summaryrefslogtreecommitdiff
path: root/android/experimental/LOAndroid/app/src/main/java/org/mozilla/gecko/gfx/DisplayPortCalculator.java
blob: 50d0a1c818a9879cda7fd9a7b96456fb7a640ed5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/* -*- Mode: Java; c-basic-offset: 4; tab-width: 20; indent-tabs-mode: nil; -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

package org.mozilla.gecko.gfx;

//import org.mozilla.gecko.GeckoAppShell;
//import org.mozilla.gecko.PrefsHelper;
import org.libreoffice.LOKitShell;
import org.mozilla.gecko.util.FloatUtils;

import org.json.JSONArray;

import android.graphics.PointF;
import android.graphics.RectF;
import android.util.FloatMath;
import android.util.Log;

import java.util.HashMap;
import java.util.Map;

final class DisplayPortCalculator {
    private static final String LOGTAG = "GeckoDisplayPort";
    private static final PointF ZERO_VELOCITY = new PointF(0, 0);

    // Keep this in sync with the TILEDLAYERBUFFER_TILE_SIZE defined in gfx/layers/TiledLayerBuffer.h
    private static final int TILE_SIZE = 256;

    private static final String PREF_DISPLAYPORT_STRATEGY = "gfx.displayport.strategy";
    private static final String PREF_DISPLAYPORT_FM_MULTIPLIER = "gfx.displayport.strategy_fm.multiplier";
    private static final String PREF_DISPLAYPORT_FM_DANGER_X = "gfx.displayport.strategy_fm.danger_x";
    private static final String PREF_DISPLAYPORT_FM_DANGER_Y = "gfx.displayport.strategy_fm.danger_y";
    private static final String PREF_DISPLAYPORT_VB_MULTIPLIER = "gfx.displayport.strategy_vb.multiplier";
    private static final String PREF_DISPLAYPORT_VB_VELOCITY_THRESHOLD = "gfx.displayport.strategy_vb.threshold";
    private static final String PREF_DISPLAYPORT_VB_REVERSE_BUFFER = "gfx.displayport.strategy_vb.reverse_buffer";
    private static final String PREF_DISPLAYPORT_VB_DANGER_X_BASE = "gfx.displayport.strategy_vb.danger_x_base";
    private static final String PREF_DISPLAYPORT_VB_DANGER_Y_BASE = "gfx.displayport.strategy_vb.danger_y_base";
    private static final String PREF_DISPLAYPORT_VB_DANGER_X_INCR = "gfx.displayport.strategy_vb.danger_x_incr";
    private static final String PREF_DISPLAYPORT_VB_DANGER_Y_INCR = "gfx.displayport.strategy_vb.danger_y_incr";
    private static final String PREF_DISPLAYPORT_PB_VELOCITY_THRESHOLD = "gfx.displayport.strategy_pb.threshold";

    private static DisplayPortStrategy sStrategy = new VelocityBiasStrategy(null);

    static DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity) {
        return sStrategy.calculate(metrics, (velocity == null ? ZERO_VELOCITY : velocity));
    }

    static boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort) {
        if (displayPort == null) {
            return true;
        }
        return sStrategy.aboutToCheckerboard(metrics, (velocity == null ? ZERO_VELOCITY : velocity), displayPort);
    }

    static boolean drawTimeUpdate(long millis, int pixels) {
        return sStrategy.drawTimeUpdate(millis, pixels);
    }

    static void resetPageState() {
        sStrategy.resetPageState();
    }

    static void initPrefs() {
        final String[] prefs = { PREF_DISPLAYPORT_STRATEGY,
                                 PREF_DISPLAYPORT_FM_MULTIPLIER,
                                 PREF_DISPLAYPORT_FM_DANGER_X,
                                 PREF_DISPLAYPORT_FM_DANGER_Y,
                                 PREF_DISPLAYPORT_VB_MULTIPLIER,
                                 PREF_DISPLAYPORT_VB_VELOCITY_THRESHOLD,
                                 PREF_DISPLAYPORT_VB_REVERSE_BUFFER,
                                 PREF_DISPLAYPORT_VB_DANGER_X_BASE,
                                 PREF_DISPLAYPORT_VB_DANGER_Y_BASE,
                                 PREF_DISPLAYPORT_VB_DANGER_X_INCR,
                                 PREF_DISPLAYPORT_VB_DANGER_Y_INCR,
                                 PREF_DISPLAYPORT_PB_VELOCITY_THRESHOLD };

        /*PrefsHelper.getPrefs(prefs, new PrefsHelper.PrefHandlerBase() {
            private Map<String, Integer> mValues = new HashMap<String, Integer>();

            @Override public void prefValue(String pref, int value) {
                mValues.put(pref, value);
            }

            @Override public void finish() {
                setStrategy(mValues);
            }
        });*/
    }

    /**
     * Set the active strategy to use.
     * See the gfx.displayport.strategy pref in mobile/android/app/mobile.js to see the
     * mapping between ints and strategies.
     */
    static boolean setStrategy(Map<String, Integer> prefs) {
        Integer strategy = prefs.get(PREF_DISPLAYPORT_STRATEGY);
        if (strategy == null) {
            return false;
        }

        switch (strategy) {
            case 0:
                sStrategy = new FixedMarginStrategy(prefs);
                break;
            case 1:
                sStrategy = new VelocityBiasStrategy(prefs);
                break;
            case 2:
                sStrategy = new DynamicResolutionStrategy(prefs);
                break;
            case 3:
                sStrategy = new NoMarginStrategy(prefs);
                break;
            case 4:
                sStrategy = new PredictionBiasStrategy(prefs);
                break;
            default:
                Log.e(LOGTAG, "Invalid strategy index specified");
                return false;
        }
        Log.i(LOGTAG, "Set strategy " + sStrategy.toString());
        return true;
    }

    private static float getFloatPref(Map<String, Integer> prefs, String prefName, int defaultValue) {
        Integer value = (prefs == null ? null : prefs.get(prefName));
        return (float)(value == null || value < 0 ? defaultValue : value) / 1000f;
    }

    private static abstract class DisplayPortStrategy {
        /** Calculates a displayport given a viewport and panning velocity. */
        public abstract DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity);
        /** Returns true if a checkerboard is about to be visible and we should not throttle drawing. */
        public abstract boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort);
        /** Notify the strategy of a new recorded draw time. Return false to turn off draw time recording. */
        public boolean drawTimeUpdate(long millis, int pixels) { return false; }
        /** Reset any page-specific state stored, as the page being displayed has changed. */
        public void resetPageState() {}
    }

    /**
     * Return the dimensions for a rect that has area (width*height) that does not exceed the page size in the
     * given metrics object. The area in the returned FloatSize may be less than width*height if the page is
     * small, but it will never be larger than width*height.
     * Note that this process may change the relative aspect ratio of the given dimensions.
     */
    private static FloatSize reshapeForPage(float width, float height, ImmutableViewportMetrics metrics) {
        // figure out how much of the desired buffer amount we can actually use on the horizontal axis
        float usableWidth = Math.min(width, metrics.getPageWidth());
        // if we reduced the buffer amount on the horizontal axis, we should take that saved memory and
        // use it on the vertical axis
        float extraUsableHeight = (float)Math.floor(((width - usableWidth) * height) / usableWidth);
        float usableHeight = Math.min(height + extraUsableHeight, metrics.getPageHeight());
        if (usableHeight < height && usableWidth == width) {
            // and the reverse - if we shrunk the buffer on the vertical axis we can add it to the horizontal
            float extraUsableWidth = (float)Math.floor(((height - usableHeight) * width) / usableHeight);
            usableWidth = Math.min(width + extraUsableWidth, metrics.getPageWidth());
        }
        return new FloatSize(usableWidth, usableHeight);
    }

    /**
     * Expand the given rect in all directions by a "danger zone". The size of the danger zone on an axis
     * is the size of the view on that axis multiplied by the given multiplier. The expanded rect is then
     * clamped to page bounds and returned.
     */
    private static RectF expandByDangerZone(RectF rect, float dangerZoneXMultiplier, float dangerZoneYMultiplier, ImmutableViewportMetrics metrics) {
        // calculate the danger zone amounts in pixels
        float dangerZoneX = metrics.getWidth() * dangerZoneXMultiplier;
        float dangerZoneY = metrics.getHeight() * dangerZoneYMultiplier;
        rect = RectUtils.expand(rect, dangerZoneX, dangerZoneY);
        // clamp to page bounds
        return clampToPageBounds(rect, metrics);
    }

    /**
     * Expand the given margins such that when they are applied on the viewport, the resulting rect
     * does not have any partial tiles, except when it is clipped by the page bounds. This assumes
     * the tiles are TILE_SIZE by TILE_SIZE and start at the origin, such that there will always be
     * a tile at (0,0)-(TILE_SIZE,TILE_SIZE)).
     */
    private static DisplayPortMetrics getTileAlignedDisplayPortMetrics(RectF margins, float zoom, ImmutableViewportMetrics metrics) {
        float left = metrics.viewportRectLeft - margins.left;
        float top = metrics.viewportRectTop - margins.top;
        float right = metrics.viewportRectRight + margins.right;
        float bottom = metrics.viewportRectBottom + margins.bottom;
        left = Math.max(metrics.pageRectLeft, TILE_SIZE * FloatMath.floor(left / TILE_SIZE));
        top = Math.max(metrics.pageRectTop, TILE_SIZE * FloatMath.floor(top / TILE_SIZE));
        right = Math.min(metrics.pageRectRight, TILE_SIZE * FloatMath.ceil(right / TILE_SIZE));
        bottom = Math.min(metrics.pageRectBottom, TILE_SIZE * FloatMath.ceil(bottom / TILE_SIZE));
        return new DisplayPortMetrics(left, top, right, bottom, zoom);
    }

    /**
     * Adjust the given margins so if they are applied on the viewport in the metrics, the resulting rect
     * does not exceed the page bounds. This code will maintain the total margin amount for a given axis;
     * it assumes that margins.left + metrics.getWidth() + margins.right is less than or equal to
     * metrics.getPageWidth(); and the same for the y axis.
     */
    private static RectF shiftMarginsForPageBounds(RectF margins, ImmutableViewportMetrics metrics) {
        // check how much we're overflowing in each direction. note that at most one of leftOverflow
        // and rightOverflow can be greater than zero, and at most one of topOverflow and bottomOverflow
        // can be greater than zero, because of the assumption described in the method javadoc.
        float leftOverflow = metrics.pageRectLeft - (metrics.viewportRectLeft - margins.left);
        float rightOverflow = (metrics.viewportRectRight + margins.right) - metrics.pageRectRight;
        float topOverflow = metrics.pageRectTop - (metrics.viewportRectTop - margins.top);
        float bottomOverflow = (metrics.viewportRectBottom + margins.bottom) - metrics.pageRectBottom;

        // if the margins overflow the page bounds, shift them to other side on the same axis
        if (leftOverflow > 0) {
            margins.left -= leftOverflow;
            margins.right += leftOverflow;
        } else if (rightOverflow > 0) {
            margins.right -= rightOverflow;
            margins.left += rightOverflow;
        }
        if (topOverflow > 0) {
            margins.top -= topOverflow;
            margins.bottom += topOverflow;
        } else if (bottomOverflow > 0) {
            margins.bottom -= bottomOverflow;
            margins.top += bottomOverflow;
        }
        return margins;
    }

    /**
     * Clamp the given rect to the page bounds and return it.
     */
    private static RectF clampToPageBounds(RectF rect, ImmutableViewportMetrics metrics) {
        if (rect.top < metrics.pageRectTop) rect.top = metrics.pageRectTop;
        if (rect.left < metrics.pageRectLeft) rect.left = metrics.pageRectLeft;
        if (rect.right > metrics.pageRectRight) rect.right = metrics.pageRectRight;
        if (rect.bottom > metrics.pageRectBottom) rect.bottom = metrics.pageRectBottom;
        return rect;
    }

    /**
     * This class implements the variation where we basically don't bother with a a display port.
     */
    private static class NoMarginStrategy extends DisplayPortStrategy {
        NoMarginStrategy(Map<String, Integer> prefs) {
            // no prefs in this strategy
        }

        @Override
        public DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity) {
            return new DisplayPortMetrics(metrics.viewportRectLeft,
                    metrics.viewportRectTop,
                    metrics.viewportRectRight,
                    metrics.viewportRectBottom,
                    metrics.zoomFactor);
        }

        @Override
        public boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort) {
            return true;
        }

        @Override
        public String toString() {
            return "NoMarginStrategy";
        }
    }

    /**
     * This class implements the variation where we use a fixed-size margin on the display port.
     * The margin is always 300 pixels in all directions, except when we are (a) approaching a page
     * boundary, and/or (b) if we are limited by the page size. In these cases we try to maintain
     * the area of the display port by (a) shifting the buffer to the other side on the same axis,
     * and/or (b) increasing the buffer on the other axis to compensate for the reduced buffer on
     * one axis.
     */
    private static class FixedMarginStrategy extends DisplayPortStrategy {
        // The length of each axis of the display port will be the corresponding view length
        // multiplied by this factor.
        private final float SIZE_MULTIPLIER;

        // If the visible rect is within the danger zone (measured as a fraction of the view size
        // from the edge of the displayport) we start redrawing to minimize checkerboarding.
        private final float DANGER_ZONE_X_MULTIPLIER;
        private final float DANGER_ZONE_Y_MULTIPLIER;

        FixedMarginStrategy(Map<String, Integer> prefs) {
            SIZE_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_FM_MULTIPLIER, 2000);
            DANGER_ZONE_X_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_FM_DANGER_X, 100);
            DANGER_ZONE_Y_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_FM_DANGER_Y, 200);
        }

        @Override
        public DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity) {
            float displayPortWidth = metrics.getWidth() * SIZE_MULTIPLIER;
            float displayPortHeight = metrics.getHeight() * SIZE_MULTIPLIER;

            // we need to avoid having a display port that is larger than the page, or we will end up
            // painting things outside the page bounds (bug 729169). we simultaneously need to make
            // the display port as large as possible so that we redraw less. reshape the display
            // port dimensions to accomplish this.
            FloatSize usableSize = reshapeForPage(displayPortWidth, displayPortHeight, metrics);
            float horizontalBuffer = usableSize.width - metrics.getWidth();
            float verticalBuffer = usableSize.height - metrics.getHeight();

            // and now calculate the display port margins based on how much buffer we've decided to use and
            // the page bounds, ensuring we use all of the available buffer amounts on one side or the other
            // on any given axis. (i.e. if we're scrolled to the top of the page, the vertical buffer is
            // entirely below the visible viewport, but if we're halfway down the page, the vertical buffer
            // is split).
            RectF margins = new RectF();
            margins.left = horizontalBuffer / 2.0f;
            margins.right = horizontalBuffer - margins.left;
            margins.top = verticalBuffer / 2.0f;
            margins.bottom = verticalBuffer - margins.top;
            margins = shiftMarginsForPageBounds(margins, metrics);

            return getTileAlignedDisplayPortMetrics(margins, metrics.zoomFactor, metrics);
        }

        @Override
        public boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort) {
            // Increase the size of the viewport based on the danger zone multiplier (and clamp to page
            // boundaries), and intersect it with the current displayport to determine whether we're
            // close to checkerboarding.
            RectF adjustedViewport = expandByDangerZone(metrics.getViewport(), DANGER_ZONE_X_MULTIPLIER, DANGER_ZONE_Y_MULTIPLIER, metrics);
            return !displayPort.contains(adjustedViewport);
        }

        @Override
        public String toString() {
            return "FixedMarginStrategy mult=" + SIZE_MULTIPLIER + ", dangerX=" + DANGER_ZONE_X_MULTIPLIER + ", dangerY=" + DANGER_ZONE_Y_MULTIPLIER;
        }
    }

    /**
     * This class implements the variation with a small fixed-size margin with velocity bias.
     * In this variation, the default margins are pretty small relative to the view size, but
     * they are affected by the panning velocity. Specifically, if we are panning on one axis,
     * we remove the margins on the other axis because we are likely axis-locked. Also once
     * we are panning in one direction above a certain threshold velocity, we shift the buffer
     * so that it is almost entirely in the direction of the pan, with a little bit in the
     * reverse direction.
     */
    private static class VelocityBiasStrategy extends DisplayPortStrategy {
        // The length of each axis of the display port will be the corresponding view length
        // multiplied by this factor.
        private final float SIZE_MULTIPLIER;
        // The velocity above which we apply the velocity bias
        private final float VELOCITY_THRESHOLD;
        // How much of the buffer to keep in the reverse direction of the velocity
        private final float REVERSE_BUFFER;
        // If the visible rect is within the danger zone we start redrawing to minimize
        // checkerboarding. the danger zone amount is a linear function of the form:
        //    viewportsize * (base + velocity * incr)
        // where base and incr are configurable values.
        private final float DANGER_ZONE_BASE_X_MULTIPLIER;
        private final float DANGER_ZONE_BASE_Y_MULTIPLIER;
        private final float DANGER_ZONE_INCR_X_MULTIPLIER;
        private final float DANGER_ZONE_INCR_Y_MULTIPLIER;

        VelocityBiasStrategy(Map<String, Integer> prefs) {
            SIZE_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_VB_MULTIPLIER, 2000);
            VELOCITY_THRESHOLD = /*GeckoAppShell.getDpi()*/ LOKitShell.getDpi() * getFloatPref(prefs, PREF_DISPLAYPORT_VB_VELOCITY_THRESHOLD, 32);
            REVERSE_BUFFER = getFloatPref(prefs, PREF_DISPLAYPORT_VB_REVERSE_BUFFER, 200);
            DANGER_ZONE_BASE_X_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_VB_DANGER_X_BASE, 1000);
            DANGER_ZONE_BASE_Y_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_VB_DANGER_Y_BASE, 1000);
            DANGER_ZONE_INCR_X_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_VB_DANGER_X_INCR, 0);
            DANGER_ZONE_INCR_Y_MULTIPLIER = getFloatPref(prefs, PREF_DISPLAYPORT_VB_DANGER_Y_INCR, 0);
        }

        /**
         * Split the given amounts into margins based on the VELOCITY_THRESHOLD and REVERSE_BUFFER values.
         * If the velocity is above the VELOCITY_THRESHOLD on an axis, split the amount into REVERSE_BUFFER
         * and 1.0 - REVERSE_BUFFER fractions. The REVERSE_BUFFER fraction is set as the margin in the
         * direction opposite to the velocity, and the remaining fraction is set as the margin in the direction
         * of the velocity. If the velocity is lower than VELOCITY_THRESHOLD, split the amount evenly into the
         * two margins on that axis.
         */
        private RectF velocityBiasedMargins(float xAmount, float yAmount, PointF velocity) {
            RectF margins = new RectF();

            if (velocity.x > VELOCITY_THRESHOLD) {
                margins.left = xAmount * REVERSE_BUFFER;
            } else if (velocity.x < -VELOCITY_THRESHOLD) {
                margins.left = xAmount * (1.0f - REVERSE_BUFFER);
            } else {
                margins.left = xAmount / 2.0f;
            }
            margins.right = xAmount - margins.left;

            if (velocity.y > VELOCITY_THRESHOLD) {
                margins.top = yAmount * REVERSE_BUFFER;
            } else if (velocity.y < -VELOCITY_THRESHOLD) {
                margins.top = yAmount * (1.0f - REVERSE_BUFFER);
            } else {
                margins.top = yAmount / 2.0f;
            }
            margins.bottom = yAmount - margins.top;

            return margins;
        }

        @Override
        public DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity) {
            float displayPortWidth = metrics.getWidth() * SIZE_MULTIPLIER;
            float displayPortHeight = metrics.getHeight() * SIZE_MULTIPLIER;

            // but if we're panning on one axis, set the margins for the other axis to zero since we are likely
            // axis locked and won't be displaying that extra area.
            if (Math.abs(velocity.x) > VELOCITY_THRESHOLD && FloatUtils.fuzzyEquals(velocity.y, 0)) {
                displayPortHeight = metrics.getHeight();
            } else if (Math.abs(velocity.y) > VELOCITY_THRESHOLD && FloatUtils.fuzzyEquals(velocity.x, 0)) {
                displayPortWidth = metrics.getWidth();
            }

            // we need to avoid having a display port that is larger than the page, or we will end up
            // painting things outside the page bounds (bug 729169).
            displayPortWidth = Math.min(displayPortWidth, metrics.getPageWidth());
            displayPortHeight = Math.min(displayPortHeight, metrics.getPageHeight());
            float horizontalBuffer = displayPortWidth - metrics.getWidth();
            float verticalBuffer = displayPortHeight - metrics.getHeight();

            // split the buffer amounts into margins based on velocity, and shift it to
            // take into account the page bounds
            RectF margins = velocityBiasedMargins(horizontalBuffer, verticalBuffer, velocity);
            margins = shiftMarginsForPageBounds(margins, metrics);

            return getTileAlignedDisplayPortMetrics(margins, metrics.zoomFactor, metrics);
        }

        @Override
        public boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort) {
            // calculate the danger zone amounts based on the prefs
            float dangerZoneX = metrics.getWidth() * (DANGER_ZONE_BASE_X_MULTIPLIER + (velocity.x * DANGER_ZONE_INCR_X_MULTIPLIER));
            float dangerZoneY = metrics.getHeight() * (DANGER_ZONE_BASE_Y_MULTIPLIER + (velocity.y * DANGER_ZONE_INCR_Y_MULTIPLIER));
            // clamp it such that when added to the viewport, they don't exceed page size.
            // this is a prerequisite to calling shiftMarginsForPageBounds as we do below.
            dangerZoneX = Math.min(dangerZoneX, metrics.getPageWidth() - metrics.getWidth());
            dangerZoneY = Math.min(dangerZoneY, metrics.getPageHeight() - metrics.getHeight());

            // split the danger zone into margins based on velocity, and ensure it doesn't exceed
            // page bounds.
            RectF dangerMargins = velocityBiasedMargins(dangerZoneX, dangerZoneY, velocity);
            dangerMargins = shiftMarginsForPageBounds(dangerMargins, metrics);

            // we're about to checkerboard if the current viewport area + the danger zone margins
            // fall out of the current displayport anywhere.
            RectF adjustedViewport = new RectF(
                    metrics.viewportRectLeft - dangerMargins.left,
                    metrics.viewportRectTop - dangerMargins.top,
                    metrics.viewportRectRight + dangerMargins.right,
                    metrics.viewportRectBottom + dangerMargins.bottom);
            return !displayPort.contains(adjustedViewport);
        }

        @Override
        public String toString() {
            return "VelocityBiasStrategy mult=" + SIZE_MULTIPLIER + ", threshold=" + VELOCITY_THRESHOLD + ", reverse=" + REVERSE_BUFFER
                + ", dangerBaseX=" + DANGER_ZONE_BASE_X_MULTIPLIER + ", dangerBaseY=" + DANGER_ZONE_BASE_Y_MULTIPLIER
                + ", dangerIncrX=" + DANGER_ZONE_INCR_Y_MULTIPLIER + ", dangerIncrY=" + DANGER_ZONE_INCR_Y_MULTIPLIER;
        }
    }

    /**
     * This class implements the variation where we draw more of the page at low resolution while panning.
     * In this variation, as we pan faster, we increase the page area we are drawing, but reduce the draw
     * resolution to compensate. This results in the same device-pixel area drawn; the compositor then
     * scales this up to the viewport zoom level. This results in a large area of the page drawn but it
     * looks blurry. The assumption is that drawing extra that we never display is better than checkerboarding,
     * where we draw less but never even show it on the screen.
     */
    private static class DynamicResolutionStrategy extends DisplayPortStrategy {
        // The length of each axis of the display port will be the corresponding view length
        // multiplied by this factor.
        private static final float SIZE_MULTIPLIER = 1.5f;

        // The velocity above which we start zooming out the display port to keep up
        // with the panning.
        private static final float VELOCITY_EXPANSION_THRESHOLD = /*GeckoAppShell.getDpi()*/ LOKitShell.getDpi() / 16f;

        // How much we increase the display port based on velocity. Assuming no friction and
        // splitting (see below), this should be be the number of frames (@60fps) between us
        // calculating the display port and the draw of the *next* display port getting composited
        // and displayed on the screen. This is because the timeline looks like this:
        //      Java: pan pan pan pan pan pan ! pan pan pan pan pan pan !
        //     Gecko:   \-> draw -> composite /   \-> draw -> composite /
        // The display port calculated on the first "pan" gets composited to the screen at the
        // first exclamation mark, and remains on the screen until the second exclamation mark.
        // In order to avoid checkerboarding, that display port must be able to contain all of
        // the panning until the second exclamation mark, which encompasses two entire draw/composite
        // cycles.
        // If we take into account friction, our velocity multiplier should be reduced as the
        // amount of pan will decrease each time. If we take into account display port splitting,
        // it should be increased as the splitting means some of the display port will be used to
        // draw in the opposite direction of the velocity. For now I'm assuming these two cancel
        // each other out.
        private static final float VELOCITY_MULTIPLIER = 60.0f;

        // The following constants adjust how biased the display port is in the direction of panning.
        // When panning fast (above the FAST_THRESHOLD) we use the fast split factor to split the
        // display port "buffer" area, otherwise we use the slow split factor. This is based on the
        // assumption that if the user is panning fast, they are less likely to reverse directions
        // and go backwards, so we should spend more of our display port buffer in the direction of
        // panning.
        private static final float VELOCITY_FAST_THRESHOLD = VELOCITY_EXPANSION_THRESHOLD * 2.0f;
        private static final float FAST_SPLIT_FACTOR = 0.95f;
        private static final float SLOW_SPLIT_FACTOR = 0.8f;

        // The following constants are used for viewport prediction; we use them to estimate where
        // the viewport will be soon and whether or not we should trigger a draw right now. "soon"
        // in the previous sentence really refers to the amount of time it would take to draw and
        // composite from the point at which we do the calculation, and that is not really a known
        // quantity. The velocity multiplier is how much we multiply the velocity by; it has the
        // same caveats as the VELOCITY_MULTIPLIER above except that it only needs to take into account
        // one draw/composite cycle instead of two. The danger zone multiplier is a multiplier of the
        // viewport size that we use as an extra "danger zone" around the viewport; if this danger
        // zone falls outside the display port then we are approaching the point at which we will
        // checkerboard, and hence should start drawing. Note that if DANGER_ZONE_MULTIPLIER is
        // greater than (SIZE_MULTIPLIER - 1.0f), then at zero velocity we will always be in the
        // danger zone, and thus will be constantly drawing.
        private static final float PREDICTION_VELOCITY_MULTIPLIER = 30.0f;
        private static final float DANGER_ZONE_MULTIPLIER = 0.20f; // must be less than (SIZE_MULTIPLIER - 1.0f)

        DynamicResolutionStrategy(Map<String, Integer> prefs) {
            // ignore prefs for now
        }

        @Override
        public DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity) {
            float displayPortWidth = metrics.getWidth() * SIZE_MULTIPLIER;
            float displayPortHeight = metrics.getHeight() * SIZE_MULTIPLIER;

            // for resolution calculation purposes, we need to know what the adjusted display port dimensions
            // would be if we had zero velocity, so calculate that here before we increase the display port
            // based on velocity.
            FloatSize reshapedSize = reshapeForPage(displayPortWidth, displayPortHeight, metrics);

            // increase displayPortWidth and displayPortHeight based on the velocity, but maintaining their
            // relative aspect ratio.
            if (velocity.length() > VELOCITY_EXPANSION_THRESHOLD) {
                float velocityFactor = Math.max(Math.abs(velocity.x) / displayPortWidth,
                                                Math.abs(velocity.y) / displayPortHeight);
                velocityFactor *= VELOCITY_MULTIPLIER;

                displayPortWidth += (displayPortWidth * velocityFactor);
                displayPortHeight += (displayPortHeight * velocityFactor);
            }

            // at this point, displayPortWidth and displayPortHeight are how much of the page (in device pixels)
            // we want to be rendered by Gecko. Note here "device pixels" is equivalent to CSS pixels multiplied
            // by metrics.zoomFactor

            // we need to avoid having a display port that is larger than the page, or we will end up
            // painting things outside the page bounds (bug 729169). we simultaneously need to make
            // the display port as large as possible so that we redraw less. reshape the display
            // port dimensions to accomplish this. this may change the aspect ratio of the display port,
            // but we are assuming that this is desirable because the advantages from pre-drawing will
            // outweigh the disadvantages from any buffer reallocations that might occur.
            FloatSize usableSize = reshapeForPage(displayPortWidth, displayPortHeight, metrics);
            float horizontalBuffer = usableSize.width - metrics.getWidth();
            float verticalBuffer = usableSize.height - metrics.getHeight();

            // at this point, horizontalBuffer and verticalBuffer are the dimensions of the buffer area we have.
            // the buffer area is the off-screen area that is part of the display port and will be pre-drawn in case
            // the user scrolls there. we now need to split the buffer area on each axis so that we know
            // what the exact margins on each side will be. first we split the buffer amount based on the direction
            // we're moving, so that we have a larger buffer in the direction of travel.
            RectF margins = new RectF();
            margins.left = splitBufferByVelocity(horizontalBuffer, velocity.x);
            margins.right = horizontalBuffer - margins.left;
            margins.top = splitBufferByVelocity(verticalBuffer, velocity.y);
            margins.bottom = verticalBuffer - margins.top;

            // then, we account for running into the page bounds - so that if we hit the top of the page, we need
            // to drop the top margin and move that amount to the bottom margin.
            margins = shiftMarginsForPageBounds(margins, metrics);

            // finally, we calculate the resolution we want to render the display port area at. We do this
            // so that as we expand the display port area (because of velocity), we reduce the resolution of
            // the painted area so as to maintain the size of the buffer Gecko is painting into. we calculate
            // the reduction in resolution by comparing the display port size with and without the velocity
            // changes applied.
            // this effectively means that as we pan faster and faster, the display port grows, but we paint
            // at lower resolutions. this paints more area to reduce checkerboard at the cost of increasing
            // compositor-scaling and blurriness. Once we stop panning, the blurriness must be entirely gone.
            // Note that usable* could be less than base* if we are pinch-zoomed out into overscroll, so we
            // clamp it to make sure this doesn't increase our display resolution past metrics.zoomFactor.
            float scaleFactor = Math.min(reshapedSize.width / usableSize.width, reshapedSize.height / usableSize.height);
            float displayResolution = metrics.zoomFactor * Math.min(1.0f, scaleFactor);

            DisplayPortMetrics dpMetrics = new DisplayPortMetrics(
                metrics.viewportRectLeft - margins.left,
                metrics.viewportRectTop - margins.top,
                metrics.viewportRectRight + margins.right,
                metrics.viewportRectBottom + margins.bottom,
                displayResolution);
            return dpMetrics;
        }

        /**
         * Split the given buffer amount into two based on the velocity.
         * Given an amount of total usable buffer on an axis, this will
         * return the amount that should be used on the left/top side of
         * the axis (the side which a negative velocity vector corresponds
         * to).
         */
        private float splitBufferByVelocity(float amount, float velocity) {
            // if no velocity, so split evenly
            if (FloatUtils.fuzzyEquals(velocity, 0)) {
                return amount / 2.0f;
            }
            // if we're moving quickly, assign more of the amount in that direction
            // since is is less likely that we will reverse direction immediately
            if (velocity < -VELOCITY_FAST_THRESHOLD) {
                return amount * FAST_SPLIT_FACTOR;
            }
            if (velocity > VELOCITY_FAST_THRESHOLD) {
                return amount * (1.0f - FAST_SPLIT_FACTOR);
            }
            // if we're moving slowly, then assign less of the amount in that direction
            if (velocity < 0) {
                return amount * SLOW_SPLIT_FACTOR;
            } else {
                return amount * (1.0f - SLOW_SPLIT_FACTOR);
            }
        }

        @Override
        public boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort) {
            // Expand the viewport based on our velocity (and clamp it to page boundaries).
            // Then intersect it with the last-requested displayport to determine whether we're
            // close to checkerboarding.

            RectF predictedViewport = metrics.getViewport();

            // first we expand the viewport in the direction we're moving based on some
            // multiple of the current velocity.
            if (velocity.length() > 0) {
                if (velocity.x < 0) {
                    predictedViewport.left += velocity.x * PREDICTION_VELOCITY_MULTIPLIER;
                } else if (velocity.x > 0) {
                    predictedViewport.right += velocity.x * PREDICTION_VELOCITY_MULTIPLIER;
                }

                if (velocity.y < 0) {
                    predictedViewport.top += velocity.y * PREDICTION_VELOCITY_MULTIPLIER;
                } else if (velocity.y > 0) {
                    predictedViewport.bottom += velocity.y * PREDICTION_VELOCITY_MULTIPLIER;
                }
            }

            // then we expand the viewport evenly in all directions just to have an extra
            // safety zone. this also clamps it to page bounds.
            predictedViewport = expandByDangerZone(predictedViewport, DANGER_ZONE_MULTIPLIER, DANGER_ZONE_MULTIPLIER, metrics);
            return !displayPort.contains(predictedViewport);
        }

        @Override
        public String toString() {
            return "DynamicResolutionStrategy";
        }
    }

    /**
     * This class implements the variation where we use the draw time to predict where we will be when
     * a draw completes, and draw that instead of where we are now. In this variation, when our panning
     * speed drops below a certain threshold, we draw 9 viewports' worth of content so that the user can
     * pan in any direction without encountering checkerboarding.
     * Once the user is panning, we modify the displayport to encompass an area range of where we think
     * the user will be when the draw completes. This heuristic relies on both the estimated draw time
     * the panning velocity; unexpected changes in either of these values will cause the heuristic to
     * fail and show checkerboard.
     */
    private static class PredictionBiasStrategy extends DisplayPortStrategy {
        private static float VELOCITY_THRESHOLD;

        private int mPixelArea;         // area of the viewport, used in draw time calculations
        private int mMinFramesToDraw;   // minimum number of frames we take to draw
        private int mMaxFramesToDraw;   // maximum number of frames we take to draw

        PredictionBiasStrategy(Map<String, Integer> prefs) {
            VELOCITY_THRESHOLD = /*GeckoAppShell.getDpi()*/ LOKitShell.getDpi() * getFloatPref(prefs, PREF_DISPLAYPORT_PB_VELOCITY_THRESHOLD, 16);
            resetPageState();
        }

        @Override
        public DisplayPortMetrics calculate(ImmutableViewportMetrics metrics, PointF velocity) {
            float width = metrics.getWidth();
            float height = metrics.getHeight();
            mPixelArea = (int)(width * height);

            if (velocity.length() < VELOCITY_THRESHOLD) {
                // if we're going slow, expand the displayport to 9x viewport size
                RectF margins = new RectF(width, height, width, height);
                return getTileAlignedDisplayPortMetrics(margins, metrics.zoomFactor, metrics);
            }

            // figure out how far we expect to be
            float minDx = velocity.x * mMinFramesToDraw;
            float minDy = velocity.y * mMinFramesToDraw;
            float maxDx = velocity.x * mMaxFramesToDraw;
            float maxDy = velocity.y * mMaxFramesToDraw;

            // figure out how many pixels we will be drawing when we draw the above-calculated range.
            // this will be larger than the viewport area.
            float pixelsToDraw = (width + Math.abs(maxDx - minDx)) * (height + Math.abs(maxDy - minDy));
            // adjust how far we will get because of the time spent drawing all these extra pixels. this
            // will again increase the number of pixels drawn so really we could keep iterating this over
            // and over, but once seems enough for now.
            maxDx = maxDx * pixelsToDraw / mPixelArea;
            maxDy = maxDy * pixelsToDraw / mPixelArea;

            // and finally generate the displayport. the min/max stuff takes care of
            // negative velocities as well as positive.
            RectF margins = new RectF(
                -Math.min(minDx, maxDx),
                -Math.min(minDy, maxDy),
                Math.max(minDx, maxDx),
                Math.max(minDy, maxDy));
            return getTileAlignedDisplayPortMetrics(margins, metrics.zoomFactor, metrics);
        }

        @Override
        public boolean aboutToCheckerboard(ImmutableViewportMetrics metrics, PointF velocity, DisplayPortMetrics displayPort) {
            // the code below is the same as in calculate() but is awkward to refactor since it has multiple outputs.
            // refer to the comments in calculate() to understand what this is doing.
            float minDx = velocity.x * mMinFramesToDraw;
            float minDy = velocity.y * mMinFramesToDraw;
            float maxDx = velocity.x * mMaxFramesToDraw;
            float maxDy = velocity.y * mMaxFramesToDraw;
            float pixelsToDraw = (metrics.getWidth() + Math.abs(maxDx - minDx)) * (metrics.getHeight() + Math.abs(maxDy - minDy));
            maxDx = maxDx * pixelsToDraw / mPixelArea;
            maxDy = maxDy * pixelsToDraw / mPixelArea;

            // now that we have an idea of how far we will be when the draw completes, take the farthest
            // end of that range and see if it falls outside the displayport bounds. if it does, allow
            // the draw to go through
            RectF predictedViewport = metrics.getViewport();
            predictedViewport.left += maxDx;
            predictedViewport.top += maxDy;
            predictedViewport.right += maxDx;
            predictedViewport.bottom += maxDy;

            predictedViewport = clampToPageBounds(predictedViewport, metrics);
            return !displayPort.contains(predictedViewport);
        }

        @Override
        public boolean drawTimeUpdate(long millis, int pixels) {
            // calculate the number of frames it took to draw a viewport-sized area
            float normalizedTime = (float)mPixelArea * (float)millis / (float)pixels;
            int normalizedFrames = (int)FloatMath.ceil(normalizedTime * 60f / 1000f);
            // broaden our range on how long it takes to draw if the draw falls outside
            // the range. this allows it to grow gradually. this heuristic may need to
            // be tweaked into more of a floating window average or something.
            if (normalizedFrames <= mMinFramesToDraw) {
                mMinFramesToDraw--;
            } else if (normalizedFrames > mMaxFramesToDraw) {
                mMaxFramesToDraw++;
            } else {
                return true;
            }
            Log.d(LOGTAG, "Widened draw range to [" + mMinFramesToDraw + ", " + mMaxFramesToDraw + "]");
            return true;
        }

        @Override
        public void resetPageState() {
            mMinFramesToDraw = 0;
            mMaxFramesToDraw = 2;
        }

        @Override
        public String toString() {
            return "PredictionBiasStrategy threshold=" + VELOCITY_THRESHOLD;
        }
    }
}