summaryrefslogtreecommitdiff
path: root/src/ffb_dac.c
blob: fab463d1d06e0820838f4bc51a7a9ad92cc516b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*
 * Acceleration for the Creator and Creator3D framebuffer - DAC programming.
 *
 * Copyright (C) 2000 David S. Miller (davem@redhat.com)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * DAVID MILLER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */
/* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/sunffb/ffb_dac.c,v 1.3tsi Exp $ */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "ffb.h"
#include "ffb_rcache.h"
#include "ffb_fifo.h"

#include "xf86.h"
#include "xf86_OSproc.h"

#include "xf86DDC.h"

/*
 * Used for stabilize time after playing with power management on the display
 */

#ifndef DPMS_SPIN_COUNT
#define DPMS_SPIN_COUNT 100
#endif  /* DPMS_SPIN_COUNT */

/* Cursor programming */

void
FFBDacLoadCursorPos(FFBPtr pFfb, int x, int y)
{
	ffb_dacPtr dac = pFfb->dac;
	int posval;

	posval = ((y & 0xffff) << 16) | (x & 0xffff);
	posval &= (FFBDAC_CUR_POS_Y_SIGN |
		   FFBDAC_CUR_POS_Y |
		   FFBDAC_CUR_POS_X_SIGN |
		   FFBDAC_CUR_POS_X);

	DACCUR_WRITE(dac, FFBDAC_CUR_POS, posval);
}

void
FFBDacLoadCursorColor(FFBPtr pFfb, int fg, int bg)
{
	ffb_dacPtr dac = pFfb->dac;

	dac->cur = FFBDAC_CUR_COLOR1;
	dac->curdata = bg;
	dac->curdata = fg;
}

void
FFBDacCursorEnableDisable(FFBPtr pFfb, int enable)
{
	ffb_dac_info_t *p = &pFfb->dac_info;
	ffb_dacPtr dac = pFfb->dac;
	int val;

	val = 0;
	if (!enable)
		val = (FFBDAC_CUR_CTRL_P0 | FFBDAC_CUR_CTRL_P1);

	/* PAC1 ramdacs with manufacturing revision less than
	 * '3' invert these control bits, wheee...
	 */
	if (p->flags & FFB_DAC_ICURCTL)
		val ^= (FFBDAC_CUR_CTRL_P0 | FFBDAC_CUR_CTRL_P1);

	DACCUR_WRITE(dac, FFBDAC_CUR_CTRL, val);
}

void
FFBDacCursorLoadBitmap(FFBPtr pFfb, int xshift, int yshift, unsigned int *bitmap)
{
	ffb_dacPtr dac = pFfb->dac;
	int i, j;

	dac->cur = FFBDAC_CUR_BITMAP_P0;
	for (j = 0; j < 2; j++) {
		bitmap += yshift * 2;
		if (!xshift) {
			for (i = yshift * 2; i < 128; i++)
				dac->curdata = *bitmap++;
		} else if (xshift < 32) {
			for (i = yshift; i < 64; i++, bitmap += 2) {
				dac->curdata = (bitmap[0] << xshift) |
					(bitmap[1] >> (32 - xshift));
				dac->curdata = bitmap[1] << xshift;
			}
		} else {
			for (i = yshift; i < 64; i++, bitmap += 2) {
				dac->curdata = bitmap[1] << (xshift - 32);
				dac->curdata = 0;
			}
		}

		for (i = 0; i < yshift * 2; i++)
			dac->curdata = 0;
	}
}

/* Config space programming */

/* XF86 LoadPalette callback. */

void
FFBDacLoadPalette(ScrnInfoPtr pScrn, int ncolors, int *indices, LOCO *colors, VisualPtr pVisual)
{
	FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn);
	ffb_dac_info_t *p = &pFfb->dac_info;
	ffb_dacPtr dac = pFfb->dac;
	unsigned int *cluts;
	int i, index, palette;

	if ((pVisual->nplanes != 8 && pVisual->class != DirectColor) ||
	    (pVisual->nplanes == 8 && pVisual->class == StaticGray))
		return;

	palette = 0;
	if (p->flags & FFB_DAC_PAC2) {
		if (pVisual->class == PseudoColor)
			palette = 0;
		if (pVisual->class == GrayScale)
			palette = 1;
		if (pVisual->class == DirectColor)
			palette = 2;
	}

	cluts = &p->x_dac_state.clut[256 * palette];
	for (i = 0; i < ncolors; i++) {
		unsigned int regval;

		index = indices[i];
		if (pVisual->class == GrayScale) {
			regval = cluts[index] =
				((colors[index].red << FFBDAC_COLOR_RED_SHFT) |
				 (colors[index].red << FFBDAC_COLOR_GREEN_SHFT) |
				 (colors[index].red << FFBDAC_COLOR_BLUE_SHFT));
		} else {
			regval = cluts[index] =
				((colors[index].red   << FFBDAC_COLOR_RED_SHFT) |
				 (colors[index].green << FFBDAC_COLOR_GREEN_SHFT) |
				 (colors[index].blue  << FFBDAC_COLOR_BLUE_SHFT));
		}

		FFBLOG(("FFBDacLoadPalette: visclass(%d) index(%d) val[%08x]\n",
			pVisual->class, index, regval));

		/* Now update the hardware copy. */
		dac->cfg = FFBDAC_CFG_CLUP(palette) + index;
		dac->cfgdata = regval;
	}
}

/* WARNING: Very dangerous function, use with extreme care. */
static void
dac_stop(FFBPtr pFfb)
{
	ffb_dacPtr dac = pFfb->dac;
	unsigned int tgctrl;

	tgctrl = DACCFG_READ(dac, FFBDAC_CFG_TGEN);
	if (tgctrl & FFBDAC_CFG_TGEN_TGE) {
		long limit = 1000000;

		/* We try to shut off the timing generation
		 * precisely at the beginning of a vertical
		 * retrace.  This is really just to make it
		 * look nice, it's not a functional necessity.
		 *
		 * The limit is so that malfunctioning hardware
		 * does not end up hanging the server.
		 */
		while (limit--) {
			unsigned int vctr = DACCFG_READ(dac, FFBDAC_CFG_TGVC);

			if (vctr == 0)
				break;
		}		

		DACCFG_WRITE(dac, FFBDAC_CFG_TGEN, 0);
	}
}

/* This is made slightly complex because the ordering matters
 * between several operations.  We have to stop the DAC while
 * restoring the timing registers so that some intermediate
 * state does not emit wild retrace signals to the monitor.
 *
 * Another further complication is that we need to mess with
 * some portions of the FFB framebuffer config registers to
 * do this all properly.
 */
static void
dac_state_restore(FFBPtr pFfb, ffb_dac_hwstate_t *state)
{
	ffb_dac_info_t *p = &pFfb->dac_info;
	ffb_dacPtr dac = pFfb->dac;
	ffb_fbcPtr ffb = pFfb->regs;
	int i, nluts;

	/* Step 1: Shut off all pixel timing generation. */
	dac_stop(pFfb);
	ffb->fbcfg0 = 0;

	/* Step 2: Restore timing settings. */
	DACCFG_WRITE(dac, FFBDAC_CFG_VBNP, state->vbnp);
	DACCFG_WRITE(dac, FFBDAC_CFG_VBAP, state->vbap);
	DACCFG_WRITE(dac, FFBDAC_CFG_VSNP, state->vsnp);
	DACCFG_WRITE(dac, FFBDAC_CFG_VSAP, state->vsap);
	DACCFG_WRITE(dac, FFBDAC_CFG_HSNP, state->hsnp);
	DACCFG_WRITE(dac, FFBDAC_CFG_HBNP, state->hbnp);
	DACCFG_WRITE(dac, FFBDAC_CFG_HBAP, state->hbap);
	DACCFG_WRITE(dac, FFBDAC_CFG_HSYNCNP, state->hsyncnp);
	DACCFG_WRITE(dac, FFBDAC_CFG_HSYNCAP, state->hsyncap);
	DACCFG_WRITE(dac, FFBDAC_CFG_HSCENNP, state->hscennp);
	DACCFG_WRITE(dac, FFBDAC_CFG_HSCENAP, state->hscenap);
	DACCFG_WRITE(dac, FFBDAC_CFG_EPNP, state->epnp);
	DACCFG_WRITE(dac, FFBDAC_CFG_EINP, state->einp);
	DACCFG_WRITE(dac, FFBDAC_CFG_EIAP, state->eiap);

	/* Step 3: Restore rest of DAC hw state. */
	DACCFG_WRITE(dac, FFBDAC_CFG_PPLLCTRL, state->ppllctrl);
	DACCFG_WRITE(dac, FFBDAC_CFG_GPLLCTRL, state->gpllctrl);
	DACCFG_WRITE(dac, FFBDAC_CFG_PFCTRL, state->pfctrl);
	DACCFG_WRITE(dac, FFBDAC_CFG_UCTRL, state->uctrl);

	nluts = (p->flags & FFB_DAC_PAC1) ? 256 : (4 * 256);
	dac->cfg = FFBDAC_CFG_CLUP_BASE;
	for (i = 0; i < nluts; i++)
		dac->cfgdata = state->clut[i];

	if (p->flags & FFB_DAC_PAC2) {
		dac->cfg = FFBDAC_PAC2_AOVWLUT0;
		for (i = 0; i < 4; i++)
			dac->cfgdata = state->ovluts[i];
	}

	DACCFG_WRITE(dac, FFBDAC_CFG_WTCTRL, state->wtctrl);
	DACCFG_WRITE(dac, FFBDAC_CFG_TMCTRL, state->tmctrl);
	DACCFG_WRITE(dac, FFBDAC_CFG_TCOLORKEY, state->tcolorkey);
	if (p->flags & FFB_DAC_PAC2)
		DACCFG_WRITE(dac, FFBDAC_CFG_WAMASK, state->wamask);

	if (p->flags & FFB_DAC_PAC1) {
		dac->cfg = FFBDAC_PAC1_APWLUT_BASE;
		for (i = 0; i < 32; i++)
			dac->cfgdata = state->pwluts[i];
	} else {
		dac->cfg = FFBDAC_PAC2_APWLUT_BASE;
		for (i = 0; i < 64; i++)
			dac->cfgdata = state->pwluts[i];
	}

	DACCFG_WRITE(dac, FFBDAC_CFG_DACCTRL, state->dacctrl);

	/* Step 4: Restore FFB framebuffer config state. */
	if (pFfb->ffb_type == ffb2_vertical_plus ||
	    pFfb->ffb_type == ffb2_horizontal_plus ||
	    pFfb->ffb_type == afb_m3 ||
	    pFfb->ffb_type == afb_m6)
		ffb->passin = p->ffb_passin_ctrl;
	ffb->fbcfg0 = p->ffbcfg0;
	ffb->fbcfg2 = p->ffbcfg2;

	/* Step 5: Restore the timing generator control reg. */
	DACCFG_WRITE(dac, FFBDAC_CFG_TGEN, state->tgen);

	/* Step 6: Pause for a bit. */
	for (i = 0; i < 100; i++)
		(void) DACCFG_READ(dac, FFBDAC_CFG_TGVC);
}

static void
dac_state_save(FFBPtr pFfb, ffb_dac_hwstate_t *state)
{
	ffb_dac_info_t *p = &pFfb->dac_info;
	ffb_dacPtr dac = pFfb->dac;
	int i, nluts;

	state->ppllctrl = DACCFG_READ(dac, FFBDAC_CFG_PPLLCTRL);
	state->gpllctrl = DACCFG_READ(dac, FFBDAC_CFG_GPLLCTRL);
	state->pfctrl   = DACCFG_READ(dac, FFBDAC_CFG_PFCTRL);
	state->uctrl    = DACCFG_READ(dac, FFBDAC_CFG_UCTRL);

	nluts = (p->flags & FFB_DAC_PAC1) ? 256 : (4 * 256);
	dac->cfg = FFBDAC_CFG_CLUP_BASE;
	for (i = 0; i < nluts; i++)
		state->clut[i] = dac->cfgdata;

	if (p->flags & FFB_DAC_PAC2) {
		dac->cfg = FFBDAC_PAC2_AOVWLUT0;
		for (i = 0; i < 4; i++)
			state->ovluts[i] = dac->cfgdata;
	}

	state->wtctrl    = DACCFG_READ(dac, FFBDAC_CFG_WTCTRL);
	state->tmctrl    = DACCFG_READ(dac, FFBDAC_CFG_TMCTRL);
	state->tcolorkey = DACCFG_READ(dac, FFBDAC_CFG_TCOLORKEY);
	if (p->flags & FFB_DAC_PAC2)
		state->wamask = DACCFG_READ(dac, FFBDAC_CFG_WAMASK);

	if (p->flags & FFB_DAC_PAC1) {
		dac->cfg = FFBDAC_PAC1_APWLUT_BASE;
		for (i = 0; i < 32; i++)
			state->pwluts[i] = dac->cfgdata;
	} else {
		dac->cfg = FFBDAC_PAC2_APWLUT_BASE;
		for (i = 0; i < 64; i++)
			state->pwluts[i] = dac->cfgdata;
	}

	state->dacctrl = DACCFG_READ(dac, FFBDAC_CFG_DACCTRL);

	state->tgen = DACCFG_READ(dac, FFBDAC_CFG_TGEN);
	state->vbnp = DACCFG_READ(dac, FFBDAC_CFG_VBNP);
	state->vbap = DACCFG_READ(dac, FFBDAC_CFG_VBAP);
	state->vsnp = DACCFG_READ(dac, FFBDAC_CFG_VSNP);
	state->vsap = DACCFG_READ(dac, FFBDAC_CFG_VSAP);
	state->hsnp = DACCFG_READ(dac, FFBDAC_CFG_HSNP);
	state->hbnp = DACCFG_READ(dac, FFBDAC_CFG_HBNP);
	state->hbap = DACCFG_READ(dac, FFBDAC_CFG_HBAP);
	state->hsyncnp = DACCFG_READ(dac, FFBDAC_CFG_HSYNCNP);
	state->hsyncap = DACCFG_READ(dac, FFBDAC_CFG_HSYNCAP);
	state->hscennp = DACCFG_READ(dac, FFBDAC_CFG_HSCENNP);
	state->hscenap = DACCFG_READ(dac, FFBDAC_CFG_HSCENAP);
	state->epnp = DACCFG_READ(dac, FFBDAC_CFG_EPNP);
	state->einp = DACCFG_READ(dac, FFBDAC_CFG_EINP);
	state->eiap = DACCFG_READ(dac, FFBDAC_CFG_EIAP);
}

static void
init_dac_flags(FFBPtr pFfb)
{
	ffb_dac_info_t *p = &pFfb->dac_info;
	ffb_dacPtr dac = pFfb->dac;
	unsigned int did, manuf_rev, partnum;
	char *device;

	/* Fetch kernel WID. */
	p->kernel_wid = *((volatile unsigned char *)pFfb->dfb8x);

	/* For AFB, assume it is PAC2 which also implies not having
	 * the inverted cursor control attribute.
	 */
	if (pFfb->ffb_type == afb_m3 || pFfb->ffb_type == afb_m6) {
		p->flags = FFB_DAC_PAC2;
		manuf_rev = 4;
	} else {
		p->flags = 0;

		did = DACCFG_READ(dac, FFBDAC_CFG_DID);

		manuf_rev = DACCFG_READ(dac, FFBDAC_CFG_UCTRL);
		manuf_rev = (manuf_rev & FFBDAC_UCTRL_MANREV) >> 8;

		partnum = ((did & FFBDAC_CFG_DID_PNUM) >> 12);
		if (partnum == 0x236e)
			p->flags |= FFB_DAC_PAC2;
		else
			p->flags |= FFB_DAC_PAC1;
	}

	device = pFfb->psdp->device;
	if ((p->flags & FFB_DAC_PAC1) != 0) {
		if (manuf_rev < 3) {
			p->flags |= FFB_DAC_ICURCTL;
			xf86Msg(X_INFO, "%s: BT9068 (PAC1) ramdac detected (with "
				"inverted cursor control)\n", device);
		} else {
			xf86Msg(X_INFO, "%s: BT9068 (PAC1) ramdac detected (with "
				"normal cursor control)\n", device);
		}
	} else {
		xf86Msg(X_INFO, "%s: BT498 (PAC2) ramdac detected\n", device);
	}
}

/* The registers of the chip must be mapped, and the FFB/AFB
 * board type must be probed before this is invoked.
 */
Bool
FFBDacInit(FFBPtr pFfb)
{
	ffb_dac_info_t *p = &pFfb->dac_info;
	ffb_fbcPtr ffb = pFfb->regs;

	init_dac_flags(pFfb);

	p->ffbcfg0 = ffb->fbcfg0;
	p->ffbcfg2 = ffb->fbcfg2;
	if (pFfb->ffb_type == ffb2_vertical_plus ||
	    pFfb->ffb_type == ffb2_horizontal_plus ||
	    pFfb->ffb_type == afb_m3 ||
	    pFfb->ffb_type == afb_m6)
		p->ffb_passin_ctrl = ffb->passin;

	/* Save the kernel DAC state.  We also save to the
	 * X server state here as well even though we have
	 * not modified anything yet.
	 */
	dac_state_save(pFfb, &p->kern_dac_state);
	dac_state_save(pFfb, &p->x_dac_state);

	/* Fire up the WID layer. */
	FFBWidPoolInit(pFfb);

	return TRUE;
}

/* We need to reset the A buffer X planes to the value 0xff
 * when giving the hardware back to the kernel too, thus...
 * Also need to do this for the B buffer X planes when double
 * buffering is available.
 */
static void
restore_kernel_xchannel(FFBPtr pFfb)
{
	ffb_fbcPtr ffb = pFfb->regs;
	unsigned int fbc, ppc, ppc_mask, drawop, wid;

	wid = pFfb->dac_info.kernel_wid;

	if (pFfb->has_double_buffer)
		fbc = FFB_FBC_WB_AB;
	else
		fbc = FFB_FBC_WB_A;

	fbc |= (FFB_FBC_WM_COMBINED | FFB_FBC_RB_A | FFB_FBC_SB_BOTH |
		FFB_FBC_ZE_OFF | FFB_FBC_YE_OFF |
		FFB_FBC_XE_ON | FFB_FBC_RGBE_MASK);

	ppc      = (FFB_PPC_APE_DISABLE | FFB_PPC_CS_CONST | FFB_PPC_XS_WID);
	ppc_mask = (FFB_PPC_APE_MASK | FFB_PPC_CS_MASK | FFB_PPC_XS_MASK);

	drawop = FFB_DRAWOP_RECTANGLE;

	FFB_ATTR_RAW(pFfb, ppc, ppc_mask, ~0,
		     (FFB_ROP_EDIT_BIT | GXcopy)|(FFB_ROP_NEW<<8),
		     drawop, 0x0, fbc, wid);

	FFBFifo(pFfb, 4);
	FFB_WRITE64(&ffb->by, 0, 0);
	FFB_WRITE64_2(&ffb->bh, pFfb->psdp->height, pFfb->psdp->width);
	pFfb->rp_active = 1;
	FFBWait(pFfb, ffb);
}

void
FFBDacFini(FFBPtr pFfb)
{
	ffb_dac_info_t *p = &pFfb->dac_info;

	/* Just restore the kernel ramdac/x-channel state. */
	dac_state_restore(pFfb, &p->kern_dac_state);
	restore_kernel_xchannel(pFfb);
}


/* Restore X server DAC state. */
void
FFBDacEnterVT(FFBPtr pFfb)
{
	ffb_dac_info_t *p = &pFfb->dac_info;

	/* Save kernel DAC state. */
	dac_state_save(pFfb, &p->kern_dac_state);

	/* Restore X DAC state. */
	dac_state_restore(pFfb, &p->x_dac_state);
}

/* Restore kernel DAC state. */
void
FFBDacLeaveVT(FFBPtr pFfb)
{
	ffb_dac_info_t *p = &pFfb->dac_info;

	/* Save X DAC state. */
	dac_state_save(pFfb, &p->x_dac_state);

	/* Restore kernel DAC and x-channel state. */
	dac_state_restore(pFfb, &p->kern_dac_state);
	restore_kernel_xchannel(pFfb);
}

/*  DPMS stuff, courtesy of a hint from David S. Miller.
 *  05.xii.01, FEM
 */

/*
 * I don't know why, if at all, this is needed, but JJ or DSM do it
 * on restore. I observe that when just blanking/unblanking, everything
 * works fine without it, but that sometimes DPMS -> Standby actually
 * results in Off.  Maybe related?
 */
static void
SPIN(ffb_dacPtr d, int count) {
  while(count-- > 0) {
    (void) DACCFG_READ(d, FFBDAC_CFG_TGVC);
  }
  return;
}

/*  Screen save (blank) restore */
Bool
FFBDacSaveScreen(FFBPtr pFfb, int mode) {
  int tmp;
  ffb_dacPtr dac;
  if(!pFfb) return FALSE;   /* Is there any way at all this could happen? */
  else dac = pFfb -> dac;

  tmp = DACCFG_READ(dac, FFBDAC_CFG_TGEN);  /* Get the timing information */

  switch(mode) {
    case SCREEN_SAVER_ON:
    case SCREEN_SAVER_CYCLE:
      tmp &= ~FFBDAC_CFG_TGEN_VIDE;  /* Kill the video */
      break;

    case SCREEN_SAVER_OFF:
    case SCREEN_SAVER_FORCER:
      tmp |= FFBDAC_CFG_TGEN_VIDE;  /* Turn the video on */
      break;

    default:
      return FALSE;  /* Don't know what to do; gently fail. */
  }
  DACCFG_WRITE(dac, FFBDAC_CFG_TGEN, tmp);  /* Restore timing register, video set as asked */
  SPIN(dac, DPMS_SPIN_COUNT/10);
  return TRUE;
}

/*  DPMS Control, also hinted at by David Miller.

    The rule seems to be:
    
    StandBy  =  -HSYNC +VSYNC -VIDEO
    Suspend  =  +HSYNC -VSYNC -VIDEO
    Off      =  -HSYNC -VSYNC -VIDEO
    On       =  +HSYNC +VSINC +VIDEO

    If you don't force video off, someone periodically tries to turn the
    monitor on for some reason.  I don't know who or why, so I kill the video
    when trying to go into some sort of energy saving mode.  (In real life,
    'xset s blank s xx' could well have taken care of this.)

    Also, on MY monitor, StandBy as above defined (-H+V-Vid) in fact
    gives the same as Off, which I don't want.  Hence, I just do (-Vid)

    05.xii.01, FEM
    08.xii.01, FEM
*/
void
FFBDacDPMSMode(FFBPtr pFfb, int DPMSMode, int flags) {
  int tmp;
  ffb_dacPtr dac = pFfb -> dac;

  tmp = DACCFG_READ(dac, FFBDAC_CFG_TGEN);  /* Get timing control */

  switch(DPMSMode) {

    case DPMSModeOn:
      tmp &= ~(FFBDAC_CFG_TGEN_VSD | FFBDAC_CFG_TGEN_HSD); /* Turn off VSYNC, HSYNC
							      disable bits */
      tmp |= FFBDAC_CFG_TGEN_VIDE;  /* Turn the video on */
       break;

    case DPMSModeStandby:
#ifdef  DPMS_TRUE_STANDBY
      tmp |=  FFBDAC_CFG_TGEN_HSD;  /* HSYNC = OFF    */
#endif  /* DPMS_TRUE_STANDBY */
      tmp &= ~FFBDAC_CFG_TGEN_VSD;  /* VSYNC = ON     */
      tmp &= ~FFBDAC_CFG_TGEN_VIDE; /* Kill the video */
      break;

    case DPMSModeSuspend:
      tmp |=  FFBDAC_CFG_TGEN_VSD;  /* VSYNC = OFF    */
      tmp &= ~FFBDAC_CFG_TGEN_HSD;  /* HSYNC = ON     */
      tmp &= ~FFBDAC_CFG_TGEN_VIDE; /* Kill the video */
      break;

    case DPMSModeOff:
      tmp |= (FFBDAC_CFG_TGEN_VSD | FFBDAC_CFG_TGEN_HSD);  /* Kill HSYNC, VSYNC both */
      tmp &= ~FFBDAC_CFG_TGEN_VIDE;                        /* Kill the video         */
      break;
      
    default:
      return;     /* If we get here, we really should log an error */
  }
  DACCFG_WRITE(dac, FFBDAC_CFG_TGEN,tmp);  /* Restore timing register, video set as asked */
  SPIN(dac, DPMS_SPIN_COUNT);  /* Is this necessary?  Why?  */
}