- spe_ai(f, newS_reg, fbS_reg, -1);
- /* Select from the current value or the new value based on the equality test */
- spe_selb(f, newS_reg, newS_reg, fbS_reg, equals_reg);
-
- spe_release_register(f, equals_reg);
- break;
- }
- case PIPE_STENCIL_OP_INCR_WRAP:
- /* newS = (s == max ? 0 : s + 1), but since max is 2^n-1, we can
- * do a normal add and mask off the correct bits
- */
- spe_ai(f, newS_reg, fbS_reg, 1);
- spe_and_uint(f, newS_reg, newS_reg, stencil_max_value);
- break;
-
- case PIPE_STENCIL_OP_DECR_WRAP:
- /* newS = (s == 0 ? max : s - 1), but we'll pull the same mask trick as above */
- spe_ai(f, newS_reg, fbS_reg, -1);
- spe_and_uint(f, newS_reg, newS_reg, stencil_max_value);
- break;
-
- case PIPE_STENCIL_OP_INVERT:
- /* newS = ~s. We take advantage of the mask/max value to invert only
- * the valid bits for the field so we don't have to do an extra "and".
- */
- spe_xor_uint(f, newS_reg, fbS_reg, stencil_max_value);
- break;
-
- default:
- ASSERT(0);
- }
-}
-
-
-/**
- * This function generates code to get all the necessary possible
- * stencil values. For each of the output registers (fail_reg,
- * zfail_reg, and zpass_reg), it either allocates a new register
- * and calculates a new set of values based on the stencil operation,
- * or it reuses a register allocation and calculation done for an
- * earlier (matching) operation, or it reuses the fbS_reg register
- * (if the stencil operation is KEEP, which doesn't change the
- * stencil buffer).
- *
- * Since this function allocates a variable number of registers,
- * to avoid incurring complex logic to free them, they should
- * be allocated after a spe_allocate_register_set() call
- * and released by the corresponding spe_release_register_set() call.
- */
-static void
-gen_get_stencil_values(struct spe_function *f,
- const struct pipe_stencil_state *stencil,
- const unsigned ref_value,
- const uint depth_enabled,
- int fbS_reg,
- int *fail_reg,
- int *zfail_reg,
- int *zpass_reg)
-{
- uint zfail_op;
-
- /* Stenciling had better be enabled here */
- ASSERT(stencil->enabled);
-
- /* If the depth test is not enabled, it is treated as though it always
- * passes, which means that the zfail_op is not considered - a
- * failing stencil test triggers the fail_op, and a passing one
- * triggers the zpass_op
- *
- * As an optimization, override calculation of the zfail_op values
- * if they aren't going to be used. By setting the value of
- * the operation to PIPE_STENCIL_OP_KEEP, its value will be assumed
- * to match the incoming stencil values, and no calculation will
- * be done.
- */
- if (depth_enabled) {
- zfail_op = stencil->zfail_op;
- }
- else {
- zfail_op = PIPE_STENCIL_OP_KEEP;
- }
-
- /* One-sided or front-facing stencil */
- if (stencil->fail_op == PIPE_STENCIL_OP_KEEP) {
- *fail_reg = fbS_reg;
- }
- else {
- *fail_reg = spe_allocate_available_register(f);
- gen_stencil_values(f, stencil->fail_op, ref_value,
- 0xff, fbS_reg, *fail_reg);
- }
-
- /* Check the possibly overridden value, not the structure value */
- if (zfail_op == PIPE_STENCIL_OP_KEEP) {
- *zfail_reg = fbS_reg;
- }
- else if (zfail_op == stencil->fail_op) {
- *zfail_reg = *fail_reg;
- }
- else {
- *zfail_reg = spe_allocate_available_register(f);
- gen_stencil_values(f, stencil->zfail_op, ref_value,
- 0xff, fbS_reg, *zfail_reg);
- }
-
- if (stencil->zpass_op == PIPE_STENCIL_OP_KEEP) {
- *zpass_reg = fbS_reg;
- }
- else if (stencil->zpass_op == stencil->fail_op) {
- *zpass_reg = *fail_reg;
- }
- else if (stencil->zpass_op == zfail_op) {
- *zpass_reg = *zfail_reg;
- }
- else {
- *zpass_reg = spe_allocate_available_register(f);
- gen_stencil_values(f, stencil->zpass_op, ref_value,
- 0xff, fbS_reg, *zpass_reg);
- }
-}
-
-/**
- * Note that fbZ_reg may *not* be set on entry, if in fact
- * the depth test is not enabled. This function must not use
- * the register if depth is not enabled.
- */
-static boolean
-gen_stencil_depth_test(struct spe_function *f,
- const struct pipe_depth_stencil_alpha_state *dsa,
- const struct pipe_stencil_ref *stencil_ref,
- const uint facing,
- const int mask_reg, const int fragZ_reg,
- const int fbZ_reg, const int fbS_reg)
-{
- /* True if we've generated code that could require writeback to the
- * depth and/or stencil buffers
- */
- boolean modified_buffers = FALSE;
-
- boolean need_to_calculate_stencil_values;
- boolean need_to_writemask_stencil_values;
-
- struct pipe_stencil_state *stencil;
-
- /* Registers. We may or may not actually allocate these, depending
- * on whether the state values indicate that we need them.
- */
- int stencil_pass_reg, stencil_fail_reg;
- int stencil_fail_values, stencil_pass_depth_fail_values, stencil_pass_depth_pass_values;
- int stencil_writemask_reg;
- int zmask_reg;
- int newS_reg;
- unsigned ref_value;
-
- /* Stenciling is quite complex: up to six different configurable stencil
- * operations/calculations can be required (three each for front-facing
- * and back-facing fragments). Many of those operations will likely
- * be identical, so there's good reason to try to avoid calculating
- * the same values more than once (which unfortunately makes the code less
- * straightforward).
- *
- * To make register management easier, we start a new
- * register set; we can release all the registers in the set at
- * once, and avoid having to keep track of exactly which registers
- * we allocate. We can still allocate and free registers as
- * desired (if we know we no longer need a register), but we don't
- * have to spend the complexity to track the more difficult variant
- * register usage scenarios.
- */
- spe_comment(f, 0, "Allocating stencil register set");
- spe_allocate_register_set(f);
-
- /* The facing we're given is the fragment facing; it doesn't
- * exactly match the stencil facing. If stencil is enabled,
- * but two-sided stencil is *not* enabled, we use the same
- * stencil settings for both front- and back-facing fragments.
- * We only use the "back-facing" stencil for backfacing fragments
- * if two-sided stenciling is enabled.
- */
- if (facing == CELL_FACING_BACK && dsa->stencil[1].enabled) {
- stencil = &dsa->stencil[1];
- ref_value = stencil_ref->ref_value[1];
- }
- else {
- stencil = &dsa->stencil[0];
- ref_value = stencil_ref->ref_value[0];
- }
-
- /* Calculate the writemask. If the writemask is trivial (either
- * all 0s, meaning that we don't need to calculate any stencil values
- * because they're not going to change the stencil anyway, or all 1s,
- * meaning that we have to calculate the stencil values but do not
- * need to mask them), we can avoid generating code. Don't forget
- * that we need to consider backfacing stencil, if enabled.
- *
- * Note that if the backface stencil is *not* enabled, the backface
- * stencil will have the same values as the frontface stencil.
- */
- if (stencil->fail_op == PIPE_STENCIL_OP_KEEP &&
- stencil->zfail_op == PIPE_STENCIL_OP_KEEP &&
- stencil->zpass_op == PIPE_STENCIL_OP_KEEP) {
- need_to_calculate_stencil_values = FALSE;
- need_to_writemask_stencil_values = FALSE;
- }
- else if (stencil->writemask == 0x0) {
- /* All changes are writemasked out, so no need to calculate
- * what those changes might be, and no need to write anything back.
- */
- need_to_calculate_stencil_values = FALSE;
- need_to_writemask_stencil_values = FALSE;
- }
- else if (stencil->writemask == 0xff) {
- /* Still trivial, but a little less so. We need to write the stencil
- * values, but we don't need to mask them.
- */
- need_to_calculate_stencil_values = TRUE;
- need_to_writemask_stencil_values = FALSE;
- }
- else {
- /* The general case: calculate, mask, and write */
- need_to_calculate_stencil_values = TRUE;
- need_to_writemask_stencil_values = TRUE;
-
- /* While we're here, generate code that calculates what the
- * writemask should be. If backface stenciling is enabled,
- * and the backface writemask is not the same as the frontface
- * writemask, we'll have to generate code that merges the
- * two masks into a single effective mask based on fragment facing.
- */
- spe_comment(f, 0, "Computing stencil writemask");
- stencil_writemask_reg = spe_allocate_available_register(f);
- spe_load_uint(f, stencil_writemask_reg, dsa->stencil[facing].writemask);
- }
-
- /* At least one-sided stenciling must be on. Generate code that
- * runs the stencil test on the basic/front-facing stencil, leaving
- * the mask of passing stencil bits in stencil_pass_reg. This mask will
- * be used both to mask the set of active pixels, and also to
- * determine how the stencil buffer changes.
- *
- * This test will *not* change the value in mask_reg (because we don't
- * yet know whether to apply the two-sided stencil or one-sided stencil).
- */
- spe_comment(f, 0, "Running basic stencil test");
- stencil_pass_reg = spe_allocate_available_register(f);
- gen_stencil_test(f, stencil, ref_value, 0xff, mask_reg, fbS_reg, stencil_pass_reg);
-
- /* Generate code that, given the mask of valid fragments and the
- * mask of valid fragments that passed the stencil test, computes
- * the mask of valid fragments that failed the stencil test. We
- * have to do this before we run a depth test (because the
- * depth test should not be performed on fragments that failed the
- * stencil test, and because the depth test will update the
- * mask of valid fragments based on the results of the depth test).
- */
- spe_comment(f, 0, "Computing stencil fail mask and updating fragment mask");
- stencil_fail_reg = spe_allocate_available_register(f);
- spe_andc(f, stencil_fail_reg, mask_reg, stencil_pass_reg);
- /* Now remove the stenciled-out pixels from the valid fragment mask,
- * so we can later use the valid fragment mask in the depth test.
- */
- spe_and(f, mask_reg, mask_reg, stencil_pass_reg);
-
- /* We may not need to calculate stencil values, if the writemask is off */
- if (need_to_calculate_stencil_values) {
- /* Generate code that calculates exactly which stencil values we need,
- * without calculating the same value twice (say, if two different
- * stencil ops have the same value). This code will work for one-sided
- * and two-sided stenciling (so that we take into account that operations
- * may match between front and back stencils), and will also take into
- * account whether the depth test is enabled (if the depth test is off,
- * we don't need any of the zfail results, because the depth test always
- * is considered to pass if it is disabled). Any register value that
- * does not need to be calculated will come back with the same value
- * that's in fbS_reg.
- *
- * This function will allocate a variant number of registers that
- * will be released as part of the register set.
- */
- spe_comment(f, 0, facing == CELL_FACING_FRONT
- ? "Computing front-facing stencil values"
- : "Computing back-facing stencil values");
- gen_get_stencil_values(f, stencil, ref_value, dsa->depth.enabled, fbS_reg,
- &stencil_fail_values, &stencil_pass_depth_fail_values,
- &stencil_pass_depth_pass_values);
- }
-
- /* We now have all the stencil values we need. We also need
- * the results of the depth test to figure out which
- * stencil values will become the new stencil values. (Even if
- * we aren't actually calculating stencil values, we need to apply
- * the depth test if it's enabled.)
- *
- * The code generated by gen_depth_test() returns the results of the
- * test in the given register, but also alters the mask_reg based
- * on the results of the test.
- */
- if (dsa->depth.enabled) {
- spe_comment(f, 0, "Running stencil depth test");
- zmask_reg = spe_allocate_available_register(f);
- modified_buffers |= gen_depth_test(f, dsa, mask_reg, fragZ_reg,
- fbZ_reg, zmask_reg);
- }
-
- if (need_to_calculate_stencil_values) {
-
- /* If we need to writemask the stencil values before going into
- * the stencil buffer, we'll have to use a new register to
- * hold the new values. If not, we can just keep using the
- * current register.
- */
- if (need_to_writemask_stencil_values) {
- newS_reg = spe_allocate_available_register(f);
- spe_comment(f, 0, "Saving current stencil values for writemasking");
- spe_move(f, newS_reg, fbS_reg);
- }
- else {
- newS_reg = fbS_reg;
- }
-
- /* Merge in the selected stencil fail values */
- if (stencil_fail_values != fbS_reg) {
- spe_comment(f, 0, "Loading stencil fail values");
- spe_selb(f, newS_reg, newS_reg, stencil_fail_values, stencil_fail_reg);
- modified_buffers = TRUE;
- }
-
- /* Same for the stencil pass/depth fail values. If this calculation
- * is not needed (say, if depth test is off), then the
- * stencil_pass_depth_fail_values register will be equal to fbS_reg
- * and we'll skip the calculation.
- */
- if (stencil_pass_depth_fail_values != fbS_reg) {
- /* We don't actually have a stencil pass/depth fail mask yet.
- * Calculate it here from the stencil passing mask and the
- * depth passing mask. Note that zmask_reg *must* have been
- * set above if we're here.
- */
- uint stencil_pass_depth_fail_mask =
- spe_allocate_available_register(f);
-
- spe_comment(f, 0, "Loading stencil pass/depth fail values");
- spe_andc(f, stencil_pass_depth_fail_mask, stencil_pass_reg, zmask_reg);
-
- spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_fail_values,
- stencil_pass_depth_fail_mask);
-
- spe_release_register(f, stencil_pass_depth_fail_mask);
- modified_buffers = TRUE;
- }
-
- /* Same for the stencil pass/depth pass mask. Note that we
- * *can* get here with zmask_reg being unset (if the depth
- * test is off but the stencil test is on). In this case,
- * we assume the depth test passes, and don't need to mask
- * the stencil pass mask with the Z mask.
- */
- if (stencil_pass_depth_pass_values != fbS_reg) {
- if (dsa->depth.enabled) {
- uint stencil_pass_depth_pass_mask = spe_allocate_available_register(f);
- /* We'll need a separate register */
- spe_comment(f, 0, "Loading stencil pass/depth pass values");
- spe_and(f, stencil_pass_depth_pass_mask, stencil_pass_reg, zmask_reg);
- spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_pass_values, stencil_pass_depth_pass_mask);
- spe_release_register(f, stencil_pass_depth_pass_mask);
- }
- else {
- /* We can use the same stencil-pass register */
- spe_comment(f, 0, "Loading stencil pass values");
- spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_pass_values, stencil_pass_reg);
- }
- modified_buffers = TRUE;
- }
-
- /* Almost done. If we need to writemask, do it now, leaving the
- * results in the fbS_reg register passed in. If we don't need
- * to writemask, then the results are *already* in the fbS_reg,
- * so there's nothing more to do.
- */
-
- if (need_to_writemask_stencil_values && modified_buffers) {
- /* The Select Bytes command makes a fine writemask. Where
- * the mask is 0, the first (original) values are retained,
- * effectively masking out changes. Where the mask is 1, the
- * second (new) values are retained, incorporating changes.
- */
- spe_comment(f, 0, "Writemasking new stencil values");
- spe_selb(f, fbS_reg, fbS_reg, newS_reg, stencil_writemask_reg);
- }
-
- } /* done calculating stencil values */
-
- /* The stencil and/or depth values have been applied, and the
- * mask_reg, fbS_reg, and fbZ_reg values have been updated.
- * We're all done, except that we've allocated a fair number
- * of registers that we didn't bother tracking. Release all
- * those registers as part of the register set, and go home.
- */
- spe_comment(f, 0, "Releasing stencil register set");
- spe_release_register_set(f);
-
- /* Return TRUE if we could have modified the stencil and/or
- * depth buffers.
- */
- return modified_buffers;
-}
-
-
-/**
- * Generate depth and/or stencil test code.
- * \param cell context
- * \param dsa depth/stencil/alpha state
- * \param f spe function to emit
- * \param facing either CELL_FACING_FRONT or CELL_FACING_BACK
- * \param mask_reg register containing the pixel alive/dead mask
- * \param depth_tile_reg register containing address of z/stencil tile
- * \param quad_offset_reg offset to quad from start of tile
- * \param fragZ_reg register containg fragment Z values
- */
-static void
-gen_depth_stencil(struct cell_context *cell,
- const struct pipe_depth_stencil_alpha_state *dsa,
- const struct pipe_stencil_ref *stencil_ref,
- struct spe_function *f,
- uint facing,
- int mask_reg,
- int depth_tile_reg,
- int quad_offset_reg,
- int fragZ_reg)
-
-{
- const enum pipe_format zs_format = cell->framebuffer.zsbuf->format;
- boolean write_depth_stencil;
-
- /* framebuffer's combined z/stencil values register */
- int fbZS_reg = spe_allocate_available_register(f);
-
- /* Framebufer Z values register */
- int fbZ_reg = spe_allocate_available_register(f);
-
- /* Framebuffer stencil values register (may not be used) */
- int fbS_reg = spe_allocate_available_register(f);
-
- /* 24-bit mask register (may not be used) */
- int zmask_reg = spe_allocate_available_register(f);
-
- /**
- * The following code:
- * 1. fetch quad of packed Z/S values from the framebuffer tile.
- * 2. extract the separate the Z and S values from packed values
- * 3. convert fragment Z values from float in [0,1] to 32/24/16-bit ints
- *
- * The instructions for doing this are interleaved for better performance.
- */
- spe_comment(f, 0, "Fetch Z/stencil quad from tile");
-
- switch(zs_format) {
- case PIPE_FORMAT_Z24_UNORM_S8_UINT: /* fall through */
- case PIPE_FORMAT_Z24X8_UNORM:
- /* prepare mask to extract Z vals from ZS vals */
- spe_load_uint(f, zmask_reg, 0x00ffffff);
-
- /* convert fragment Z from [0,1] to 32-bit ints */
- spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
-
- /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
- spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
-
- /* right shift 32-bit fragment Z to 24 bits */
- spe_rotmi(f, fragZ_reg, fragZ_reg, -8);
-
- /* extract 24-bit Z values from ZS values by masking */
- spe_and(f, fbZ_reg, fbZS_reg, zmask_reg);
-
- /* extract 8-bit stencil values by shifting */
- spe_rotmi(f, fbS_reg, fbZS_reg, -24);
- break;
-
- case PIPE_FORMAT_S8_UINT_Z24_UNORM: /* fall through */
- case PIPE_FORMAT_X8Z24_UNORM:
- /* convert fragment Z from [0,1] to 32-bit ints */
- spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
-
- /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
- spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
-
- /* right shift 32-bit fragment Z to 24 bits */
- spe_rotmi(f, fragZ_reg, fragZ_reg, -8);
-
- /* extract 24-bit Z values from ZS values by shifting */
- spe_rotmi(f, fbZ_reg, fbZS_reg, -8);
-
- /* extract 8-bit stencil values by masking */
- spe_and_uint(f, fbS_reg, fbZS_reg, 0x000000ff);
- break;
-
- case PIPE_FORMAT_Z32_UNORM:
- /* Load: fbZ_reg = memory[depth_tile_reg + offset_reg] */
- spe_lqx(f, fbZ_reg, depth_tile_reg, quad_offset_reg);
-
- /* convert fragment Z from [0,1] to 32-bit ints */
- spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
-
- /* No stencil, so can't do anything there */
- break;
-
- case PIPE_FORMAT_Z16_UNORM:
- /* XXX This code for 16bpp Z is broken! */
-
- /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
- spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
-
- /* Copy over 4 32-bit values */
- spe_move(f, fbZ_reg, fbZS_reg);
-
- /* convert Z from [0,1] to 16-bit ints */
- spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
- spe_rotmi(f, fragZ_reg, fragZ_reg, -16);
- /* No stencil */
- break;
-
- default:
- ASSERT(0); /* invalid format */
- }
-
- /* If stencil is enabled, use the stencil-specific code
- * generator to generate both the stencil and depth (if needed)
- * tests. Otherwise, if only depth is enabled, generate
- * a quick depth test. The test generators themselves will
- * report back whether the depth/stencil buffer has to be
- * written back.
- */
- if (dsa->stencil[0].enabled) {
- /* This will perform the stencil and depth tests, and update
- * the mask_reg, fbZ_reg, and fbS_reg as required by the
- * tests.
- */
- ASSERT(fbS_reg >= 0);
- spe_comment(f, 0, "Perform stencil test");
-
- /* Note that fbZ_reg may not be set on entry, if stenciling
- * is enabled but there's no Z-buffer. The
- * gen_stencil_depth_test() function must ignore the
- * fbZ_reg register if depth is not enabled.
- */
- write_depth_stencil = gen_stencil_depth_test(f, dsa, stencil_ref, facing,
- mask_reg, fragZ_reg,
- fbZ_reg, fbS_reg);
- }
- else if (dsa->depth.enabled) {
- int zmask_reg = spe_allocate_available_register(f);
- ASSERT(fbZ_reg >= 0);
- spe_comment(f, 0, "Perform depth test");
- write_depth_stencil = gen_depth_test(f, dsa, mask_reg, fragZ_reg,
- fbZ_reg, zmask_reg);
- spe_release_register(f, zmask_reg);
- }
- else {
- write_depth_stencil = FALSE;
- }
-
- if (write_depth_stencil) {
- /* Merge latest Z and Stencil values into fbZS_reg.
- * fbZ_reg has four Z vals in bits [23..0] or bits [15..0].
- * fbS_reg has four 8-bit Z values in bits [7..0].
- */
- spe_comment(f, 0, "Store quad's depth/stencil values in tile");
- if (zs_format == PIPE_FORMAT_Z24_UNORM_S8_UINT ||
- zs_format == PIPE_FORMAT_Z24X8_UNORM) {
- spe_shli(f, fbS_reg, fbS_reg, 24); /* fbS = fbS << 24 */
- spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */
- }
- else if (zs_format == PIPE_FORMAT_S8_UINT_Z24_UNORM ||
- zs_format == PIPE_FORMAT_X8Z24_UNORM) {
- spe_shli(f, fbZ_reg, fbZ_reg, 8); /* fbZ = fbZ << 8 */
- spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */
- }
- else if (zs_format == PIPE_FORMAT_Z32_UNORM) {
- spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */
- }
- else if (zs_format == PIPE_FORMAT_Z16_UNORM) {
- spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */
- }
- else if (zs_format == PIPE_FORMAT_S8_UINT) {
- ASSERT(0); /* XXX to do */
- }
- else {
- ASSERT(0); /* bad zs_format */
- }
-
- /* Store: memory[depth_tile_reg + quad_offset_reg] = fbZS */
- spe_stqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
- }
-
- /* Don't need these any more */
- spe_release_register(f, fbZS_reg);
- spe_release_register(f, fbZ_reg);
- spe_release_register(f, fbS_reg);
- spe_release_register(f, zmask_reg);
-}
-
-
-
-/**
- * Generate SPE code to implement the fragment operations (alpha test,
- * depth test, stencil test, blending, colormask, and final
- * framebuffer write) as specified by the current context state.
- *
- * Logically, this code will be called after running the fragment
- * shader. But under some circumstances we could run some of this
- * code before the fragment shader to cull fragments/quads that are
- * totally occluded/discarded.
- *
- * XXX we only support PIPE_FORMAT_S8_UINT_Z24_UNORM z/stencil buffer right now.
- *
- * See the spu_default_fragment_ops() function to see how the per-fragment
- * operations would be done with ordinary C code.
- * The code we generate here though has no branches, is SIMD, etc and
- * should be much faster.
- *
- * \param cell the rendering context (in)
- * \param facing whether the generated code is for front-facing or
- * back-facing fragments
- * \param f the generated function (in/out); on input, the function
- * must already have been initialized. On exit, whatever
- * instructions within the generated function have had
- * the fragment ops appended.
- */
-void
-cell_gen_fragment_function(struct cell_context *cell,
- const uint facing,
- struct spe_function *f)
-{
- const struct pipe_depth_stencil_alpha_state *dsa = cell->depth_stencil;
- const struct pipe_stencil_ref *stencil_ref = &cell->stencil_ref;
- const struct pipe_blend_state *blend = cell->blend;
- const struct pipe_blend_color *blend_color = &cell->blend_color;
- const enum pipe_format color_format = cell->framebuffer.cbufs[0]->format;
-
- /* For SPE function calls: reg $3 = first param, $4 = second param, etc. */
- const int x_reg = 3; /* uint */
- const int y_reg = 4; /* uint */
- const int color_tile_reg = 5; /* tile_t * */
- const int depth_tile_reg = 6; /* tile_t * */
- const int fragZ_reg = 7; /* vector float */
- const int fragR_reg = 8; /* vector float */
- const int fragG_reg = 9; /* vector float */
- const int fragB_reg = 10; /* vector float */
- const int fragA_reg = 11; /* vector float */
- const int mask_reg = 12; /* vector uint */
-
- ASSERT(facing == CELL_FACING_FRONT || facing == CELL_FACING_BACK);
-
- /* offset of quad from start of tile
- * XXX assuming 4-byte pixels for color AND Z/stencil!!!!
- */
- int quad_offset_reg;
-
- int fbRGBA_reg; /**< framebuffer's RGBA colors for quad */
-
- if (cell->debug_flags & CELL_DEBUG_ASM) {
- spe_print_code(f, TRUE);
- spe_indent(f, 8);
- spe_comment(f, -4, facing == CELL_FACING_FRONT
- ? "Begin front-facing per-fragment ops"
- : "Begin back-facing per-fragment ops");
- }
-
- spe_allocate_register(f, x_reg);
- spe_allocate_register(f, y_reg);
- spe_allocate_register(f, color_tile_reg);
- spe_allocate_register(f, depth_tile_reg);
- spe_allocate_register(f, fragZ_reg);
- spe_allocate_register(f, fragR_reg);
- spe_allocate_register(f, fragG_reg);
- spe_allocate_register(f, fragB_reg);
- spe_allocate_register(f, fragA_reg);
- spe_allocate_register(f, mask_reg);
-
- quad_offset_reg = spe_allocate_available_register(f);
- fbRGBA_reg = spe_allocate_available_register(f);
-
- /* compute offset of quad from start of tile, in bytes */
- {
- int x2_reg = spe_allocate_available_register(f);
- int y2_reg = spe_allocate_available_register(f);
-
- ASSERT(TILE_SIZE == 32);
-
- spe_comment(f, 0, "Compute quad offset within tile");
- spe_rotmi(f, y2_reg, y_reg, -1); /* y2 = y / 2 */
- spe_rotmi(f, x2_reg, x_reg, -1); /* x2 = x / 2 */
- spe_shli(f, y2_reg, y2_reg, 4); /* y2 *= 16 */
- spe_a(f, quad_offset_reg, y2_reg, x2_reg); /* offset = y2 + x2 */
- spe_shli(f, quad_offset_reg, quad_offset_reg, 4); /* offset *= 16 */
-
- spe_release_register(f, x2_reg);
- spe_release_register(f, y2_reg);
- }
-
- /* Generate the alpha test, if needed. */
- if (dsa->alpha.enabled) {
- gen_alpha_test(dsa, f, mask_reg, fragA_reg);
- }
-
- /* generate depth and/or stencil test code */
- if (dsa->depth.enabled || dsa->stencil[0].enabled) {
- gen_depth_stencil(cell, dsa, stencil_ref, f,
- facing,
- mask_reg,
- depth_tile_reg,
- quad_offset_reg,
- fragZ_reg);
- }
-
- /* Get framebuffer quad/colors. We'll need these for blending,
- * color masking, and to obey the quad/pixel mask.
- * Load: fbRGBA_reg = memory[color_tile + quad_offset]
- * Note: if mask={~0,~0,~0,~0} and we're not blending or colormasking
- * we could skip this load.
- */
- spe_comment(f, 0, "Fetch quad colors from tile");
- spe_lqx(f, fbRGBA_reg, color_tile_reg, quad_offset_reg);
-
- if (blend->rt[0].blend_enable) {
- spe_comment(f, 0, "Perform blending");
- gen_blend(blend, blend_color, f, color_format,
- fragR_reg, fragG_reg, fragB_reg, fragA_reg, fbRGBA_reg);
- }
-
- /*
- * Write fragment colors to framebuffer/tile.
- * This involves converting the fragment colors from float[4] to the
- * tile's specific format and obeying the quad/pixel mask.
- */
- {
- int rgba_reg = spe_allocate_available_register(f);
-
- /* Pack four float colors as four 32-bit int colors */
- spe_comment(f, 0, "Convert float quad colors to packed int framebuffer colors");
- gen_pack_colors(f, color_format,
- fragR_reg, fragG_reg, fragB_reg, fragA_reg,
- rgba_reg);
-
- if (blend->logicop_enable) {
- spe_comment(f, 0, "Compute logic op");
- gen_logicop(blend, f, rgba_reg, fbRGBA_reg);
- }
-
- if (blend->rt[0].colormask != PIPE_MASK_RGBA) {
- spe_comment(f, 0, "Compute color mask");
- gen_colormask(f, blend->rt[0].colormask, color_format, rgba_reg, fbRGBA_reg);
- }
-
- /* Mix fragment colors with framebuffer colors using the quad/pixel mask:
- * if (mask[i])
- * rgba[i] = rgba[i];
- * else
- * rgba[i] = framebuffer[i];
- */
- spe_selb(f, rgba_reg, fbRGBA_reg, rgba_reg, mask_reg);
-
- /* Store updated quad in tile:
- * memory[color_tile + quad_offset] = rgba_reg;
- */
- spe_comment(f, 0, "Store quad colors into color tile");
- spe_stqx(f, rgba_reg, color_tile_reg, quad_offset_reg);
-
- spe_release_register(f, rgba_reg);
- }
-
- //printf("gen_fragment_ops nr instructions: %u\n", f->num_inst);
-
- spe_bi(f, SPE_REG_RA, 0, 0); /* return from function call */
-
- spe_release_register(f, fbRGBA_reg);
- spe_release_register(f, quad_offset_reg);
-
- if (cell->debug_flags & CELL_DEBUG_ASM) {
- char buffer[1024];
- sprintf(buffer, "End %s-facing per-fragment ops: %d instructions",
- facing == CELL_FACING_FRONT ? "front" : "back", f->num_inst);
- spe_comment(f, -4, buffer);
- }
-}