summaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SimplifyLibCalls.cpp
blob: 032a2fdfcf62ce973b31394d32841c956e904df6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a utility pass used for testing the InstructionSimplify analysis.
// The analysis is applied to every instruction, and if it simplifies then the
// instruction is replaced by the simplification.  If you are looking for a pass
// that performs serious instruction folding, use the instcombine pass instead.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/DataLayout.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"

using namespace llvm;

/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class LibCallOptimization {
protected:
  Function *Caller;
  const DataLayout *TD;
  const TargetLibraryInfo *TLI;
  LLVMContext* Context;
public:
  LibCallOptimization() { }
  virtual ~LibCallOptimization() {}

  /// callOptimizer - This pure virtual method is implemented by base classes to
  /// do various optimizations.  If this returns null then no transformation was
  /// performed.  If it returns CI, then it transformed the call and CI is to be
  /// deleted.  If it returns something else, replace CI with the new value and
  /// delete CI.
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
    =0;

  Value *optimizeCall(CallInst *CI, const DataLayout *TD,
                      const TargetLibraryInfo *TLI, IRBuilder<> &B) {
    Caller = CI->getParent()->getParent();
    this->TD = TD;
    this->TLI = TLI;
    if (CI->getCalledFunction())
      Context = &CI->getCalledFunction()->getContext();

    // We never change the calling convention.
    if (CI->getCallingConv() != llvm::CallingConv::C)
      return NULL;

    return callOptimizer(CI->getCalledFunction(), CI, B);
  }
};

//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//

struct FortifiedLibCallOptimization : public LibCallOptimization {
protected:
  virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
			  bool isString) const = 0;
};

struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
  CallInst *CI;

  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
      return true;
    if (ConstantInt *SizeCI =
                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
      if (SizeCI->isAllOnesValue())
        return true;
      if (isString) {
        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
        // If the length is 0 we don't know how long it is and so we can't
        // remove the check.
        if (Len == 0) return false;
        return SizeCI->getZExtValue() >= Len;
      }
      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
                                                  CI->getArgOperand(SizeArgOp)))
        return SizeCI->getZExtValue() >= Arg->getZExtValue();
    }
    return false;
  }
};

struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    this->CI = CI;
    FunctionType *FT = Callee->getFunctionType();
    LLVMContext &Context = CI->getParent()->getContext();

    // Check if this has the right signature.
    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
        !FT->getParamType(0)->isPointerTy() ||
        !FT->getParamType(1)->isPointerTy() ||
        FT->getParamType(2) != TD->getIntPtrType(Context) ||
        FT->getParamType(3) != TD->getIntPtrType(Context))
      return 0;

    if (isFoldable(3, 2, false)) {
      B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
                     CI->getArgOperand(2), 1);
      return CI->getArgOperand(0);
    }
    return 0;
  }
};

struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    this->CI = CI;
    FunctionType *FT = Callee->getFunctionType();
    LLVMContext &Context = CI->getParent()->getContext();

    // Check if this has the right signature.
    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
        !FT->getParamType(0)->isPointerTy() ||
        !FT->getParamType(1)->isPointerTy() ||
        FT->getParamType(2) != TD->getIntPtrType(Context) ||
        FT->getParamType(3) != TD->getIntPtrType(Context))
      return 0;

    if (isFoldable(3, 2, false)) {
      B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
                      CI->getArgOperand(2), 1);
      return CI->getArgOperand(0);
    }
    return 0;
  }
};

struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    this->CI = CI;
    FunctionType *FT = Callee->getFunctionType();
    LLVMContext &Context = CI->getParent()->getContext();

    // Check if this has the right signature.
    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
        !FT->getParamType(0)->isPointerTy() ||
        !FT->getParamType(1)->isIntegerTy() ||
        FT->getParamType(2) != TD->getIntPtrType(Context) ||
        FT->getParamType(3) != TD->getIntPtrType(Context))
      return 0;

    if (isFoldable(3, 2, false)) {
      Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
                                   false);
      B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
      return CI->getArgOperand(0);
    }
    return 0;
  }
};

struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    this->CI = CI;
    StringRef Name = Callee->getName();
    FunctionType *FT = Callee->getFunctionType();
    LLVMContext &Context = CI->getParent()->getContext();

    // Check if this has the right signature.
    if (FT->getNumParams() != 3 ||
        FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
        FT->getParamType(2) != TD->getIntPtrType(Context))
      return 0;

    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    if (Dst == Src)      // __strcpy_chk(x,x)  -> x
      return Src;

    // If a) we don't have any length information, or b) we know this will
    // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
    // st[rp]cpy_chk call which may fail at runtime if the size is too long.
    // TODO: It might be nice to get a maximum length out of the possible
    // string lengths for varying.
    if (isFoldable(2, 1, true)) {
      Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
      return Ret;
    } else {
      // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
      uint64_t Len = GetStringLength(Src);
      if (Len == 0) return 0;

      // This optimization require DataLayout.
      if (!TD) return 0;

      Value *Ret =
	EmitMemCpyChk(Dst, Src,
                      ConstantInt::get(TD->getIntPtrType(Context), Len),
                      CI->getArgOperand(2), B, TD, TLI);
      return Ret;
    }
    return 0;
  }
};

struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    this->CI = CI;
    StringRef Name = Callee->getName();
    FunctionType *FT = Callee->getFunctionType();
    LLVMContext &Context = CI->getParent()->getContext();

    // Check if this has the right signature.
    if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
        !FT->getParamType(2)->isIntegerTy() ||
        FT->getParamType(3) != TD->getIntPtrType(Context))
      return 0;

    if (isFoldable(3, 2, false)) {
      Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
                               CI->getArgOperand(2), B, TD, TLI,
                               Name.substr(2, 7));
      return Ret;
    }
    return 0;
  }
};

//===----------------------------------------------------------------------===//
// String and Memory Library Call Optimizations
//===----------------------------------------------------------------------===//

struct StrCatOpt : public LibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strcat" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != B.getInt8PtrTy() ||
        FT->getParamType(0) != FT->getReturnType() ||
        FT->getParamType(1) != FT->getReturnType())
      return 0;

    // Extract some information from the instruction
    Value *Dst = CI->getArgOperand(0);
    Value *Src = CI->getArgOperand(1);

    // See if we can get the length of the input string.
    uint64_t Len = GetStringLength(Src);
    if (Len == 0) return 0;
    --Len;  // Unbias length.

    // Handle the simple, do-nothing case: strcat(x, "") -> x
    if (Len == 0)
      return Dst;

    // These optimizations require DataLayout.
    if (!TD) return 0;

    return emitStrLenMemCpy(Src, Dst, Len, B);
  }

  Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
                          IRBuilder<> &B) {
    // We need to find the end of the destination string.  That's where the
    // memory is to be moved to. We just generate a call to strlen.
    Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
    if (!DstLen)
      return 0;

    // Now that we have the destination's length, we must index into the
    // destination's pointer to get the actual memcpy destination (end of
    // the string .. we're concatenating).
    Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");

    // We have enough information to now generate the memcpy call to do the
    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    B.CreateMemCpy(CpyDst, Src,
                   ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
    return Dst;
  }
};

struct StrNCatOpt : public StrCatOpt {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strncat" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 ||
        FT->getReturnType() != B.getInt8PtrTy() ||
        FT->getParamType(0) != FT->getReturnType() ||
        FT->getParamType(1) != FT->getReturnType() ||
        !FT->getParamType(2)->isIntegerTy())
      return 0;

    // Extract some information from the instruction
    Value *Dst = CI->getArgOperand(0);
    Value *Src = CI->getArgOperand(1);
    uint64_t Len;

    // We don't do anything if length is not constant
    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
      Len = LengthArg->getZExtValue();
    else
      return 0;

    // See if we can get the length of the input string.
    uint64_t SrcLen = GetStringLength(Src);
    if (SrcLen == 0) return 0;
    --SrcLen;  // Unbias length.

    // Handle the simple, do-nothing cases:
    // strncat(x, "", c) -> x
    // strncat(x,  c, 0) -> x
    if (SrcLen == 0 || Len == 0) return Dst;

    // These optimizations require DataLayout.
    if (!TD) return 0;

    // We don't optimize this case
    if (Len < SrcLen) return 0;

    // strncat(x, s, c) -> strcat(x, s)
    // s is constant so the strcat can be optimized further
    return emitStrLenMemCpy(Src, Dst, SrcLen, B);
  }
};

struct StrChrOpt : public LibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strchr" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != B.getInt8PtrTy() ||
        FT->getParamType(0) != FT->getReturnType() ||
        !FT->getParamType(1)->isIntegerTy(32))
      return 0;

    Value *SrcStr = CI->getArgOperand(0);

    // If the second operand is non-constant, see if we can compute the length
    // of the input string and turn this into memchr.
    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    if (CharC == 0) {
      // These optimizations require DataLayout.
      if (!TD) return 0;

      uint64_t Len = GetStringLength(SrcStr);
      if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
        return 0;

      return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
                        ConstantInt::get(TD->getIntPtrType(*Context), Len),
                        B, TD, TLI);
    }

    // Otherwise, the character is a constant, see if the first argument is
    // a string literal.  If so, we can constant fold.
    StringRef Str;
    if (!getConstantStringInfo(SrcStr, Str))
      return 0;

    // Compute the offset, make sure to handle the case when we're searching for
    // zero (a weird way to spell strlen).
    size_t I = CharC->getSExtValue() == 0 ?
        Str.size() : Str.find(CharC->getSExtValue());
    if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
      return Constant::getNullValue(CI->getType());

    // strchr(s+n,c)  -> gep(s+n+i,c)
    return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
  }
};

struct StrRChrOpt : public LibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strrchr" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != B.getInt8PtrTy() ||
        FT->getParamType(0) != FT->getReturnType() ||
        !FT->getParamType(1)->isIntegerTy(32))
      return 0;

    Value *SrcStr = CI->getArgOperand(0);
    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));

    // Cannot fold anything if we're not looking for a constant.
    if (!CharC)
      return 0;

    StringRef Str;
    if (!getConstantStringInfo(SrcStr, Str)) {
      // strrchr(s, 0) -> strchr(s, 0)
      if (TD && CharC->isZero())
        return EmitStrChr(SrcStr, '\0', B, TD, TLI);
      return 0;
    }

    // Compute the offset.
    size_t I = CharC->getSExtValue() == 0 ?
        Str.size() : Str.rfind(CharC->getSExtValue());
    if (I == StringRef::npos) // Didn't find the char. Return null.
      return Constant::getNullValue(CI->getType());

    // strrchr(s+n,c) -> gep(s+n+i,c)
    return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
  }
};

struct StrCmpOpt : public LibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strcmp" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        !FT->getReturnType()->isIntegerTy(32) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != B.getInt8PtrTy())
      return 0;

    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
      return ConstantInt::get(CI->getType(), 0);

    StringRef Str1, Str2;
    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    bool HasStr2 = getConstantStringInfo(Str2P, Str2);

    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
    if (HasStr1 && HasStr2)
      return ConstantInt::get(CI->getType(), Str1.compare(Str2));

    if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
                                      CI->getType()));

    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());

    // strcmp(P, "x") -> memcmp(P, "x", 2)
    uint64_t Len1 = GetStringLength(Str1P);
    uint64_t Len2 = GetStringLength(Str2P);
    if (Len1 && Len2) {
      // These optimizations require DataLayout.
      if (!TD) return 0;

      return EmitMemCmp(Str1P, Str2P,
                        ConstantInt::get(TD->getIntPtrType(*Context),
                        std::min(Len1, Len2)), B, TD, TLI);
    }

    return 0;
  }
};

struct StrNCmpOpt : public LibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strncmp" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 ||
        !FT->getReturnType()->isIntegerTy(32) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != B.getInt8PtrTy() ||
        !FT->getParamType(2)->isIntegerTy())
      return 0;

    Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
      return ConstantInt::get(CI->getType(), 0);

    // Get the length argument if it is constant.
    uint64_t Length;
    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
      Length = LengthArg->getZExtValue();
    else
      return 0;

    if (Length == 0) // strncmp(x,y,0)   -> 0
      return ConstantInt::get(CI->getType(), 0);

    if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);

    StringRef Str1, Str2;
    bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    bool HasStr2 = getConstantStringInfo(Str2P, Str2);

    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
    if (HasStr1 && HasStr2) {
      StringRef SubStr1 = Str1.substr(0, Length);
      StringRef SubStr2 = Str2.substr(0, Length);
      return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
    }

    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> -*x
      return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
                                      CI->getType()));

    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());

    return 0;
  }
};

struct StrCpyOpt : public LibCallOptimization {
  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
    // Verify the "strcpy" function prototype.
    FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != B.getInt8PtrTy())
      return 0;

    Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    if (Dst == Src)      // strcpy(x,x)  -> x
      return Src;

    // These optimizations require DataLayout.
    if (!TD) return 0;

    // See if we can get the length of the input string.
    uint64_t Len = GetStringLength(Src);
    if (Len == 0) return 0;

    // We have enough information to now generate the memcpy call to do the
    // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    B.CreateMemCpy(Dst, Src,
		   ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
    return Dst;
  }
};

} // End anonymous namespace.

namespace llvm {

class LibCallSimplifierImpl {
  const DataLayout *TD;
  const TargetLibraryInfo *TLI;
  StringMap<LibCallOptimization*> Optimizations;

  // Fortified library call optimizations.
  MemCpyChkOpt MemCpyChk;
  MemMoveChkOpt MemMoveChk;
  MemSetChkOpt MemSetChk;
  StrCpyChkOpt StrCpyChk;
  StrNCpyChkOpt StrNCpyChk;

  // String and memory library call optimizations.
  StrCatOpt StrCat;
  StrNCatOpt StrNCat;
  StrChrOpt StrChr;
  StrRChrOpt StrRChr;
  StrCmpOpt StrCmp;
  StrNCmpOpt StrNCmp;
  StrCpyOpt StrCpy;

  void initOptimizations();
public:
  LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI) {
    this->TD = TD;
    this->TLI = TLI;
  }

  Value *optimizeCall(CallInst *CI);
};

void LibCallSimplifierImpl::initOptimizations() {
  // Fortified library call optimizations.
  Optimizations["__memcpy_chk"] = &MemCpyChk;
  Optimizations["__memmove_chk"] = &MemMoveChk;
  Optimizations["__memset_chk"] = &MemSetChk;
  Optimizations["__strcpy_chk"] = &StrCpyChk;
  Optimizations["__stpcpy_chk"] = &StrCpyChk;
  Optimizations["__strncpy_chk"] = &StrNCpyChk;
  Optimizations["__stpncpy_chk"] = &StrNCpyChk;
  Optimizations["strcmp"] = &StrCmp;
  Optimizations["strncmp"] = &StrNCmp;

  // String and memory library call optimizations.
  Optimizations["strcat"] = &StrCat;
  Optimizations["strncat"] = &StrNCat;
  Optimizations["strchr"] = &StrChr;
  Optimizations["strrchr"] = &StrRChr;
  Optimizations["strcpy"] = &StrCpy;
}

Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
  if (Optimizations.empty())
    initOptimizations();

  Function *Callee = CI->getCalledFunction();
  LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
  if (LCO) {
    IRBuilder<> Builder(CI);
    return LCO->optimizeCall(CI, TD, TLI, Builder);
  }
  return 0;
}

LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
                                     const TargetLibraryInfo *TLI) {
  Impl = new LibCallSimplifierImpl(TD, TLI);
}

LibCallSimplifier::~LibCallSimplifier() {
  delete Impl;
}

Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
  return Impl->optimizeCall(CI);
}

}