summaryrefslogtreecommitdiff
path: root/lib/VMCore/Constants.cpp
blob: 974678b2c0eb1a09046f11cf1b5bcce037a3cefb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <map>
using namespace llvm;

//===----------------------------------------------------------------------===//
//                              Constant Class
//===----------------------------------------------------------------------===//

void Constant::destroyConstantImpl() {
  // When a Constant is destroyed, there may be lingering
  // references to the constant by other constants in the constant pool.  These
  // constants are implicitly dependent on the module that is being deleted,
  // but they don't know that.  Because we only find out when the CPV is
  // deleted, we must now notify all of our users (that should only be
  // Constants) that they are, in fact, invalid now and should be deleted.
  //
  while (!use_empty()) {
    Value *V = use_back();
#ifndef NDEBUG      // Only in -g mode...
    if (!isa<Constant>(V))
      DOUT << "While deleting: " << *this
           << "\n\nUse still stuck around after Def is destroyed: "
           << *V << "\n\n";
#endif
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    Constant *CV = cast<Constant>(V);
    CV->destroyConstant();

    // The constant should remove itself from our use list...
    assert((use_empty() || use_back() != V) && "Constant not removed!");
  }

  // Value has no outstanding references it is safe to delete it now...
  delete this;
}

/// canTrap - Return true if evaluation of this constant could trap.  This is
/// true for things like constant expressions that could divide by zero.
bool Constant::canTrap() const {
  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
  // The only thing that could possibly trap are constant exprs.
  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
  if (!CE) return false;
  
  // ConstantExpr traps if any operands can trap. 
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (getOperand(i)->canTrap()) 
      return true;

  // Otherwise, only specific operations can trap.
  switch (CE->getOpcode()) {
  default:
    return false;
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
    // Div and rem can trap if the RHS is not known to be non-zero.
    if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
      return true;
    return false;
  }
}

/// ContaintsRelocations - Return true if the constant value contains
/// relocations which cannot be resolved at compile time.
bool Constant::ContainsRelocations() const {
  if (isa<GlobalValue>(this))
    return true;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (getOperand(i)->ContainsRelocations())
      return true;
  return false;
}

// Static constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(const Type *Ty) {
  static uint64_t zero[2] = {0, 0};
  switch (Ty->getTypeID()) {
  case Type::IntegerTyID:
    return ConstantInt::get(Ty, 0);
  case Type::FloatTyID:
    return ConstantFP::get(APFloat(APInt(32, 0)));
  case Type::DoubleTyID:
    return ConstantFP::get(APFloat(APInt(64, 0)));
  case Type::X86_FP80TyID:
    return ConstantFP::get(APFloat(APInt(80, 2, zero)));
  case Type::FP128TyID:
    return ConstantFP::get(APFloat(APInt(128, 2, zero), true));
  case Type::PPC_FP128TyID:
    return ConstantFP::get(APFloat(APInt(128, 2, zero)));
  case Type::PointerTyID:
    return ConstantPointerNull::get(cast<PointerType>(Ty));
  case Type::StructTyID:
  case Type::ArrayTyID:
  case Type::VectorTyID:
    return ConstantAggregateZero::get(Ty);
  default:
    // Function, Label, or Opaque type?
    assert(!"Cannot create a null constant of that type!");
    return 0;
  }
}

Constant *Constant::getAllOnesValue(const Type *Ty) {
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
    return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
  return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
}

// Static constructor to create an integral constant with all bits set
ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
    return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
  return 0;
}

/// @returns the value for a vector integer constant of the given type that
/// has all its bits set to true.
/// @brief Get the all ones value
ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
  std::vector<Constant*> Elts;
  Elts.resize(Ty->getNumElements(),
              ConstantInt::getAllOnesValue(Ty->getElementType()));
  assert(Elts[0] && "Not a vector integer type!");
  return cast<ConstantVector>(ConstantVector::get(Elts));
}


//===----------------------------------------------------------------------===//
//                                ConstantInt
//===----------------------------------------------------------------------===//

ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}

ConstantInt *ConstantInt::TheTrueVal = 0;
ConstantInt *ConstantInt::TheFalseVal = 0;

namespace llvm {
  void CleanupTrueFalse(void *) {
    ConstantInt::ResetTrueFalse();
  }
}

static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;

ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
  assert(TheTrueVal == 0 && TheFalseVal == 0);
  TheTrueVal  = get(Type::Int1Ty, 1);
  TheFalseVal = get(Type::Int1Ty, 0);
  
  // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
  TrueFalseCleanup.Register();
  
  return WhichOne ? TheTrueVal : TheFalseVal;
}


namespace {
  struct DenseMapAPIntKeyInfo {
    struct KeyTy {
      APInt val;
      const Type* type;
      KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
      KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
      bool operator==(const KeyTy& that) const {
        return type == that.type && this->val == that.val;
      }
      bool operator!=(const KeyTy& that) const {
        return !this->operator==(that);
      }
    };
    static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
    static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
    static unsigned getHashValue(const KeyTy &Key) {
      return DenseMapInfo<void*>::getHashValue(Key.type) ^ 
        Key.val.getHashValue();
    }
    static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
      return LHS == RHS;
    }
    static bool isPod() { return false; }
  };
}


typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, 
                 DenseMapAPIntKeyInfo> IntMapTy;
static ManagedStatic<IntMapTy> IntConstants;

ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
  const IntegerType *ITy = cast<IntegerType>(Ty);
  return get(APInt(ITy->getBitWidth(), V, isSigned));
}

// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *ConstantInt::get(const APInt& V) {
  // Get the corresponding integer type for the bit width of the value.
  const IntegerType *ITy = IntegerType::get(V.getBitWidth());
  // get an existing value or the insertion position
  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
  ConstantInt *&Slot = (*IntConstants)[Key]; 
  // if it exists, return it.
  if (Slot)
    return Slot;
  // otherwise create a new one, insert it, and return it.
  return Slot = new ConstantInt(ITy, V);
}

//===----------------------------------------------------------------------===//
//                                ConstantFP
//===----------------------------------------------------------------------===//

static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
  if (Ty == Type::FloatTy)
    return &APFloat::IEEEsingle;
  if (Ty == Type::DoubleTy)
    return &APFloat::IEEEdouble;
  if (Ty == Type::X86_FP80Ty)
    return &APFloat::x87DoubleExtended;
  else if (Ty == Type::FP128Ty)
    return &APFloat::IEEEquad;
  
  assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
  return &APFloat::PPCDoubleDouble;
}

ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
         "FP type Mismatch");
}

bool ConstantFP::isNullValue() const {
  return Val.isZero() && !Val.isNegative();
}

ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
  APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
  apf.changeSign();
  return ConstantFP::get(apf);
}

bool ConstantFP::isExactlyValue(const APFloat& V) const {
  return Val.bitwiseIsEqual(V);
}

namespace {
  struct DenseMapAPFloatKeyInfo {
    struct KeyTy {
      APFloat val;
      KeyTy(const APFloat& V) : val(V){}
      KeyTy(const KeyTy& that) : val(that.val) {}
      bool operator==(const KeyTy& that) const {
        return this->val.bitwiseIsEqual(that.val);
      }
      bool operator!=(const KeyTy& that) const {
        return !this->operator==(that);
      }
    };
    static inline KeyTy getEmptyKey() { 
      return KeyTy(APFloat(APFloat::Bogus,1));
    }
    static inline KeyTy getTombstoneKey() { 
      return KeyTy(APFloat(APFloat::Bogus,2)); 
    }
    static unsigned getHashValue(const KeyTy &Key) {
      return Key.val.getHashValue();
    }
    static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
      return LHS == RHS;
    }
    static bool isPod() { return false; }
  };
}

//---- ConstantFP::get() implementation...
//
typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, 
                 DenseMapAPFloatKeyInfo> FPMapTy;

static ManagedStatic<FPMapTy> FPConstants;

ConstantFP *ConstantFP::get(const APFloat &V) {
  DenseMapAPFloatKeyInfo::KeyTy Key(V);
  ConstantFP *&Slot = (*FPConstants)[Key];
  if (Slot) return Slot;
  
  const Type *Ty;
  if (&V.getSemantics() == &APFloat::IEEEsingle)
    Ty = Type::FloatTy;
  else if (&V.getSemantics() == &APFloat::IEEEdouble)
    Ty = Type::DoubleTy;
  else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    Ty = Type::X86_FP80Ty;
  else if (&V.getSemantics() == &APFloat::IEEEquad)
    Ty = Type::FP128Ty;
  else {
    assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format");
    Ty = Type::PPC_FP128Ty;
  }
  
  return Slot = new ConstantFP(Ty, V);
}

/// get() - This returns a constant fp for the specified value in the
/// specified type.  This should only be used for simple constant values like
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
  APFloat FV(V);
  FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven);
  return get(FV);
}

//===----------------------------------------------------------------------===//
//                            ConstantXXX Classes
//===----------------------------------------------------------------------===//


ConstantArray::ConstantArray(const ArrayType *T,
                             const std::vector<Constant*> &V)
  : Constant(T, ConstantArrayVal,
             OperandTraits<ConstantArray>::op_end(this) - V.size(),
             V.size()) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant array");
  Use *OL = OperandList;
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
       I != E; ++I, ++OL) {
    Constant *C = *I;
    assert((C->getType() == T->getElementType() ||
            (T->isAbstract() &&
             C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
           "Initializer for array element doesn't match array element type!");
    OL->init(C, this);
  }
}


ConstantStruct::ConstantStruct(const StructType *T,
                               const std::vector<Constant*> &V)
  : Constant(T, ConstantStructVal,
             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
             V.size()) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant structure");
  Use *OL = OperandList;
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
       I != E; ++I, ++OL) {
    Constant *C = *I;
    assert((C->getType() == T->getElementType(I-V.begin()) ||
            ((T->getElementType(I-V.begin())->isAbstract() ||
              C->getType()->isAbstract()) &&
             T->getElementType(I-V.begin())->getTypeID() == 
                   C->getType()->getTypeID())) &&
           "Initializer for struct element doesn't match struct element type!");
    OL->init(C, this);
  }
}


ConstantVector::ConstantVector(const VectorType *T,
                               const std::vector<Constant*> &V)
  : Constant(T, ConstantVectorVal,
             OperandTraits<ConstantVector>::op_end(this) - V.size(),
             V.size()) {
  Use *OL = OperandList;
    for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
         I != E; ++I, ++OL) {
      Constant *C = *I;
      assert((C->getType() == T->getElementType() ||
            (T->isAbstract() &&
             C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
           "Initializer for vector element doesn't match vector element type!");
    OL->init(C, this);
  }
}


namespace llvm {
// We declare several classes private to this file, so use an anonymous
// namespace
namespace {

/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }
  UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
    : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
    Op<0>() = C;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
    : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
    Op<0>().init(C1, this);
    Op<1>().init(C2, this);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
    Op<0>().init(C1, this);
    Op<1>().init(C2, this);
    Op<2>().init(C3, this);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  ExtractElementConstantExpr(Constant *C1, Constant *C2)
    : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
                   Instruction::ExtractElement, &Op<0>(), 2) {
    Op<0>().init(C1, this);
    Op<1>().init(C2, this);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C1->getType(), Instruction::InsertElement, 
                   &Op<0>(), 3) {
    Op<0>().init(C1, this);
    Op<1>().init(C2, this);
    Op<2>().init(C3, this);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
  : ConstantExpr(C1->getType(), Instruction::ShuffleVector, 
                 &Op<0>(), 3) {
    Op<0>().init(C1, this);
    Op<1>().init(C2, this);
    Op<2>().init(C3, this);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
  GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
                            const Type *DestTy);
public:
  static GetElementPtrConstantExpr *Create(Constant *C, const std::vector<Constant*> &IdxList,
                                           const Type *DestTy) {
    return new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  unsigned short predicate;
  CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
                      unsigned short pred,  Constant* LHS, Constant* RHS)
    : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
    Op<0>().init(LHS, this);
    Op<1>().init(RHS, this);
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

} // end anonymous namespace

template <>
struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)

template <>
struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)

template <>
struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)

template <>
struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)

template <>
struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)

template <>
struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)


template <>
struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
};

GetElementPtrConstantExpr::GetElementPtrConstantExpr
  (Constant *C,
   const std::vector<Constant*> &IdxList,
   const Type *DestTy)
    : ConstantExpr(DestTy, Instruction::GetElementPtr,
                   OperandTraits<GetElementPtrConstantExpr>::op_end(this)
                   - (IdxList.size()+1),
                   IdxList.size()+1) {
  OperandList[0].init(C, this);
  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
    OperandList[i+1].init(IdxList[i], this);
}

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)


template <>
struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)


} // End llvm namespace


// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
  return Instruction::isCast(getOpcode());
}

bool ConstantExpr::isCompare() const {
  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}

/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
Constant *ConstantExpr::getNeg(Constant *C) {
  return get(Instruction::Sub,
             ConstantExpr::getZeroValueForNegationExpr(C->getType()),
             C);
}
Constant *ConstantExpr::getNot(Constant *C) {
  assert(isa<IntegerType>(C->getType()) && "Cannot NOT a nonintegral value!");
  return get(Instruction::Xor, C,
             ConstantInt::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
  return get(Instruction::Add, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
  return get(Instruction::Sub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
  return get(Instruction::Mul, C1, C2);
}
Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
  return get(Instruction::UDiv, C1, C2);
}
Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
  return get(Instruction::SDiv, C1, C2);
}
Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
  return get(Instruction::FDiv, C1, C2);
}
Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
  return get(Instruction::URem, C1, C2);
}
Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
  return get(Instruction::SRem, C1, C2);
}
Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
  return get(Instruction::FRem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
  return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
  return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
  return get(Instruction::Xor, C1, C2);
}
unsigned ConstantExpr::getPredicate() const {
  assert(getOpcode() == Instruction::FCmp || 
         getOpcode() == Instruction::ICmp ||
         getOpcode() == Instruction::VFCmp ||
         getOpcode() == Instruction::VICmp);
  return ((const CompareConstantExpr*)this)->predicate;
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
  return get(Instruction::Shl, C1, C2);
}
Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
  return get(Instruction::LShr, C1, C2);
}
Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
  return get(Instruction::AShr, C1, C2);
}

/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
  assert(OpNo < getNumOperands() && "Operand num is out of range!");
  assert(Op->getType() == getOperand(OpNo)->getType() &&
         "Replacing operand with value of different type!");
  if (getOperand(OpNo) == Op)
    return const_cast<ConstantExpr*>(this);
  
  Constant *Op0, *Op1, *Op2;
  switch (getOpcode()) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::BitCast:
    return ConstantExpr::getCast(getOpcode(), Op, getType());
  case Instruction::Select:
    Op0 = (OpNo == 0) ? Op : getOperand(0);
    Op1 = (OpNo == 1) ? Op : getOperand(1);
    Op2 = (OpNo == 2) ? Op : getOperand(2);
    return ConstantExpr::getSelect(Op0, Op1, Op2);
  case Instruction::InsertElement:
    Op0 = (OpNo == 0) ? Op : getOperand(0);
    Op1 = (OpNo == 1) ? Op : getOperand(1);
    Op2 = (OpNo == 2) ? Op : getOperand(2);
    return ConstantExpr::getInsertElement(Op0, Op1, Op2);
  case Instruction::ExtractElement:
    Op0 = (OpNo == 0) ? Op : getOperand(0);
    Op1 = (OpNo == 1) ? Op : getOperand(1);
    return ConstantExpr::getExtractElement(Op0, Op1);
  case Instruction::ShuffleVector:
    Op0 = (OpNo == 0) ? Op : getOperand(0);
    Op1 = (OpNo == 1) ? Op : getOperand(1);
    Op2 = (OpNo == 2) ? Op : getOperand(2);
    return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
  case Instruction::GetElementPtr: {
    SmallVector<Constant*, 8> Ops;
    Ops.resize(getNumOperands());
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
      Ops[i] = getOperand(i);
    if (OpNo == 0)
      return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
    Ops[OpNo-1] = Op;
    return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
  }
  default:
    assert(getNumOperands() == 2 && "Must be binary operator?");
    Op0 = (OpNo == 0) ? Op : getOperand(0);
    Op1 = (OpNo == 1) ? Op : getOperand(1);
    return ConstantExpr::get(getOpcode(), Op0, Op1);
  }
}

/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values.  The specified operands must
/// match count and type with the existing ones.
Constant *ConstantExpr::
getWithOperands(const std::vector<Constant*> &Ops) const {
  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
  bool AnyChange = false;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    assert(Ops[i]->getType() == getOperand(i)->getType() &&
           "Operand type mismatch!");
    AnyChange |= Ops[i] != getOperand(i);
  }
  if (!AnyChange)  // No operands changed, return self.
    return const_cast<ConstantExpr*>(this);

  switch (getOpcode()) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::BitCast:
    return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
  case Instruction::Select:
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
  case Instruction::InsertElement:
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
  case Instruction::ExtractElement:
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
  case Instruction::ShuffleVector:
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
  case Instruction::GetElementPtr:
    return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
  case Instruction::ICmp:
  case Instruction::FCmp:
    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
  default:
    assert(getNumOperands() == 2 && "Must be binary operator?");
    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
  }
}


//===----------------------------------------------------------------------===//
//                      isValueValidForType implementations

bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
  if (Ty == Type::Int1Ty)
    return Val == 0 || Val == 1;
  if (NumBits >= 64)
    return true; // always true, has to fit in largest type
  uint64_t Max = (1ll << NumBits) - 1;
  return Val <= Max;
}

bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
  if (Ty == Type::Int1Ty)
    return Val == 0 || Val == 1 || Val == -1;
  if (NumBits >= 64)
    return true; // always true, has to fit in largest type
  int64_t Min = -(1ll << (NumBits-1));
  int64_t Max = (1ll << (NumBits-1)) - 1;
  return (Val >= Min && Val <= Max);
}

bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
  // convert modifies in place, so make a copy.
  APFloat Val2 = APFloat(Val);
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as floating point!

  // FIXME rounding mode needs to be more flexible
  case Type::FloatTyID:
    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == 
              APFloat::opOK;
  case Type::DoubleTyID:
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == 
             APFloat::opOK;
  case Type::X86_FP80TyID:
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
  case Type::FP128TyID:
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           &Val2.getSemantics() == &APFloat::IEEEquad;
  case Type::PPC_FP128TyID:
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
  }
}

//===----------------------------------------------------------------------===//
//                      Factory Function Implementation


// The number of operands for each ConstantCreator::create method is
// determined by the ConstantTraits template.
// ConstantCreator - A class that is used to create constants by
// ValueMap*.  This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
namespace llvm {
  template<class ValType>
  struct ConstantTraits;

  template<typename T, typename Alloc>
  struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
    static unsigned uses(const std::vector<T, Alloc>& v) {
      return v.size();
    }
  };

  template<class ConstantClass, class TypeClass, class ValType>
  struct VISIBILITY_HIDDEN ConstantCreator {
    static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
      return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
    }
  };

  template<class ConstantClass, class TypeClass>
  struct VISIBILITY_HIDDEN ConvertConstantType {
    static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
      assert(0 && "This type cannot be converted!\n");
      abort();
    }
  };

  template<class ValType, class TypeClass, class ConstantClass,
           bool HasLargeKey = false  /*true for arrays and structs*/ >
  class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
  public:
    typedef std::pair<const Type*, ValType> MapKey;
    typedef std::map<MapKey, Constant *> MapTy;
    typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
    typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
  private:
    /// Map - This is the main map from the element descriptor to the Constants.
    /// This is the primary way we avoid creating two of the same shape
    /// constant.
    MapTy Map;
    
    /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
    /// from the constants to their element in Map.  This is important for
    /// removal of constants from the array, which would otherwise have to scan
    /// through the map with very large keys.
    InverseMapTy InverseMap;

    /// AbstractTypeMap - Map for abstract type constants.
    ///
    AbstractTypeMapTy AbstractTypeMap;

  public:
    typename MapTy::iterator map_end() { return Map.end(); }
    
    /// InsertOrGetItem - Return an iterator for the specified element.
    /// If the element exists in the map, the returned iterator points to the
    /// entry and Exists=true.  If not, the iterator points to the newly
    /// inserted entry and returns Exists=false.  Newly inserted entries have
    /// I->second == 0, and should be filled in.
    typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
                                   &InsertVal,
                                   bool &Exists) {
      std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
      Exists = !IP.second;
      return IP.first;
    }
    
private:
    typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
      if (HasLargeKey) {
        typename InverseMapTy::iterator IMI = InverseMap.find(CP);
        assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
               IMI->second->second == CP &&
               "InverseMap corrupt!");
        return IMI->second;
      }
      
      typename MapTy::iterator I =
        Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
      if (I == Map.end() || I->second != CP) {
        // FIXME: This should not use a linear scan.  If this gets to be a
        // performance problem, someone should look at this.
        for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
          /* empty */;
      }
      return I;
    }
public:
    
    /// getOrCreate - Return the specified constant from the map, creating it if
    /// necessary.
    ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
      MapKey Lookup(Ty, V);
      typename MapTy::iterator I = Map.lower_bound(Lookup);
      // Is it in the map?      
      if (I != Map.end() && I->first == Lookup)
        return static_cast<ConstantClass *>(I->second);  

      // If no preexisting value, create one now...
      ConstantClass *Result =
        ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);

      /// FIXME: why does this assert fail when loading 176.gcc?
      //assert(Result->getType() == Ty && "Type specified is not correct!");
      I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));

      if (HasLargeKey)  // Remember the reverse mapping if needed.
        InverseMap.insert(std::make_pair(Result, I));
      
      // If the type of the constant is abstract, make sure that an entry exists
      // for it in the AbstractTypeMap.
      if (Ty->isAbstract()) {
        typename AbstractTypeMapTy::iterator TI =
          AbstractTypeMap.lower_bound(Ty);

        if (TI == AbstractTypeMap.end() || TI->first != Ty) {
          // Add ourselves to the ATU list of the type.
          cast<DerivedType>(Ty)->addAbstractTypeUser(this);

          AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
        }
      }
      return Result;
    }

    void remove(ConstantClass *CP) {
      typename MapTy::iterator I = FindExistingElement(CP);
      assert(I != Map.end() && "Constant not found in constant table!");
      assert(I->second == CP && "Didn't find correct element?");

      if (HasLargeKey)  // Remember the reverse mapping if needed.
        InverseMap.erase(CP);
      
      // Now that we found the entry, make sure this isn't the entry that
      // the AbstractTypeMap points to.
      const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
      if (Ty->isAbstract()) {
        assert(AbstractTypeMap.count(Ty) &&
               "Abstract type not in AbstractTypeMap?");
        typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
        if (ATMEntryIt == I) {
          // Yes, we are removing the representative entry for this type.
          // See if there are any other entries of the same type.
          typename MapTy::iterator TmpIt = ATMEntryIt;

          // First check the entry before this one...
          if (TmpIt != Map.begin()) {
            --TmpIt;
            if (TmpIt->first.first != Ty) // Not the same type, move back...
              ++TmpIt;
          }

          // If we didn't find the same type, try to move forward...
          if (TmpIt == ATMEntryIt) {
            ++TmpIt;
            if (TmpIt == Map.end() || TmpIt->first.first != Ty)
              --TmpIt;   // No entry afterwards with the same type
          }

          // If there is another entry in the map of the same abstract type,
          // update the AbstractTypeMap entry now.
          if (TmpIt != ATMEntryIt) {
            ATMEntryIt = TmpIt;
          } else {
            // Otherwise, we are removing the last instance of this type
            // from the table.  Remove from the ATM, and from user list.
            cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
            AbstractTypeMap.erase(Ty);
          }
        }
      }

      Map.erase(I);
    }

    
    /// MoveConstantToNewSlot - If we are about to change C to be the element
    /// specified by I, update our internal data structures to reflect this
    /// fact.
    void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
      // First, remove the old location of the specified constant in the map.
      typename MapTy::iterator OldI = FindExistingElement(C);
      assert(OldI != Map.end() && "Constant not found in constant table!");
      assert(OldI->second == C && "Didn't find correct element?");
      
      // If this constant is the representative element for its abstract type,
      // update the AbstractTypeMap so that the representative element is I.
      if (C->getType()->isAbstract()) {
        typename AbstractTypeMapTy::iterator ATI =
            AbstractTypeMap.find(C->getType());
        assert(ATI != AbstractTypeMap.end() &&
               "Abstract type not in AbstractTypeMap?");
        if (ATI->second == OldI)
          ATI->second = I;
      }
      
      // Remove the old entry from the map.
      Map.erase(OldI);
      
      // Update the inverse map so that we know that this constant is now
      // located at descriptor I.
      if (HasLargeKey) {
        assert(I->second == C && "Bad inversemap entry!");
        InverseMap[C] = I;
      }
    }
    
    void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
      typename AbstractTypeMapTy::iterator I =
        AbstractTypeMap.find(cast<Type>(OldTy));

      assert(I != AbstractTypeMap.end() &&
             "Abstract type not in AbstractTypeMap?");

      // Convert a constant at a time until the last one is gone.  The last one
      // leaving will remove() itself, causing the AbstractTypeMapEntry to be
      // eliminated eventually.
      do {
        ConvertConstantType<ConstantClass,
                            TypeClass>::convert(
                                static_cast<ConstantClass *>(I->second->second),
                                                cast<TypeClass>(NewTy));

        I = AbstractTypeMap.find(cast<Type>(OldTy));
      } while (I != AbstractTypeMap.end());
    }

    // If the type became concrete without being refined to any other existing
    // type, we just remove ourselves from the ATU list.
    void typeBecameConcrete(const DerivedType *AbsTy) {
      AbsTy->removeAbstractTypeUser(this);
    }

    void dump() const {
      DOUT << "Constant.cpp: ValueMap\n";
    }
  };
}



//---- ConstantAggregateZero::get() implementation...
//
namespace llvm {
  // ConstantAggregateZero does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
    static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
      return new ConstantAggregateZero(Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantAggregateZero, Type> {
    static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
      // Make everyone now use a constant of the new type...
      Constant *New = ConstantAggregateZero::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ManagedStatic<ValueMap<char, Type, 
                              ConstantAggregateZero> > AggZeroConstants;

static char getValType(ConstantAggregateZero *CPZ) { return 0; }

Constant *ConstantAggregateZero::get(const Type *Ty) {
  assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
         "Cannot create an aggregate zero of non-aggregate type!");
  return AggZeroConstants->getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantAggregateZero::destroyConstant() {
  AggZeroConstants->remove(this);
  destroyConstantImpl();
}

//---- ConstantArray::get() implementation...
//
namespace llvm {
  template<>
  struct ConvertConstantType<ConstantArray, ArrayType> {
    static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantArray::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static std::vector<Constant*> getValType(ConstantArray *CA) {
  std::vector<Constant*> Elements;
  Elements.reserve(CA->getNumOperands());
  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CA->getOperand(i)));
  return Elements;
}

typedef ValueMap<std::vector<Constant*>, ArrayType, 
                 ConstantArray, true /*largekey*/> ArrayConstantsTy;
static ManagedStatic<ArrayConstantsTy> ArrayConstants;

Constant *ConstantArray::get(const ArrayType *Ty,
                             const std::vector<Constant*> &V) {
  // If this is an all-zero array, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue())
      return ArrayConstants->getOrCreate(Ty, V);
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C)
        return ArrayConstants->getOrCreate(Ty, V);
  }
  return ConstantAggregateZero::get(Ty);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
  ArrayConstants->remove(this);
  destroyConstantImpl();
}

/// ConstantArray::get(const string&) - Return an array that is initialized to
/// contain the specified string.  If length is zero then a null terminator is 
/// added to the specified string so that it may be used in a natural way. 
/// Otherwise, the length parameter specifies how much of the string to use 
/// and it won't be null terminated.
///
Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
  std::vector<Constant*> ElementVals;
  for (unsigned i = 0; i < Str.length(); ++i)
    ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));

  // Add a null terminator to the string...
  if (AddNull) {
    ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
  }

  ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
  return ConstantArray::get(ATy, ElementVals);
}

/// isString - This method returns true if the array is an array of i8, and 
/// if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
  // Check the element type for i8...
  if (getType()->getElementType() != Type::Int8Ty)
    return false;
  // Check the elements to make sure they are all integers, not constant
  // expressions.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (!isa<ConstantInt>(getOperand(i)))
      return false;
  return true;
}

/// isCString - This method returns true if the array is a string (see
/// isString) and it ends in a null byte \0 and does not contains any other
/// null bytes except its terminator.
bool ConstantArray::isCString() const {
  // Check the element type for i8...
  if (getType()->getElementType() != Type::Int8Ty)
    return false;
  Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
  // Last element must be a null.
  if (getOperand(getNumOperands()-1) != Zero)
    return false;
  // Other elements must be non-null integers.
  for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
    if (!isa<ConstantInt>(getOperand(i)))
      return false;
    if (getOperand(i) == Zero)
      return false;
  }
  return true;
}


// getAsString - If the sub-element type of this array is i8
// then this method converts the array to an std::string and returns it.
// Otherwise, it asserts out.
//
std::string ConstantArray::getAsString() const {
  assert(isString() && "Not a string!");
  std::string Result;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    Result += (char)cast<ConstantInt>(getOperand(i))->getZExtValue();
  return Result;
}


//---- ConstantStruct::get() implementation...
//

namespace llvm {
  template<>
  struct ConvertConstantType<ConstantStruct, StructType> {
    static void convert(ConstantStruct *OldC, const StructType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantStruct::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");

      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

typedef ValueMap<std::vector<Constant*>, StructType,
                 ConstantStruct, true /*largekey*/> StructConstantsTy;
static ManagedStatic<StructConstantsTy> StructConstants;

static std::vector<Constant*> getValType(ConstantStruct *CS) {
  std::vector<Constant*> Elements;
  Elements.reserve(CS->getNumOperands());
  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CS->getOperand(i)));
  return Elements;
}

Constant *ConstantStruct::get(const StructType *Ty,
                              const std::vector<Constant*> &V) {
  // Create a ConstantAggregateZero value if all elements are zeros...
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    if (!V[i]->isNullValue())
      return StructConstants->getOrCreate(Ty, V);

  return ConstantAggregateZero::get(Ty);
}

Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
  std::vector<const Type*> StructEls;
  StructEls.reserve(V.size());
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    StructEls.push_back(V[i]->getType());
  return get(StructType::get(StructEls, packed), V);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
  StructConstants->remove(this);
  destroyConstantImpl();
}

//---- ConstantVector::get() implementation...
//
namespace llvm {
  template<>
  struct ConvertConstantType<ConstantVector, VectorType> {
    static void convert(ConstantVector *OldC, const VectorType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantVector::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static std::vector<Constant*> getValType(ConstantVector *CP) {
  std::vector<Constant*> Elements;
  Elements.reserve(CP->getNumOperands());
  for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    Elements.push_back(CP->getOperand(i));
  return Elements;
}

static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
                              ConstantVector> > VectorConstants;

Constant *ConstantVector::get(const VectorType *Ty,
                              const std::vector<Constant*> &V) {
  // If this is an all-zero vector, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue())
      return VectorConstants->getOrCreate(Ty, V);
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C)
        return VectorConstants->getOrCreate(Ty, V);
  }
  return ConstantAggregateZero::get(Ty);
}

Constant *ConstantVector::get(const std::vector<Constant*> &V) {
  assert(!V.empty() && "Cannot infer type if V is empty");
  return get(VectorType::get(V.front()->getType(),V.size()), V);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
  VectorConstants->remove(this);
  destroyConstantImpl();
}

/// This function will return true iff every element in this vector constant
/// is set to all ones.
/// @returns true iff this constant's emements are all set to all ones.
/// @brief Determine if the value is all ones.
bool ConstantVector::isAllOnesValue() const {
  // Check out first element.
  const Constant *Elt = getOperand(0);
  const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
  if (!CI || !CI->isAllOnesValue()) return false;
  // Then make sure all remaining elements point to the same value.
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
    if (getOperand(I) != Elt) return false;
  }
  return true;
}

/// getSplatValue - If this is a splat constant, where all of the
/// elements have the same value, return that value. Otherwise return null.
Constant *ConstantVector::getSplatValue() {
  // Check out first element.
  Constant *Elt = getOperand(0);
  // Then make sure all remaining elements point to the same value.
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
    if (getOperand(I) != Elt) return 0;
  return Elt;
}

//---- ConstantPointerNull::get() implementation...
//

namespace llvm {
  // ConstantPointerNull does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
    static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
      return new ConstantPointerNull(Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantPointerNull, PointerType> {
    static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
      // Make everyone now use a constant of the new type...
      Constant *New = ConstantPointerNull::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ManagedStatic<ValueMap<char, PointerType, 
                              ConstantPointerNull> > NullPtrConstants;

static char getValType(ConstantPointerNull *) {
  return 0;
}


ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
  return NullPtrConstants->getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
  NullPtrConstants->remove(this);
  destroyConstantImpl();
}


//---- UndefValue::get() implementation...
//

namespace llvm {
  // UndefValue does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<UndefValue, Type, ValType> {
    static UndefValue *create(const Type *Ty, const ValType &V) {
      return new UndefValue(Ty);
    }
  };

  template<>
  struct ConvertConstantType<UndefValue, Type> {
    static void convert(UndefValue *OldC, const Type *NewTy) {
      // Make everyone now use a constant of the new type.
      Constant *New = UndefValue::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;

static char getValType(UndefValue *) {
  return 0;
}


UndefValue *UndefValue::get(const Type *Ty) {
  return UndefValueConstants->getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
  UndefValueConstants->remove(this);
  destroyConstantImpl();
}


//---- ConstantExpr::get() implementations...
//

struct ExprMapKeyType {
  explicit ExprMapKeyType(unsigned opc, std::vector<Constant*> ops,
      unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { }
  uint16_t opcode;
  uint16_t predicate;
  std::vector<Constant*> operands;
  bool operator==(const ExprMapKeyType& that) const {
    return this->opcode == that.opcode &&
           this->predicate == that.predicate &&
           this->operands == that.operands;
  }
  bool operator<(const ExprMapKeyType & that) const {
    return this->opcode < that.opcode ||
      (this->opcode == that.opcode && this->predicate < that.predicate) ||
      (this->opcode == that.opcode && this->predicate == that.predicate &&
       this->operands < that.operands);
  }

  bool operator!=(const ExprMapKeyType& that) const {
    return !(*this == that);
  }
};

namespace llvm {
  template<>
  struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
    static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
        unsigned short pred = 0) {
      if (Instruction::isCast(V.opcode))
        return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
      if ((V.opcode >= Instruction::BinaryOpsBegin &&
           V.opcode < Instruction::BinaryOpsEnd))
        return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
      if (V.opcode == Instruction::Select)
        return new SelectConstantExpr(V.operands[0], V.operands[1], 
                                      V.operands[2]);
      if (V.opcode == Instruction::ExtractElement)
        return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
      if (V.opcode == Instruction::InsertElement)
        return new InsertElementConstantExpr(V.operands[0], V.operands[1],
                                             V.operands[2]);
      if (V.opcode == Instruction::ShuffleVector)
        return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
                                             V.operands[2]);
      if (V.opcode == Instruction::GetElementPtr) {
        std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
        return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
      }

      // The compare instructions are weird. We have to encode the predicate
      // value and it is combined with the instruction opcode by multiplying
      // the opcode by one hundred. We must decode this to get the predicate.
      if (V.opcode == Instruction::ICmp)
        return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, 
                                       V.operands[0], V.operands[1]);
      if (V.opcode == Instruction::FCmp) 
        return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, 
                                       V.operands[0], V.operands[1]);
      if (V.opcode == Instruction::VICmp)
        return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate, 
                                       V.operands[0], V.operands[1]);
      if (V.opcode == Instruction::VFCmp) 
        return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate, 
                                       V.operands[0], V.operands[1]);
      assert(0 && "Invalid ConstantExpr!");
      return 0;
    }
  };

  template<>
  struct ConvertConstantType<ConstantExpr, Type> {
    static void convert(ConstantExpr *OldC, const Type *NewTy) {
      Constant *New;
      switch (OldC->getOpcode()) {
      case Instruction::Trunc:
      case Instruction::ZExt:
      case Instruction::SExt:
      case Instruction::FPTrunc:
      case Instruction::FPExt:
      case Instruction::UIToFP:
      case Instruction::SIToFP:
      case Instruction::FPToUI:
      case Instruction::FPToSI:
      case Instruction::PtrToInt:
      case Instruction::IntToPtr:
      case Instruction::BitCast:
        New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), 
                                    NewTy);
        break;
      case Instruction::Select:
        New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
                                        OldC->getOperand(1),
                                        OldC->getOperand(2));
        break;
      default:
        assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
               OldC->getOpcode() <  Instruction::BinaryOpsEnd);
        New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
                                  OldC->getOperand(1));
        break;
      case Instruction::GetElementPtr:
        // Make everyone now use a constant of the new type...
        std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
        New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
                                               &Idx[0], Idx.size());
        break;
      }

      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
} // end namespace llvm


static ExprMapKeyType getValType(ConstantExpr *CE) {
  std::vector<Constant*> Operands;
  Operands.reserve(CE->getNumOperands());
  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
    Operands.push_back(cast<Constant>(CE->getOperand(i)));
  return ExprMapKeyType(CE->getOpcode(), Operands, 
      CE->isCompare() ? CE->getPredicate() : 0);
}

static ManagedStatic<ValueMap<ExprMapKeyType, Type,
                              ConstantExpr> > ExprConstants;

/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static inline Constant *getFoldedCast(
  Instruction::CastOps opc, Constant *C, const Type *Ty) {
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
  // Fold a few common cases
  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
    return FC;

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> argVec(1, C);
  ExprMapKeyType Key(opc, argVec);
  return ExprConstants->getOrCreate(Ty, Key);
}
 
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
  Instruction::CastOps opc = Instruction::CastOps(oc);
  assert(Instruction::isCast(opc) && "opcode out of range");
  assert(C && Ty && "Null arguments to getCast");
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");

  switch (opc) {
    default:
      assert(0 && "Invalid cast opcode");
      break;
    case Instruction::Trunc:    return getTrunc(C, Ty);
    case Instruction::ZExt:     return getZExt(C, Ty);
    case Instruction::SExt:     return getSExt(C, Ty);
    case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
    case Instruction::FPExt:    return getFPExtend(C, Ty);
    case Instruction::UIToFP:   return getUIToFP(C, Ty);
    case Instruction::SIToFP:   return getSIToFP(C, Ty);
    case Instruction::FPToUI:   return getFPToUI(C, Ty);
    case Instruction::FPToSI:   return getFPToSI(C, Ty);
    case Instruction::PtrToInt: return getPtrToInt(C, Ty);
    case Instruction::IntToPtr: return getIntToPtr(C, Ty);
    case Instruction::BitCast:  return getBitCast(C, Ty);
  }
  return 0;
} 

Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
  if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
    return getCast(Instruction::BitCast, C, Ty);
  return getCast(Instruction::ZExt, C, Ty);
}

Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
  if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
    return getCast(Instruction::BitCast, C, Ty);
  return getCast(Instruction::SExt, C, Ty);
}

Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
  if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
    return getCast(Instruction::BitCast, C, Ty);
  return getCast(Instruction::Trunc, C, Ty);
}

Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
  assert(isa<PointerType>(S->getType()) && "Invalid cast");
  assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");

  if (Ty->isInteger())
    return getCast(Instruction::PtrToInt, S, Ty);
  return getCast(Instruction::BitCast, S, Ty);
}

Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, 
                                       bool isSigned) {
  assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
  unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
  unsigned DstBits = Ty->getPrimitiveSizeInBits();
  Instruction::CastOps opcode =
    (SrcBits == DstBits ? Instruction::BitCast :
     (SrcBits > DstBits ? Instruction::Trunc :
      (isSigned ? Instruction::SExt : Instruction::ZExt)));
  return getCast(opcode, C, Ty);
}

Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && 
         "Invalid cast");
  unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
  unsigned DstBits = Ty->getPrimitiveSizeInBits();
  if (SrcBits == DstBits)
    return C; // Avoid a useless cast
  Instruction::CastOps opcode =
     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
  return getCast(opcode, C, Ty);
}

Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
  assert(C->getType()->isInteger() && "Trunc operand must be integer");
  assert(Ty->isInteger() && "Trunc produces only integral");
  assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
         "SrcTy must be larger than DestTy for Trunc!");

  return getFoldedCast(Instruction::Trunc, C, Ty);
}

Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
  assert(C->getType()->isInteger() && "SEXt operand must be integral");
  assert(Ty->isInteger() && "SExt produces only integer");
  assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
         "SrcTy must be smaller than DestTy for SExt!");

  return getFoldedCast(Instruction::SExt, C, Ty);
}

Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
  assert(C->getType()->isInteger() && "ZEXt operand must be integral");
  assert(Ty->isInteger() && "ZExt produces only integer");
  assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
         "SrcTy must be smaller than DestTy for ZExt!");

  return getFoldedCast(Instruction::ZExt, C, Ty);
}

Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
         C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
         "This is an illegal floating point truncation!");
  return getFoldedCast(Instruction::FPTrunc, C, Ty);
}

Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
         C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
         "This is an illegal floating point extension!");
  return getFoldedCast(Instruction::FPExt, C, Ty);
}

Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
         "This is an illegal uint to floating point cast!");
  return getFoldedCast(Instruction::UIToFP, C, Ty);
}

Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
         "This is an illegal sint to floating point cast!");
  return getFoldedCast(Instruction::SIToFP, C, Ty);
}

Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
         "This is an illegal floating point to uint cast!");
  return getFoldedCast(Instruction::FPToUI, C, Ty);
}

Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
         "This is an illegal floating point to sint cast!");
  return getFoldedCast(Instruction::FPToSI, C, Ty);
}

Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
  assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
  assert(DstTy->isInteger() && "PtrToInt destination must be integral");
  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
}

Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
  assert(C->getType()->isInteger() && "IntToPtr source must be integral");
  assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
}

Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
  // BitCast implies a no-op cast of type only. No bits change.  However, you 
  // can't cast pointers to anything but pointers.
  const Type *SrcTy = C->getType();
  assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
         "BitCast cannot cast pointer to non-pointer and vice versa");

  // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
  // or nonptr->ptr). For all the other types, the cast is okay if source and 
  // destination bit widths are identical.
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
  assert(SrcBitSize == DstBitSize && "BitCast requies types of same width");
  return getFoldedCast(Instruction::BitCast, C, DstTy);
}

Constant *ConstantExpr::getSizeOf(const Type *Ty) {
  // sizeof is implemented as: (i64) gep (Ty*)null, 1
  Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
  Constant *GEP =
    getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
  return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
}

Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
                              Constant *C1, Constant *C2) {
  // Check the operands for consistency first
  assert(Opcode >= Instruction::BinaryOpsBegin &&
         Opcode <  Instruction::BinaryOpsEnd   &&
         "Invalid opcode in binary constant expression");
  assert(C1->getType() == C2->getType() &&
         "Operand types in binary constant expression should match");

  if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
    if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
      return FC;          // Fold a few common cases...

  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
  ExprMapKeyType Key(Opcode, argVec);
  return ExprConstants->getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getCompareTy(unsigned short predicate,
                                     Constant *C1, Constant *C2) {
  switch (predicate) {
    default: assert(0 && "Invalid CmpInst predicate");
    case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT:
    case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE:
    case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO:
    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE:
    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE:
    case FCmpInst::FCMP_TRUE:
      return getFCmp(predicate, C1, C2);
    case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE:
    case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE:
      return getICmp(predicate, C1, C2);
  }
}

Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
#ifndef NDEBUG
  switch (Opcode) {
  case Instruction::Add: 
  case Instruction::Sub:
  case Instruction::Mul: 
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
            isa<VectorType>(C1->getType())) &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::UDiv: 
  case Instruction::SDiv: 
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
      cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::FDiv:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
      && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) 
      && "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::URem: 
  case Instruction::SRem: 
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
      cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::FRem:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
      && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) 
      && "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) &&
           "Tried to create a logical operation on a non-integral type!");
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isInteger() &&
           "Tried to create a shift operation on a non-integer type!");
    break;
  default:
    break;
  }
#endif

  return getTy(C1->getType(), Opcode, C1, C2);
}

Constant *ConstantExpr::getCompare(unsigned short pred, 
                            Constant *C1, Constant *C2) {
  assert(C1->getType() == C2->getType() && "Op types should be identical!");
  return getCompareTy(pred, C1, C2);
}

Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
                                    Constant *V1, Constant *V2) {
  assert(C->getType() == Type::Int1Ty && "Select condition must be i1!");
  assert(V1->getType() == V2->getType() && "Select value types must match!");
  assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");

  if (ReqTy == V1->getType())
    if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
      return SC;        // Fold common cases

  std::vector<Constant*> argVec(3, C);
  argVec[1] = V1;
  argVec[2] = V2;
  ExprMapKeyType Key(Instruction::Select, argVec);
  return ExprConstants->getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
                                           Value* const *Idxs,
                                           unsigned NumIdx) {
  assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true) &&
         "GEP indices invalid!");

  if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
    return FC;          // Fold a few common cases...

  assert(isa<PointerType>(C->getType()) &&
         "Non-pointer type for constant GetElementPtr expression");
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.reserve(NumIdx+1);
  ArgVec.push_back(C);
  for (unsigned i = 0; i != NumIdx; ++i)
    ArgVec.push_back(cast<Constant>(Idxs[i]));
  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
  return ExprConstants->getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
                                         unsigned NumIdx) {
  // Get the result type of the getelementptr!
  const Type *Ty = 
    GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true);
  assert(Ty && "GEP indices invalid!");
  unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
  return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}

Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
                                         unsigned NumIdx) {
  return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}


Constant *
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
  assert(LHS->getType() == RHS->getType());
  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");

  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.push_back(LHS);
  ArgVec.push_back(RHS);
  // Get the key type with both the opcode and predicate
  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
  return ExprConstants->getOrCreate(Type::Int1Ty, Key);
}

Constant *
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
  assert(LHS->getType() == RHS->getType());
  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");

  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.push_back(LHS);
  ArgVec.push_back(RHS);
  // Get the key type with both the opcode and predicate
  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
  return ExprConstants->getOrCreate(Type::Int1Ty, Key);
}

Constant *
ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
  assert(isa<VectorType>(LHS->getType()) &&
         "Tried to create vicmp operation on non-vector type!");
  assert(LHS->getType() == RHS->getType());
  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate");

  const VectorType *VTy = cast<VectorType>(LHS->getType());
  const Type *EltTy = VTy->getElementType();
  unsigned NumElts = VTy->getNumElements();

  SmallVector<Constant *, 8> Elts;
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *FC = ConstantFoldCompareInstruction(pred, LHS->getOperand(i),
                                                        RHS->getOperand(i));
    if (FC) {
      uint64_t Val = cast<ConstantInt>(FC)->getZExtValue();
      if (Val != 0ULL)
        Elts.push_back(ConstantInt::getAllOnesValue(EltTy));
      else
        Elts.push_back(ConstantInt::get(EltTy, 0ULL));
    }
  }
  if (Elts.size() == NumElts)
    return ConstantVector::get(&Elts[0], Elts.size());

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.push_back(LHS);
  ArgVec.push_back(RHS);
  // Get the key type with both the opcode and predicate
  const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred);
  return ExprConstants->getOrCreate(LHS->getType(), Key);
}

Constant *
ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
  assert(isa<VectorType>(LHS->getType()) &&
         "Tried to create vfcmp operation on non-vector type!");
  assert(LHS->getType() == RHS->getType());
  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate");

  const VectorType *VTy = cast<VectorType>(LHS->getType());
  unsigned NumElts = VTy->getNumElements();
  const Type *EltTy = VTy->getElementType();
  const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits());
  const Type *ResultTy = VectorType::get(REltTy, NumElts);

  SmallVector<Constant *, 8> Elts;
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *FC = ConstantFoldCompareInstruction(pred, LHS->getOperand(i),
                                                        RHS->getOperand(i));
    if (FC) {
      uint64_t Val = cast<ConstantInt>(FC)->getZExtValue();
      if (Val != 0ULL)
        Elts.push_back(ConstantInt::getAllOnesValue(REltTy));
      else
        Elts.push_back(ConstantInt::get(REltTy, 0ULL));
    }
  }
  if (Elts.size() == NumElts)
    return ConstantVector::get(&Elts[0], Elts.size());

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.push_back(LHS);
  ArgVec.push_back(RHS);
  // Get the key type with both the opcode and predicate
  const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred);
  return ExprConstants->getOrCreate(ResultTy, Key);
}

Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
                                            Constant *Idx) {
  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
    return FC;          // Fold a few common cases...
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec(1, Val);
  ArgVec.push_back(Idx);
  const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
  return ExprConstants->getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
  assert(isa<VectorType>(Val->getType()) &&
         "Tried to create extractelement operation on non-vector type!");
  assert(Idx->getType() == Type::Int32Ty &&
         "Extractelement index must be i32 type!");
  return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
                             Val, Idx);
}

Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
                                           Constant *Elt, Constant *Idx) {
  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
    return FC;          // Fold a few common cases...
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec(1, Val);
  ArgVec.push_back(Elt);
  ArgVec.push_back(Idx);
  const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
  return ExprConstants->getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
                                         Constant *Idx) {
  assert(isa<VectorType>(Val->getType()) &&
         "Tried to create insertelement operation on non-vector type!");
  assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
         && "Insertelement types must match!");
  assert(Idx->getType() == Type::Int32Ty &&
         "Insertelement index must be i32 type!");
  return getInsertElementTy(cast<VectorType>(Val->getType())->getElementType(),
                            Val, Elt, Idx);
}

Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
                                           Constant *V2, Constant *Mask) {
  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
    return FC;          // Fold a few common cases...
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec(1, V1);
  ArgVec.push_back(V2);
  ArgVec.push_back(Mask);
  const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
  return ExprConstants->getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
                                         Constant *Mask) {
  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
         "Invalid shuffle vector constant expr operands!");
  return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
}

Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
  if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
    if (PTy->getElementType()->isFloatingPoint()) {
      std::vector<Constant*> zeros(PTy->getNumElements(),
                           ConstantFP::getNegativeZero(PTy->getElementType()));
      return ConstantVector::get(PTy, zeros);
    }

  if (Ty->isFloatingPoint()) 
    return ConstantFP::getNegativeZero(Ty);

  return Constant::getNullValue(Ty);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
  ExprConstants->remove(this);
  destroyConstantImpl();
}

const char *ConstantExpr::getOpcodeName() const {
  return Instruction::getOpcodeName(getOpcode());
}

//===----------------------------------------------------------------------===//
//                replaceUsesOfWithOnConstant implementations

/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
/// 'From' to be uses of 'To'.  This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here.  Consider
/// a large array that uses 'From' 1000 times.  By handling this case all here,
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
/// single invocation handles all 1000 uses.  Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
  Lookup.first.first = getType();
  Lookup.second = this;

  std::vector<Constant*> &Values = Lookup.first.second;
  Values.reserve(getNumOperands());  // Build replacement array.

  // Fill values with the modified operands of the constant array.  Also, 
  // compute whether this turns into an all-zeros array.
  bool isAllZeros = false;
  unsigned NumUpdated = 0;
  if (!ToC->isNullValue()) {
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      if (Val == From) {
        Val = ToC;
        ++NumUpdated;
      }
      Values.push_back(Val);
    }
  } else {
    isAllZeros = true;
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      if (Val == From) {
        Val = ToC;
        ++NumUpdated;
      }
      Values.push_back(Val);
      if (isAllZeros) isAllZeros = Val->isNullValue();
    }
  }
  
  Constant *Replacement = 0;
  if (isAllZeros) {
    Replacement = ConstantAggregateZero::get(getType());
  } else {
    // Check to see if we have this array type already.
    bool Exists;
    ArrayConstantsTy::MapTy::iterator I =
      ArrayConstants->InsertOrGetItem(Lookup, Exists);
    
    if (Exists) {
      Replacement = I->second;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant array, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      ArrayConstants->MoveConstantToNewSlot(this, I);
      
      // Update to the new value.  Optimize for the case when we have a single
      // operand that we're changing, but handle bulk updates efficiently.
      if (NumUpdated == 1) {
        unsigned OperandToUpdate = U-OperandList;
        assert(getOperand(OperandToUpdate) == From &&
               "ReplaceAllUsesWith broken!");
        setOperand(OperandToUpdate, ToC);
      } else {
        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
          if (getOperand(i) == From)
            setOperand(i, ToC);
      }
      return;
    }
  }
 
  // Otherwise, I do need to replace this with an existing value.
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  unsigned OperandToUpdate = U-OperandList;
  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");

  std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
  Lookup.first.first = getType();
  Lookup.second = this;
  std::vector<Constant*> &Values = Lookup.first.second;
  Values.reserve(getNumOperands());  // Build replacement struct.
  
  
  // Fill values with the modified operands of the constant struct.  Also, 
  // compute whether this turns into an all-zeros struct.
  bool isAllZeros = false;
  if (!ToC->isNullValue()) {
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
      Values.push_back(cast<Constant>(O->get()));
  } else {
    isAllZeros = true;
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      Values.push_back(Val);
      if (isAllZeros) isAllZeros = Val->isNullValue();
    }
  }
  Values[OperandToUpdate] = ToC;
  
  Constant *Replacement = 0;
  if (isAllZeros) {
    Replacement = ConstantAggregateZero::get(getType());
  } else {
    // Check to see if we have this array type already.
    bool Exists;
    StructConstantsTy::MapTy::iterator I =
      StructConstants->InsertOrGetItem(Lookup, Exists);
    
    if (Exists) {
      Replacement = I->second;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant struct, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      StructConstants->MoveConstantToNewSlot(this, I);
      
      // Update to the new value.
      setOperand(OperandToUpdate, ToC);
      return;
    }
  }
  
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  
  std::vector<Constant*> Values;
  Values.reserve(getNumOperands());  // Build replacement array...
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Val = getOperand(i);
    if (Val == From) Val = cast<Constant>(To);
    Values.push_back(Val);
  }
  
  Constant *Replacement = ConstantVector::get(getType(), Values);
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
                                               Use *U) {
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
  Constant *To = cast<Constant>(ToV);
  
  Constant *Replacement = 0;
  if (getOpcode() == Instruction::GetElementPtr) {
    SmallVector<Constant*, 8> Indices;
    Constant *Pointer = getOperand(0);
    Indices.reserve(getNumOperands()-1);
    if (Pointer == From) Pointer = To;
    
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
      Constant *Val = getOperand(i);
      if (Val == From) Val = To;
      Indices.push_back(Val);
    }
    Replacement = ConstantExpr::getGetElementPtr(Pointer,
                                                 &Indices[0], Indices.size());
  } else if (isCast()) {
    assert(getOperand(0) == From && "Cast only has one use!");
    Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
  } else if (getOpcode() == Instruction::Select) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    Constant *C3 = getOperand(2);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    if (C3 == From) C3 = To;
    Replacement = ConstantExpr::getSelect(C1, C2, C3);
  } else if (getOpcode() == Instruction::ExtractElement) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    Replacement = ConstantExpr::getExtractElement(C1, C2);
  } else if (getOpcode() == Instruction::InsertElement) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    Constant *C3 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    if (C3 == From) C3 = To;
    Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
  } else if (getOpcode() == Instruction::ShuffleVector) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    Constant *C3 = getOperand(2);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    if (C3 == From) C3 = To;
    Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
  } else if (isCompare()) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    if (getOpcode() == Instruction::ICmp)
      Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
    else
      Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
  } else if (getNumOperands() == 2) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    Replacement = ConstantExpr::get(getOpcode(), C1, C2);
  } else {
    assert(0 && "Unknown ConstantExpr type!");
    return;
  }
  
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}


/// getStringValue - Turn an LLVM constant pointer that eventually points to a
/// global into a string value.  Return an empty string if we can't do it.
/// Parameter Chop determines if the result is chopped at the first null
/// terminator.
///
std::string Constant::getStringValue(bool Chop, unsigned Offset) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) {
    if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
      ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
      if (Init->isString()) {
        std::string Result = Init->getAsString();
        if (Offset < Result.size()) {
          // If we are pointing INTO The string, erase the beginning...
          Result.erase(Result.begin(), Result.begin()+Offset);

          // Take off the null terminator, and any string fragments after it.
          if (Chop) {
            std::string::size_type NullPos = Result.find_first_of((char)0);
            if (NullPos != std::string::npos)
              Result.erase(Result.begin()+NullPos, Result.end());
          }
          return Result;
        }
      }
    }
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      // Turn a gep into the specified offset.
      if (CE->getNumOperands() == 3 &&
          cast<Constant>(CE->getOperand(1))->isNullValue() &&
          isa<ConstantInt>(CE->getOperand(2))) {
        Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue();
        return CE->getOperand(0)->getStringValue(Chop, Offset);
      }
    }
  }
  return "";
}