summaryrefslogtreecommitdiff
path: root/linuxgraphicsdrivers.lyx
blob: d4e43d146853ef6ce4acf18a66981bb2df4ce87e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
#LyX 1.6.4 created this file. For more info see http://www.lyx.org/
\lyxformat 345
\begin_document
\begin_header
\textclass book
\begin_preamble
\usepackage[Lenny]{myfncychap}
\usepackage{listings}
\usepackage{color}
\usepackage{geometry}
\usepackage{tikz}
\usepackage{array}

\usetikzlibrary{positioning,shadows,arrows,shapes,patterns}
\usepackage{verbatim}
\tikzset{
    mynode/.style={rectangle,rounded corners,draw=black, top color=white, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text centered},
    myarrow/.style={->, >=latex', shorten >=1pt, thick},
    mylabel/.style={text width=7em, text centered} 
}  

\renewcommand{\chaptermark}[1]{\markboth{\thechapter.\ #1}{}}
\renewcommand{\sectionmark}[1]{\markright{\thesection.\ #1}} 
\fancyhead{} 
\fancyhead[LE]{\bfseries\leftmark} 
\fancyhead[RO]{\bfseries\rightmark} 
\fancyfoot{} 
\fancyfoot[LE,RO]{\bfseries\thepage} 

\fancypagestyle{plain}{
\renewcommand{\headrulewidth}{0pt}
\fancyhead{} 
\fancyhead[LE]{} 
\fancyhead[RO]{} 
\fancyfoot{} 
\fancyfoot[LE,RO]{\bfseries\thepage} 
}

\fancypagestyle{Contents}{
\fancyfoot{} 
\fancyfoot[LE,RO]{\bfseries\thepage} }


\def\contentsname{Table of Contents}


\definecolor{listinggray}{gray}{0.95}                                                                                                      
\lstset{basicstyle=\small,keywordstyle=,tabsize=3,escapechar=`,extendedchars=true}                                                         
\lstset{backgroundcolor=\color{listinggray},rulecolor=\color{black}}                                                                       
\lstset{commentstyle=\textit, stringstyle=\upshape,showspaces=false}                                                                       
\lstset{showstringspaces=false}                                                                                                            
\lstset{frame=single}                                                                                                                      
\lstset{breaklines=true}                                                                                                                   
\lstset{language=C}      
\lstset{basicstyle=\footnotesize}      
\lstset{columns=flexible}      
\end_preamble
\use_default_options true
\begin_modules
theorems-ams
\end_modules
\language english
\inputencoding auto
\font_roman palatino
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100

\graphics default
\paperfontsize 10
\spacing single
\use_hyperref true
\pdf_title "Linux Graphics Drivers: an Introduction"
\pdf_author "Stéphane Marchesin"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\pdf_quoted_options "linkcolor=cyan"
\papersize b5paper
\use_geometry true
\use_amsmath 1
\use_esint 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\leftmargin 2.5cm
\topmargin 2.5cm
\rightmargin 1.7cm
\bottommargin 2.5cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 2
\paperpagestyle fancy
\bullet 0 0 17 -1
\tracking_changes false
\output_changes false
\author "" 
\author "" 
\end_header

\begin_body

\begin_layout Title
Linux Graphics Drivers: an Introduction
\begin_inset Newline newline
\end_inset


\size small
Version 2
\end_layout

\begin_layout Author
Stéphane Marchesin
\begin_inset Newline newline
\end_inset

<stephane.marchesin@gmail.com>
\end_layout

\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents

\end_inset


\end_layout

\begin_layout Chapter
Introduction
\begin_inset CommandInset label
LatexCommand label
name "cha:Introduction"

\end_inset


\end_layout

\begin_layout Standard

\lang french
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
markboth{  }{ Introduction }
\end_layout

\end_inset


\lang english
Accelerating graphics is a complex art which suffers a mostly unjustified
 reputation of being voodoo magic.
 This book is intended as an introduction to the inner workings and development
 of graphics drivers under Linux.
 Throughout this whole book, knowledge of C programming is expected, along
 with some familiarity with graphics processors.
 Although its primary audience is the graphics driver developer, this book
 details the internals of the full Linux graphics stack and therefore can
 also be useful to application developers seeking to enhance their vision
 of the Linux graphics world: one can hope to improve the performance of
 its applications through better understanding the Linux graphics stack.
 In this day and age of pervasive 3D graphics and GPU computing, a better
 comprehension of graphics is a must have!
\end_layout

\begin_layout Section
Book overview
\end_layout

\begin_layout Standard
The book starts with an introduction of relevant hardware concepts (Chapter
 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:A-Look-at"

\end_inset

).
 Only concepts directly relevant to the graphics driver business are presented
 there.
 Then we paint a high-level view of the Linux graphics stack in Chapter
 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:The-Big-Picture"

\end_inset

 and its evolution over the years.
 Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Framebuffer-Drivers"

\end_inset

 introduces framebuffer drivers, a basic form of graphics drivers under
 Linux that, although primitive, sees wide usage in the embedded space.
 Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:The-DRM-Kernel"

\end_inset

 introduces the DRM, a kernel module which is in charge of arbitrating all
 graphics activity going on in a Linux system.
 The next chapter (Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:X.Org-Drivers"

\end_inset

) focuses on X.Org drivers and the existing acceleration APIs available to
 the developper.
 Video decoding sees its own dedicated part in Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Video-Decoding"

\end_inset

.
 We then move on to 3D acceleration with Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:OpenGL"

\end_inset

 where we introduce the basic concepts of OpenGL.
 Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Mesa"

\end_inset

 and 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Gallium-3D"

\end_inset

 are dedicated to Mesa and Gallium 3D, the two foundations of 3D graphics
 acceleration under Linux used as the framework for 3D drivers.
 Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:GPU-Computing"

\end_inset

 tackles an emerging field, GPU computing.
 Next, we discuss suspend and resume in Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Suspend-and-Resume"

\end_inset

.
 We then discuss two side issues with Linux graphics drivers: technical
 specifications in Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Technical-Specifications"

\end_inset

 and what you should do aside pure development in Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Beyond-Development"

\end_inset

.
 Finally, we conclude in Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Conclusions"

\end_inset

.
\end_layout

\begin_layout Standard
Each chapter finishes with the 
\begin_inset Quotes eld
\end_inset

takeaways
\begin_inset Quotes erd
\end_inset

, a number of relevant points that we made during said chapter.
\end_layout

\begin_layout Section
What this book does not cover
\end_layout

\begin_layout Standard
Computer graphics move at a fast pace, and this book is not about the past.
 Obsolete hardware (isa, vlb, ...), old standards (the vga standard and its
 dreadful int10, vesa), outdated techniques (user space modesetting) and
 old X11 servers (Xsun, XFree86, KDrive...) will not be detailed.
\end_layout

\begin_layout Chapter
A Look at the Hardware
\begin_inset CommandInset label
LatexCommand label
name "cha:A-Look-at"

\end_inset


\end_layout

\begin_layout Standard
Before diving any further into the subject of graphics drivers, we need
 to understand the graphcs hardware.
 This chapter is by no means intended to be a complete description of all
 the inner workings of your average computer and its graphics hardware,
 but only as an introduction thereof.
 The goal of this section is just to 
\begin_inset Quotes eld
\end_inset

cover the bases
\begin_inset Quotes erd
\end_inset

 on the knowledge we will require later on.
 Notably, most hardware concepts that will subsequently be needed are introduced
 here.
 Although we sometimes have to go through architecture-specific hoops, we
 try to stay as generic as possible and the concepts detailed thereafter
 should generalize well.
\end_layout

\begin_layout Section
Hardware Overview
\end_layout

\begin_layout Standard
Today all computers are architectured the same way: a central processor
 and a number of peripherals.
 In order to exchange data, these peripherals are interconnected by a bus
 over which all communications go.
 Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Peripheral-interconnection-in"

\end_inset

 outlines the layout of peripherals in a standard computer.
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick}, myarrowtwoside/.style={<->, >=latex', shorten >=1pt, thick},   
  mylabel/.style={text width=7em, text centered}  }   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width=1.5cm] (CPU) {CPU 
\backslash

\backslash
 };   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width=1.5cm, right=0.8cm of CPU] (memory) {System 
\backslash

\backslash
 Memory}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width=1.5cm, right=0.8cm of memory] (GPU) {Graphics 
\backslash

\backslash
 Card}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width=1.5cm, right=0.8cm of GPU] (network) {Network 
\backslash

\backslash
 Card}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[right = 0.8cm of network] {$
\backslash
cdots$};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 12cm, below=2cm of GPU] (bus) {Bus};   
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrowtwoside] (CPU.south) -> ++(0,-2.2) (bus);	 
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrowtwoside] (GPU.south) -> ++(0,-2) (bus);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrowtwoside] (memory.south) -> ++(0,-2) (bus);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrowtwoside] (network.south) -> ++(0,-2) (bus);
\end_layout

\begin_layout Plain Layout

%
\backslash
node[mynode, below=2cm of GPU] (iommu) {IOMMU}; 
\end_layout

\begin_layout Plain Layout

%
\backslash
node[mynode, left=1cm of mmu] (mmupt) {MMU page table};   
\end_layout

\begin_layout Plain Layout

%
\backslash
node[mynode, right=1cm of iommu] (iommupt) {IOMMU page table}; 
\end_layout

\begin_layout Plain Layout

%
\backslash
node[mynode, text width=5cm, below=2cm of mmu,  xshift=1.5cm] (memory) {Memory};
  
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[myarrow] (CPU.south)  -|  (mmu.north);	 
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[myarrow] (GPU.south) -|  (iommu.north);
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[myarrow] (mmu.south)  ->  ++(0,-2) (memory);
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[myarrow] (iommu.south)  ->  ++(0,-2) (memory);
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[myarrow] (mmu)  ->  (mmupt);
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[myarrow] (iommu)  -> (iommupt);
\end_layout

\begin_layout Plain Layout

%
\backslash
node at (4,-1.5) {GPU Address};
\end_layout

\begin_layout Plain Layout

%
\backslash
node at (-1.5,-1.5) {Virtual Address};
\end_layout

\begin_layout Plain Layout

%
\backslash
node at (-1.5,-4.5) {Physical Address};
\end_layout

\begin_layout Plain Layout

%
\backslash
node at (4,-4.5) {Physical Address};
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:Peripheral-interconnection-in"

\end_inset

Peripheral interconnection in a typical computer.
\end_layout

\end_inset


\end_layout

\end_inset

The first user of the bus is the CPU.
 The CPU uses the bus to access system memory and other peripherals.
 However, the CPU is not the only one able to write and read data to the
 peripherals, the peripherals themselves also have the capability to exchange
 information directly.
 In particular, a peripheral which has the ability to read and write to
 memory without the CPU intervention is said to be DMA (Direct Memory Access)
 capable, and the memory transaction is called a DMA.
 Today, all graphics cards feature this ability (named DMA bus mastering)
 which consists in the card requesting and subsequently taking control of
 the bus for a number of microseconds.
 
\end_layout

\begin_layout Standard
If a peripheral has the ability to achieve DMA to or from an uncontiguous
 list of memory pages (which is very convenient when the data is not contiguous
 in memory), it is said to have DMA scatter-gather capability (as it can
 scatter data to different memory pages, or gather data from different pages).
\end_layout

\begin_layout Standard
Notice that the DMA capability can be a downside in some cases.
 For example on real time systems, this means the CPU is unable to access
 the bus while a DMA transaction is in progress, and since DMA transactions
 happen asynchronously this can lead to missing a real time scheduling deadline.
 Therefore, while DMA has a lot of advantages from a performance viewpoint,
 there are situations where it should be avoided.
\end_layout

\begin_layout Section
Bus types
\end_layout

\begin_layout Standard
Buses connect the machine peripherals together; each and every communication
 between different peripherals goes over (at least) one bus.
 In particular, a bus is the way most graphics card are connected to the
 rest of the computer (one notable exception being the case of some embedded
 systems, where the GPU is directly connected to the CPU).
 As shown in Table 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Common-bus-types"

\end_inset

, there are many bus types suitable for graphics: PCI, AGP, PCI-X, PCI-express
 to name a (relevant) few.
 All the bus types we will detail are variants of the PCI bus type, however
 some of them feature singular improvements over the original PCI design.
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="8" columns="5">
<features>
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Bus type
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Bus width
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Frequency
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Bandwidth
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Capabilities
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
PCI
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
32 bits
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
33 Mhz
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
133 Mb/s (33 Mhz)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
-
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
AGP
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
32 bits
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
66 Mhz
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
2100Mb/s (8x)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
SBA, FW, 
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
GART
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
PCI-X
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
64 bits
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
33, 66, 
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
533 Mb/s (66 Mhz)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
-
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
133 Mhz
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
PCI-Express (1.0)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Serial
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
1.25 Ghz
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
4Gb/s (16 lanes)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
-
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
PCI-Express (3.0)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Serial
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
4 Ghz
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
16Gb/s (16 lanes)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
-
\end_layout

\end_inset
</cell>
</row>
</lyxtabular>

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:Common-bus-types"

\end_inset

Common bus types.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Subparagraph*
PCI (Peripheral Component Interconnect)
\end_layout

\begin_layout Standard
PCI is the most basic bus allowing connecting graphics peripherals today.
 One of its key feature is called bus mastering.
 This feature allows a given peripheral to take hold of the bus for a given
 number of cycles and do a complete transaction (called a DMA, Direct Memory
 Access).
 The PCI bus is coherent, which means that no explicit flushes are required
 for the memory to be coherent across devices.
\end_layout

\begin_layout Subparagraph*
AGP (Accelerated Graphics Port)
\end_layout

\begin_layout Standard
AGP is essentially a modified PCI bus with a number of extra features compared
 to its ancestor.
 Most importantly, it is faster thanks to a higher clock speed and the ability
 to send 2, 4 or 8 bits per lane on each clock tick (for AGP 2x, 4x and
 8x respectively).
 AGP also three distinctive features:
\end_layout

\begin_layout Itemize
The first feature is AGP GART (Graphics Aperture Remapping Table), a simple
 form of IOMMU (as will be seen in section 
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Virtual-and-Physical"

\end_inset

).
 It allows taking a (non contiguous) set of physical memory pages out of
 system memory and exposing it to the GPU for its use as a contiguous area.
 This increases the amount of memory usable by the GPU at little cost, and
 creates an convenient area for sharing data between the CPU and the GPU
 (AGP graphics cards can do fast DMA to/from this area, and since the GART
 area is a chunk of system RAM, CPU access is a lot faster than VRAM).
 One notable drawback is that the GART area is not coherent, and therefore
 writes to GART (be it from the GPU or CPU) need to be flushed before transactio
ns from the other party can begin.
 Another drawback is that only a single GART area is handled by the hardware,
 and it has to be sub-allocated by the driver.
\end_layout

\begin_layout Itemize
The second feature is AGP side band addressing (SBA).
 Side band addressing consists in 8 extra bus bits used as an address bus.
 Instead of multiplexing the bus bandwidth between adresses and data, the
 nominal AGP bandwidth can be dedicated to data only.
 This feature is transparent to the driver developer.
\end_layout

\begin_layout Itemize
The third feature is AGP Fast Writes (FW).
 Fast writes allow sending data to the graphics card directly, without having
 the card initiate a DMA.
 This feature is also transparent for the driver developer.
\end_layout

\begin_layout Standard
Keep in mind that these last two features are known to be unstable on a
 wide range of hardware, and oftentimes require chipset-specific hacks to
 work properly.
 Therefore it is advisable not to enable them.
 In fact, they are an extremely frequent cause for strange hardware errors
 on AGP cards.
\end_layout

\begin_layout Subparagraph*
PCI-X
\end_layout

\begin_layout Standard
PCI-X was developed as a faster PCI for server boards, and very few graphics
 peripherals exist in this format.
 It is not to be confused with PCI-Express, which sees real widespread usage.
\end_layout

\begin_layout Subparagraph*
PCI-Express (PCI-E)
\end_layout

\begin_layout Standard
PCI-Express is the new generation of PCI devices.
 It has more advantages than a simple improved PCI.
\end_layout

\begin_layout Standard
Finally, it is important to note that, depending on the architecture, the
 CPU-GPU communication does not always relies on a bus.
 This is especially common on embedded systems where the GPU and the CPU
 are on a single die.
 In that case the CPU can access the GPU registers directly.
\end_layout

\begin_layout Section
Virtual and Physical Memory
\begin_inset CommandInset label
LatexCommand label
name "sec:Virtual-and-Physical"

\end_inset


\end_layout

\begin_layout Standard
The term 
\begin_inset Quotes eld
\end_inset

memory
\begin_inset Quotes erd
\end_inset

 has to two main different acceptions: 
\end_layout

\begin_layout Itemize
Physical memory.
 Physical memory is real, hardware memory, as stored in the memory chips.
 
\end_layout

\begin_layout Itemize
Virtual memory.
 Virtual memory is a translation of physical memory addresses allowing user
 space applications to see their allocated chunks as if they were contiguous
 while they are fragmented and scattered on the chips.
\end_layout

\begin_layout Standard
In order to simplify programming, it is easier to handle contiguous memory
 areas.
 This is easy to achieve as long as only a small area is needed.
 But allocating a bigger memory chunk would require as much contiguous physical
 memory which is difficult if not impossible to achieve shortly after bootup
 because of memory fragmentation.
 Therefore, a mechanism is required to keep the appearance of a contiguous
 piece of memory to the application while using scattered pieces.
 
\end_layout

\begin_layout Standard
To achieve this, memory is split into pages.
 For the scope of this book, it is sufficient to say that a memory page
 is a collection contiguous bytes in physical memory
\begin_inset Foot
status open

\begin_layout Plain Layout
On x86 and x86-64, a page is usually 4096 bytes long, although different
 sizes are possible on other architectures or with huge pages.
\end_layout

\end_inset

In order to make a scattered list of physical pages seem contiguous in virtual
 space, a piece of hardware called MMU (memory mapping unit) converts virtual
 addresses (used in applications) into physical addresses (used for actually
 accessing memory) using a page table as shown on Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:MMU-and-IOMMU"

\end_inset

.
 In case a page does not exist in virtual space (and therefore not in the
 MMU table), the MMU is able to signal it, which provides the basic mechanism
 for reporting access to non-existent memory areas.
 This in turn is used by the system to implement advanced memory programming
 like swapping or on-the-fly page instantiations.
 As the MMU is only effective for CPU access to memory, virtual addresses
 are not relevant to the hardware since it is not able to match them to
 physical addresses.
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  }   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (CPU) {CPU};   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=of CPU] (GPU) {GPU}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=2cm of CPU] (mmu) {MMU};   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=2cm of GPU] (iommu) {IOMMU}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, left=1cm of mmu] (mmupt) {MMU page table};   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=1cm of iommu] (iommupt) {IOMMU page table}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width=5cm, below=2cm of mmu,  xshift=1.5cm] (memory) {Memory};
  
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (CPU.south)  -|  (mmu.north);	 
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (GPU.south) -|  (iommu.north);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (mmu.south)  ->  ++(0,-2) (memory);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (iommu.south)  ->  ++(0,-2) (memory);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (mmu)  ->  (mmupt);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (iommu)  -> (iommupt);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4,-1.5) {GPU Address};
\end_layout

\begin_layout Plain Layout


\backslash
node at (-1.5,-1.5) {Virtual Address};
\end_layout

\begin_layout Plain Layout


\backslash
node at (-1.5,-4.5) {Physical Address};
\end_layout

\begin_layout Plain Layout


\backslash
node at (4,-4.5) {Physical Address};
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:MMU-and-IOMMU"

\end_inset

MMU and IOMMU.
\end_layout

\end_inset


\begin_inset Note Note
status open

\begin_layout Plain Layout
XXX ajouter les tables de page à ce dessin
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
While the MMU only works for CPU accesses, it has an equivalent for peripherals:
 the IOMMU.
 As shown on figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:MMU-and-IOMMU"

\end_inset

, an IOMMU is the same as an MMU except that it virtualizes the address
 space of peripherals.
 The IOMMU can see various incarnations, either on the motherboard chipset
 (in which case it is shared between all peripherals) or on the graphics
 card itself (where it will be called AGP GART, PCI GART).
 The job of the IOMMU is to translate memory addresses from the peripherals
 into physical addresses.
 In particular, this allows 
\begin_inset Quotes eld
\end_inset

fooling
\begin_inset Quotes erd
\end_inset

 a device into restricting its DMAs to a given range of memory and it is
 required for better security and hardware virtualization.
\end_layout

\begin_layout Standard
A special case of IOMMU is the Linux swiotlb which allocates a contiguous
 piece of physical memory at boot (which makes it feasible to have a large
 contiguous physical allocation since there is no fragmentation yet) and
 uses it for DMA.
 As the memory is physically contiguous, no page translation is required
 and therefore a DMA can occur to and from this memory range.
 However, this means that this memory (64MB by default) is preallocated
 and will not be used for anything else.
\end_layout

\begin_layout Standard
AGP GART is another special case of IOMMU present with AGP graphics cards
 which exposes a single linear area to the card.
 In that case the IOMMU table is embedded in the AGP chipset, on the motherboard.
\begin_inset Note Note
status open

\begin_layout Plain Layout
Dire que c'est lineaire en memoire physique et virtu
\end_layout

\end_inset


\end_layout

\begin_layout Standard
Yet another special case of IOMMU is the PCI GART which allows exposing
 a chunk of system memory to the card.
 In that case the IOMMU table is embedded in the graphics card, and often
 the physical memory used does not need to be contiguous.
\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
http://images.google.fr/images?hl=fr&source=hp&q=page+table&btnG=Recherche+d'image
s&gbv=2&aq=f&oq=
\end_layout

\begin_layout Plain Layout
http://pages.cs.wisc.edu/~bart/537/lecturenotes/s16.html
\end_layout

\begin_layout Plain Layout
http://a.michelizza.free.fr/pmwiki.php?n=TutoOS.Mm3
\end_layout

\begin_layout Plain Layout
http://lwn.net/Articles/106177/
\end_layout

\begin_layout Plain Layout
http://www.vocw.edu.vn/content/m10106/latest/
\end_layout

\begin_layout Plain Layout
http://cs.nyu.edu/courses/spring05/G22.2250-001/lectures/lecture-08.html
\end_layout

\end_inset


\end_layout

\begin_layout Standard
Obviously, with so many different memory types, performance is not homogeneous;
 not all combination of accesses are fast, depending on whether they involve
 the CPU, the GPU, or bus transfers.
 Another issue which arises is memory coherence: how can one ensure that
 memory is coherent accross devices, in particular that data written by
 the CPU is availble to the GPU (or the opposite).
 These two issues are correlated, as higher performance usually means a
 lower level of memory coherence, and vice-versa.
\end_layout

\begin_layout Standard
As far as setting the memory caching parameters goes, there are two ways
 to set caching attributes on memory ranges:
\end_layout

\begin_layout Itemize
MTRRs.
 An MTRR (Memory Type Range Register) is a register describing attributes
 for a range of given physical memory.
 The number of MTRR depends on the system, but is very limited.
 Although this applies to a physical memory range, the effect works on the
 corresponding virtual memory pages.
 This for example makes it possible to map pages with a specific caching
 type.
\begin_inset Note Note
status open

\begin_layout Plain Layout
XXX des exemples
\end_layout

\end_inset


\end_layout

\begin_layout Itemize
PAT (Page Attribute Table) allows setting per-page memory attributes.
 However it is an extension only available on recent x86 processors.
\end_layout

\begin_layout Standard
On top of these, one can use explicit caching instructions on some architectures
, for example on x86 
\emph on
movntq
\emph default
 is an uncached mov instruction and 
\emph on
clflush
\emph default
 can selectively flush cache lines.
\end_layout

\begin_layout Standard
There are 3 caching modes, usable both through MTRR and PAT on system memory:
\end_layout

\begin_layout Itemize
UC (UnCached) memory is uncached.
 CPU read/writes to this area are uncached, and each memory write instruction
 triggers an actual immediate memory write.
 This is helpful to ensure that information has been actually written so
 as to avoid CPU/GPU race conditions.
\end_layout

\begin_layout Itemize
WC (Write Combine) memory is uncached, but CPU writes are combined together
 in order to improve the performance.
 This is useful to improve performance in situations where uncached memory
 is required, but where combining the writes together has no adverse effects.
\end_layout

\begin_layout Itemize
WB (Write Back) memory is cached.
 This is the default mode and leads to the best performance for CPU accesses.
 However this does not ensure that memory writes are propagated to central
 memory after a finite time.
\end_layout

\begin_layout Standard
Notice that these caching modes apply to the CPU only, the GPU accesses
 are not directly affected by the current caching mode.
 However, when the GPU has to access an area of memory which was previously
 filled by the CPU, uncached modes ensure that the memory writes are actually
 done, and are not pending sitting in a CPU cache.
 Another way to achieve the same effect is the use of cache flushing instruction
s present on some x86 processors (like cflush).
 However this is less portable than using the caching modes.
 Yet another (portable) way is the use of memory barriers, which ensures
 that pending memory writes have been committed to main memory before moving
 on.
\end_layout

\begin_layout Standard
Obviously with so many different caching modes, not all accesses have the
 same performance:
\end_layout

\begin_layout Itemize
When it comes to CPU access to system memory, uncached mode provides the
 worst performance, write back provides the best performance, and write
 combine is in between.
\end_layout

\begin_layout Itemize
When the CPU accesses the video memory from a discrete card, all accesses
 are extremely slow, be they reads or writes, as each access needs a cycle
 on the bus.
 Therefore it is not recommended to access large areas of VRAM with the
 CPU.
 Furthermore on some GPUs synchronizing is required or this could cause
 a GPU hang.
\end_layout

\begin_layout Itemize
Obviously the GPU accessing VRAM is extremely fast.
\end_layout

\begin_layout Itemize
GPU access to system ram is unaffected by the caching mode, but still has
 to go over the bus.
 This is the case of DMA transactions.
 As those happen asynchronously, they can be considered 
\begin_inset Quotes eld
\end_inset

free
\begin_inset Quotes erd
\end_inset

 from the viewpoint of the CPU, however there is a non-negligible setup
 cost involved for each DMA transaction.
 This is why, when transferring small amounts of memory, a DMA transaction
 is not always better than a direct CPU access.
\end_layout

\begin_layout Standard
Finally, one last important point to make about memory is the notion of
 memory barriers and write posting.
 In the case of a cached (Write Combine or Write Back) memory area, a memory
 barrier ensures that pending writes have actually been committed to memory.
 This is used, for example, before asking the GPU to read a given memory
 area.
 For I/O areas, a similar technique called write posting exists: it consists
 in doing a dummy read inside the I/O area which will, as a side effect,
 wait until pending writes have taken effect before completing.
\end_layout

\begin_layout Section
Anatomy of the Graphics Card
\end_layout

\begin_layout Standard
Today, a graphics card is basically a computer-in-the-computer.
 It is a complex beast with a dedicated processor on a separate card, and
 features its own computation units, its own bus, and its own memory.
 
\end_layout

\begin_layout Subsubsection*
Graphics Memory
\end_layout

\begin_layout Standard
The GPU's memory, which we will from now on refer to as video memory, can
 be either real, dedicated, on-card memory (in the case of a discrete card),
 or memory shared with the CPU (in the case of an integrated card).
 Notice that the case of shared memory has interesting implications, as
 it means that system to video memory copies can be virtually free if implemente
d properly; while the case of dedicated memory means that transfers back
 and forth will need to happen.
 
\end_layout

\begin_layout Standard
It is not uncommon for modern GPUs to feature a form of virtual memory as
 well, allowing to map different resources (real video memory of system
 memory) into the GPU address space.
 This is very similar to the CPU's virtual memory, but uses a completely
 separate hardware implementation.
 For example, older Radeon cards (actually since Rage 128) feature a number
 of surfaces which you can map into the GPU address space, each of which
 is a contiguous memory resource (video ram, AGP, PCI).
 Old Nvidia cards (everything up to NV40) have a similar concept based on
 objects which describe an area of memory which can then be bound to a given
 use.
 Recent cards (starting with NV50 and R800) let you build the address space
 page by page, with the ability of picking system and dedicated video memory
 pages at will.
 The similarity of these with a CPU virtual address space is very striking,
 in fact unmapped page access can be signaled to the system through an interrupt
 and acted upon in a video memory page fault handler.
 However, be careful playing with those as the implication here is that
 driver developers have to juggle with multiple address spaces from the
 CPU and GPU which are going to be fundamentally different.
\end_layout

\begin_layout Subsubsection*
Surfaces
\end_layout

\begin_layout Standard
Surfaces are the basic sources and targets for all rendering.
 Althought they can be called differenty (textures, render targets, buffers...)
 the basic idea is always the same.
 Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:The-layout-of"

\end_inset

 depicts the layout of a graphics surface.
 The surface width is rounded up to what we call the pitch because of hardware
 limitations (usually to the next multiple of some power of 2) and therefore
 there exists a dead zone of pixels which goes unused.
 The graphics surface has a number of characteristics: 
\end_layout

\begin_layout Itemize
The pixel format of the surface.
 A pixel color is represented memory by its red, green and blue components,
 plus an alpha component used as the opacity for blending.
 The number of bits for a whole pixel usually matches hardware sizes (8,16
 or 32 bits) but the repartition of the bits between the four components
 does not have to match those.
 The number of bits used for each pixels is referred to as bits per pixel,
 or 
\emph on
bpp
\emph default
.
 Common pixel formats include 888 RGBX, 8888 RGBA, 565 RGB, 5551, RGBA,
 4444 RGBA
\begin_inset Note Note
status open

\begin_layout Plain Layout
, YUV12, YUY16
\end_layout

\end_inset

.
 Notice that most cards today work natively in ABGR 8888.
\end_layout

\begin_layout Itemize
Width and height are the most obvious characteristics, and are given in
 pixels.
 
\end_layout

\begin_layout Itemize
The pitch is the width in bytes (not in pixels!) of the surface, including
 the dead zone pixels.
 The pitch is convenient for computing memory usages, for example the size
 of the surface should be computed by 
\begin_inset Formula $height\times pitch$
\end_inset

 and not 
\begin_inset Formula $height\times width\times bpp$
\end_inset

 in order to include the dead zone.
\end_layout

\begin_layout Standard
Notice that surfaces are not always stored linearly in video memory, in
 fact for performance reasons it is extremely common that they are not,
 as this improves the locality of the memory accesses when rendering.
 Such surfaces are called 
\emph on
tiled
\emph default
.
 The exact layout of a tiled surface is highly dependent on the hardware,
 but is usually a form of space-filling curve like the Z curve or Hilbert's
 curve.
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
hspace{-4cm}
\end_layout

\end_inset


\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick}, mylabel/.style={text width=7em, text centered}  }  
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
tikz{
\end_layout

\begin_layout Plain Layout


\backslash
draw[top color=white, bottom color=yellow!50, drop shadow,very thick, inner
 sep=1em] (2,2) rectangle (10,7);  
\end_layout

\begin_layout Plain Layout


\backslash
draw[pattern = north east lines]  (8.5,2) rectangle (10,7); 
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (2,7.5) -- +(6.5,0); 
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (1.5,2) -- +(0,5); 
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (2,1.5) -- +(8,0); 
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,8) {Surface width};
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,1) {Surface pitch};
\end_layout

\begin_layout Plain Layout


\backslash
node at (0,4.5) {Surface height};
\end_layout

\begin_layout Plain Layout


\backslash
node at (5.2,4.5) {Used pixels};
\end_layout

\begin_layout Plain Layout


\backslash
node at (9.2,4.8) {Dead};
\end_layout

\begin_layout Plain Layout


\backslash
node at (9.2,4.3) {zone};
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,0.5) { };
\end_layout

\begin_layout Plain Layout

} 
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:The-layout-of"

\end_inset

The layout of a surface.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Subsubsection*
2D engine
\end_layout

\begin_layout Standard
The 2D engine, or blitter, is the hardware used for 2D acceleration.
 Blitters have been one of the earliest form of graphics acceleration and
 are still extremely widespread today.
 Generally, a 2D engine is capable of the following operations:
\end_layout

\begin_layout Itemize
Blits.
 Blits are a copy of a memory rectangle from one place to another by the
 GPU.
 The source and destination can be either video or system memory.
\end_layout

\begin_layout Itemize
Solid fills.
 Solid fills consist in filling a rectangle memory area with a color.
 Note that this can also include the alpha channel.
\end_layout

\begin_layout Itemize
Alpha blits.
 Alpha blits use the alpha component of pixels from of a surface to achieve
 transparency [porter & duff].
\end_layout

\begin_layout Itemize
Stretched blits.
 
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
hspace{-2cm}
\end_layout

\end_inset


\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick}, mylabel/.style={text width=7em, text centered}  }
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
tikz{
\end_layout

\begin_layout Plain Layout

% Source
\end_layout

\begin_layout Plain Layout


\backslash
draw[top color=white, bottom color=yellow!50, drop shadow,very thick, inner
 sep=1em] (2,2) rectangle (8,6);
\end_layout

\begin_layout Plain Layout


\backslash
draw[pattern = north east lines] (7,2) rectangle (8,6);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4,7) {Blit width};
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (3,6.5) -- +(2,0);
\end_layout

\begin_layout Plain Layout


\backslash
node at (0,4.5) {Blit height};
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (1.5,3.5) -- +(0,2);
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (2,1.5) -- +(6,0);
\end_layout

\begin_layout Plain Layout


\backslash
node at (5,1) {Src pitch};
\end_layout

\begin_layout Plain Layout

% source pixels
\end_layout

\begin_layout Plain Layout


\backslash
draw  (3,3.5) rectangle (5,5.5);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4,4.5) {Src pixels};
\end_layout

\begin_layout Plain Layout

% Destination
\end_layout

\begin_layout Plain Layout


\backslash
draw[top color=white, bottom color=yellow!50, drop shadow,very thick, inner
 sep=1em] (9,2) rectangle (12,6);
\end_layout

\begin_layout Plain Layout


\backslash
draw[pattern = north east lines] (11.5,2) rectangle (12,6);
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (9,1.5) -- +(3,0);
\end_layout

\begin_layout Plain Layout


\backslash
node at (10.5,1) {Dst pitch};
\end_layout

\begin_layout Plain Layout

% destination pixels
\end_layout

\begin_layout Plain Layout


\backslash
draw  (9.2,2.5) rectangle (11.2,4.5);
\end_layout

\begin_layout Plain Layout


\backslash
node at (10.2,3.5) {Dst pixels};
\end_layout

\begin_layout Plain Layout

% relier les zones src/dst de copie
\end_layout

\begin_layout Plain Layout


\backslash
draw[-,style=dashed] (9.2,2.5) -- (3,3.5);
\end_layout

\begin_layout Plain Layout


\backslash
draw[-,style=dashed] (11.2,2.5) -- (5,3.5);
\end_layout

\begin_layout Plain Layout


\backslash
draw[-,style=dashed] (11.2,4.5) -- (5,5.5);
\end_layout

\begin_layout Plain Layout


\backslash
draw[-,style=dashed] (9.2,4.5) -- (3,5.5);
\end_layout

\begin_layout Plain Layout

% faux noeud pour pas que la légende soit collée
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,0.5) { };
\end_layout

\begin_layout Plain Layout

}
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:Blitting-between-two"

\end_inset

Blitting between two different surfaces.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Blitting-between-two"

\end_inset

 shows an example of blitting a rectangle between two different surfaces.
 This operation is defined by the following parameters: the source and destinati
on coordinates, the source and destination pitches, and the blit width and
 height.
 However, this is only 2D coordinates, no perspective is possible
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
hspace{-4cm}
\end_layout

\end_inset


\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick}, mylabel/.style={text width=7em, text centered}  }  
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
tikz{
\end_layout

\begin_layout Plain Layout


\backslash
draw[top color=white, bottom color=yellow!50, drop shadow,very thick, inner
 sep=1em] (2,2) rectangle (10,7);  
\end_layout

\begin_layout Plain Layout


\backslash
draw[pattern = north east lines]  (8.5,2) rectangle (10,7); 
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (2,7.5) -- +(6.5,0); 
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (1.5,2) -- +(0,5); 
\end_layout

\begin_layout Plain Layout


\backslash
draw[<->] (2,1.5) -- +(8,0); 
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,8) {Surface width};
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,1) {Surface pitch};
\end_layout

\begin_layout Plain Layout


\backslash
node at (0,4.5) {Surface height};
\end_layout

\begin_layout Plain Layout

% source pixels
\end_layout

\begin_layout Plain Layout


\backslash
draw  (4,3.5) rectangle (8,6.5);
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,6) {Src pixels};
\end_layout

\begin_layout Plain Layout

% destination pixels
\end_layout

\begin_layout Plain Layout


\backslash
draw  (2.5,2.5) rectangle (6.5,5.5);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4,3) {Dst pixels};
\end_layout

\begin_layout Plain Layout

% faux noeud pour pas que la légende soit collée
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,0.5) { };
\end_layout

\begin_layout Plain Layout

} 
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:Overlapping-blit-inside"

\end_inset

Overlapping blit inside a surface.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
When a blit happens between two overlapping source and destination surfaces,
 the semantics of the copy is not trivially defined, especially if one considers
 that what happens for a blit is not a simple move of a rectangle, but is
 done pixel-by-pixel at the core.
 As seen on Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Overlapping-blit-inside"

\end_inset

, if one does a line-by-line copy top to bottom, some source pixels will
 be modified as a side effect.
 Therefore, the notion of blitting direction was introduced into the blitters.
 In this case, for a proper copy a bottom to top copy is required.
 Some cards will determine the blitting direction automatically according
 to surface overlap (for example nvidia GPUs), and others will not, in which
 case this has to be handled by the driver.
\end_layout

\begin_layout Standard
Finally, keep in mind that not all current graphics accelerators feature
 a 2D engine.
 Since 3D acceleration is technically a super-set of 2D acceleration, it
 is possible to implement 2D acceleration using the 3D engine (and this
 idea is one of the core ideas behind the Gallium 3D design, which will
 be detailed in Chapter 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Gallium-3D"

\end_inset

).
 And indeed some drivers use the 3D engine to implement 2D which allows
 GPU makers to completely part with the transistors otherwise dedicated
 to it.
 Yet some other cards do not dedicate the transistors, but microprogram
 2D operations on top of 3D operations inside the GPU (this is the case
 for nVidia cards since nv10 and up to nv50, and for the Radeon R600 series
 which have an optional firmware that implements 2D on top of 3D).
 This sometimes has an impact on mixing 2D and 3D operations since those
 now share hardware units.
\end_layout

\begin_layout Subsubsection*
3D engine
\end_layout

\begin_layout Standard
A 3D engine is also called 
\begin_inset Quotes eld
\end_inset

rasterization pipeline
\begin_inset Quotes erd
\end_inset

, because it contains a series of stages which exchange data in a pipeline
 (1-directional) fashion.
\end_layout

\begin_layout Standard
vertex -> geom -> fragment
\end_layout

\begin_layout Standard
graphics fifo
\end_layout

\begin_layout Standard
DMA
\end_layout

\begin_layout Standard
http://www.x.org/wiki/Development/Documentation/HowVideoCardsWork
\end_layout

\begin_layout Standard
tiled textures
\end_layout

\begin_layout Subsubsection*
Overlays and hardware sprites
\end_layout

\begin_layout Subsubsection*
Scanout
\end_layout

\begin_layout Standard
The last stage of a graphics display is presenting the information onto
 a display device, or screen.
\end_layout

\begin_layout Standard
Display devices are the last link of the graphics chain.
 They are charged with presenting the pictures to the user.
\end_layout

\begin_layout Standard
digital vs analog signal
\end_layout

\begin_layout Standard
hsync, vsync
\end_layout

\begin_layout Standard
sync on green
\end_layout

\begin_layout Standard
Connectors and encoders: CRTC,TMDS, LVDS, DVI-I, DVI-A, DVI-D, VGA (D-SUB
 15 is the proper name)
\end_layout

\begin_layout Section
Programming the card 
\end_layout

\begin_layout Standard
Each PCI card exposes a number of PCI resources; 
\emph on
lspci -v
\emph default
 lists these resources.
 These can be, but are not limited to, BIOSes, MMIO ranges, video memory
 (or only some part of it).
 As the total PCI resource size is limited, oftentimes a card will only
 expose part of its video memory as a resource, and the only way to access
 the remaining memory is through DMA from other, reachable areas (in a way
 similar to bounce pages).
 This is increasingly common as the video memory sizes keep growing while
 the PCI resource space stays limited.
\end_layout

\begin_layout Subparagraph*
MMIO
\end_layout

\begin_layout Standard
MMIO is the most direct access to the card.
 A range of addresses is exposed to the CPU, where each write goes directly
 to the GPU.
 This allows the simplest for of communication of commands from the CPU
 to the GPU.
 This type of programming is synchronous; writes are done by the CPU and
 executed on the GPU in a lockstep fashion.
 This leads to sub-par performance because each access turns into a packet
 on the bus and because the CPU has to wait for previous GPU commands to
 complete before submitting subsequent commands.
 For this reason MMIO is only used in the non-performance critical paths
 of today's drivers.
\end_layout

\begin_layout Subparagraph*
DMA
\end_layout

\begin_layout Standard
A direct memory access (DMA) is the use by a peripheral of the bus mastering
 feature of the bus.
 This allows one peripheral to talk directly to another, without intervention
 from the CPU.
 In the graphics card case, the two most common uses of DMAs are:
\end_layout

\begin_layout Itemize
Transfers by the GPU to and from system memory (for reading textures and
 writing buffers).
 This allows implementing things like texturing over AGP or PCI, and hardware-ac
celerated texture transfers.
\end_layout

\begin_layout Itemize
The implementation of command FIFO.
 As MMIO between the CPU and GPU is synchronous and graphics drivers inherently
 use a lot of I/O, a faster means of communicating with the card is required.
 The command FIFO is a piece of memory (either system memory or more rarely
 video memory) shared between the graphics card and the CPU, where the CPU
 places command for later execution by the GPU.
 Then the GPU reads the FIFO asynchronously using DMA and executes the commands.
 This model allows asynchronous execution of the CPU and GPU command flows
 and thus leads to higher performance.
\end_layout

\begin_layout Subsubsection*
Interrupts
\end_layout

\begin_layout Standard
Interrupts are a way for hardware peripherals in general, and GPUs in particular
, to signal events to the CPU.
 Usage examples for interrupts include signaling completion of a graphics
 command, signaling a vertical blanking event, reporting a GPU error, ...
 When an interrupt is raised by the peripheral, the CPU executes a small
 routine called an interrupt handler, which preempts other current executions.
 There is a maximum execution time for an interrupt handler, so the drivers
 have to keep it short (not more than a few microseconds).
 In order to execute more code, the common solution is to schedule a tasklet
 from the interrupt handler.
\end_layout

\begin_layout Section
Graphics Hardware Examples
\end_layout

\begin_layout Paragraph*
ATI
\end_layout

\begin_layout Standard
Shader engine 4+1
\end_layout

\begin_layout Paragraph*
Nvidia
\end_layout

\begin_layout Standard
NVidia hardware has multiple specificities compared to other architectures.
 The first one is the availability of multiple contexts, which is implemented
 using multiple command fifos (similar to what some high-end infiniband
 networking cards do) and a context switching mechanism to commute between
 those fifos.
 A small firmware is used for context switches between contexts, which is
 responsible for saving the graphics card state to a portion of memory and
 restoring another context.
 A scheduling system using the round robin algorithm handles the selection
 of the contexts, and the timeslice is programmable.
 
\end_layout

\begin_layout Standard
The second specificity is the notion of graphics objects.
 Nvidia hardware features two levels of GPU access: the first one is at
 the raw level and is used for context switches, an the second one is the
 graphics objects which microprogram the raw level to achieve high level
 functionality (for example 2D or 3D acceleration).
\end_layout

\begin_layout Standard
Shader engine nv40/nv50
\end_layout

\begin_layout Standard
http://nouveau.freedesktop.org/wiki/HonzaHavlicek
\end_layout

\begin_layout Paragraph*
SGX
\end_layout

\begin_layout Standard
Tiling architecture
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
There are multiple memory domains in a computer, and they are not coherent.
\end_layout

\begin_layout Itemize
A GPU is a completely separate computer with its own bus, address space
 and computational units.
\end_layout

\begin_layout Itemize
Communication between the CPU and GPU is achieved over a bus, which has
 non-trivial performance implications.
\end_layout

\begin_layout Itemize
GPUs can be programmed using two modes: MMIO and command FIFOs.
\end_layout

\begin_layout Itemize
There is no standard output method for display devices.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
The Big Picture
\begin_inset CommandInset label
LatexCommand label
name "cha:The-Big-Picture"

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
X, how it works (encapsulating) with indirect (glx) 3D with kernel FB +
 picture.
 This is how utah-glx used to work.
\end_layout

\begin_layout Plain Layout
DRI : bypassing encapsulation for performance-critical operations with kernel
 FB + picture
\end_layout

\end_inset


\end_layout

\begin_layout Standard
The Linux graphics stack has seen numerous evolutions over the years.
 The purpose of this section is to detail that history, as well as the justifica
tion behind the changes in order to better motivate the current design.
\end_layout

\begin_layout Section
The X11 infrastructure
\end_layout

\begin_layout Standard
\begin_inset Float figure
placement tbh
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  }
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (application) {Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=of application] (xlib) {Xlib};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (application.south)  ->  (xlib.north);
\end_layout

\begin_layout Plain Layout


\backslash
draw  (1,-1) rectangle (6,-5.2);
\end_layout

\begin_layout Plain Layout


\backslash
node at (3.5,-1.2) {X server};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=2cm of xlib] (xserver) {DIX};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (xlib.east)  ->  (xserver.west);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=1cm of xserver] (driver) {DDX (Driver)}; 
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (xserver.south)  ->  (driver.north);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=1cm of driver] (hardware) {Hardware}; 
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (driver.south)  ->  (hardware.north);
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
The X11 architecture.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
DIX (Device-Independent X), DDX (Device-Dependent X), 
\end_layout

\begin_layout Standard
modules
\end_layout

\begin_layout Standard
Xlib
\end_layout

\begin_layout Standard
socket
\end_layout

\begin_layout Standard
X protocol 
\end_layout

\begin_layout Standard
X extensions
\end_layout

\begin_layout Standard
shm -> shared memory for transport
\end_layout

\begin_layout Standard
XCB -> asynchronous
\end_layout

\begin_layout Standard
Another notable X extension is Xv, which will be discussed in further detail
 in the video decoding chapter.
\end_layout

\begin_layout Section
The DRI/DRM infrastructure
\end_layout

\begin_layout Standard
Initially (when Linux first supported graphics hardware acceleration), only
 a single piece of code would access the graphics card directly: the XFree86
 server.
 The design was as follows: by running with super-user privileges, the XFree86
 server could access the card from user space and did not require kernel
 support to implement 2D acceleration.
 The advantage of such a design was its simplicity, and the fact that the
 XFree86 server could be easily ported from one operating system to another
 since it required no kernel component.
 For years this was the most widespread X server design (although there
 were notable exceptions, like XSun which implemented modesetting in the
 kernel for some drivers).
\end_layout

\begin_layout Standard
Later on, Utah-GLX, the first hardware-independent 3D accelerated design,
 came to Linux.
 Utah-GLX basically consists in an additional user space 3D driver implementing
 GLX, and directly accesses the graphics hardware from user space, in a
 way similar to the 2D driver.
 In a time where the 3D hardware was clearly separated from 2D (because
 the functionality used for 2D and 3D was completely different, or because
 the 3D card was a completely separate card, à la 3Dfx), it made sense to
 have a completely separate driver.
 Furthermore, direct access to the hardware from user space was the simplest
 approach and the shortest road to getting 3D acceleration going under Linux.
\end_layout

\begin_layout Standard
At the same time, framebuffer drivers (which will be detailed in Chapter
 
\begin_inset CommandInset ref
LatexCommand ref
reference "cha:Framebuffer-Drivers"

\end_inset

) were getting increasingly widespread, and represented another component
 that could simultaneously access the graphics hardware directly.
 To avoid potential conflicts between the framebuffer and XFree86 drivers,
 it was decided that VT switches would emit a signal to the X server telling
 it to save the graphics hardware state.
 Asking each driver to save its complete GPU state on VT switches made the
 drivers more fragile, and life became more difficult for developers who
 suddenly faced bug-prone interaction between different drivers.
\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
aide à faire des figures : http://www.texample.net/tikz/examples/
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Float figure
placement H
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  }
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (x11application) {X11 Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of x11application] (glapplication) {OpenGL Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of glapplication] (fbapplication) {Framebuffer Applicati
on};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 6cm, below=1cm of x11application, xshift = 1.7cm]
 (xorg) {XFree86};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (x11application.south)  -> ++(0,-1)  (xorg);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glapplication.south)  -> ++(0,-1) (xorg);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = of xorg, xshift=-2cm] (2ddriver) {2D Driver};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow]  (xorg.south) ++ (-2,0) ->  ++(0,-1) (2ddriver);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = of xorg, xshift= 2cm] (glxdriver) {Utah GLX driver};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (xorg.south) ++(2,0) -> ++(0,-1) (glxdriver);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 12cm , below=3cm of 2ddriver, xshift=5cm] (hardware)
 {Graphics Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-5.2) -- (11,-5.2);
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-7.2) -- (11,-7.2);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4.6,-1) {GLX};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-5) {User Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-7) {Kernel Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-7.5) {Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glxdriver.south)  -> ++(0,-3.0) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=5.1cm of fbapplication] (fbdriver) {FB driver}; 
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fbapplication)  ->  (fbdriver);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fbdriver.south)  ->  ++(0,-1) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (2ddriver.south)  -> ++(0,-3) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:Early-implementation-of"

\end_inset

Early implementation of the Linux graphics stack using Utah-GLX.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
Obviously, this model had drawbacks.
 First, it required that unprivileged user space applications be allowed
 access the graphics hardware for 3D.
 Second, as can be seen on Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Early-implementation-of"

\end_inset

 all GL acceleration had to be indirect through the X protocol, which would
 slow it down.
 Because of growing concerns about the security in Linux and performance
 shortcomings, another model was required.
\end_layout

\begin_layout Standard
To address the reliability and security concerns with the Utah-GLX model,
 the DRI model was put together; it was used in both XFree86 and its successor,
 X.Org.
 This model relies on an additional kernel component whose duty is to check
 the correctness of the 3D command stream, security-wise.
 The main change is now that instead of accessing the card directly, the
 unprivileged OpenGL application would submit command buffers to the kernel,
 which would check them for security and then pass them to the hardware
 for execution.
 The advantage of this model is that trusting user space is no longer required.
 Notice that although this would have been possible, the 2D command stream
 from XFree86 still did not go through the DRM, and therefore the X server
 still required super-user privileges.
\end_layout

\begin_layout Standard
\begin_inset Float figure
placement H
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  }
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (x11application) {X11 Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of x11application] (glapplication) {OpenGL Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of glapplication] (fbapplication) {Framebuffer Applicati
on};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 6cm, below=1cm of x11application, xshift = 1.7cm]
 (xorg) {X.Org};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (x11application.south)  -> ++(0,-1)  (xorg);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glapplication.south)  -> ++(0,-1) (xorg);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = of xorg, xshift=-2cm] (2ddriver) {2D Driver};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow]  (xorg.south) ++ (-2,0) ->  ++(0,-1) (2ddriver);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = of xorg, xshift= 2cm] (glxdriver) {OpenGL DRI driver};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glapplication.south) ++(1.3,0) -> ++(0,-3.1) (glxdriver);
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,-2.1) {DRI};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = 0.9cm of glxdriver] (drm) {DRM};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glxdriver.south) -> ++(0,-0.9) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 12cm , below=3cm of 2ddriver, xshift=5cm] (hardware)
 {Graphics Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-5.2) -- (11,-5.2);
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-7.2) -- (11,-7.2);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4.6,-1) {GLX};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-5) {User Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-7) {Kernel Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-7.5) {Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fbapplication)  ->  ++(0,-5.65) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (2ddriver.south)  -> ++(0,-3) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (drm.south)  -> ++(0,-1.0) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=5.1cm of fbapplication] (fbdriver) {FB driver}; 
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fbapplication)  ->  (fbdriver);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fbdriver.south)  ->  ++(0,-1) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
The old picture of the Linux graphics stack.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
The current stack evolved from a new set of needs.
 First, requiring the X server to have super-user has always had serious
 security implications.
 Second, with the previous design different drivers were touching a single
 piece of hardware, which would often cause issues.
 In order to resolve this the key is two-fold: first, merge the kernel framebuff
er functionality into the DRM module and second, have X.Org access the graphics
 card through the DRM module and run unprivileged.
 This is called Kernel Modesetting (KMS); in this model the DRM module is
 now responsible for providing modesetting services both as a framebuffer
 driver and to X.Org.
\end_layout

\begin_layout Standard
\begin_inset Float figure
placement H
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  }
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (x11application) {X11 Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of x11application] (glapplication) {OpenGL Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of glapplication] (fbapplication) {Framebuffer Applicati
on};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 6cm, below=1cm of x11application, xshift = 1.7cm]
 (xorg) {X.Org};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (x11application.south)  -> ++(0,-1)  (xorg);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glapplication.south)  -> ++(0,-1) (xorg);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = of xorg, xshift=-2cm] (2ddriver) {2D Driver};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow]  (xorg.south) ++ (-2,0) ->  ++(0,-1) (2ddriver);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below = of xorg, xshift= 2cm] (glxdriver) {OpenGL DRI driver};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (xorg.south) ++(1,0) -> ++(0,-1) (glxdriver);
\end_layout

\begin_layout Plain Layout


\backslash
node at (3.5,-3.1) {AIGLX};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glapplication.south) ++(1.3,0) -> ++(0,-3.1) (glxdriver);
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,-2.1) {DRI};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 12cm, below = 0.9cm of glxdriver, xshift = 1cm]
 (drm) {DRM};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glxdriver.south) -> ++(0,-0.9) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 12cm , below=3cm of 2ddriver, xshift=5cm] (hardware)
 {Graphics Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-5.2) -- (11,-5.2);
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-7.2) -- (11,-7.2);
\end_layout

\begin_layout Plain Layout


\backslash
node at (4.6,-1) {GLX};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-5) {User Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-7) {Kernel Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (10,-7.5) {Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fbapplication)  ->  ++(0,-5.65) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (2ddriver.south)  -> ++(0,-0.9) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (drm.south)  -> ++(0,-1.0) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
The new picture of the Linux graphics stack.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
VT switches
\end_layout

\begin_layout Standard
http://dri.sourceforge.net/doc/dri_data_flow.html
\end_layout

\begin_layout Standard
http://dri.sourceforge.net/doc/dri_control_flow.html
\end_layout

\begin_layout Standard
http://nouveau.freedesktop.org/wiki/GraphicStackOverview
\end_layout

\begin_layout Standard
http://people.freedesktop.org/~ajax/dri-explanation.txt
\end_layout

\begin_layout Standard
http://dri.sourceforge.net/doc/DRIintro.html
\end_layout

\begin_layout Standard
http://jonsmirl.googlepages.com/graphics.html
\end_layout

\begin_layout Standard
http://wiki.x.org/wiki/Development/Documentation/Glossary
\end_layout

\begin_layout Standard
http://mjules.littleboboy.net/carnet/index.php?post/2006/11/15/89-comment-marche-x1
1-xorg-et-toute-la-clique-5-partie
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Applications communicate with X.Org through a specific library which encapsulates
 drawing calls.
\end_layout

\begin_layout Itemize
The current DRI design has evolved over time in a number of significant
 steps.
\end_layout

\begin_layout Itemize
In a modern stack, all graphics hardware activity is moderated by a kernel
 module, the DRM.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Framebuffer Drivers
\begin_inset CommandInset label
LatexCommand label
name "cha:Framebuffer-Drivers"

\end_inset


\end_layout

\begin_layout Standard
Framebuffer drivers are the simplest form of graphics drivers under Linux.
 Kernel modesetting DRM drivers are still a relevant option if the only
 thing you are after is a basic two-dimensional display.
 Furthermore, when implementing framebuffer acceleration on top of a kernel
 modesetting DRM driver, the same callbacks need to be filled.
 A framebuffer driver implements little functionality, and is therefore
 extremely easy to create.
 Such a driver is especially interesting for embedded systems, where memory
 footprint is essential, or when the intended applications do not require
 advanced graphics acceleration.
\end_layout

\begin_layout Standard
At the core, a framebuffer driver implements the following functionality:
\end_layout

\begin_layout Itemize
Modesetting.
 Modesetting consists in configuring video mode to get a picture on the
 screen.
 This includes choosing the video resolution and refresh rates.
\end_layout

\begin_layout Itemize
Optional 2d acceleration.
 Framebuffer drivers can provide basic 2D acceleration used to accelerate
 the linux console.
 These operations include copies in video memory and solid fills.
 Acceleration is sometimes made available to user space through a hook (the
 user space must then program card specific MMIO registers, and this requires
 root privileges).
\end_layout

\begin_layout Standard
By implementing only these two pieces, framebuffer drivers remain the simplest
 and most amenable form of linux graphics drivers.
 Framebuffer drivers do not always rely on a specific card model (like nvidia
 or ATI).
 Drivers on top of vesa, EFI or Openfirmware exist; instead of accessing
 the graphics hardware directly, these drivers call firmware functions to
 achieve modesetting and 2D acceleration.
 
\end_layout

\begin_layout Standard
http://www.linux-fbdev.org/HOWTO/index.html
\end_layout

\begin_layout Section
Creating a framebuffer driver
\end_layout

\begin_layout Standard
struct platform_driver with a probe function
\end_layout

\begin_layout Standard
probe function in charge of creating the fb_info struct and register_framebuffer
() on it.
\end_layout

\begin_layout Section
Framebuffer operations
\end_layout

\begin_layout Standard
The framebuffer operations structure is how non-modesetting framebuffer
 callbacks are set.
 Different callbacks can be set depending on what functionality you wish
 to implement, like fills, copies, or cursor handling.
 By filling struct fb_ops callbacks, one can implement the following functions:
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green, unsigned
 blue, unsigned transp, struct fb_info *info);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* set color register */ 
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* set color registers in batch */ 
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

int (*fb_blank)(int blank, struct fb_info *info);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* blank display */ 
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

int (*fb_pan_display)(struct fb_var_screeninfo *var, struct fb_info *info);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* pan display */
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

void (*fb_fillrect) (struct fb_info *info, const struct fb_fillrect *rect);
 
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* Draws a rectangle */
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

void (*fb_copyarea) (struct fb_info *info, const struct fb_copyarea *region);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* Copy data from area to another */
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

void (*fb_imageblit) (struct fb_info *info, const struct fb_image *image);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* Draws a image to the display */ 
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

int (*fb_cursor) (struct fb_info *info, struct fb_cursor *cursor);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* Draws cursor */ 
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

void (*fb_rotate)(struct fb_info *info, int angle);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* Rotates the display */ 
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{lstlisting}{}
\end_layout

\begin_layout Plain Layout

int (*fb_sync)(struct fb_info *info);
\end_layout

\begin_layout Plain Layout


\backslash
end{lstlisting}{}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
/* wait for blit idle, optional */ 
\end_layout

\begin_layout Standard
Note that common framebuffer functions (cfb) are available if you do not
 want to implement everything for your device specifically.
 These functions are cfb_fillrect, cfb_copyarea and cfb_imageblit and will
 perform the corresponding function in a generic, unoptimized fashion using
 the CPU.
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Framebuffer drivers are the simplest form of linux graphics driver, requiring
 little implementation work.
\end_layout

\begin_layout Itemize
Framebuffer drivers deliver a low memory footprint and thus are useful for
 embedded devices.
\end_layout

\begin_layout Itemize
Implementing acceleration is optional as software fallback functions exist.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
The DRM Kernel Module
\begin_inset CommandInset label
LatexCommand label
name "cha:The-DRM-Kernel"

\end_inset


\end_layout

\begin_layout Standard
The use of a kernel module is a requirement in a complex world.
 The kernel module, or DRM, has multiple purposes:
\end_layout

\begin_layout Itemize
Share the rendering hardware between multiple user space components, and
 arbitrate access.
\end_layout

\begin_layout Itemize
Enforce security by preventing applications from performing DMA to arbitrary
 memory regions, and more generally programming the card in any way that
 could result in a security hole.
\end_layout

\begin_layout Itemize
Manage the memory of the card, by providing video memory allocation functionalit
y to user space.
\end_layout

\begin_layout Itemize
More recently, DRM was improve to achieve modesetting.
 This simplifies the situation where both the DRM and the framebuffer driver
 access the card by removing the framebuffer driver and implementing in
 the DRM.
\end_layout

\begin_layout Itemize
Put critical initialization of the card in the kernel, for example by uploading
 firmwares or setting up DMA areas.
 
\end_layout

\begin_layout Standard
Kernel module (DRM)
\end_layout

\begin_layout Standard
Global DRI/DRM user space/kernel scheme (figure with libdrm - drm - entry
 points - multiple user space apps)
\end_layout

\begin_layout Standard
\begin_inset Float figure
placement H
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  }
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (xorg) {X.Org};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, right=0.5cm of xorg] (glapplication) {OpenGL Application};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 6cm, below= of xorg, xshift = 2.2cm] (libdrm) {libdrm};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (xorg.south)  -> ++(0,-1)  (libdrm);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (glapplication.south)  -> ++(0,-1) (libdrm);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 6cm, below= of libdrm] (drm) {drm};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (libdrm.south)  -> ++(0,-1) (drm);
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, text width = 6cm, below= of drm] (hardware) {Graphics Hardware};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (drm.south)  -> ++(0,-1.0) (hardware);
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-3.2) -- (9,-3.2);
\end_layout

\begin_layout Plain Layout


\backslash
draw [thick, dotted] (-1.8,-5.2) -- (9,-5.2);
\end_layout

\begin_layout Plain Layout


\backslash
node at (8,-3) {User Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (8,-5) {Kernel Space};
\end_layout

\begin_layout Plain Layout


\backslash
node at (8,-5.5) {Hardware};
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
Accessing the DRM through libdrm.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
When designing a Linux graphics driver aiming for more than simple framebuffer
 support, a DRM component is the first thing to do.
 One should derive a design that is both efficient and enforces security.
 The DRI/DRM scheme can be implemented in different ways and the interface
 is indeed entirely card-specific.
 Do not always follow the existing models that other drivers use, innovate!
\end_layout

\begin_layout Section
Hardware sharing
\end_layout

\begin_layout Standard
Multiplexing of the card command fifo - For cards which only feature a single
 hardware command submission fifo, it has to be shared between multiple
 user space components.
 In that case, this is achieved by the DRM module.
\end_layout

\begin_layout Standard
Prevent simultaneous access to the same hw
\end_layout

\begin_layout Section
Security
\end_layout

\begin_layout Standard
Prevent arbitrary DMAs to memory.
 IF the hardware does not feature memory protection, you have to check the
 command stream before submitting it to the GPU.
\end_layout

\begin_layout Section
Memory management
\end_layout

\begin_layout Section
Modesetting
\end_layout

\begin_layout Standard
Modesetting is the act of setting a mode on the card to display.
 This can range from extremely simple procedures (calling a VGA interrupt
 or VESA call is a basic form of modesetting) to directly programming the
 card registers (which brings along the advantage of not needing to rely
 on a VGA or VESA layer).
 Historically, this was achieved in user space by the DDX.
 
\end_layout

\begin_layout Standard
However, these days it makes more sense to put it in the kernel once and
 for all, and share it between different GPU users (framebuffer drivers,
 DDXes, EGL stacks...).
 This extension to modesetting is called kernel modesetting (also known
 as KMS).
 A number of concepts are used by the modesetting interface (those are inherited
 from the Randr 1.2 specification).
\end_layout

\begin_layout Subsubsection*
Crtc
\end_layout

\begin_layout Standard
Crtc is in charge of reading the framebuffer memory and routes the data
 to an encoder
\end_layout

\begin_layout Subsubsection*
Encoder
\end_layout

\begin_layout Standard
Encoder encodes the pixel data for a connector
\end_layout

\begin_layout Subsubsection*
Connector
\end_layout

\begin_layout Standard
The connector is the name physical output on the card (DVI, Dsub, Svideo...).
 Notice that connectors can get their data from multiple encoders (for example
 DVI-I which can feed both analog and digital signals)
\end_layout

\begin_layout Standard
Also, on embedded or old hardware, it is common to have encoders and connectors
 merged for simplicity/power efficiency reasons.
\end_layout

\begin_layout Standard
+++ Ajouter ici un schema crtc-encoder-connector
\end_layout

\begin_layout Section
libdrm
\end_layout

\begin_layout Standard
libdrm is a small (but growing) component that interfaces between user space
 and the DRM module, and allows calling into the entry points.
 
\end_layout

\begin_layout Standard
Obviously security should not rely on components from libdrm because it
 is an unprivileged user space component
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
The DRM manages all graphics activity in a modern linux graphics stack.
\end_layout

\begin_layout Itemize
It is the only trusted piece of the stack and is responsible for security.
 Therefore it shall not trust the other components.
\end_layout

\begin_layout Itemize
It provides basic graphics functionality: modesetting, framebuffer driver,
 memory management.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
X.Org Drivers
\begin_inset CommandInset label
LatexCommand label
name "cha:X.Org-Drivers"

\end_inset


\end_layout

\begin_layout Standard
This chapter covers the implementation of a 2D acceleration inside X.Org.
\end_layout

\begin_layout Standard
There are multiple ways to implement a 2D X.Org driver: ShadowFB, XAA, EXA.
 Another simple way of implementing X.Org support is through the FBDev module.
 This module implements X.Org on top of an existing, in-kernel framebuffer
 driver.
\end_layout

\begin_layout Standard
http://www.x.org/wiki/DriverDevelopment
\end_layout

\begin_layout Section
Initializing a driver
\end_layout

\begin_layout Section
ShadowFB acceleration
\end_layout

\begin_layout Standard
ShadowFB provides no acceleration proper, a copy of the framebuffer is kept
 in system memory.
 The driver implements a single hook that copies graphics from system to
 video memory.
 This can be implemented using either a DMA copy, or a CPU copy (depending
 on the hardware and copy size, either can be better).
\end_layout

\begin_layout Standard
Despite the name, shadowFB is not to be confused with the kernel framebuffer
 drivers.
\end_layout

\begin_layout Standard
Although ShadowFB is a very basic design, it can result in a more efficient
 and responsive desktop than an incomplete implementation of EXA.
\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
Insérer une image avec la propagation shadowfb
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick}, mylabel/.style={text width=7em, text centered}  }  
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
tikz{
\end_layout

\begin_layout Plain Layout


\backslash
draw[top color=white, bottom color=yellow!50, drop shadow,very thick, inner
 sep=1em] (0,2) rectangle (5,6);  
\end_layout

\begin_layout Plain Layout


\backslash
draw[top color=white, bottom color=yellow!50, drop shadow,very thick, inner
 sep=1em] (6,2) rectangle (11,6);
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[<->] (2,7.5) -- +(6.5,0); 
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[<->] (1.5,2) -- +(0,5); 
\end_layout

\begin_layout Plain Layout

%
\backslash
draw[<->] (2,1.5) -- +(8,0); 
\end_layout

\begin_layout Plain Layout


\backslash
node at (2.5,1.5) {Shadow surface};
\end_layout

\begin_layout Plain Layout


\backslash
node at (8.5,1.5) {Video ram surface};
\end_layout

\begin_layout Plain Layout

% source pixels
\end_layout

\begin_layout Plain Layout


\backslash
draw  (2,2.5) rectangle (4,4);
\end_layout

\begin_layout Plain Layout


\backslash
node at (3,3) {Dirty pixels};
\end_layout

\begin_layout Plain Layout

% destination pixels
\end_layout

\begin_layout Plain Layout


\backslash
draw  (8,2.5) rectangle (10,4);
\end_layout

\begin_layout Plain Layout


\backslash
node at (9,3) {Dst pixels};
\end_layout

\begin_layout Plain Layout

% fleches de copie
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (3,3.25) -- +(6,0); 
\end_layout

\begin_layout Plain Layout

% faux noeud pour pas que la légende soit collée
\end_layout

\begin_layout Plain Layout


\backslash
node at (6,0.5) { };
\end_layout

\begin_layout Plain Layout

} 
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
Shadowfb acceleration.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Section
XAA acceleration
\end_layout

\begin_layout Standard
Scanline based acceleration
\end_layout

\begin_layout Standard
Offscreen area, same pitch as the screen
\end_layout

\begin_layout Section
EXA acceleration
\end_layout

\begin_layout Standard
Adapted from KAA from Kdrive
\end_layout

\begin_layout Standard
Simple interface : Prepare/Act/Finish for each acceleration function
\end_layout

\begin_layout Standard
Solid - fill an area with a solid color (RGBA)
\end_layout

\begin_layout Standard
Copy - copies a rectangle area from and to video memory
\end_layout

\begin_layout Standard
Composite - optional interface used to achieve composite operations like
 blending.
 This allows accelerating 2D desktop effects like blending, scaling, operations
 with masks...
\end_layout

\begin_layout Standard
UploadToScreen - copies an area from system memory to video memory
\end_layout

\begin_layout Standard
DowndloadFromScreen - copies an area from video memory to system memory
\end_layout

\begin_layout Standard
Problématique des migrations de pixmaps
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Multiple choices exist for accelerating 2D in X.Org.
\end_layout

\begin_layout Itemize
The most efficient one is EXA, which puts all the smart optimizations in
 a common piece of code, and leaves the driver implementation very simple.
\end_layout

\begin_layout Itemize
If your card cannot accelerate 2D operations, shadowfb is probably the path
 to take.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Video Decoding
\begin_inset CommandInset label
LatexCommand label
name "cha:Video-Decoding"

\end_inset


\end_layout

\begin_layout Section
Video decoding pipeline
\end_layout

\begin_layout Standard
Two typical video pipelines : mpeg2 and h264
\end_layout

\begin_layout Paragraph*
The MPEG2 decoding pipeline
\end_layout

\begin_layout Standard
iDCT -> MC -> CSC -> Final display
\end_layout

\begin_layout Paragraph*
The H.264 decoding pipeline
\end_layout

\begin_layout Standard
entropy decoding -> iDCT -> MC -> CSC -> Final display
\end_layout

\begin_layout Subsection
Entropy
\end_layout

\begin_layout Standard
Entropy encoding is a lossless compression phase.
 It is the last stage of encoding and therefore also the first stage of
 decoding.
\end_layout

\begin_layout Standard
CABAC/CAVLC
\end_layout

\begin_layout Subsection
Inverse DCT
\end_layout

\begin_layout Subsection
Motion Compensation
\end_layout

\begin_layout Subsection
Color Space Conversion
\end_layout

\begin_layout Standard
Color spaces
\end_layout

\begin_layout Standard
Linear relation
\end_layout

\begin_layout Standard
Conversion matrices
\end_layout

\begin_layout Standard
The YUV color space: 1 component luminance (Y) + 2 components chrominance
 (UV).
 Chrominance information is less relevant to the eye than chrominance, so
 usually chrominance is subsampled and luminance at the original resolution.
 Therefore, the Y plane usually has a higher resolution than the U and V
 planes.
\end_layout

\begin_layout Standard
Bandwidth gain (RGBA32 vs YV12)
\end_layout

\begin_layout Standard
YUV Planar and packed (interlaced) formats
\end_layout

\begin_layout Standard
Plane order (YV12 vs NV12)
\end_layout

\begin_layout Standard
Order of the planes (YV12, I420)
\end_layout

\begin_layout Standard
http://en.wikipedia.org/wiki/YUV
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\begin_inset Formula $\left[\begin{array}{c}
R\\
G\\
B\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1.13983\\
1 & -0.39465 & -0.58060\\
1 & 2.03211 & 0\end{array}\right]\left[\begin{array}{c}
Y\\
U\\
V\end{array}\right]$
\end_inset


\begin_inset Note Note
status open

\begin_layout Plain Layout
filler verifier la formule
\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:YUV-to-RGB"

\end_inset

YUV to RGB Conversion formula as per ITU-R RB recommendation 601.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\begin_inset Formula $\left[\begin{array}{c}
R\\
G\\
B\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1.13983\\
1 & -0.39465 & -0.58060\\
1 & 2.03211 & 0\end{array}\right]\left[\begin{array}{c}
Y\\
U\\
V\end{array}\right]$
\end_inset


\begin_inset Note Note
status open

\begin_layout Plain Layout
filler verifier la formule peut pas etre la meme que 601
\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:YUV-to-RGB-1"

\end_inset

YUV to RGB Conversion formula as per ITU-R RB recommendation 709.
\end_layout

\end_inset


\end_layout

\end_inset

Figure 
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:YUV-to-RGB"

\end_inset

 shows the conversion matrices from ITU-R BT Recommendation 601 (standard
 content) and recommendation 709 (intended for HD content).
 Notice that although these matrices are very similar, there are numerical
 differences which will result in slight off-colored rendering if one is
 used in place of the other.
 This is indeed often the case that video decoders with YUV to RGB hardware
 are used to playback high definition content but no attention is made to
 the proper conversion matrix that should be used.
 Since the colors are only slightly wrong, this problem is commonly overlooked,
 whereas most hardware features at least a BT601/BT709 switch, or a fully
 programmable conversion matrix.
\end_layout

\begin_layout Standard
http://www.fourcc.org/yuv.php
\end_layout

\begin_layout Standard
http://www.glennchan.info/articles/articles.html
\end_layout

\begin_layout Standard
http://www.poynton.com/papers/SMPTE_98_YYZ_Luma/index.html
\end_layout

\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open

\begin_layout Plain Layout
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="6" columns="4">
<features>
<column alignment="center" valignment="top" width="1.5cm">
<column alignment="center" valignment="top" width="1.2cm">
<column alignment="center" valignment="top" width="3.5cm">
<column alignment="center" valignment="top" width="3.5cm">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Format name
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Y:U:V bits per pixel
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Layout
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Comments
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
YV12
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
8:2:2
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
1 Y plane, 1 V 2*2 sub-sampled plane, 1 U 2*2 sampled plane
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Same as I420 except U and V are reversed.
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
I420
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
8:2:2
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
1 Y plane, 1 U 2*2 sub-sampled plane, 1 V 2*2 sub-sampled plane
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Same as YV12 except U and V are reversed.
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
NV12
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
8:2:2
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
1 Y plane, 1 packed U+V 2*2 sub-sampled plane
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Convenient for hardware implementation on 3D-capable GPUs
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
YUY2 (YUYV)
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
8:4:4
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
1 Packed YUV plane
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Packed as Y0U0Y1V0
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout

\end_layout

\end_inset
</cell>
</row>
</lyxtabular>

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
Common YUV color space formats
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
Pixel scaling
\end_layout

\begin_layout Standard
Since the conversion from YUV space to RGB space is linear, filtered scaling
 can be done either in the YUV or RGB space, which conveniently allows using
 texture filtering which is available on 3D hardware to sample the YUV data.
 This allows a single pass color space conversion and scaling.
 For example, bi-linear filtering will work just fine with three textures
 for the three Y, U and V planes.
 Notice that higher quality can be obtained at the expense of performance
 by using better filtering modes, such as bi-cubic [citer papier hadwiger],
 even though this can prove to be costly.
 A trade-off can be achieved by implementing bi-cubic filtering for the
 (most eye-visible) Y plane, and keeping bi-linear filtering for U and V
 planes.
\end_layout

\begin_layout Standard
If the hardware cannot achieve color space conversion and scaling at the
 same time (for example if you have a YUV->RGB blitter and a shader less
 3D engine), again the linear color conversion allows you to do the scaling
 in RGB space, and this will produce the same results (baring gamma correction).
\end_layout

\begin_layout Section
Video decoding APIs 
\end_layout

\begin_layout Paragraph*
Xv
\end_layout

\begin_layout Standard
Xv is simply about CSC ans scaling.
 In order to implement Xv, a typical X.Org driver will have to implement
 this space conversion.
 Although the Xv API is a little complex for what it implements, the gits
 of it consists in the PutImage function, which puts an YUV image on screen.
 Multiple YUV formats can be handled, planar or interlaced mainly.
 Note that Xv has RGB support as well.
 Thanks to the bandwidth gains and DMA transfers, even an Xv implementation
 already provides a relevant level of video decoding acceleration, and can
 prove sufficient depending on the target hardware (for example, it can
 prove to be fine when coupled with a powerful CPU to decode H264 content).
\end_layout

\begin_layout Paragraph*
XvMC
\end_layout

\begin_layout Standard
idct + mc +csc
\end_layout

\begin_layout Paragraph*
VAAPI
\end_layout

\begin_layout Standard
VAAPI was initially created for intel's poulsbo video decoding.
 The API is very tailored to embedded platforms and has many entry points,
 at different pipeline stages, which makes it more complex to implement.
\end_layout

\begin_layout Paragraph*
VDPAU
\end_layout

\begin_layout Standard
The VDPAU was initiated by nvidia for H264 & VC1 decoding support
\end_layout

\begin_layout Paragraph*
XvBA
\end_layout

\begin_layout Standard
All 3 APIs are intended for full
\end_layout

\begin_layout Paragraph*
OpenMax
\end_layout

\begin_layout Standard
http://x264dev.multimedia.cx
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
A video decoding pipeline consists in multiple stages chained together.
\end_layout

\begin_layout Itemize
Color space conversion and scaling is the most important stage, and if your
 driver implements only one operation for simplicity, this is it.
\end_layout

\begin_layout Itemize
Implementing a full pipeline can provide a high performance boost, and save
 battery life on mobile systems.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
OpenGL
\begin_inset CommandInset label
LatexCommand label
name "cha:OpenGL"

\end_inset


\end_layout

\begin_layout Standard
OpenGL ARB, khronos, bla bla...
\end_layout

\begin_layout Section
The OpenGL Rendering Pipeline
\end_layout

\begin_layout Standard
\begin_inset Float figure
placement tbh
wide false
sideways false
status open

\begin_layout Plain Layout
\noindent
\align center
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=1cm, auto]   
\end_layout

\begin_layout Plain Layout


\backslash
tikzset{     mynode/.style={rectangle,rounded corners,draw=black, top color=white
, bottom color=yellow!50,very thick, inner sep=1em, minimum size=3em, text
 centered, drop shadow},     myarrow/.style={->, >=latex', shorten >=1pt,
 thick},     mylabel/.style={text width=7em, text centered}  , mynode2/.style={rec
tangle,rounded corners,draw=black, top color=white, bottom color=green!50,very
 thick, inner sep=1em, minimum size=3em, text centered, drop shadow}, mynode3/.st
yle={rectangle,rounded corners,draw=black, top color=white, bottom color=red!50,
very thick, inner sep=1em, minimum size=3em, text centered, drop shadow},}
   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode] (vertex) {Vertex Shader};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode3, left=2cm of vertex] (vertexprog) {Vertex Shader Program};
  
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of vertex] (geom) {Geometry Shader};   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode3, left=2cm of geom] (geomprog) {Geometry Shader Program};  
 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of geom] (clip) {Clipping}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of clip] (viewport) {Viewport};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of viewport] (cull) {Culling}; 
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode3, left=2cm of viewport] (uniforms) {Uniforms and Samplers};
   
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of cull] (rast) {Rasterization};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of rast] (frag) {Fragment Shader};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode3, left=2cm of frag] (fragprog) {Fragment Shader Program};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of frag] (scissor) {Scissor};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of scissor] (multisample) {Multisample};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of multisample] (stencil) {Stencil};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of stencil] (depth) {Depth};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of depth] (query) {Occlusion Query};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of query] (blend) {Blending};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode, below=0.3cm of blend] (dither) {Dithering};
\end_layout

\begin_layout Plain Layout


\backslash
node[mynode2, below=0.3cm of dither] (fb) {Framebuffer};
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (vertex.south)  ->  (geom.north);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (geom.south)  ->   (clip.north);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (clip.south)  ->   (rast.north);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (rast.south)  ->   (frag.north);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (frag.south)  ->   (blend.north);
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (blend.south)  ->   (fb.north);
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (uniforms.east)  ->   (vertex.west);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (uniforms.east)  ->   (geom.west);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (uniforms.east)  ->   (frag.west);
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (vertexprog.east)  ->   (vertex.west);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (geomprog.east)  ->   (geom.west);
\end_layout

\begin_layout Plain Layout


\backslash
draw[myarrow] (fragprog.east)  ->   (frag.west);
\end_layout

\begin_layout Plain Layout

\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}  
\end_layout

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Caption

\begin_layout Plain Layout
The OpenGL pipeline.
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Subsection
Vertex processing
\end_layout

\begin_layout Standard
vertex stage
\end_layout

\begin_layout Standard
vertex buffers
\end_layout

\begin_layout Subsection
Geometry processing
\end_layout

\begin_layout Subsection
Fragment processing
\end_layout

\begin_layout Standard
Rasterization
\end_layout

\begin_layout Standard
Render buffers
\end_layout

\begin_layout Standard
Textures
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
OpenGL is a suite of stages arranged in a pipeline.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Mesa
\begin_inset CommandInset label
LatexCommand label
name "cha:Mesa"

\end_inset


\end_layout

\begin_layout Standard
Mesa is the Common Rendering Architecture for all open source graphics drivers.
\end_layout

\begin_layout Section
Mesa
\end_layout

\begin_layout Standard
Mesa serves two major purposes:
\end_layout

\begin_layout Itemize
Mesa is a software implementation of OpenGL.
 It is considered to be the reference implementation and is useful in checking
 conformance, seeing that the official OpenGL conformance tests are not
 publicly available.
\end_layout

\begin_layout Itemize
Mesa provides the OpenGL entry points for Open Source graphics drivers under
 linux.
\end_layout

\begin_layout Standard
In this section, we will focus on the second point.
\end_layout

\begin_layout Section
Mesa internals
\end_layout

\begin_layout Subsection
Textures in mesa
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Mesa is the reference OpenGL implementation under Linux.
\end_layout

\begin_layout Itemize
All Open Source graphics drivers use Mesa for 3D
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Gallium 3D
\begin_inset CommandInset label
LatexCommand label
name "cha:Gallium-3D"

\end_inset


\end_layout

\begin_layout Standard
Gallium 3D is the Future of 3D Acceleration.
\end_layout

\begin_layout Standard
http://jrfonseca.blogspot.com/2008/04/gallium3d-introduction.html
\end_layout

\begin_layout Standard
http://people.freedesktop.org/~csimpson/gallium-docs/
\end_layout

\begin_layout Section
Gallium3D: a plan for a new generation of hardware
\end_layout

\begin_layout Standard
Ten years ago, GPUs were a direct match with all the OpenGL or Direct3D
 functionality; back then the GPUs had specific transistors dedicated to
 each piece of functionality.
 With the explosion in the amount of 3D functionality, this quickly made
 it impractical both for application developers (who saw the 3D APIs growing
 huge) and hardware designers (who faced an explosion of the number of specific
 functionality a GPU needed), and shaders were created.
 Instead of providing specific functionality, the 3D APIs would now let
 the programmers create these little programs and run them on the GPU.
 As the hardware was now programmable in a way which was a superset of fixed
 functionality, the fixed function pipelines were not required any more
 and were removed from the cards.
 Gallium 3D is modeled around the simple observation that today's GPUs do
 not have fixed pipe any more and only feature shaders, but drivers still
 have to 
\begin_inset Quotes eld
\end_inset

emulate
\begin_inset Quotes erd
\end_inset

 fixed function on top of the shaders to provide API compatibility.
 Doing so in every driver would require a lot of code duplication, and the
 Gallium model is to put this code in a common place.
 Therefore gallium drivers become smaller and easier to write and to maintain.
\end_layout

\begin_layout Standard
everything is a shader, including inside the driver
\end_layout

\begin_layout Standard
thin layer for fixed pipe -> programmable functionality translation
\end_layout

\begin_layout Standard
global diagram
\end_layout

\begin_layout Section
State trackers
\end_layout

\begin_layout Standard
A state tracker implements an API (for example OpenGL, OpenVG, Direct3D...)
 by turning it into API-agnostic and hardware-agnostic TGSI calls.
\end_layout

\begin_layout Section
Pipe driver
\end_layout

\begin_layout Standard
A pipe driver is the main part of a hardware-specific driver.
\end_layout

\begin_layout Section
Winsys
\end_layout

\begin_layout Standard
The winsys is in charge of talking to the OS/Platform of choice.
 The pipe driver relies on the Winsys to talk to the hardware.
 For example, this allows having a single pipe driver with multiple winsyses
 targetting different Operating systems.
\end_layout

\begin_layout Section
Writing Gallium3D drivers
\end_layout

\begin_layout Standard
screen
\end_layout

\begin_layout Standard
context
\end_layout

\begin_layout Standard
pipe_transfer
\end_layout

\begin_layout Section
Shaders in Gallium
\end_layout

\begin_layout Standard
In order to operate shaders, Gallium features an internal shader description
 language which uses 4-component vectors.
 We will later refer to the 4 components of a vector as x,y,z,w.
 In particular, v.x is the first component of vector v, v.xyzw are all 4 component
s of v in that order, and swizzling is allowed, for example v.wzyx reverses
 the component order.
 It is also legal to replicate a component, for example v.xxxx means four
 times the x component of v and v.yyzz means two times y and two times z.
\end_layout

\begin_layout Standard
These components usually carry no semantics, and despite their name they
 can very well carry a color or an opacity value indifferently.
 
\end_layout

\begin_layout Standard
TGSI instruction set
\end_layout

\begin_layout Standard
mesa/src/gallium/auxiliary/tgsi/tgsi-instruction-set.txt
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Gallium 3D is the new graphics API.
\end_layout

\begin_layout Itemize
Everything is converted to a shader internally, fixed functionality is gone.
\end_layout

\begin_layout Itemize
Drivers are simpler than classic Mesa drivers, as one only has to implement
 shaders to get all fixed functionality to work.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
GPU Computing
\begin_inset CommandInset label
LatexCommand label
name "cha:GPU-Computing"

\end_inset


\end_layout

\begin_layout Chapter
Suspend and Resume
\begin_inset CommandInset label
LatexCommand label
name "cha:Suspend-and-Resume"

\end_inset


\end_layout

\begin_layout Standard
VT switches
\end_layout

\begin_layout Standard
Card state
\end_layout

\begin_layout Standard
Suspend/resume hooks in the DRM
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Suspend and resume has long been very clumsy, but this is solved now thanks
 to the DRM implementing more functionality.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Technical Specifications
\begin_inset CommandInset label
LatexCommand label
name "cha:Technical-Specifications"

\end_inset


\end_layout

\begin_layout Standard
Technical specifications are the nuts and bolts of graphics driver work.
 Without hardware specifications, no work can be started.
 However, manufacturing companies are usually wary of sharing said specification
s, as they think this will hinder their business.
 While this claim is false (because you can't copy a GPU from just its specifica
tions), it is still very widespread and prevents a lot of hardware from
 being properly documented.
 Therefore, getting hold of hardware specifications will be the first major
 step in any graphics driver development project.
\end_layout

\begin_layout Section
Obtaining official specifications
\end_layout

\begin_layout Paragraph*
Public specifications
\end_layout

\begin_layout Standard
Some vendors distribute the technical documentation for their hardware publicly
 without restrictions.
\end_layout

\begin_layout Standard
Sometimes, things can be as simple as asking the vendor, who might share
 the documentation (possibly under NDA, see below).
\end_layout

\begin_layout Paragraph*
NDA (Non-Disclosure Agreement)
\end_layout

\begin_layout Standard
Put simply, an NDA is a contract signed between the developer and the hardware
 company, by which the developer agrees not to spread the docs he received.
 However, there can be more restrictions in an NDA.
\end_layout

\begin_layout Standard
Terms of the NDA
\end_layout

\begin_layout Standard
Before signing an NDA, think.
 Whatever lawyers say, there is no such thing as a 
\begin_inset Quotes eld
\end_inset

standard
\begin_inset Quotes erd
\end_inset

 NDA, you can always negotiate.
\end_layout

\begin_layout Standard
Can Open Source drivers be written from that documentation under that NDA?
\end_layout

\begin_layout Standard
What happens when the NDA expires? Can code still be free, are you bound
 by any clause?
\end_layout

\begin_layout Standard
What about yourself? Are you prevented from doing further work on this hardware?
\end_layout

\begin_layout Section
Reverse engineering
\end_layout

\begin_layout Standard
When specifications are not easily available or just incomplete, an alternate
 route is reverse engineering.
 Reverse engineering consists in figuring out the specifications for a given
 piece of hardware by yourself, for example by looking at what a black-box
 binary driver does to the hardware under certain circumstances.
\end_layout

\begin_layout Standard
Reverse engineering is not just a tool to obtain missing hardware specifications
, it is also a strong means of Open Source advocacy.
 Once a reverse engineered driver exists and ships in linux distributions,
 pressure shifts on the hardware vendor for support.
 This, in turn, can force the vendor to support Open Source drivers.
\end_layout

\begin_layout Standard
not as difficult as it seems, requires organization, being rigorous.
 Write down all bits of information (even incomplete bits), share it among
 developers, try to work out bits one by one.
 Do not hesitate writing ad-hoc tools, as they will save precious time down
 the road (if you hesitate, you have crossed the line already!).
\end_layout

\begin_layout Paragraph*
Mmiotrace
\end_layout

\begin_layout Standard
The basic idea behind mmio-trace is simple: it first hooks the ioremap call,
 and therefore prevents mapping of a designated I/O area.
 Subsequently, accesses to this area will generate page faults, which are
 caught by the kernel.
 For each page fault, the faulting instruction is decoded to figure out
 the write or read address, along with the value written/read.
 The page is put back, the faulting instruction is then single-stepped,
 and the page is then removed again.
 Execution then continues as usual.
\end_layout

\begin_layout Standard
mmio trace is now part of the official Linux kernels.
 Therefore, any pre-existing driver can be traced.
\end_layout

\begin_layout Paragraph*
Libsegfault
\end_layout

\begin_layout Standard
libsegfault is similar to mmio-trace in the way it works: after removing
 some pages which one want to track accesses to, it will generate a segmentation
 fault on each access and therefore be able to report each access.
 The difference is that libsegfault is a user space tool while mmio-trace
 is a kernel tool.
\end_layout

\begin_layout Paragraph*
Valgrind-mmt
\end_layout

\begin_layout Standard
Valgrind is a dynamic recompiling and instrumentation framework.
 Valgrint-mmt is a plugin for valgrind which implements tracing of read
 and writes to a certain range of memory addresses, usually an mmio range
 accessed from user space.
 Memory accesses are dynamically instrumented thanks to valgrind and each
 access to the zones we want to see traced is logged.
\end_layout

\begin_layout Paragraph*
vbetool
\end_layout

\begin_layout Paragraph*
Virtualization
\end_layout

\begin_layout Standard
Finally, one last pre-existing tool to help reverse engineering is virtualizatio
n.
 By running a proprietary driver in a controled environment, one can figure
 out the inner workings of a GPU.
 The plan is then to write an emulated GPU while doing the reverse engineering
 (which imposes the use of an open source virtualization solution like Qemu).
\end_layout

\begin_layout Paragraph*
Ad-hoc tools
\end_layout

\begin_layout Standard
In addition to these generic tools, you will often find it useful to implement
 your own additional tools, tailored for specific needs.
 Renouveau is an example of such a tool that integrates the reverse engineering
 mechanisms, the command decoding and printing.
 In order to achieve decoding of the commands, it carries a database of
 the graphics commands of nvidia GPUs.
 This allows quick testing of new database entries.
 Headers generated from this database are later used in the driver development
 process.
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Technical specifications of course very important for authoring graphics
 drivers.
\end_layout

\begin_layout Itemize
NDAs can have unforeseen implications on yourself and your work.
\end_layout

\begin_layout Itemize
When they are unavailable, incomplete or just plain wrong, reverse engineering
 can help you figure out how the hardware actually works.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Beyond Development
\begin_inset CommandInset label
LatexCommand label
name "cha:Beyond-Development"

\end_inset


\end_layout

\begin_layout Section
Testing for conformance
\end_layout

\begin_layout Paragraph*
Rendercheck
\end_layout

\begin_layout Paragraph*
OpenGL conformance test suite
\end_layout

\begin_layout Standard
The official OpenGL testing suite is not publicly available, and (paying)
 Khronos Membership is required.
 Instead, most developers use alternate sources for test programs.
\end_layout

\begin_layout Paragraph*
Piglit
\end_layout

\begin_layout Paragraph*
glean
\end_layout

\begin_layout Standard
glean.sourceforge.net
\end_layout

\begin_layout Paragraph*
Mesa demos
\end_layout

\begin_layout Standard
mesa/progs/*
\end_layout

\begin_layout Section
Debugging
\end_layout

\begin_layout Paragraph*
gdb and X.Org
\end_layout

\begin_layout Standard
gdb needs to run on a terminal emulator while the application debug might
 be with a lock held.
 That might result in a deadlock between the application stuck with a lock
 and gdb waiting to be able to output text.
\end_layout

\begin_layout Standard
printk debug
\end_layout

\begin_layout Standard
crash (surcouche gdb pour analyser les vmcore)
\end_layout

\begin_layout Standard
kgdb
\end_layout

\begin_layout Standard
serial console
\end_layout

\begin_layout Standard
diskdump
\end_layout

\begin_layout Standard
linux-uml
\end_layout

\begin_layout Standard
systemtap
\end_layout

\begin_layout Section
Upstreaming
\end_layout

\begin_layout Standard
Submitting your code for inclusion in the official trees is an important
 part of the graphics driver development process under linux.
 There are multiple motivations for doing this.
 
\end_layout

\begin_layout Standard
First, this allows end users to get hold of your driver more easily.
\end_layout

\begin_layout Standard
Second, this makes it easier for your driver maintenance in the future:
 in the event of interface changes, 
\end_layout

\begin_layout Standard
Why upstream?
\end_layout

\begin_layout Standard
How?
\end_layout

\begin_layout Standard
When?
\end_layout

\begin_layout Standard
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open

\begin_layout Plain Layout
Takeaways:
\end_layout

\begin_layout Itemize
Thoroughly testing all your changes can save you the cost of bisection later
 on.
\end_layout

\begin_layout Itemize
Debugging is not easy for graphics drivers.
\end_layout

\begin_layout Itemize
By upstreaming your code in official repositories, you save yourself the
 burden of adapting it to ever-moving programming interfaces in X.Org, Mesa
 and the kernel.
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Conclusions
\begin_inset CommandInset label
LatexCommand label
name "cha:Conclusions"

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
Bordel à caser quelque part :
\end_layout

\begin_layout Plain Layout
- la composition, avec XRender ou avec GLX + GL_EXT_texture_from_pixmap,
 expliquer les différences
\end_layout

\begin_layout Plain Layout
- XGL, AIGLX
\end_layout

\end_inset


\end_layout

\end_body
\end_document