summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/softpipe/sp_prim_setup.c
diff options
context:
space:
mode:
authorKeith Whitwell <keith@tungstengraphics.com>2008-04-08 17:59:28 +0100
committerZack Rusin <zack@tungstengraphics.com>2008-04-10 14:35:47 -0400
commitc95dcc49629b72b95826e87e067d7a48753605fb (patch)
treec37e51d3537fc62f08e81e18e6f7c18383012933 /src/gallium/drivers/softpipe/sp_prim_setup.c
parent7a8ad75c89b45520043693a37d9f0c7e0b24fc5d (diff)
remove usage of vertex_header
Diffstat (limited to 'src/gallium/drivers/softpipe/sp_prim_setup.c')
-rw-r--r--src/gallium/drivers/softpipe/sp_prim_setup.c1189
1 files changed, 45 insertions, 1144 deletions
diff --git a/src/gallium/drivers/softpipe/sp_prim_setup.c b/src/gallium/drivers/softpipe/sp_prim_setup.c
index c7eb12b3bb7..6fe463b74c7 100644
--- a/src/gallium/drivers/softpipe/sp_prim_setup.c
+++ b/src/gallium/drivers/softpipe/sp_prim_setup.c
@@ -26,7 +26,9 @@
**************************************************************************/
/**
- * \brief Primitive rasterization/rendering (points, lines, triangles)
+ * \brief A draw stage that drives our triangle setup routines from
+ * within the draw pipeline. One of two ways to drive setup, the
+ * other being in sp_prim_vbuf.c.
*
* \author Keith Whitwell <keith@tungstengraphics.com>
* \author Brian Paul
@@ -34,29 +36,12 @@
#include "sp_context.h"
-#include "sp_headers.h"
-#include "sp_quad.h"
+#include "sp_setup.h"
#include "sp_state.h"
#include "sp_prim_setup.h"
#include "draw/draw_private.h"
#include "draw/draw_vertex.h"
#include "pipe/p_util.h"
-#include "pipe/p_shader_tokens.h"
-
-#define DEBUG_VERTS 0
-#define DEBUG_FRAGS 0
-
-/**
- * Triangle edge info
- */
-struct edge {
- float dx; /**< X(v1) - X(v0), used only during setup */
- float dy; /**< Y(v1) - Y(v0), used only during setup */
- float dxdy; /**< dx/dy */
- float sx, sy; /**< first sample point coord */
- int lines; /**< number of lines on this edge */
-};
-
/**
* Triangle setup info (derived from draw_stage).
@@ -65,39 +50,7 @@ struct edge {
struct setup_stage {
struct draw_stage stage; /**< This must be first (base class) */
- struct softpipe_context *softpipe;
-
- /* Vertices are just an array of floats making up each attribute in
- * turn. Currently fixed at 4 floats, but should change in time.
- * Codegen will help cope with this.
- */
- const struct vertex_header *vmax;
- const struct vertex_header *vmid;
- const struct vertex_header *vmin;
- const struct vertex_header *vprovoke;
-
- struct edge ebot;
- struct edge etop;
- struct edge emaj;
-
- float oneoverarea;
-
- struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
- struct tgsi_interp_coef posCoef; /* For Z, W */
- struct quad_header quad;
-
- struct {
- int left[2]; /**< [0] = row0, [1] = row1 */
- int right[2];
- int y;
- unsigned y_flags;
- unsigned mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
- } span;
-
-#if DEBUG_FRAGS
- uint numFragsEmitted; /**< per primitive */
- uint numFragsWritten; /**< per primitive */
-#endif
+ struct setup_context *setup;
};
@@ -111,1112 +64,50 @@ static INLINE struct setup_stage *setup_stage( struct draw_stage *stage )
}
-/**
- * Clip setup->quad against the scissor/surface bounds.
- */
-static INLINE void
-quad_clip(struct setup_stage *setup)
-{
- const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
- const int minx = (int) cliprect->minx;
- const int maxx = (int) cliprect->maxx;
- const int miny = (int) cliprect->miny;
- const int maxy = (int) cliprect->maxy;
-
- if (setup->quad.x0 >= maxx ||
- setup->quad.y0 >= maxy ||
- setup->quad.x0 + 1 < minx ||
- setup->quad.y0 + 1 < miny) {
- /* totally clipped */
- setup->quad.mask = 0x0;
- return;
- }
- if (setup->quad.x0 < minx)
- setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
- if (setup->quad.y0 < miny)
- setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
- if (setup->quad.x0 == maxx - 1)
- setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
- if (setup->quad.y0 == maxy - 1)
- setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
-}
-
-
-/**
- * Emit a quad (pass to next stage) with clipping.
- */
-static INLINE void
-clip_emit_quad(struct setup_stage *setup)
-{
- quad_clip(setup);
- if (setup->quad.mask) {
- struct softpipe_context *sp = setup->softpipe;
- sp->quad.first->run(sp->quad.first, &setup->quad);
- }
-}
-
-
-/**
- * Emit a quad (pass to next stage). No clipping is done.
- */
-static INLINE void
-emit_quad( struct setup_stage *setup, int x, int y, unsigned mask )
-{
- struct softpipe_context *sp = setup->softpipe;
- setup->quad.x0 = x;
- setup->quad.y0 = y;
- setup->quad.mask = mask;
-#if DEBUG_FRAGS
- if (mask & 1) setup->numFragsEmitted++;
- if (mask & 2) setup->numFragsEmitted++;
- if (mask & 4) setup->numFragsEmitted++;
- if (mask & 8) setup->numFragsEmitted++;
-#endif
- sp->quad.first->run(sp->quad.first, &setup->quad);
-#if DEBUG_FRAGS
- mask = setup->quad.mask;
- if (mask & 1) setup->numFragsWritten++;
- if (mask & 2) setup->numFragsWritten++;
- if (mask & 4) setup->numFragsWritten++;
- if (mask & 8) setup->numFragsWritten++;
-#endif
-}
-
-
-/**
- * Given an X or Y coordinate, return the block/quad coordinate that it
- * belongs to.
- */
-static INLINE int block( int x )
-{
- return x & ~1;
-}
-
-
-/**
- * Compute mask which indicates which pixels in the 2x2 quad are actually inside
- * the triangle's bounds.
- *
- * this is pretty nasty... may need to rework flush_spans again to
- * fix it, if possible.
- */
-static unsigned calculate_mask( struct setup_stage *setup, int x )
-{
- unsigned mask = 0x0;
-
- if (x >= setup->span.left[0] && x < setup->span.right[0])
- mask |= MASK_TOP_LEFT;
-
- if (x >= setup->span.left[1] && x < setup->span.right[1])
- mask |= MASK_BOTTOM_LEFT;
-
- if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
- mask |= MASK_TOP_RIGHT;
-
- if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
- mask |= MASK_BOTTOM_RIGHT;
-
- return mask;
-}
-
-
-/**
- * Render a horizontal span of quads
- */
-static void flush_spans( struct setup_stage *setup )
-{
- int minleft, maxright;
- int x;
-
- switch (setup->span.y_flags) {
- case 0x3:
- /* both odd and even lines written (both quad rows) */
- minleft = MIN2(setup->span.left[0], setup->span.left[1]);
- maxright = MAX2(setup->span.right[0], setup->span.right[1]);
- break;
-
- case 0x1:
- /* only even line written (quad top row) */
- minleft = setup->span.left[0];
- maxright = setup->span.right[0];
- break;
-
- case 0x2:
- /* only odd line written (quad bottom row) */
- minleft = setup->span.left[1];
- maxright = setup->span.right[1];
- break;
-
- default:
- return;
- }
-
- /* XXX this loop could be moved into the above switch cases and
- * calculate_mask() could be simplified a bit...
- */
- for (x = block(minleft); x <= block(maxright); x += 2) {
- emit_quad( setup, x, setup->span.y,
- calculate_mask( setup, x ) );
- }
-
- setup->span.y = 0;
- setup->span.y_flags = 0;
- setup->span.right[0] = 0;
- setup->span.right[1] = 0;
-}
-
-#if DEBUG_VERTS
-static void print_vertex(const struct setup_stage *setup,
- const struct vertex_header *v)
-{
- int i;
- debug_printf("Vertex: (%p)\n", v);
- for (i = 0; i < setup->quad.nr_attrs; i++) {
- debug_printf(" %d: %f %f %f %f\n", i,
- v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]);
- }
-}
-#endif
-
-static boolean setup_sort_vertices( struct setup_stage *setup,
- const struct prim_header *prim )
-{
- const struct vertex_header *v0 = prim->v[0];
- const struct vertex_header *v1 = prim->v[1];
- const struct vertex_header *v2 = prim->v[2];
-
-#if DEBUG_VERTS
- debug_printf("Triangle:\n");
- print_vertex(setup, v0);
- print_vertex(setup, v1);
- print_vertex(setup, v2);
-#endif
-
- setup->vprovoke = v2;
-
- /* determine bottom to top order of vertices */
- {
- float y0 = v0->data[0][1];
- float y1 = v1->data[0][1];
- float y2 = v2->data[0][1];
- if (y0 <= y1) {
- if (y1 <= y2) {
- /* y0<=y1<=y2 */
- setup->vmin = v0;
- setup->vmid = v1;
- setup->vmax = v2;
- }
- else if (y2 <= y0) {
- /* y2<=y0<=y1 */
- setup->vmin = v2;
- setup->vmid = v0;
- setup->vmax = v1;
- }
- else {
- /* y0<=y2<=y1 */
- setup->vmin = v0;
- setup->vmid = v2;
- setup->vmax = v1;
- }
- }
- else {
- if (y0 <= y2) {
- /* y1<=y0<=y2 */
- setup->vmin = v1;
- setup->vmid = v0;
- setup->vmax = v2;
- }
- else if (y2 <= y1) {
- /* y2<=y1<=y0 */
- setup->vmin = v2;
- setup->vmid = v1;
- setup->vmax = v0;
- }
- else {
- /* y1<=y2<=y0 */
- setup->vmin = v1;
- setup->vmid = v2;
- setup->vmax = v0;
- }
- }
- }
-
- setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
- setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
- setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
- setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
- setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
- setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
-
- /*
- * Compute triangle's area. Use 1/area to compute partial
- * derivatives of attributes later.
- *
- * The area will be the same as prim->det, but the sign may be
- * different depending on how the vertices get sorted above.
- *
- * To determine whether the primitive is front or back facing we
- * use the prim->det value because its sign is correct.
- */
- {
- const float area = (setup->emaj.dx * setup->ebot.dy -
- setup->ebot.dx * setup->emaj.dy);
-
- setup->oneoverarea = 1.0f / area;
- /*
- debug_printf("%s one-over-area %f area %f det %f\n",
- __FUNCTION__, setup->oneoverarea, area, prim->det );
- */
- }
-
- /* We need to know if this is a front or back-facing triangle for:
- * - the GLSL gl_FrontFacing fragment attribute (bool)
- * - two-sided stencil test
- */
- setup->quad.facing = (prim->det > 0.0) ^ (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
-
- return TRUE;
-}
-
-
-/**
- * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
- * The value value comes from vertex->data[slot][i].
- * The result will be put into setup->coef[slot].a0[i].
- * \param slot which attribute slot
- * \param i which component of the slot (0..3)
- */
-static void const_coeff( struct setup_stage *setup,
- struct tgsi_interp_coef *coef,
- uint vertSlot, uint i)
-{
- assert(i <= 3);
-
- coef->dadx[i] = 0;
- coef->dady[i] = 0;
- /* need provoking vertex info!
- */
- coef->a0[i] = setup->vprovoke->data[vertSlot][i];
-}
-
-
-/**
- * Compute a0, dadx and dady for a linearly interpolated coefficient,
- * for a triangle.
- */
-static void tri_linear_coeff( struct setup_stage *setup,
- struct tgsi_interp_coef *coef,
- uint vertSlot, uint i)
-{
- float botda = setup->vmid->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
- float majda = setup->vmax->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
- float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
- float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
- float dadx = a * setup->oneoverarea;
- float dady = b * setup->oneoverarea;
-
- assert(i <= 3);
-
- coef->dadx[i] = dadx;
- coef->dady[i] = dady;
-
- /* calculate a0 as the value which would be sampled for the
- * fragment at (0,0), taking into account that we want to sample at
- * pixel centers, in other words (0.5, 0.5).
- *
- * this is neat but unfortunately not a good way to do things for
- * triangles with very large values of dadx or dady as it will
- * result in the subtraction and re-addition from a0 of a very
- * large number, which means we'll end up loosing a lot of the
- * fractional bits and precision from a0. the way to fix this is
- * to define a0 as the sample at a pixel center somewhere near vmin
- * instead - i'll switch to this later.
- */
- coef->a0[i] = (setup->vmin->data[vertSlot][i] -
- (dadx * (setup->vmin->data[0][0] - 0.5f) +
- dady * (setup->vmin->data[0][1] - 0.5f)));
-
- /*
- debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
- slot, "xyzw"[i],
- setup->coef[slot].a0[i],
- setup->coef[slot].dadx[i],
- setup->coef[slot].dady[i]);
- */
-}
-
-
-/**
- * Compute a0, dadx and dady for a perspective-corrected interpolant,
- * for a triangle.
- * We basically multiply the vertex value by 1/w before computing
- * the plane coefficients (a0, dadx, dady).
- * Later, when we compute the value at a particular fragment position we'll
- * divide the interpolated value by the interpolated W at that fragment.
- */
-static void tri_persp_coeff( struct setup_stage *setup,
- struct tgsi_interp_coef *coef,
- uint vertSlot, uint i)
-{
- /* premultiply by 1/w (v->data[0][3] is always W):
- */
- float mina = setup->vmin->data[vertSlot][i] * setup->vmin->data[0][3];
- float mida = setup->vmid->data[vertSlot][i] * setup->vmid->data[0][3];
- float maxa = setup->vmax->data[vertSlot][i] * setup->vmax->data[0][3];
- float botda = mida - mina;
- float majda = maxa - mina;
- float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
- float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
- float dadx = a * setup->oneoverarea;
- float dady = b * setup->oneoverarea;
-
- /*
- debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
- setup->vmin->data[vertSlot][i],
- setup->vmid->data[vertSlot][i],
- setup->vmax->data[vertSlot][i]
- );
- */
- assert(i <= 3);
-
- coef->dadx[i] = dadx;
- coef->dady[i] = dady;
- coef->a0[i] = (mina -
- (dadx * (setup->vmin->data[0][0] - 0.5f) +
- dady * (setup->vmin->data[0][1] - 0.5f)));
-}
-
-
-/**
- * Special coefficient setup for gl_FragCoord.
- * X and Y are trivial, though Y has to be inverted for OpenGL.
- * Z and W are copied from posCoef which should have already been computed.
- * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
- */
static void
-setup_fragcoord_coeff(struct setup_stage *setup, uint slot)
-{
- /*X*/
- setup->coef[slot].a0[0] = 0;
- setup->coef[slot].dadx[0] = 1.0;
- setup->coef[slot].dady[0] = 0.0;
- /*Y*/
- if (setup->softpipe->rasterizer->origin_lower_left) {
- /* y=0=bottom */
- const int winHeight = setup->softpipe->framebuffer.height;
- setup->coef[slot].a0[1] = (float) (winHeight - 1);
- setup->coef[slot].dady[1] = -1.0;
- }
- else {
- /* y=0=top */
- setup->coef[slot].a0[1] = 0.0;
- setup->coef[slot].dady[1] = 1.0;
- }
- setup->coef[slot].dadx[1] = 0.0;
- /*Z*/
- setup->coef[slot].a0[2] = setup->posCoef.a0[2];
- setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
- setup->coef[slot].dady[2] = setup->posCoef.dady[2];
- /*W*/
- setup->coef[slot].a0[3] = setup->posCoef.a0[3];
- setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
- setup->coef[slot].dady[3] = setup->posCoef.dady[3];
-}
-
-
-
-/**
- * Compute the setup->coef[] array dadx, dady, a0 values.
- * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
- */
-static void setup_tri_coefficients( struct setup_stage *setup )
-{
- struct softpipe_context *softpipe = setup->softpipe;
- const struct sp_fragment_shader *spfs = softpipe->fs;
- const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
- uint fragSlot;
-
- /* z and w are done by linear interpolation:
- */
- tri_linear_coeff(setup, &setup->posCoef, 0, 2);
- tri_linear_coeff(setup, &setup->posCoef, 0, 3);
-
- /* setup interpolation for all the remaining attributes:
- */
- for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
- const uint vertSlot = vinfo->src_index[fragSlot];
- uint j;
-
- switch (vinfo->interp_mode[fragSlot]) {
- case INTERP_CONSTANT:
- for (j = 0; j < NUM_CHANNELS; j++)
- const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_LINEAR:
- for (j = 0; j < NUM_CHANNELS; j++)
- tri_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_PERSPECTIVE:
- for (j = 0; j < NUM_CHANNELS; j++)
- tri_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_POS:
- setup_fragcoord_coeff(setup, fragSlot);
- break;
- default:
- assert(0);
- }
-
- if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FOG) {
- /* FOG.y = front/back facing XXX fix this */
- setup->coef[fragSlot].a0[1] = 1.0f - setup->quad.facing;
- setup->coef[fragSlot].dadx[1] = 0.0;
- setup->coef[fragSlot].dady[1] = 0.0;
- }
- }
-}
-
-
-
-static void setup_tri_edges( struct setup_stage *setup )
-{
- float vmin_x = setup->vmin->data[0][0] + 0.5f;
- float vmid_x = setup->vmid->data[0][0] + 0.5f;
-
- float vmin_y = setup->vmin->data[0][1] - 0.5f;
- float vmid_y = setup->vmid->data[0][1] - 0.5f;
- float vmax_y = setup->vmax->data[0][1] - 0.5f;
-
- setup->emaj.sy = CEILF(vmin_y);
- setup->emaj.lines = (int) CEILF(vmax_y - setup->emaj.sy);
- setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
- setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
-
- setup->etop.sy = CEILF(vmid_y);
- setup->etop.lines = (int) CEILF(vmax_y - setup->etop.sy);
- setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
- setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
-
- setup->ebot.sy = CEILF(vmin_y);
- setup->ebot.lines = (int) CEILF(vmid_y - setup->ebot.sy);
- setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
- setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
-}
-
-
-/**
- * Render the upper or lower half of a triangle.
- * Scissoring/cliprect is applied here too.
- */
-static void subtriangle( struct setup_stage *setup,
- struct edge *eleft,
- struct edge *eright,
- unsigned lines )
-{
- const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
- const int minx = (int) cliprect->minx;
- const int maxx = (int) cliprect->maxx;
- const int miny = (int) cliprect->miny;
- const int maxy = (int) cliprect->maxy;
- int y, start_y, finish_y;
- int sy = (int)eleft->sy;
-
- assert((int)eleft->sy == (int) eright->sy);
-
- /* clip top/bottom */
- start_y = sy;
- finish_y = sy + lines;
-
- if (start_y < miny)
- start_y = miny;
-
- if (finish_y > maxy)
- finish_y = maxy;
-
- start_y -= sy;
- finish_y -= sy;
-
- /*
- debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
- */
-
- for (y = start_y; y < finish_y; y++) {
-
- /* avoid accumulating adds as floats don't have the precision to
- * accurately iterate large triangle edges that way. luckily we
- * can just multiply these days.
- *
- * this is all drowned out by the attribute interpolation anyway.
- */
- int left = (int)(eleft->sx + y * eleft->dxdy);
- int right = (int)(eright->sx + y * eright->dxdy);
-
- /* clip left/right */
- if (left < minx)
- left = minx;
- if (right > maxx)
- right = maxx;
-
- if (left < right) {
- int _y = sy + y;
- if (block(_y) != setup->span.y) {
- flush_spans(setup);
- setup->span.y = block(_y);
- }
-
- setup->span.left[_y&1] = left;
- setup->span.right[_y&1] = right;
- setup->span.y_flags |= 1<<(_y&1);
- }
- }
-
-
- /* save the values so that emaj can be restarted:
- */
- eleft->sx += lines * eleft->dxdy;
- eright->sx += lines * eright->dxdy;
- eleft->sy += lines;
- eright->sy += lines;
-}
-
-
-/**
- * Do setup for triangle rasterization, then render the triangle.
- */
-static void setup_tri( struct draw_stage *stage,
- struct prim_header *prim )
+do_tri(struct draw_stage *stage, struct prim_header *prim)
{
struct setup_stage *setup = setup_stage( stage );
- /*
- debug_printf("%s\n", __FUNCTION__ );
- */
-
-#if DEBUG_FRAGS
- setup->numFragsEmitted = 0;
- setup->numFragsWritten = 0;
-#endif
-
- setup_sort_vertices( setup, prim );
- setup_tri_coefficients( setup );
- setup_tri_edges( setup );
-
- setup->quad.prim = PRIM_TRI;
-
- setup->span.y = 0;
- setup->span.y_flags = 0;
- setup->span.right[0] = 0;
- setup->span.right[1] = 0;
- /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
-
- /* init_constant_attribs( setup ); */
-
- if (setup->oneoverarea < 0.0) {
- /* emaj on left:
- */
- subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
- subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
- }
- else {
- /* emaj on right:
- */
- subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
- subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
- }
-
- flush_spans( setup );
-
-#if DEBUG_FRAGS
- printf("Tri: %u frags emitted, %u written\n",
- setup->numFragsEmitted,
- setup->numFragsWritten);
-#endif
-}
-
-
-
-/**
- * Compute a0, dadx and dady for a linearly interpolated coefficient,
- * for a line.
- */
-static void
-line_linear_coeff(struct setup_stage *setup,
- struct tgsi_interp_coef *coef,
- uint vertSlot, uint i)
-{
- const float da = setup->vmax->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
- const float dadx = da * setup->emaj.dx * setup->oneoverarea;
- const float dady = da * setup->emaj.dy * setup->oneoverarea;
- coef->dadx[i] = dadx;
- coef->dady[i] = dady;
- coef->a0[i] = (setup->vmin->data[vertSlot][i] -
- (dadx * (setup->vmin->data[0][0] - 0.5f) +
- dady * (setup->vmin->data[0][1] - 0.5f)));
-}
-
-
-/**
- * Compute a0, dadx and dady for a perspective-corrected interpolant,
- * for a line.
- */
-static void
-line_persp_coeff(struct setup_stage *setup,
- struct tgsi_interp_coef *coef,
- uint vertSlot, uint i)
-{
- /* XXX double-check/verify this arithmetic */
- const float a0 = setup->vmin->data[vertSlot][i] * setup->vmin->data[0][3];
- const float a1 = setup->vmax->data[vertSlot][i] * setup->vmax->data[0][3];
- const float da = a1 - a0;
- const float dadx = da * setup->emaj.dx * setup->oneoverarea;
- const float dady = da * setup->emaj.dy * setup->oneoverarea;
- coef->dadx[i] = dadx;
- coef->dady[i] = dady;
- coef->a0[i] = (setup->vmin->data[vertSlot][i] -
- (dadx * (setup->vmin->data[0][0] - 0.5f) +
- dady * (setup->vmin->data[0][1] - 0.5f)));
-}
-
-
-/**
- * Compute the setup->coef[] array dadx, dady, a0 values.
- * Must be called after setup->vmin,vmax are initialized.
- */
-static INLINE void
-setup_line_coefficients(struct setup_stage *setup, struct prim_header *prim)
-{
- struct softpipe_context *softpipe = setup->softpipe;
- const struct sp_fragment_shader *spfs = softpipe->fs;
- const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
- uint fragSlot;
-
- /* use setup->vmin, vmax to point to vertices */
- setup->vprovoke = prim->v[1];
- setup->vmin = prim->v[0];
- setup->vmax = prim->v[1];
-
- setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
- setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
- /* NOTE: this is not really 1/area */
- setup->oneoverarea = 1.0f / (setup->emaj.dx * setup->emaj.dx +
- setup->emaj.dy * setup->emaj.dy);
-
- /* z and w are done by linear interpolation:
- */
- line_linear_coeff(setup, &setup->posCoef, 0, 2);
- line_linear_coeff(setup, &setup->posCoef, 0, 3);
-
- /* setup interpolation for all the remaining attributes:
- */
- for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
- const uint vertSlot = vinfo->src_index[fragSlot];
- uint j;
-
- switch (vinfo->interp_mode[fragSlot]) {
- case INTERP_CONSTANT:
- for (j = 0; j < NUM_CHANNELS; j++)
- const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_LINEAR:
- for (j = 0; j < NUM_CHANNELS; j++)
- line_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_PERSPECTIVE:
- for (j = 0; j < NUM_CHANNELS; j++)
- line_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_POS:
- setup_fragcoord_coeff(setup, fragSlot);
- break;
- default:
- assert(0);
- }
-
- if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FOG) {
- /* FOG.y = front/back facing XXX fix this */
- setup->coef[fragSlot].a0[1] = 1.0f - setup->quad.facing;
- setup->coef[fragSlot].dadx[1] = 0.0;
- setup->coef[fragSlot].dady[1] = 0.0;
- }
- }
+ setup_tri( setup->setup,
+ prim->det,
+ prim->v[0]->data,
+ prim->v[1]->data,
+ prim->v[2]->data );
}
-
-/**
- * Plot a pixel in a line segment.
- */
-static INLINE void
-plot(struct setup_stage *setup, int x, int y)
-{
- const int iy = y & 1;
- const int ix = x & 1;
- const int quadX = x - ix;
- const int quadY = y - iy;
- const int mask = (1 << ix) << (2 * iy);
-
- if (quadX != setup->quad.x0 ||
- quadY != setup->quad.y0)
- {
- /* flush prev quad, start new quad */
-
- if (setup->quad.x0 != -1)
- clip_emit_quad(setup);
-
- setup->quad.x0 = quadX;
- setup->quad.y0 = quadY;
- setup->quad.mask = 0x0;
- }
-
- setup->quad.mask |= mask;
-}
-
-
-/**
- * Do setup for line rasterization, then render the line.
- * Single-pixel width, no stipple, etc. We rely on the 'draw' module
- * to handle stippling and wide lines.
- */
static void
-setup_line(struct draw_stage *stage, struct prim_header *prim)
+do_line(struct draw_stage *stage, struct prim_header *prim)
{
- const struct vertex_header *v0 = prim->v[0];
- const struct vertex_header *v1 = prim->v[1];
struct setup_stage *setup = setup_stage( stage );
- int x0 = (int) v0->data[0][0];
- int x1 = (int) v1->data[0][0];
- int y0 = (int) v0->data[0][1];
- int y1 = (int) v1->data[0][1];
- int dx = x1 - x0;
- int dy = y1 - y0;
- int xstep, ystep;
- if (dx == 0 && dy == 0)
- return;
-
- setup_line_coefficients(setup, prim);
-
- if (dx < 0) {
- dx = -dx; /* make positive */
- xstep = -1;
- }
- else {
- xstep = 1;
- }
-
- if (dy < 0) {
- dy = -dy; /* make positive */
- ystep = -1;
- }
- else {
- ystep = 1;
- }
-
- assert(dx >= 0);
- assert(dy >= 0);
-
- setup->quad.x0 = setup->quad.y0 = -1;
- setup->quad.mask = 0x0;
- setup->quad.prim = PRIM_LINE;
- /* XXX temporary: set coverage to 1.0 so the line appears
- * if AA mode happens to be enabled.
- */
- setup->quad.coverage[0] =
- setup->quad.coverage[1] =
- setup->quad.coverage[2] =
- setup->quad.coverage[3] = 1.0;
-
- if (dx > dy) {
- /*** X-major line ***/
- int i;
- const int errorInc = dy + dy;
- int error = errorInc - dx;
- const int errorDec = error - dx;
-
- for (i = 0; i < dx; i++) {
- plot(setup, x0, y0);
-
- x0 += xstep;
- if (error < 0) {
- error += errorInc;
- }
- else {
- error += errorDec;
- y0 += ystep;
- }
- }
- }
- else {
- /*** Y-major line ***/
- int i;
- const int errorInc = dx + dx;
- int error = errorInc - dy;
- const int errorDec = error - dy;
-
- for (i = 0; i < dy; i++) {
- plot(setup, x0, y0);
-
- y0 += ystep;
- if (error < 0) {
- error += errorInc;
- }
- else {
- error += errorDec;
- x0 += xstep;
- }
- }
- }
-
- /* draw final quad */
- if (setup->quad.mask) {
- clip_emit_quad(setup);
- }
+ setup_line( setup->setup,
+ prim->v[0]->data,
+ prim->v[1]->data );
}
-
static void
-point_persp_coeff(struct setup_stage *setup,
- const struct vertex_header *vert,
- struct tgsi_interp_coef *coef,
- uint vertSlot, uint i)
-{
- assert(i <= 3);
- coef->dadx[i] = 0.0F;
- coef->dady[i] = 0.0F;
- coef->a0[i] = vert->data[vertSlot][i] * vert->data[0][3];
-}
-
-
-/**
- * Do setup for point rasterization, then render the point.
- * Round or square points...
- * XXX could optimize a lot for 1-pixel points.
- */
-static void
-setup_point(struct draw_stage *stage, struct prim_header *prim)
+do_point(struct draw_stage *stage, struct prim_header *prim)
{
struct setup_stage *setup = setup_stage( stage );
- struct softpipe_context *softpipe = setup->softpipe;
- const struct sp_fragment_shader *spfs = softpipe->fs;
- const struct vertex_header *v0 = prim->v[0];
- const int sizeAttr = setup->softpipe->psize_slot;
- const float size
- = sizeAttr > 0 ? v0->data[sizeAttr][0]
- : setup->softpipe->rasterizer->point_size;
- const float halfSize = 0.5F * size;
- const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
- const float x = v0->data[0][0]; /* Note: data[0] is always position */
- const float y = v0->data[0][1];
- const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
- uint fragSlot;
-
- /* For points, all interpolants are constant-valued.
- * However, for point sprites, we'll need to setup texcoords appropriately.
- * XXX: which coefficients are the texcoords???
- * We may do point sprites as textured quads...
- *
- * KW: We don't know which coefficients are texcoords - ultimately
- * the choice of what interpolation mode to use for each attribute
- * should be determined by the fragment program, using
- * per-attribute declaration statements that include interpolation
- * mode as a parameter. So either the fragment program will have
- * to be adjusted for pointsprite vs normal point behaviour, or
- * otherwise a special interpolation mode will have to be defined
- * which matches the required behaviour for point sprites. But -
- * the latter is not a feature of normal hardware, and as such
- * probably should be ruled out on that basis.
- */
- setup->vprovoke = prim->v[0];
-
- /* setup Z, W */
- const_coeff(setup, &setup->posCoef, 0, 2);
- const_coeff(setup, &setup->posCoef, 0, 3);
-
- for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
- const uint vertSlot = vinfo->src_index[fragSlot];
- uint j;
-
- switch (vinfo->interp_mode[fragSlot]) {
- case INTERP_CONSTANT:
- /* fall-through */
- case INTERP_LINEAR:
- for (j = 0; j < NUM_CHANNELS; j++)
- const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_PERSPECTIVE:
- for (j = 0; j < NUM_CHANNELS; j++)
- point_persp_coeff(setup, setup->vprovoke,
- &setup->coef[fragSlot], vertSlot, j);
- break;
- case INTERP_POS:
- setup_fragcoord_coeff(setup, fragSlot);
- break;
- default:
- assert(0);
- }
-
- if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FOG) {
- /* FOG.y = front/back facing XXX fix this */
- setup->coef[fragSlot].a0[1] = 1.0f - setup->quad.facing;
- setup->coef[fragSlot].dadx[1] = 0.0;
- setup->coef[fragSlot].dady[1] = 0.0;
- }
- }
-
- setup->quad.prim = PRIM_POINT;
-
- if (halfSize <= 0.5 && !round) {
- /* special case for 1-pixel points */
- const int ix = ((int) x) & 1;
- const int iy = ((int) y) & 1;
- setup->quad.x0 = (int) x - ix;
- setup->quad.y0 = (int) y - iy;
- setup->quad.mask = (1 << ix) << (2 * iy);
- clip_emit_quad(setup);
- }
- else {
- if (round) {
- /* rounded points */
- const int ixmin = block((int) (x - halfSize));
- const int ixmax = block((int) (x + halfSize));
- const int iymin = block((int) (y - halfSize));
- const int iymax = block((int) (y + halfSize));
- const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
- const float rmax = halfSize + 0.7071F;
- const float rmin2 = MAX2(0.0F, rmin * rmin);
- const float rmax2 = rmax * rmax;
- const float cscale = 1.0F / (rmax2 - rmin2);
- int ix, iy;
-
- for (iy = iymin; iy <= iymax; iy += 2) {
- for (ix = ixmin; ix <= ixmax; ix += 2) {
- float dx, dy, dist2, cover;
-
- setup->quad.mask = 0x0;
-
- dx = (ix + 0.5f) - x;
- dy = (iy + 0.5f) - y;
- dist2 = dx * dx + dy * dy;
- if (dist2 <= rmax2) {
- cover = 1.0F - (dist2 - rmin2) * cscale;
- setup->quad.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
- setup->quad.mask |= MASK_TOP_LEFT;
- }
-
- dx = (ix + 1.5f) - x;
- dy = (iy + 0.5f) - y;
- dist2 = dx * dx + dy * dy;
- if (dist2 <= rmax2) {
- cover = 1.0F - (dist2 - rmin2) * cscale;
- setup->quad.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
- setup->quad.mask |= MASK_TOP_RIGHT;
- }
- dx = (ix + 0.5f) - x;
- dy = (iy + 1.5f) - y;
- dist2 = dx * dx + dy * dy;
- if (dist2 <= rmax2) {
- cover = 1.0F - (dist2 - rmin2) * cscale;
- setup->quad.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
- setup->quad.mask |= MASK_BOTTOM_LEFT;
- }
-
- dx = (ix + 1.5f) - x;
- dy = (iy + 1.5f) - y;
- dist2 = dx * dx + dy * dy;
- if (dist2 <= rmax2) {
- cover = 1.0F - (dist2 - rmin2) * cscale;
- setup->quad.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
- setup->quad.mask |= MASK_BOTTOM_RIGHT;
- }
-
- if (setup->quad.mask) {
- setup->quad.x0 = ix;
- setup->quad.y0 = iy;
- clip_emit_quad(setup);
- }
- }
- }
- }
- else {
- /* square points */
- const int xmin = (int) (x + 0.75 - halfSize);
- const int ymin = (int) (y + 0.25 - halfSize);
- const int xmax = xmin + (int) size;
- const int ymax = ymin + (int) size;
- /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
- const int ixmin = block(xmin);
- const int ixmax = block(xmax - 1);
- const int iymin = block(ymin);
- const int iymax = block(ymax - 1);
- int ix, iy;
-
- /*
- debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
- */
- for (iy = iymin; iy <= iymax; iy += 2) {
- uint rowMask = 0xf;
- if (iy < ymin) {
- /* above the top edge */
- rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
- }
- if (iy + 1 >= ymax) {
- /* below the bottom edge */
- rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
- }
-
- for (ix = ixmin; ix <= ixmax; ix += 2) {
- uint mask = rowMask;
-
- if (ix < xmin) {
- /* fragment is past left edge of point, turn off left bits */
- mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
- }
- if (ix + 1 >= xmax) {
- /* past the right edge */
- mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
- }
-
- setup->quad.mask = mask;
- setup->quad.x0 = ix;
- setup->quad.y0 = iy;
- clip_emit_quad(setup);
- }
- }
- }
- }
+ setup_point( setup->setup,
+ prim->v[0]->data );
}
+
static void setup_begin( struct draw_stage *stage )
{
struct setup_stage *setup = setup_stage(stage);
- struct softpipe_context *sp = setup->softpipe;
- const struct sp_fragment_shader *fs = setup->softpipe->fs;
- uint i;
-
- if (sp->dirty) {
- softpipe_update_derived(sp);
- }
- /* Mark surfaces as defined now */
- for (i = 0; i < sp->framebuffer.num_cbufs; i++){
- if (sp->framebuffer.cbufs[i]) {
- sp->framebuffer.cbufs[i]->status = PIPE_SURFACE_STATUS_DEFINED;
- }
- }
- if (sp->framebuffer.zsbuf) {
- sp->framebuffer.zsbuf->status = PIPE_SURFACE_STATUS_DEFINED;
- }
+ setup_prepare( setup->setup );
- setup->quad.nr_attrs = fs->info.num_inputs;
-
- sp->quad.first->begin(sp->quad.first);
-
- stage->point = setup_point;
- stage->line = setup_line;
- stage->tri = setup_tri;
+ stage->point = do_point;
+ stage->line = do_line;
+ stage->tri = do_tri;
}
@@ -1269,19 +160,29 @@ static void render_destroy( struct draw_stage *stage )
*/
struct draw_stage *sp_draw_render_stage( struct softpipe_context *softpipe )
{
- struct setup_stage *setup = CALLOC_STRUCT(setup_stage);
+ struct setup_stage *sstage = CALLOC_STRUCT(setup_stage);
- setup->softpipe = softpipe;
- setup->stage.draw = softpipe->draw;
- setup->stage.point = setup_first_point;
- setup->stage.line = setup_first_line;
- setup->stage.tri = setup_first_tri;
- setup->stage.flush = setup_flush;
- setup->stage.reset_stipple_counter = reset_stipple_counter;
- setup->stage.destroy = render_destroy;
+ sstage->setup = setup_create_context(softpipe);
+ sstage->stage.draw = softpipe->draw;
+ sstage->stage.point = setup_first_point;
+ sstage->stage.line = setup_first_line;
+ sstage->stage.tri = setup_first_tri;
+ sstage->stage.flush = setup_flush;
+ sstage->stage.reset_stipple_counter = reset_stipple_counter;
+ sstage->stage.destroy = render_destroy;
- setup->quad.coef = setup->coef;
- setup->quad.posCoef = &setup->posCoef;
+ return (struct draw_stage *)sstage;
+}
- return &setup->stage;
+struct setup_context *
+sp_draw_setup_context( struct draw_stage *stage )
+{
+ struct setup_stage *ssetup = setup_stage(stage);
+ return ssetup->setup;
+}
+
+void
+sp_draw_flush( struct draw_stage *stage )
+{
+ stage->flush( stage, 0 );
}