diff options
Diffstat (limited to 'drivers/gpu/nova-core/firmware/booter.rs')
-rw-r--r-- | drivers/gpu/nova-core/firmware/booter.rs | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/drivers/gpu/nova-core/firmware/booter.rs b/drivers/gpu/nova-core/firmware/booter.rs new file mode 100644 index 000000000000..b4ff1b17e4a0 --- /dev/null +++ b/drivers/gpu/nova-core/firmware/booter.rs @@ -0,0 +1,375 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Support for loading and patching the `Booter` firmware. `Booter` is a Heavy Secured firmware +//! running on [`Sec2`], that is used on Turing/Ampere to load the GSP firmware into the GSP falcon +//! (and optionally unload it through a separate firmware image). + +use core::marker::PhantomData; +use core::mem::size_of; +use core::ops::Deref; + +use kernel::device; +use kernel::prelude::*; +use kernel::transmute::FromBytes; + +use crate::dma::DmaObject; +use crate::driver::Bar0; +use crate::falcon::sec2::Sec2; +use crate::falcon::{Falcon, FalconBromParams, FalconFirmware, FalconLoadParams, FalconLoadTarget}; +use crate::firmware::{BinFirmware, FirmwareDmaObject, FirmwareSignature, Signed, Unsigned}; +use crate::gpu::Chipset; + +/// Local convenience function to return a copy of `S` by reinterpreting the bytes starting at +/// `offset` in `slice`. +fn frombytes_at<S: FromBytes + Sized>(slice: &[u8], offset: usize) -> Result<S> { + slice + .get(offset..offset + size_of::<S>()) + .and_then(S::from_bytes_copy) + .ok_or(EINVAL) +} + +/// Heavy-Secured firmware header. +/// +/// Such firmwares have an application-specific payload that needs to be patched with a given +/// signature. +#[repr(C)] +#[derive(Debug, Clone)] +struct HsHeaderV2 { + /// Offset to the start of the signatures. + sig_prod_offset: u32, + /// Size in bytes of the signatures. + sig_prod_size: u32, + /// Offset to a `u32` containing the location at which to patch the signature in the microcode + /// image. + patch_loc_offset: u32, + /// Offset to a `u32` containing the index of the signature to patch. + patch_sig_offset: u32, + /// Start offset to the signature metadata. + meta_data_offset: u32, + /// Size in bytes of the signature metadata. + meta_data_size: u32, + /// Offset to a `u32` containing the number of signatures in the signatures section. + num_sig_offset: u32, + /// Offset of the application-specific header. + header_offset: u32, + /// Size in bytes of the application-specific header. + header_size: u32, +} + +// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability. +unsafe impl FromBytes for HsHeaderV2 {} + +/// Heavy-Secured Firmware image container. +/// +/// This provides convenient access to the fields of [`HsHeaderV2`] that are actually indices to +/// read from in the firmware data. +struct HsFirmwareV2<'a> { + hdr: HsHeaderV2, + fw: &'a [u8], +} + +impl<'a> HsFirmwareV2<'a> { + /// Interprets the header of `bin_fw` as a [`HsHeaderV2`] and returns an instance of + /// `HsFirmwareV2` for further parsing. + /// + /// Fails if the header pointed at by `bin_fw` is not within the bounds of the firmware image. + fn new(bin_fw: &BinFirmware<'a>) -> Result<Self> { + frombytes_at::<HsHeaderV2>(bin_fw.fw, bin_fw.hdr.header_offset as usize) + .map(|hdr| Self { hdr, fw: bin_fw.fw }) + } + + /// Returns the location at which the signatures should be patched in the microcode image. + /// + /// Fails if the offset of the patch location is outside the bounds of the firmware + /// image. + fn patch_location(&self) -> Result<u32> { + frombytes_at::<u32>(self.fw, self.hdr.patch_loc_offset as usize) + } + + /// Returns an iterator to the signatures of the firmware. The iterator can be empty if the + /// firmware is unsigned. + /// + /// Fails if the pointed signatures are outside the bounds of the firmware image. + fn signatures_iter(&'a self) -> Result<impl Iterator<Item = BooterSignature<'a>>> { + let num_sig = frombytes_at::<u32>(self.fw, self.hdr.num_sig_offset as usize)?; + let iter = match self.hdr.sig_prod_size.checked_div(num_sig) { + // If there are no signatures, return an iterator that will yield zero elements. + None => (&[] as &[u8]).chunks_exact(1), + Some(sig_size) => { + let patch_sig = frombytes_at::<u32>(self.fw, self.hdr.patch_sig_offset as usize)?; + let signatures_start = (self.hdr.sig_prod_offset + patch_sig) as usize; + + self.fw + // Get signatures range. + .get(signatures_start..signatures_start + self.hdr.sig_prod_size as usize) + .ok_or(EINVAL)? + .chunks_exact(sig_size as usize) + } + }; + + // Map the byte slices into signatures. + Ok(iter.map(BooterSignature)) + } +} + +/// Signature parameters, as defined in the firmware. +#[repr(C)] +struct HsSignatureParams { + /// Fuse version to use. + fuse_ver: u32, + /// Mask of engine IDs this firmware applies to. + engine_id_mask: u32, + /// ID of the microcode. + ucode_id: u32, +} + +// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability. +unsafe impl FromBytes for HsSignatureParams {} + +impl HsSignatureParams { + /// Returns the signature parameters contained in `hs_fw`. + /// + /// Fails if the meta data parameter of `hs_fw` is outside the bounds of the firmware image, or + /// if its size doesn't match that of [`HsSignatureParams`]. + fn new(hs_fw: &HsFirmwareV2<'_>) -> Result<Self> { + let start = hs_fw.hdr.meta_data_offset as usize; + let end = start + .checked_add(hs_fw.hdr.meta_data_size as usize) + .ok_or(EINVAL)?; + + hs_fw + .fw + .get(start..end) + .and_then(Self::from_bytes_copy) + .ok_or(EINVAL) + } +} + +/// Header for code and data load offsets. +#[repr(C)] +#[derive(Debug, Clone)] +struct HsLoadHeaderV2 { + // Offset at which the code starts. + os_code_offset: u32, + // Total size of the code, for all apps. + os_code_size: u32, + // Offset at which the data starts. + os_data_offset: u32, + // Size of the data. + os_data_size: u32, + // Number of apps following this header. Each app is described by a [`HsLoadHeaderV2App`]. + num_apps: u32, +} + +// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability. +unsafe impl FromBytes for HsLoadHeaderV2 {} + +impl HsLoadHeaderV2 { + /// Returns the load header contained in `hs_fw`. + /// + /// Fails if the header pointed at by `hs_fw` is not within the bounds of the firmware image. + fn new(hs_fw: &HsFirmwareV2<'_>) -> Result<Self> { + frombytes_at::<Self>(hs_fw.fw, hs_fw.hdr.header_offset as usize) + } +} + +/// Header for app code loader. +#[repr(C)] +#[derive(Debug, Clone)] +struct HsLoadHeaderV2App { + /// Offset at which to load the app code. + offset: u32, + /// Length in bytes of the app code. + len: u32, +} + +// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability. +unsafe impl FromBytes for HsLoadHeaderV2App {} + +impl HsLoadHeaderV2App { + /// Returns the [`HsLoadHeaderV2App`] for app `idx` of `hs_fw`. + /// + /// Fails if `idx` is larger than the number of apps declared in `hs_fw`, or if the header is + /// not within the bounds of the firmware image. + fn new(hs_fw: &HsFirmwareV2<'_>, idx: u32) -> Result<Self> { + let load_hdr = HsLoadHeaderV2::new(hs_fw)?; + if idx >= load_hdr.num_apps { + Err(EINVAL) + } else { + frombytes_at::<Self>( + hs_fw.fw, + (hs_fw.hdr.header_offset as usize) + // Skip the load header... + .checked_add(size_of::<HsLoadHeaderV2>()) + // ... and jump to app header `idx`. + .and_then(|offset| { + offset.checked_add((idx as usize).checked_mul(size_of::<Self>())?) + }) + .ok_or(EINVAL)?, + ) + } + } +} + +/// Signature for Booter firmware. Their size is encoded into the header and not known a compile +/// time, so we just wrap a byte slices on which we can implement [`FirmwareSignature`]. +struct BooterSignature<'a>(&'a [u8]); + +impl<'a> AsRef<[u8]> for BooterSignature<'a> { + fn as_ref(&self) -> &[u8] { + self.0 + } +} + +impl<'a> FirmwareSignature<BooterFirmware> for BooterSignature<'a> {} + +/// The `Booter` loader firmware, responsible for loading the GSP. +pub(crate) struct BooterFirmware { + // Load parameters for `IMEM` falcon memory. + imem_load_target: FalconLoadTarget, + // Load parameters for `DMEM` falcon memory. + dmem_load_target: FalconLoadTarget, + // BROM falcon parameters. + brom_params: FalconBromParams, + // Device-mapped firmware image. + ucode: FirmwareDmaObject<Self, Signed>, +} + +impl FirmwareDmaObject<BooterFirmware, Unsigned> { + fn new_booter(dev: &device::Device<device::Bound>, data: &[u8]) -> Result<Self> { + DmaObject::from_data(dev, data).map(|ucode| Self(ucode, PhantomData)) + } +} + +#[derive(Copy, Clone, Debug, PartialEq)] +pub(crate) enum BooterKind { + Loader, + #[expect(unused)] + Unloader, +} + +impl BooterFirmware { + /// Parses the Booter firmware contained in `fw`, and patches the correct signature so it is + /// ready to be loaded and run on `falcon`. + pub(crate) fn new( + dev: &device::Device<device::Bound>, + kind: BooterKind, + chipset: Chipset, + ver: &str, + falcon: &Falcon<<Self as FalconFirmware>::Target>, + bar: &Bar0, + ) -> Result<Self> { + let fw_name = match kind { + BooterKind::Loader => "booter_load", + BooterKind::Unloader => "booter_unload", + }; + let fw = super::request_firmware(dev, chipset, fw_name, ver)?; + let bin_fw = BinFirmware::new(&fw)?; + + // The binary firmware embeds a Heavy-Secured firmware. + let hs_fw = HsFirmwareV2::new(&bin_fw)?; + + // The Heavy-Secured firmware embeds a firmware load descriptor. + let load_hdr = HsLoadHeaderV2::new(&hs_fw)?; + + // Offset in `ucode` where to patch the signature. + let patch_loc = hs_fw.patch_location()?; + + let sig_params = HsSignatureParams::new(&hs_fw)?; + let brom_params = FalconBromParams { + // `load_hdr.os_data_offset` is an absolute index, but `pkc_data_offset` is from the + // signature patch location. + pkc_data_offset: patch_loc + .checked_sub(load_hdr.os_data_offset) + .ok_or(EINVAL)?, + engine_id_mask: u16::try_from(sig_params.engine_id_mask).map_err(|_| EINVAL)?, + ucode_id: u8::try_from(sig_params.ucode_id).map_err(|_| EINVAL)?, + }; + let app0 = HsLoadHeaderV2App::new(&hs_fw, 0)?; + + // Object containing the firmware microcode to be signature-patched. + let ucode = bin_fw + .data() + .ok_or(EINVAL) + .and_then(|data| FirmwareDmaObject::<Self, _>::new_booter(dev, data))?; + + let ucode_signed = { + let mut signatures = hs_fw.signatures_iter()?.peekable(); + + if signatures.peek().is_none() { + // If there are no signatures, then the firmware is unsigned. + ucode.no_patch_signature() + } else { + // Obtain the version from the fuse register, and extract the corresponding + // signature. + let reg_fuse_version = falcon.signature_reg_fuse_version( + bar, + brom_params.engine_id_mask, + brom_params.ucode_id, + )?; + + // `0` means the last signature should be used. + const FUSE_VERSION_USE_LAST_SIG: u32 = 0; + let signature = match reg_fuse_version { + FUSE_VERSION_USE_LAST_SIG => signatures.last(), + // Otherwise hardware fuse version needs to be subtracted to obtain the index. + reg_fuse_version => { + let Some(idx) = sig_params.fuse_ver.checked_sub(reg_fuse_version) else { + dev_err!(dev, "invalid fuse version for Booter firmware\n"); + return Err(EINVAL); + }; + signatures.nth(idx as usize) + } + } + .ok_or(EINVAL)?; + + ucode.patch_signature(&signature, patch_loc as usize)? + } + }; + + Ok(Self { + imem_load_target: FalconLoadTarget { + src_start: app0.offset, + dst_start: 0, + len: app0.len, + }, + dmem_load_target: FalconLoadTarget { + src_start: load_hdr.os_data_offset, + dst_start: 0, + len: load_hdr.os_data_size, + }, + brom_params, + ucode: ucode_signed, + }) + } +} + +impl FalconLoadParams for BooterFirmware { + fn imem_load_params(&self) -> FalconLoadTarget { + self.imem_load_target.clone() + } + + fn dmem_load_params(&self) -> FalconLoadTarget { + self.dmem_load_target.clone() + } + + fn brom_params(&self) -> FalconBromParams { + self.brom_params.clone() + } + + fn boot_addr(&self) -> u32 { + self.imem_load_target.src_start + } +} + +impl Deref for BooterFirmware { + type Target = DmaObject; + + fn deref(&self) -> &Self::Target { + &self.ucode.0 + } +} + +impl FalconFirmware for BooterFirmware { + type Target = Sec2; +} |