summaryrefslogtreecommitdiff
path: root/lib/VMCore/Instruction.cpp
blob: 9b208854ba12e0d0feb20b709a58647cf60a3d70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the VMCore library.
//
//===----------------------------------------------------------------------===//

#include "llvm/Type.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/LeakDetector.h"
using namespace llvm;

Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         Instruction *InsertBefore)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
  // Make sure that we get added to a basicblock
  LeakDetector::addGarbageObject(this);

  // If requested, insert this instruction into a basic block...
  if (InsertBefore) {
    assert(InsertBefore->getParent() &&
           "Instruction to insert before is not in a basic block!");
    InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
  }
}

Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         BasicBlock *InsertAtEnd)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
  // Make sure that we get added to a basicblock
  LeakDetector::addGarbageObject(this);

  // append this instruction into the basic block
  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
  InsertAtEnd->getInstList().push_back(this);
}


// Out of line virtual method, so the vtable, etc has a home.
Instruction::~Instruction() {
  assert(Parent == 0 && "Instruction still linked in the program!");
}


void Instruction::setParent(BasicBlock *P) {
  if (getParent()) {
    if (!P) LeakDetector::addGarbageObject(this);
  } else {
    if (P) LeakDetector::removeGarbageObject(this);
  }

  Parent = P;
}

void Instruction::removeFromParent() {
  getParent()->getInstList().remove(this);
}

void Instruction::eraseFromParent() {
  getParent()->getInstList().erase(this);
}

/// moveBefore - Unlink this instruction from its current basic block and
/// insert it into the basic block that MovePos lives in, right before
/// MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
  MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
                                             this);
}


const char *Instruction::getOpcodeName(unsigned OpCode) {
  switch (OpCode) {
  // Terminators
  case Ret:    return "ret";
  case Br:     return "br";
  case Switch: return "switch";
  case Invoke: return "invoke";
  case Unwind: return "unwind";
  case Unreachable: return "unreachable";

  // Standard binary operators...
  case Add: return "add";
  case Sub: return "sub";
  case Mul: return "mul";
  case UDiv: return "udiv";
  case SDiv: return "sdiv";
  case FDiv: return "fdiv";
  case URem: return "urem";
  case SRem: return "srem";
  case FRem: return "frem";

  // Logical operators...
  case And: return "and";
  case Or : return "or";
  case Xor: return "xor";

  // Memory instructions...
  case Malloc:        return "malloc";
  case Free:          return "free";
  case Alloca:        return "alloca";
  case Load:          return "load";
  case Store:         return "store";
  case GetElementPtr: return "getelementptr";

  // Convert instructions...
  case Trunc:     return "trunc";
  case ZExt:      return "zext";
  case SExt:      return "sext";
  case FPTrunc:   return "fptrunc";
  case FPExt:     return "fpext";
  case FPToUI:    return "fptoui";
  case FPToSI:    return "fptosi";
  case UIToFP:    return "uitofp";
  case SIToFP:    return "sitofp";
  case IntToPtr:  return "inttoptr";
  case PtrToInt:  return "ptrtoint";
  case BitCast:   return "bitcast";

  // Other instructions...
  case ICmp:           return "icmp";
  case FCmp:           return "fcmp";
  case PHI:            return "phi";
  case Select:         return "select";
  case Call:           return "call";
  case Shl:            return "shl";
  case LShr:           return "lshr";
  case AShr:           return "ashr";
  case VAArg:          return "va_arg";
  case ExtractElement: return "extractelement";
  case InsertElement:  return "insertelement";
  case ShuffleVector:  return "shufflevector";

  default: return "<Invalid operator> ";
  }

  return 0;
}

/// isIdenticalTo - Return true if the specified instruction is exactly
/// identical to the current one.  This means that all operands match and any
/// extra information (e.g. load is volatile) agree.
bool Instruction::isIdenticalTo(Instruction *I) const {
  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      getType() != I->getType())
    return false;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (getOperand(i) != I->getOperand(i))
      return false;

  // Check special state that is a part of some instructions.
  if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    return LI->isVolatile() == cast<LoadInst>(I)->isVolatile();
  if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    return SI->isVolatile() == cast<StoreInst>(I)->isVolatile();
  if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
  if (const CallInst *CI = dyn_cast<CallInst>(this))
    return CI->isTailCall() == cast<CallInst>(I)->isTailCall();
  return true;
}

// isSameOperationAs
bool Instruction::isSameOperationAs(Instruction *I) const {
  if (getOpcode() != I->getOpcode() || getType() != I->getType() ||
      getNumOperands() != I->getNumOperands())
    return false;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same type
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (getOperand(i)->getType() != I->getOperand(i)->getType())
      return false;

  // Check special state that is a part of some instructions.
  if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    return LI->isVolatile() == cast<LoadInst>(I)->isVolatile();
  if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    return SI->isVolatile() == cast<StoreInst>(I)->isVolatile();
  if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
  if (const CallInst *CI = dyn_cast<CallInst>(this))
    return CI->isTailCall() == cast<CallInst>(I)->isTailCall();

  return true;
}

/// mayWriteToMemory - Return true if this instruction may modify memory.
///
bool Instruction::mayWriteToMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::Free:
  case Instruction::Invoke:
  case Instruction::Store:
  case Instruction::VAArg:
    return true;
  case Instruction::Call:
    return !cast<CallInst>(this)->onlyReadsMemory();
  case Instruction::Load:
    return cast<LoadInst>(this)->isVolatile();
  }
}

/// isAssociative - Return true if the instruction is associative:
///
///   Associative operators satisfy:  x op (y op z) === (x op y) op z)
///
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when not
/// applied to floating point types.
///
bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) {
  if (Opcode == And || Opcode == Or || Opcode == Xor)
    return true;

  // Add/Mul reassociate unless they are FP or FP vectors.
  if (Opcode == Add || Opcode == Mul)
    return !Ty->isFPOrFPVector();
  return 0;
}

/// isCommutative - Return true if the instruction is commutative:
///
///   Commutative operators satisfy: (x op y) === (y op x)
///
/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
/// applied to any type.
///
bool Instruction::isCommutative(unsigned op) {
  switch (op) {
  case Add:
  case Mul:
  case And:
  case Or:
  case Xor:
    return true;
  default:
    return false;
  }
}

/// isTrappingInstruction - Return true if the instruction may trap.
///
bool Instruction::isTrapping(unsigned op) {
  switch(op) {
  case UDiv:
  case SDiv:
  case FDiv:
  case URem:
  case SRem:
  case FRem:
  case Load:
  case Store:
  case Call:
  case Invoke:
    return true;
  default:
    return false;
  }
}