summaryrefslogtreecommitdiff
path: root/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c')
-rw-r--r--src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c1067
1 files changed, 0 insertions, 1067 deletions
diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c
deleted file mode 100644
index 53a0e722cff..00000000000
--- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c
+++ /dev/null
@@ -1,1067 +0,0 @@
-/*
- * (C) Copyright IBM Corporation 2008
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * on the rights to use, copy, modify, merge, publish, distribute, sub
- * license, and/or sell copies of the Software, and to permit persons to whom
- * the Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
- * AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
- * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
- * USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file
- * Real-time assembly generation interface for Cell B.E. SPEs.
- *
- * \author Ian Romanick <idr@us.ibm.com>
- * \author Brian Paul
- */
-
-
-#include <stdio.h>
-#include "pipe/p_compiler.h"
-#include "util/u_memory.h"
-#include "rtasm_ppc_spe.h"
-
-
-#ifdef GALLIUM_CELL
-/**
- * SPE instruction types
- *
- * There are 6 primary instruction encodings used on the Cell's SPEs. Each of
- * the following unions encodes one type.
- *
- * \bug
- * If, at some point, we start generating SPE code from a little-endian host
- * these unions will not work.
- */
-/*@{*/
-/**
- * Encode one output register with two input registers
- */
-union spe_inst_RR {
- uint32_t bits;
- struct {
- unsigned op:11;
- unsigned rB:7;
- unsigned rA:7;
- unsigned rT:7;
- } inst;
-};
-
-
-/**
- * Encode one output register with three input registers
- */
-union spe_inst_RRR {
- uint32_t bits;
- struct {
- unsigned op:4;
- unsigned rT:7;
- unsigned rB:7;
- unsigned rA:7;
- unsigned rC:7;
- } inst;
-};
-
-
-/**
- * Encode one output register with one input reg. and a 7-bit signed immed
- */
-union spe_inst_RI7 {
- uint32_t bits;
- struct {
- unsigned op:11;
- unsigned i7:7;
- unsigned rA:7;
- unsigned rT:7;
- } inst;
-};
-
-
-/**
- * Encode one output register with one input reg. and an 8-bit signed immed
- */
-union spe_inst_RI8 {
- uint32_t bits;
- struct {
- unsigned op:10;
- unsigned i8:8;
- unsigned rA:7;
- unsigned rT:7;
- } inst;
-};
-
-
-/**
- * Encode one output register with one input reg. and a 10-bit signed immed
- */
-union spe_inst_RI10 {
- uint32_t bits;
- struct {
- unsigned op:8;
- unsigned i10:10;
- unsigned rA:7;
- unsigned rT:7;
- } inst;
-};
-
-
-/**
- * Encode one output register with a 16-bit signed immediate
- */
-union spe_inst_RI16 {
- uint32_t bits;
- struct {
- unsigned op:9;
- unsigned i16:16;
- unsigned rT:7;
- } inst;
-};
-
-
-/**
- * Encode one output register with a 18-bit signed immediate
- */
-union spe_inst_RI18 {
- uint32_t bits;
- struct {
- unsigned op:7;
- unsigned i18:18;
- unsigned rT:7;
- } inst;
-};
-/*@}*/
-
-
-static void
-indent(const struct spe_function *p)
-{
- int i;
- for (i = 0; i < p->indent; i++) {
- putchar(' ');
- }
-}
-
-
-static const char *
-rem_prefix(const char *longname)
-{
- return longname + 4;
-}
-
-
-static const char *
-reg_name(int reg)
-{
- switch (reg) {
- case SPE_REG_SP:
- return "$sp";
- case SPE_REG_RA:
- return "$lr";
- default:
- {
- /* cycle through four buffers to handle multiple calls per printf */
- static char buf[4][10];
- static int b = 0;
- b = (b + 1) % 4;
- sprintf(buf[b], "$%d", reg);
- return buf[b];
- }
- }
-}
-
-
-static void
-emit_instruction(struct spe_function *p, uint32_t inst_bits)
-{
- if (!p->store)
- return; /* out of memory, drop the instruction */
-
- if (p->num_inst == p->max_inst) {
- /* allocate larger buffer */
- uint32_t *newbuf;
- p->max_inst *= 2; /* 2x larger */
- newbuf = align_malloc(p->max_inst * SPE_INST_SIZE, 16);
- if (newbuf) {
- memcpy(newbuf, p->store, p->num_inst * SPE_INST_SIZE);
- }
- align_free(p->store);
- p->store = newbuf;
- if (!p->store) {
- /* out of memory */
- p->num_inst = 0;
- return;
- }
- }
-
- p->store[p->num_inst++] = inst_bits;
-}
-
-
-
-static void emit_RR(struct spe_function *p, unsigned op, int rT,
- int rA, int rB, const char *name)
-{
- union spe_inst_RR inst;
- inst.inst.op = op;
- inst.inst.rB = rB;
- inst.inst.rA = rA;
- inst.inst.rT = rT;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, %s, %s\n",
- rem_prefix(name), reg_name(rT), reg_name(rA), reg_name(rB));
- }
-}
-
-
-static void emit_RRR(struct spe_function *p, unsigned op, int rT,
- int rA, int rB, int rC, const char *name)
-{
- union spe_inst_RRR inst;
- inst.inst.op = op;
- inst.inst.rT = rT;
- inst.inst.rB = rB;
- inst.inst.rA = rA;
- inst.inst.rC = rC;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, %s, %s, %s\n", rem_prefix(name), reg_name(rT),
- reg_name(rA), reg_name(rB), reg_name(rC));
- }
-}
-
-
-static void emit_RI7(struct spe_function *p, unsigned op, int rT,
- int rA, int imm, const char *name)
-{
- union spe_inst_RI7 inst;
- inst.inst.op = op;
- inst.inst.i7 = imm;
- inst.inst.rA = rA;
- inst.inst.rT = rT;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, %s, 0x%x\n",
- rem_prefix(name), reg_name(rT), reg_name(rA), imm);
- }
-}
-
-
-
-static void emit_RI8(struct spe_function *p, unsigned op, int rT,
- int rA, int imm, const char *name)
-{
- union spe_inst_RI8 inst;
- inst.inst.op = op;
- inst.inst.i8 = imm;
- inst.inst.rA = rA;
- inst.inst.rT = rT;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, %s, 0x%x\n",
- rem_prefix(name), reg_name(rT), reg_name(rA), imm);
- }
-}
-
-
-
-static void emit_RI10(struct spe_function *p, unsigned op, int rT,
- int rA, int imm, const char *name)
-{
- union spe_inst_RI10 inst;
- inst.inst.op = op;
- inst.inst.i10 = imm;
- inst.inst.rA = rA;
- inst.inst.rT = rT;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, %s, 0x%x\n",
- rem_prefix(name), reg_name(rT), reg_name(rA), imm);
- }
-}
-
-
-/** As above, but do range checking on signed immediate value */
-static void emit_RI10s(struct spe_function *p, unsigned op, int rT,
- int rA, int imm, const char *name)
-{
- assert(imm <= 511);
- assert(imm >= -512);
- emit_RI10(p, op, rT, rA, imm, name);
-}
-
-
-static void emit_RI16(struct spe_function *p, unsigned op, int rT,
- int imm, const char *name)
-{
- union spe_inst_RI16 inst;
- inst.inst.op = op;
- inst.inst.i16 = imm;
- inst.inst.rT = rT;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm);
- }
-}
-
-
-static void emit_RI18(struct spe_function *p, unsigned op, int rT,
- int imm, const char *name)
-{
- union spe_inst_RI18 inst;
- inst.inst.op = op;
- inst.inst.i18 = imm;
- inst.inst.rT = rT;
- emit_instruction(p, inst.bits);
- if (p->print) {
- indent(p);
- printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm);
- }
-}
-
-
-#define EMIT(_name, _op) \
-void _name (struct spe_function *p) \
-{ \
- emit_RR(p, _op, 0, 0, 0, __FUNCTION__); \
-}
-
-#define EMIT_(_name, _op) \
-void _name (struct spe_function *p, int rT) \
-{ \
- emit_RR(p, _op, rT, 0, 0, __FUNCTION__); \
-}
-
-#define EMIT_R(_name, _op) \
-void _name (struct spe_function *p, int rT, int rA) \
-{ \
- emit_RR(p, _op, rT, rA, 0, __FUNCTION__); \
-}
-
-#define EMIT_RR(_name, _op) \
-void _name (struct spe_function *p, int rT, int rA, int rB) \
-{ \
- emit_RR(p, _op, rT, rA, rB, __FUNCTION__); \
-}
-
-#define EMIT_RRR(_name, _op) \
-void _name (struct spe_function *p, int rT, int rA, int rB, int rC) \
-{ \
- emit_RRR(p, _op, rT, rA, rB, rC, __FUNCTION__); \
-}
-
-#define EMIT_RI7(_name, _op) \
-void _name (struct spe_function *p, int rT, int rA, int imm) \
-{ \
- emit_RI7(p, _op, rT, rA, imm, __FUNCTION__); \
-}
-
-#define EMIT_RI8(_name, _op, bias) \
-void _name (struct spe_function *p, int rT, int rA, int imm) \
-{ \
- emit_RI8(p, _op, rT, rA, bias - imm, __FUNCTION__); \
-}
-
-#define EMIT_RI10(_name, _op) \
-void _name (struct spe_function *p, int rT, int rA, int imm) \
-{ \
- emit_RI10(p, _op, rT, rA, imm, __FUNCTION__); \
-}
-
-#define EMIT_RI10s(_name, _op) \
-void _name (struct spe_function *p, int rT, int rA, int imm) \
-{ \
- emit_RI10s(p, _op, rT, rA, imm, __FUNCTION__); \
-}
-
-#define EMIT_RI16(_name, _op) \
-void _name (struct spe_function *p, int rT, int imm) \
-{ \
- emit_RI16(p, _op, rT, imm, __FUNCTION__); \
-}
-
-#define EMIT_RI18(_name, _op) \
-void _name (struct spe_function *p, int rT, int imm) \
-{ \
- emit_RI18(p, _op, rT, imm, __FUNCTION__); \
-}
-
-#define EMIT_I16(_name, _op) \
-void _name (struct spe_function *p, int imm) \
-{ \
- emit_RI16(p, _op, 0, imm, __FUNCTION__); \
-}
-
-#include "rtasm_ppc_spe.h"
-
-
-
-/**
- * Initialize an spe_function.
- * \param code_size initial size of instruction buffer to allocate, in bytes.
- * If zero, use a default.
- */
-void spe_init_func(struct spe_function *p, unsigned code_size)
-{
- uint i;
-
- if (!code_size)
- code_size = 64;
-
- p->num_inst = 0;
- p->max_inst = code_size / SPE_INST_SIZE;
- p->store = align_malloc(code_size, 16);
-
- p->set_count = 0;
- memset(p->regs, 0, SPE_NUM_REGS * sizeof(p->regs[0]));
-
- /* Conservatively treat R0 - R2 and R80 - R127 as non-volatile.
- */
- p->regs[0] = p->regs[1] = p->regs[2] = 1;
- for (i = 80; i <= 127; i++) {
- p->regs[i] = 1;
- }
-
- p->print = FALSE;
- p->indent = 0;
-}
-
-
-void spe_release_func(struct spe_function *p)
-{
- assert(p->num_inst <= p->max_inst);
- if (p->store != NULL) {
- align_free(p->store);
- }
- p->store = NULL;
-}
-
-
-/** Return current code size in bytes. */
-unsigned spe_code_size(const struct spe_function *p)
-{
- return p->num_inst * SPE_INST_SIZE;
-}
-
-
-/**
- * Allocate a SPE register.
- * \return register index or -1 if none left.
- */
-int spe_allocate_available_register(struct spe_function *p)
-{
- unsigned i;
- for (i = 0; i < SPE_NUM_REGS; i++) {
- if (p->regs[i] == 0) {
- p->regs[i] = 1;
- return i;
- }
- }
-
- return -1;
-}
-
-
-/**
- * Mark the given SPE register as "allocated".
- */
-int spe_allocate_register(struct spe_function *p, int reg)
-{
- assert(reg < SPE_NUM_REGS);
- assert(p->regs[reg] == 0);
- p->regs[reg] = 1;
- return reg;
-}
-
-
-/**
- * Mark the given SPE register as "unallocated". Note that this should
- * only be used on registers allocated in the current register set; an
- * assertion will fail if an attempt is made to deallocate a register
- * allocated in an earlier register set.
- */
-void spe_release_register(struct spe_function *p, int reg)
-{
- assert(reg >= 0);
- assert(reg < SPE_NUM_REGS);
- assert(p->regs[reg] == 1);
-
- p->regs[reg] = 0;
-}
-
-/**
- * Start a new set of registers. This can be called if
- * it will be difficult later to determine exactly what
- * registers were actually allocated during a code generation
- * sequence, and you really just want to deallocate all of them.
- */
-void spe_allocate_register_set(struct spe_function *p)
-{
- uint i;
-
- /* Keep track of the set count. If it ever wraps around to 0,
- * we're in trouble.
- */
- p->set_count++;
- assert(p->set_count > 0);
-
- /* Increment the allocation count of all registers currently
- * allocated. Then any registers that are allocated in this set
- * will be the only ones with a count of 1; they'll all be released
- * when the register set is released.
- */
- for (i = 0; i < SPE_NUM_REGS; i++) {
- if (p->regs[i] > 0)
- p->regs[i]++;
- }
-}
-
-void spe_release_register_set(struct spe_function *p)
-{
- uint i;
-
- /* If the set count drops below zero, we're in trouble. */
- assert(p->set_count > 0);
- p->set_count--;
-
- /* Drop the allocation level of all registers. Any allocated
- * during this register set will drop to 0 and then become
- * available.
- */
- for (i = 0; i < SPE_NUM_REGS; i++) {
- if (p->regs[i] > 0)
- p->regs[i]--;
- }
-}
-
-
-unsigned
-spe_get_registers_used(const struct spe_function *p, ubyte used[])
-{
- unsigned i, num = 0;
- /* only count registers in the range available to callers */
- for (i = 2; i < 80; i++) {
- if (p->regs[i]) {
- used[num++] = i;
- }
- }
- return num;
-}
-
-
-void
-spe_print_code(struct spe_function *p, boolean enable)
-{
- p->print = enable;
-}
-
-
-void
-spe_indent(struct spe_function *p, int spaces)
-{
- p->indent += spaces;
-}
-
-
-void
-spe_comment(struct spe_function *p, int rel_indent, const char *s)
-{
- if (p->print) {
- p->indent += rel_indent;
- indent(p);
- p->indent -= rel_indent;
- printf("# %s\n", s);
- }
-}
-
-
-/**
- * Load quad word.
- * NOTE: offset is in bytes and the least significant 4 bits must be zero!
- */
-void spe_lqd(struct spe_function *p, int rT, int rA, int offset)
-{
- const boolean pSave = p->print;
-
- /* offset must be a multiple of 16 */
- assert(offset % 16 == 0);
- /* offset must fit in 10-bit signed int field, after shifting */
- assert((offset >> 4) <= 511);
- assert((offset >> 4) >= -512);
-
- p->print = FALSE;
- emit_RI10(p, 0x034, rT, rA, offset >> 4, "spe_lqd");
- p->print = pSave;
-
- if (p->print) {
- indent(p);
- printf("lqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA));
- }
-}
-
-
-/**
- * Store quad word.
- * NOTE: offset is in bytes and the least significant 4 bits must be zero!
- */
-void spe_stqd(struct spe_function *p, int rT, int rA, int offset)
-{
- const boolean pSave = p->print;
-
- /* offset must be a multiple of 16 */
- assert(offset % 16 == 0);
- /* offset must fit in 10-bit signed int field, after shifting */
- assert((offset >> 4) <= 511);
- assert((offset >> 4) >= -512);
-
- p->print = FALSE;
- emit_RI10(p, 0x024, rT, rA, offset >> 4, "spe_stqd");
- p->print = pSave;
-
- if (p->print) {
- indent(p);
- printf("stqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA));
- }
-}
-
-
-/**
- * For branch instructions:
- * \param d if 1, disable interupts if branch is taken
- * \param e if 1, enable interupts if branch is taken
- * If d and e are both zero, don't change interupt status (right?)
- */
-
-/** Branch Indirect to address in rA */
-void spe_bi(struct spe_function *p, int rA, int d, int e)
-{
- emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Interupt Return */
-void spe_iret(struct spe_function *p, int rA, int d, int e)
-{
- emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Branch indirect and set link on external data */
-void spe_bisled(struct spe_function *p, int rT, int rA, int d,
- int e)
-{
- emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Branch indirect and set link. Save PC in rT, jump to rA. */
-void spe_bisl(struct spe_function *p, int rT, int rA, int d,
- int e)
-{
- emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Branch indirect if zero word. If rT.word[0]==0, jump to rA. */
-void spe_biz(struct spe_function *p, int rT, int rA, int d, int e)
-{
- emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Branch indirect if non-zero word. If rT.word[0]!=0, jump to rA. */
-void spe_binz(struct spe_function *p, int rT, int rA, int d, int e)
-{
- emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Branch indirect if zero halfword. If rT.halfword[1]==0, jump to rA. */
-void spe_bihz(struct spe_function *p, int rT, int rA, int d, int e)
-{
- emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-/** Branch indirect if non-zero halfword. If rT.halfword[1]!=0, jump to rA. */
-void spe_bihnz(struct spe_function *p, int rT, int rA, int d, int e)
-{
- emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
-}
-
-
-/* Hint-for-branch instructions
- */
-#if 0
-hbr;
-hbra;
-hbrr;
-#endif
-
-
-/* Control instructions
- */
-#if 0
-stop;
-EMIT_RR (spe_stopd, 0x140);
-EMIT_ (spe_nop, 0x201);
-sync;
-EMIT_ (spe_dsync, 0x003);
-EMIT_R (spe_mfspr, 0x00c);
-EMIT_R (spe_mtspr, 0x10c);
-#endif
-
-
-/**
- ** Helper / "macro" instructions.
- ** Use somewhat verbose names as a reminder that these aren't native
- ** SPE instructions.
- **/
-
-
-void
-spe_load_float(struct spe_function *p, int rT, float x)
-{
- if (x == 0.0f) {
- spe_il(p, rT, 0x0);
- }
- else if (x == 0.5f) {
- spe_ilhu(p, rT, 0x3f00);
- }
- else if (x == 1.0f) {
- spe_ilhu(p, rT, 0x3f80);
- }
- else if (x == -1.0f) {
- spe_ilhu(p, rT, 0xbf80);
- }
- else {
- union {
- float f;
- unsigned u;
- } bits;
- bits.f = x;
- spe_ilhu(p, rT, bits.u >> 16);
- spe_iohl(p, rT, bits.u & 0xffff);
- }
-}
-
-
-void
-spe_load_int(struct spe_function *p, int rT, int i)
-{
- if (-32768 <= i && i <= 32767) {
- spe_il(p, rT, i);
- }
- else {
- spe_ilhu(p, rT, i >> 16);
- if (i & 0xffff)
- spe_iohl(p, rT, i & 0xffff);
- }
-}
-
-void spe_load_uint(struct spe_function *p, int rT, uint ui)
-{
- /* If the whole value is in the lower 18 bits, use ila, which
- * doesn't sign-extend. Otherwise, if the two halfwords of
- * the constant are identical, use ilh. Otherwise, if every byte of
- * the desired value is 0x00 or 0xff, we can use Form Select Mask for
- * Bytes Immediate (fsmbi) to load the value in a single instruction.
- * Otherwise, in the general case, we have to use ilhu followed by iohl.
- */
- if ((ui & 0x0003ffff) == ui) {
- spe_ila(p, rT, ui);
- }
- else if ((ui >> 16) == (ui & 0xffff)) {
- spe_ilh(p, rT, ui & 0xffff);
- }
- else if (
- ((ui & 0x000000ff) == 0 || (ui & 0x000000ff) == 0x000000ff) &&
- ((ui & 0x0000ff00) == 0 || (ui & 0x0000ff00) == 0x0000ff00) &&
- ((ui & 0x00ff0000) == 0 || (ui & 0x00ff0000) == 0x00ff0000) &&
- ((ui & 0xff000000) == 0 || (ui & 0xff000000) == 0xff000000)
- ) {
- uint mask = 0;
- /* fsmbi duplicates each bit in the given mask eight times,
- * using a 16-bit value to initialize a 16-byte quadword.
- * Each 4-bit nybble of the mask corresponds to a full word
- * of the result; look at the value and figure out the mask
- * (replicated for each word in the quadword), and then
- * form the "select mask" to get the value.
- */
- if ((ui & 0x000000ff) == 0x000000ff) mask |= 0x1111;
- if ((ui & 0x0000ff00) == 0x0000ff00) mask |= 0x2222;
- if ((ui & 0x00ff0000) == 0x00ff0000) mask |= 0x4444;
- if ((ui & 0xff000000) == 0xff000000) mask |= 0x8888;
- spe_fsmbi(p, rT, mask);
- }
- else {
- /* The general case: this usually uses two instructions, but
- * may use only one if the low-order 16 bits of each word are 0.
- */
- spe_ilhu(p, rT, ui >> 16);
- if (ui & 0xffff)
- spe_iohl(p, rT, ui & 0xffff);
- }
-}
-
-/**
- * This function is constructed identically to spe_xor_uint() below.
- * Changes to one should be made in the other.
- */
-void
-spe_and_uint(struct spe_function *p, int rT, int rA, uint ui)
-{
- /* If we can, emit a single instruction, either And Byte Immediate
- * (which uses the same constant across each byte), And Halfword Immediate
- * (which sign-extends a 10-bit immediate to 16 bits and uses that
- * across each halfword), or And Word Immediate (which sign-extends
- * a 10-bit immediate to 32 bits).
- *
- * Otherwise, we'll need to use a temporary register.
- */
- uint tmp;
-
- /* If the upper 23 bits are all 0s or all 1s, sign extension
- * will work and we can use And Word Immediate
- */
- tmp = ui & 0xfffffe00;
- if (tmp == 0xfffffe00 || tmp == 0) {
- spe_andi(p, rT, rA, ui & 0x000003ff);
- return;
- }
-
- /* If the ui field is symmetric along halfword boundaries and
- * the upper 7 bits of each halfword are all 0s or 1s, we
- * can use And Halfword Immediate
- */
- tmp = ui & 0xfe00fe00;
- if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) {
- spe_andhi(p, rT, rA, ui & 0x000003ff);
- return;
- }
-
- /* If the ui field is symmetric in each byte, then we can use
- * the And Byte Immediate instruction.
- */
- tmp = ui & 0x000000ff;
- if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) {
- spe_andbi(p, rT, rA, tmp);
- return;
- }
-
- /* Otherwise, we'll have to use a temporary register. */
- int tmp_reg = spe_allocate_available_register(p);
- spe_load_uint(p, tmp_reg, ui);
- spe_and(p, rT, rA, tmp_reg);
- spe_release_register(p, tmp_reg);
-}
-
-
-/**
- * This function is constructed identically to spe_and_uint() above.
- * Changes to one should be made in the other.
- */
-void
-spe_xor_uint(struct spe_function *p, int rT, int rA, uint ui)
-{
- /* If we can, emit a single instruction, either Exclusive Or Byte
- * Immediate (which uses the same constant across each byte), Exclusive
- * Or Halfword Immediate (which sign-extends a 10-bit immediate to
- * 16 bits and uses that across each halfword), or Exclusive Or Word
- * Immediate (which sign-extends a 10-bit immediate to 32 bits).
- *
- * Otherwise, we'll need to use a temporary register.
- */
- uint tmp;
-
- /* If the upper 23 bits are all 0s or all 1s, sign extension
- * will work and we can use Exclusive Or Word Immediate
- */
- tmp = ui & 0xfffffe00;
- if (tmp == 0xfffffe00 || tmp == 0) {
- spe_xori(p, rT, rA, ui & 0x000003ff);
- return;
- }
-
- /* If the ui field is symmetric along halfword boundaries and
- * the upper 7 bits of each halfword are all 0s or 1s, we
- * can use Exclusive Or Halfword Immediate
- */
- tmp = ui & 0xfe00fe00;
- if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) {
- spe_xorhi(p, rT, rA, ui & 0x000003ff);
- return;
- }
-
- /* If the ui field is symmetric in each byte, then we can use
- * the Exclusive Or Byte Immediate instruction.
- */
- tmp = ui & 0x000000ff;
- if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) {
- spe_xorbi(p, rT, rA, tmp);
- return;
- }
-
- /* Otherwise, we'll have to use a temporary register. */
- int tmp_reg = spe_allocate_available_register(p);
- spe_load_uint(p, tmp_reg, ui);
- spe_xor(p, rT, rA, tmp_reg);
- spe_release_register(p, tmp_reg);
-}
-
-void
-spe_compare_equal_uint(struct spe_function *p, int rT, int rA, uint ui)
-{
- /* If the comparison value is 9 bits or less, it fits inside a
- * Compare Equal Word Immediate instruction.
- */
- if ((ui & 0x000001ff) == ui) {
- spe_ceqi(p, rT, rA, ui);
- }
- /* Otherwise, we're going to have to load a word first. */
- else {
- int tmp_reg = spe_allocate_available_register(p);
- spe_load_uint(p, tmp_reg, ui);
- spe_ceq(p, rT, rA, tmp_reg);
- spe_release_register(p, tmp_reg);
- }
-}
-
-void
-spe_compare_greater_uint(struct spe_function *p, int rT, int rA, uint ui)
-{
- /* If the comparison value is 10 bits or less, it fits inside a
- * Compare Logical Greater Than Word Immediate instruction.
- */
- if ((ui & 0x000003ff) == ui) {
- spe_clgti(p, rT, rA, ui);
- }
- /* Otherwise, we're going to have to load a word first. */
- else {
- int tmp_reg = spe_allocate_available_register(p);
- spe_load_uint(p, tmp_reg, ui);
- spe_clgt(p, rT, rA, tmp_reg);
- spe_release_register(p, tmp_reg);
- }
-}
-
-void
-spe_splat(struct spe_function *p, int rT, int rA)
-{
- /* Use a temporary, just in case rT == rA */
- int tmp_reg = spe_allocate_available_register(p);
- /* Duplicate bytes 0, 1, 2, and 3 across the whole register */
- spe_ila(p, tmp_reg, 0x00010203);
- spe_shufb(p, rT, rA, rA, tmp_reg);
- spe_release_register(p, tmp_reg);
-}
-
-
-void
-spe_complement(struct spe_function *p, int rT, int rA)
-{
- spe_nor(p, rT, rA, rA);
-}
-
-
-void
-spe_move(struct spe_function *p, int rT, int rA)
-{
- /* Use different instructions depending on the instruction address
- * to take advantage of the dual pipelines.
- */
- if (p->num_inst & 1)
- spe_shlqbyi(p, rT, rA, 0); /* odd pipe */
- else
- spe_ori(p, rT, rA, 0); /* even pipe */
-}
-
-
-void
-spe_zero(struct spe_function *p, int rT)
-{
- spe_xor(p, rT, rT, rT);
-}
-
-
-void
-spe_splat_word(struct spe_function *p, int rT, int rA, int word)
-{
- assert(word >= 0);
- assert(word <= 3);
-
- if (word == 0) {
- int tmp1 = rT;
- spe_ila(p, tmp1, 66051);
- spe_shufb(p, rT, rA, rA, tmp1);
- }
- else {
- /* XXX review this, we may not need the rotqbyi instruction */
- int tmp1 = rT;
- int tmp2 = spe_allocate_available_register(p);
-
- spe_ila(p, tmp1, 66051);
- spe_rotqbyi(p, tmp2, rA, 4 * word);
- spe_shufb(p, rT, tmp2, tmp2, tmp1);
-
- spe_release_register(p, tmp2);
- }
-}
-
-/**
- * For each 32-bit float element of rA and rB, choose the smaller of the
- * two, compositing them into the rT register.
- *
- * The Float Compare Greater Than (fcgt) instruction will put 1s into
- * compare_reg where rA > rB, and 0s where rA <= rB.
- *
- * Then the Select Bits (selb) instruction will take bits from rA where
- * compare_reg is 0, and from rB where compare_reg is 1; i.e., from rA
- * where rA <= rB and from rB where rB > rA, which is exactly the
- * "min" operation.
- *
- * The compare_reg could in many cases be the same as rT, unless
- * rT == rA || rt == rB. But since this is common in constructions
- * like "x = min(x, a)", we always allocate a new register to be safe.
- */
-void
-spe_float_min(struct spe_function *p, int rT, int rA, int rB)
-{
- int compare_reg = spe_allocate_available_register(p);
- spe_fcgt(p, compare_reg, rA, rB);
- spe_selb(p, rT, rA, rB, compare_reg);
- spe_release_register(p, compare_reg);
-}
-
-/**
- * For each 32-bit float element of rA and rB, choose the greater of the
- * two, compositing them into the rT register.
- *
- * The logic is similar to that of spe_float_min() above; the only
- * difference is that the registers on spe_selb() have been reversed,
- * so that the larger of the two is selected instead of the smaller.
- */
-void
-spe_float_max(struct spe_function *p, int rT, int rA, int rB)
-{
- int compare_reg = spe_allocate_available_register(p);
- spe_fcgt(p, compare_reg, rA, rB);
- spe_selb(p, rT, rB, rA, compare_reg);
- spe_release_register(p, compare_reg);
-}
-
-#endif /* GALLIUM_CELL */