summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/InstructionCombining.cpp
blob: 489f0de5efebc4ebb116256f77687c82d78081d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG This pass is where algebraic
// simplification happens.
//
// This pass combines things like:
//    %Y = add i32 %X, 1
//    %Z = add i32 %Y, 1
// into:
//    %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
//    1. If a binary operator has a constant operand, it is moved to the RHS
//    2. Bitwise operators with constant operands are always grouped so that
//       shifts are performed first, then or's, then and's, then xor's.
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
//    4. All cmp instructions on boolean values are replaced with logical ops
//    5. add X, X is represented as (X*2) => (X << 1)
//    6. Multiplies with a power-of-two constant argument are transformed into
//       shifts.
//   ... etc.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <sstream>
using namespace llvm;
using namespace llvm::PatternMatch;

STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");

namespace {
  class VISIBILITY_HIDDEN InstCombiner
    : public FunctionPass,
      public InstVisitor<InstCombiner, Instruction*> {
    // Worklist of all of the instructions that need to be simplified.
    std::vector<Instruction*> Worklist;
    DenseMap<Instruction*, unsigned> WorklistMap;
    TargetData *TD;
    bool MustPreserveLCSSA;
  public:
    static char ID; // Pass identification, replacement for typeid
    InstCombiner() : FunctionPass((intptr_t)&ID) {}

    /// AddToWorkList - Add the specified instruction to the worklist if it
    /// isn't already in it.
    void AddToWorkList(Instruction *I) {
      if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
        Worklist.push_back(I);
    }
    
    // RemoveFromWorkList - remove I from the worklist if it exists.
    void RemoveFromWorkList(Instruction *I) {
      DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
      if (It == WorklistMap.end()) return; // Not in worklist.
      
      // Don't bother moving everything down, just null out the slot.
      Worklist[It->second] = 0;
      
      WorklistMap.erase(It);
    }
    
    Instruction *RemoveOneFromWorkList() {
      Instruction *I = Worklist.back();
      Worklist.pop_back();
      WorklistMap.erase(I);
      return I;
    }

    
    /// AddUsersToWorkList - When an instruction is simplified, add all users of
    /// the instruction to the work lists because they might get more simplified
    /// now.
    ///
    void AddUsersToWorkList(Value &I) {
      for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
           UI != UE; ++UI)
        AddToWorkList(cast<Instruction>(*UI));
    }

    /// AddUsesToWorkList - When an instruction is simplified, add operands to
    /// the work lists because they might get more simplified now.
    ///
    void AddUsesToWorkList(Instruction &I) {
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
        if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
          AddToWorkList(Op);
    }
    
    /// AddSoonDeadInstToWorklist - The specified instruction is about to become
    /// dead.  Add all of its operands to the worklist, turning them into
    /// undef's to reduce the number of uses of those instructions.
    ///
    /// Return the specified operand before it is turned into an undef.
    ///
    Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
      Value *R = I.getOperand(op);
      
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
        if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
          AddToWorkList(Op);
          // Set the operand to undef to drop the use.
          I.setOperand(i, UndefValue::get(Op->getType()));
        }
      
      return R;
    }

  public:
    virtual bool runOnFunction(Function &F);
    
    bool DoOneIteration(Function &F, unsigned ItNum);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<TargetData>();
      AU.addPreservedID(LCSSAID);
      AU.setPreservesCFG();
    }

    TargetData &getTargetData() const { return *TD; }

    // Visitation implementation - Implement instruction combining for different
    // instruction types.  The semantics are as follows:
    // Return Value:
    //    null        - No change was made
    //     I          - Change was made, I is still valid, I may be dead though
    //   otherwise    - Change was made, replace I with returned instruction
    //
    Instruction *visitAdd(BinaryOperator &I);
    Instruction *visitSub(BinaryOperator &I);
    Instruction *visitMul(BinaryOperator &I);
    Instruction *visitURem(BinaryOperator &I);
    Instruction *visitSRem(BinaryOperator &I);
    Instruction *visitFRem(BinaryOperator &I);
    Instruction *commonRemTransforms(BinaryOperator &I);
    Instruction *commonIRemTransforms(BinaryOperator &I);
    Instruction *commonDivTransforms(BinaryOperator &I);
    Instruction *commonIDivTransforms(BinaryOperator &I);
    Instruction *visitUDiv(BinaryOperator &I);
    Instruction *visitSDiv(BinaryOperator &I);
    Instruction *visitFDiv(BinaryOperator &I);
    Instruction *visitAnd(BinaryOperator &I);
    Instruction *visitOr (BinaryOperator &I);
    Instruction *visitXor(BinaryOperator &I);
    Instruction *visitShl(BinaryOperator &I);
    Instruction *visitAShr(BinaryOperator &I);
    Instruction *visitLShr(BinaryOperator &I);
    Instruction *commonShiftTransforms(BinaryOperator &I);
    Instruction *visitFCmpInst(FCmpInst &I);
    Instruction *visitICmpInst(ICmpInst &I);
    Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
    Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
                                                Instruction *LHS,
                                                ConstantInt *RHS);
    Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
                                ConstantInt *DivRHS);

    Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
                             ICmpInst::Predicate Cond, Instruction &I);
    Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
                                     BinaryOperator &I);
    Instruction *commonCastTransforms(CastInst &CI);
    Instruction *commonIntCastTransforms(CastInst &CI);
    Instruction *commonPointerCastTransforms(CastInst &CI);
    Instruction *visitTrunc(TruncInst &CI);
    Instruction *visitZExt(ZExtInst &CI);
    Instruction *visitSExt(SExtInst &CI);
    Instruction *visitFPTrunc(CastInst &CI);
    Instruction *visitFPExt(CastInst &CI);
    Instruction *visitFPToUI(CastInst &CI);
    Instruction *visitFPToSI(CastInst &CI);
    Instruction *visitUIToFP(CastInst &CI);
    Instruction *visitSIToFP(CastInst &CI);
    Instruction *visitPtrToInt(CastInst &CI);
    Instruction *visitIntToPtr(CastInst &CI);
    Instruction *visitBitCast(BitCastInst &CI);
    Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
                                Instruction *FI);
    Instruction *visitSelectInst(SelectInst &CI);
    Instruction *visitCallInst(CallInst &CI);
    Instruction *visitInvokeInst(InvokeInst &II);
    Instruction *visitPHINode(PHINode &PN);
    Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    Instruction *visitAllocationInst(AllocationInst &AI);
    Instruction *visitFreeInst(FreeInst &FI);
    Instruction *visitLoadInst(LoadInst &LI);
    Instruction *visitStoreInst(StoreInst &SI);
    Instruction *visitBranchInst(BranchInst &BI);
    Instruction *visitSwitchInst(SwitchInst &SI);
    Instruction *visitInsertElementInst(InsertElementInst &IE);
    Instruction *visitExtractElementInst(ExtractElementInst &EI);
    Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);

    // visitInstruction - Specify what to return for unhandled instructions...
    Instruction *visitInstruction(Instruction &I) { return 0; }

  private:
    Instruction *visitCallSite(CallSite CS);
    bool transformConstExprCastCall(CallSite CS);
    Instruction *transformCallThroughTrampoline(CallSite CS);

  public:
    // InsertNewInstBefore - insert an instruction New before instruction Old
    // in the program.  Add the new instruction to the worklist.
    //
    Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
      assert(New && New->getParent() == 0 &&
             "New instruction already inserted into a basic block!");
      BasicBlock *BB = Old.getParent();
      BB->getInstList().insert(&Old, New);  // Insert inst
      AddToWorkList(New);
      return New;
    }

    /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
    /// This also adds the cast to the worklist.  Finally, this returns the
    /// cast.
    Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
                            Instruction &Pos) {
      if (V->getType() == Ty) return V;

      if (Constant *CV = dyn_cast<Constant>(V))
        return ConstantExpr::getCast(opc, CV, Ty);
      
      Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
      AddToWorkList(C);
      return C;
    }

    // ReplaceInstUsesWith - This method is to be used when an instruction is
    // found to be dead, replacable with another preexisting expression.  Here
    // we add all uses of I to the worklist, replace all uses of I with the new
    // value, then return I, so that the inst combiner will know that I was
    // modified.
    //
    Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
      AddUsersToWorkList(I);         // Add all modified instrs to worklist
      if (&I != V) {
        I.replaceAllUsesWith(V);
        return &I;
      } else {
        // If we are replacing the instruction with itself, this must be in a
        // segment of unreachable code, so just clobber the instruction.
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
        return &I;
      }
    }

    // UpdateValueUsesWith - This method is to be used when an value is
    // found to be replacable with another preexisting expression or was
    // updated.  Here we add all uses of I to the worklist, replace all uses of
    // I with the new value (unless the instruction was just updated), then
    // return true, so that the inst combiner will know that I was modified.
    //
    bool UpdateValueUsesWith(Value *Old, Value *New) {
      AddUsersToWorkList(*Old);         // Add all modified instrs to worklist
      if (Old != New)
        Old->replaceAllUsesWith(New);
      if (Instruction *I = dyn_cast<Instruction>(Old))
        AddToWorkList(I);
      if (Instruction *I = dyn_cast<Instruction>(New))
        AddToWorkList(I);
      return true;
    }
    
    // EraseInstFromFunction - When dealing with an instruction that has side
    // effects or produces a void value, we can't rely on DCE to delete the
    // instruction.  Instead, visit methods should return the value returned by
    // this function.
    Instruction *EraseInstFromFunction(Instruction &I) {
      assert(I.use_empty() && "Cannot erase instruction that is used!");
      AddUsesToWorkList(I);
      RemoveFromWorkList(&I);
      I.eraseFromParent();
      return 0;  // Don't do anything with FI
    }

  private:
    /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
    /// InsertBefore instruction.  This is specialized a bit to avoid inserting
    /// casts that are known to not do anything...
    ///
    Value *InsertOperandCastBefore(Instruction::CastOps opcode,
                                   Value *V, const Type *DestTy,
                                   Instruction *InsertBefore);

    /// SimplifyCommutative - This performs a few simplifications for 
    /// commutative operators.
    bool SimplifyCommutative(BinaryOperator &I);

    /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
    /// most-complex to least-complex order.
    bool SimplifyCompare(CmpInst &I);

    /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
    /// on the demanded bits.
    bool SimplifyDemandedBits(Value *V, APInt DemandedMask, 
                              APInt& KnownZero, APInt& KnownOne,
                              unsigned Depth = 0);

    Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
                                      uint64_t &UndefElts, unsigned Depth = 0);
      
    // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
    // PHI node as operand #0, see if we can fold the instruction into the PHI
    // (which is only possible if all operands to the PHI are constants).
    Instruction *FoldOpIntoPhi(Instruction &I);

    // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
    // operator and they all are only used by the PHI, PHI together their
    // inputs, and do the operation once, to the result of the PHI.
    Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    
    
    Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
                          ConstantInt *AndRHS, BinaryOperator &TheAnd);
    
    Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
                              bool isSub, Instruction &I);
    Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
                                 bool isSigned, bool Inside, Instruction &IB);
    Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
    Instruction *MatchBSwap(BinaryOperator &I);
    bool SimplifyStoreAtEndOfBlock(StoreInst &SI);

    Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
  };

  char InstCombiner::ID = 0;
  RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
}

// getComplexity:  Assign a complexity or rank value to LLVM Values...
//   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
static unsigned getComplexity(Value *V) {
  if (isa<Instruction>(V)) {
    if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
      return 3;
    return 4;
  }
  if (isa<Argument>(V)) return 3;
  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}

// isOnlyUse - Return true if this instruction will be deleted if we stop using
// it.
static bool isOnlyUse(Value *V) {
  return V->hasOneUse() || isa<Constant>(V);
}

// getPromotedType - Return the specified type promoted as it would be to pass
// though a va_arg area...
static const Type *getPromotedType(const Type *Ty) {
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
    if (ITy->getBitWidth() < 32)
      return Type::Int32Ty;
  }
  return Ty;
}

/// getBitCastOperand - If the specified operand is a CastInst or a constant 
/// expression bitcast,  return the operand value, otherwise return null.
static Value *getBitCastOperand(Value *V) {
  if (BitCastInst *I = dyn_cast<BitCastInst>(V))
    return I->getOperand(0);
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::BitCast)
      return CE->getOperand(0);
  return 0;
}

/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
static Instruction::CastOps 
isEliminableCastPair(
  const CastInst *CI, ///< The first cast instruction
  unsigned opcode,       ///< The opcode of the second cast instruction
  const Type *DstTy,     ///< The target type for the second cast instruction
  TargetData *TD         ///< The target data for pointer size
) {
  
  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
  const Type *MidTy = CI->getType();                  // B from above

  // Get the opcodes of the two Cast instructions
  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
  Instruction::CastOps secondOp = Instruction::CastOps(opcode);

  return Instruction::CastOps(
      CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
                                     DstTy, TD->getIntPtrType()));
}

/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
/// in any code being generated.  It does not require codegen if V is simple
/// enough or if the cast can be folded into other casts.
static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, 
                              const Type *Ty, TargetData *TD) {
  if (V->getType() == Ty || isa<Constant>(V)) return false;
  
  // If this is another cast that can be eliminated, it isn't codegen either.
  if (const CastInst *CI = dyn_cast<CastInst>(V))
    if (isEliminableCastPair(CI, opcode, Ty, TD)) 
      return false;
  return true;
}

/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
/// InsertBefore instruction.  This is specialized a bit to avoid inserting
/// casts that are known to not do anything...
///
Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
                                             Value *V, const Type *DestTy,
                                             Instruction *InsertBefore) {
  if (V->getType() == DestTy) return V;
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(opcode, C, DestTy);
  
  return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
}

// SimplifyCommutative - This performs a few simplifications for commutative
// operators:
//
//  1. Order operands such that they are listed from right (least complex) to
//     left (most complex).  This puts constants before unary operators before
//     binary operators.
//
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
//
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
  bool Changed = false;
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
    Changed = !I.swapOperands();

  if (!I.isAssociative()) return Changed;
  Instruction::BinaryOps Opcode = I.getOpcode();
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
      if (isa<Constant>(I.getOperand(1))) {
        Constant *Folded = ConstantExpr::get(I.getOpcode(),
                                             cast<Constant>(I.getOperand(1)),
                                             cast<Constant>(Op->getOperand(1)));
        I.setOperand(0, Op->getOperand(0));
        I.setOperand(1, Folded);
        return true;
      } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
            isOnlyUse(Op) && isOnlyUse(Op1)) {
          Constant *C1 = cast<Constant>(Op->getOperand(1));
          Constant *C2 = cast<Constant>(Op1->getOperand(1));

          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
          Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
                                                    Op1->getOperand(0),
                                                    Op1->getName(), &I);
          AddToWorkList(New);
          I.setOperand(0, New);
          I.setOperand(1, Folded);
          return true;
        }
    }
  return Changed;
}

/// SimplifyCompare - For a CmpInst this function just orders the operands
/// so that theyare listed from right (least complex) to left (most complex).
/// This puts constants before unary operators before binary operators.
bool InstCombiner::SimplifyCompare(CmpInst &I) {
  if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
    return false;
  I.swapOperands();
  // Compare instructions are not associative so there's nothing else we can do.
  return true;
}

// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
static inline Value *dyn_castNegVal(Value *V) {
  if (BinaryOperator::isNeg(V))
    return BinaryOperator::getNegArgument(V);

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    return ConstantExpr::getNeg(C);
  return 0;
}

static inline Value *dyn_castNotVal(Value *V) {
  if (BinaryOperator::isNot(V))
    return BinaryOperator::getNotArgument(V);

  // Constants can be considered to be not'ed values...
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    return ConstantInt::get(~C->getValue());
  return 0;
}

// dyn_castFoldableMul - If this value is a multiply that can be folded into
// other computations (because it has a constant operand), return the
// non-constant operand of the multiply, and set CST to point to the multiplier.
// Otherwise, return null.
//
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
  if (V->hasOneUse() && V->getType()->isInteger())
    if (Instruction *I = dyn_cast<Instruction>(V)) {
      if (I->getOpcode() == Instruction::Mul)
        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
          return I->getOperand(0);
      if (I->getOpcode() == Instruction::Shl)
        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
          // The multiplier is really 1 << CST.
          uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
          uint32_t CSTVal = CST->getLimitedValue(BitWidth);
          CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
          return I->getOperand(0);
        }
    }
  return 0;
}

/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
/// expression, return it.
static User *dyn_castGetElementPtr(Value *V) {
  if (isa<GetElementPtrInst>(V)) return cast<User>(V);
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::GetElementPtr)
      return cast<User>(V);
  return false;
}

/// AddOne - Add one to a ConstantInt
static ConstantInt *AddOne(ConstantInt *C) {
  APInt Val(C->getValue());
  return ConstantInt::get(++Val);
}
/// SubOne - Subtract one from a ConstantInt
static ConstantInt *SubOne(ConstantInt *C) {
  APInt Val(C->getValue());
  return ConstantInt::get(--Val);
}
/// Add - Add two ConstantInts together
static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
  return ConstantInt::get(C1->getValue() + C2->getValue());
}
/// And - Bitwise AND two ConstantInts together
static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
  return ConstantInt::get(C1->getValue() & C2->getValue());
}
/// Subtract - Subtract one ConstantInt from another
static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
  return ConstantInt::get(C1->getValue() - C2->getValue());
}
/// Multiply - Multiply two ConstantInts together
static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
  return ConstantInt::get(C1->getValue() * C2->getValue());
}

/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
/// processing.
/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero.  If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
static void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero, 
                              APInt& KnownOne, unsigned Depth = 0) {
  assert(V && "No Value?");
  assert(Depth <= 6 && "Limit Search Depth");
  uint32_t BitWidth = Mask.getBitWidth();
  assert(cast<IntegerType>(V->getType())->getBitWidth() == BitWidth &&
         KnownZero.getBitWidth() == BitWidth && 
         KnownOne.getBitWidth() == BitWidth &&
         "V, Mask, KnownOne and KnownZero should have same BitWidth");
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    // We know all of the bits for a constant!
    KnownOne = CI->getValue() & Mask;
    KnownZero = ~KnownOne & Mask;
    return;
  }

  if (Depth == 6 || Mask == 0)
    return;  // Limit search depth.

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return;

  KnownZero.clear(); KnownOne.clear();   // Don't know anything.
  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
  
  switch (I->getOpcode()) {
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    APInt Mask2(Mask & ~KnownZero);
    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-1 bits are only known if set in both the LHS & RHS.
    KnownOne &= KnownOne2;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    KnownZero |= KnownZero2;
    return;
  }
  case Instruction::Or: {
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    APInt Mask2(Mask & ~KnownOne);
    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are only known if clear in both the LHS & RHS.
    KnownZero &= KnownZero2;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    KnownOne |= KnownOne2;
    return;
  }
  case Instruction::Xor: {
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    KnownZero = KnownZeroOut;
    return;
  }
  case Instruction::Select:
    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 

    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    return;
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::SIToFP:
  case Instruction::PtrToInt:
  case Instruction::UIToFP:
  case Instruction::IntToPtr:
    return; // Can't work with floating point or pointers
  case Instruction::Trunc: {
    // All these have integer operands
    uint32_t SrcBitWidth = 
      cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
    APInt MaskIn(Mask);
    MaskIn.zext(SrcBitWidth);
    KnownZero.zext(SrcBitWidth);
    KnownOne.zext(SrcBitWidth);
    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
    KnownZero.trunc(BitWidth);
    KnownOne.trunc(BitWidth);
    return;
  }
  case Instruction::BitCast: {
    const Type *SrcTy = I->getOperand(0)->getType();
    if (SrcTy->isInteger()) {
      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
      return;
    }
    break;
  }
  case Instruction::ZExt:  {
    // Compute the bits in the result that are not present in the input.
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
    uint32_t SrcBitWidth = SrcTy->getBitWidth();
      
    APInt MaskIn(Mask);
    MaskIn.trunc(SrcBitWidth);
    KnownZero.trunc(SrcBitWidth);
    KnownOne.trunc(SrcBitWidth);
    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    // The top bits are known to be zero.
    KnownZero.zext(BitWidth);
    KnownOne.zext(BitWidth);
    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    return;
  }
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
    uint32_t SrcBitWidth = SrcTy->getBitWidth();
      
    APInt MaskIn(Mask); 
    MaskIn.trunc(SrcBitWidth);
    KnownZero.trunc(SrcBitWidth);
    KnownOne.trunc(SrcBitWidth);
    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    KnownZero.zext(BitWidth);
    KnownOne.zext(BitWidth);

    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    return;
  }
  case Instruction::Shl:
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
      APInt Mask2(Mask.lshr(ShiftAmt));
      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero <<= ShiftAmt;
      KnownOne  <<= ShiftAmt;
      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
      return;
    }
    break;
  case Instruction::LShr:
    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // Compute the new bits that are at the top now.
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
      
      // Unsigned shift right.
      APInt Mask2(Mask.shl(ShiftAmt));
      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
      // high bits known zero.
      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
      return;
    }
    break;
  case Instruction::AShr:
    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // Compute the new bits that are at the top now.
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
      
      // Signed shift right.
      APInt Mask2(Mask.shl(ShiftAmt));
      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
        
      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
        KnownZero |= HighBits;
      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
        KnownOne |= HighBits;
      return;
    }
    break;
  }
}

/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
/// this predicate to simplify operations downstream.  Mask is known to be zero
/// for bits that V cannot have.
static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) {
  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
  return (KnownZero & Mask) == Mask;
}

/// ShrinkDemandedConstant - Check to see if the specified operand of the 
/// specified instruction is a constant integer.  If so, check to see if there
/// are any bits set in the constant that are not demanded.  If so, shrink the
/// constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 
                                   APInt Demanded) {
  assert(I && "No instruction?");
  assert(OpNo < I->getNumOperands() && "Operand index too large");

  // If the operand is not a constant integer, nothing to do.
  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
  if (!OpC) return false;

  // If there are no bits set that aren't demanded, nothing to do.
  Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
  if ((~Demanded & OpC->getValue()) == 0)
    return false;

  // This instruction is producing bits that are not demanded. Shrink the RHS.
  Demanded &= OpC->getValue();
  I->setOperand(OpNo, ConstantInt::get(Demanded));
  return true;
}

// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 
// set of known zero and one bits, compute the maximum and minimum values that
// could have the specified known zero and known one bits, returning them in
// min/max.
static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
                                                   const APInt& KnownZero,
                                                   const APInt& KnownOne,
                                                   APInt& Min, APInt& Max) {
  uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
  assert(KnownZero.getBitWidth() == BitWidth && 
         KnownOne.getBitWidth() == BitWidth &&
         Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
  APInt UnknownBits = ~(KnownZero|KnownOne);

  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
  // bit if it is unknown.
  Min = KnownOne;
  Max = KnownOne|UnknownBits;
  
  if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
    Min.set(BitWidth-1);
    Max.clear(BitWidth-1);
  }
}

// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
// a set of known zero and one bits, compute the maximum and minimum values that
// could have the specified known zero and known one bits, returning them in
// min/max.
static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
                                                     const APInt &KnownZero,
                                                     const APInt &KnownOne,
                                                     APInt &Min, APInt &Max) {
  uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
  assert(KnownZero.getBitWidth() == BitWidth && 
         KnownOne.getBitWidth() == BitWidth &&
         Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
  APInt UnknownBits = ~(KnownZero|KnownOne);
  
  // The minimum value is when the unknown bits are all zeros.
  Min = KnownOne;
  // The maximum value is when the unknown bits are all ones.
  Max = KnownOne|UnknownBits;
}

/// SimplifyDemandedBits - This function attempts to replace V with a simpler
/// value based on the demanded bits. When this function is called, it is known
/// that only the bits set in DemandedMask of the result of V are ever used
/// downstream. Consequently, depending on the mask and V, it may be possible
/// to replace V with a constant or one of its operands. In such cases, this
/// function does the replacement and returns true. In all other cases, it
/// returns false after analyzing the expression and setting KnownOne and known
/// to be one in the expression. KnownZero contains all the bits that are known
/// to be zero in the expression. These are provided to potentially allow the
/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
/// the expression. KnownOne and KnownZero always follow the invariant that 
/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
/// the bits in KnownOne and KnownZero may only be accurate for those bits set
/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
/// and KnownOne must all be the same.
bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
                                        APInt& KnownZero, APInt& KnownOne,
                                        unsigned Depth) {
  assert(V != 0 && "Null pointer of Value???");
  assert(Depth <= 6 && "Limit Search Depth");
  uint32_t BitWidth = DemandedMask.getBitWidth();
  const IntegerType *VTy = cast<IntegerType>(V->getType());
  assert(VTy->getBitWidth() == BitWidth && 
         KnownZero.getBitWidth() == BitWidth && 
         KnownOne.getBitWidth() == BitWidth &&
         "Value *V, DemandedMask, KnownZero and KnownOne \
          must have same BitWidth");
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    // We know all of the bits for a constant!
    KnownOne = CI->getValue() & DemandedMask;
    KnownZero = ~KnownOne & DemandedMask;
    return false;
  }
  
  KnownZero.clear(); 
  KnownOne.clear();
  if (!V->hasOneUse()) {    // Other users may use these bits.
    if (Depth != 0) {       // Not at the root.
      // Just compute the KnownZero/KnownOne bits to simplify things downstream.
      ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
      return false;
    }
    // If this is the root being simplified, allow it to have multiple uses,
    // just set the DemandedMask to all bits.
    DemandedMask = APInt::getAllOnesValue(BitWidth);
  } else if (DemandedMask == 0) {   // Not demanding any bits from V.
    if (V != UndefValue::get(VTy))
      return UpdateValueUsesWith(V, UndefValue::get(VTy));
    return false;
  } else if (Depth == 6) {        // Limit search depth.
    return false;
  }
  
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;        // Only analyze instructions.

  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
  APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
  switch (I->getOpcode()) {
  default: break;
  case Instruction::And:
    // If either the LHS or the RHS are Zero, the result is zero.
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 

    // If something is known zero on the RHS, the bits aren't demanded on the
    // LHS.
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return true;
    assert((LHSKnownZero & LHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 

    // If all of the demanded bits are known 1 on one side, return the other.
    // These bits cannot contribute to the result of the 'and'.
    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
        (DemandedMask & ~LHSKnownZero))
      return UpdateValueUsesWith(I, I->getOperand(0));
    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
        (DemandedMask & ~RHSKnownZero))
      return UpdateValueUsesWith(I, I->getOperand(1));
    
    // If all of the demanded bits in the inputs are known zeros, return zero.
    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
      return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
      
    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
      return UpdateValueUsesWith(I, I);
      
    // Output known-1 bits are only known if set in both the LHS & RHS.
    RHSKnownOne &= LHSKnownOne;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    RHSKnownZero |= LHSKnownZero;
    break;
  case Instruction::Or:
    // If either the LHS or the RHS are One, the result is One.
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, 
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    // If something is known one on the RHS, the bits aren't demanded on the
    // LHS.
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, 
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return true;
    assert((LHSKnownZero & LHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    
    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'or'.
    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
        (DemandedMask & ~LHSKnownOne))
      return UpdateValueUsesWith(I, I->getOperand(0));
    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
        (DemandedMask & ~RHSKnownOne))
      return UpdateValueUsesWith(I, I->getOperand(1));

    // If all of the potentially set bits on one side are known to be set on
    // the other side, just use the 'other' side.
    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
        (DemandedMask & (~RHSKnownZero)))
      return UpdateValueUsesWith(I, I->getOperand(0));
    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
        (DemandedMask & (~LHSKnownZero)))
      return UpdateValueUsesWith(I, I->getOperand(1));
        
    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return UpdateValueUsesWith(I, I);
          
    // Output known-0 bits are only known if clear in both the LHS & RHS.
    RHSKnownZero &= LHSKnownZero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    RHSKnownOne |= LHSKnownOne;
    break;
  case Instruction::Xor: {
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, 
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return true;
    assert((LHSKnownZero & LHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    
    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'xor'.
    if ((DemandedMask & RHSKnownZero) == DemandedMask)
      return UpdateValueUsesWith(I, I->getOperand(0));
    if ((DemandedMask & LHSKnownZero) == DemandedMask)
      return UpdateValueUsesWith(I, I->getOperand(1));
    
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | 
                         (RHSKnownOne & LHSKnownOne);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | 
                        (RHSKnownOne & LHSKnownZero);
    
    // If all of the demanded bits are known to be zero on one side or the
    // other, turn this into an *inclusive* or.
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
      Instruction *Or =
        BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
                                 I->getName());
      InsertNewInstBefore(Or, *I);
      return UpdateValueUsesWith(I, Or);
    }
    
    // If all of the demanded bits on one side are known, and all of the set
    // bits on that side are also known to be set on the other side, turn this
    // into an AND, as we know the bits will be cleared.
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 
      // all known
      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
        Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
        Instruction *And = 
          BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
        InsertNewInstBefore(And, *I);
        return UpdateValueUsesWith(I, And);
      }
    }
    
    // If the RHS is a constant, see if we can simplify it.
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return UpdateValueUsesWith(I, I);
    
    RHSKnownZero = KnownZeroOut;
    RHSKnownOne  = KnownOneOut;
    break;
  }
  case Instruction::Select:
    if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, 
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return true;
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    assert((LHSKnownZero & LHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    
    // If the operands are constants, see if we can simplify them.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return UpdateValueUsesWith(I, I);
    if (ShrinkDemandedConstant(I, 2, DemandedMask))
      return UpdateValueUsesWith(I, I);
    
    // Only known if known in both the LHS and RHS.
    RHSKnownOne &= LHSKnownOne;
    RHSKnownZero &= LHSKnownZero;
    break;
  case Instruction::Trunc: {
    uint32_t truncBf = 
      cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
    DemandedMask.zext(truncBf);
    RHSKnownZero.zext(truncBf);
    RHSKnownOne.zext(truncBf);
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, 
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    DemandedMask.trunc(BitWidth);
    RHSKnownZero.trunc(BitWidth);
    RHSKnownOne.trunc(BitWidth);
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    break;
  }
  case Instruction::BitCast:
    if (!I->getOperand(0)->getType()->isInteger())
      return false;
      
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    break;
  case Instruction::ZExt: {
    // Compute the bits in the result that are not present in the input.
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
    uint32_t SrcBitWidth = SrcTy->getBitWidth();
    
    DemandedMask.trunc(SrcBitWidth);
    RHSKnownZero.trunc(SrcBitWidth);
    RHSKnownOne.trunc(SrcBitWidth);
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    DemandedMask.zext(BitWidth);
    RHSKnownZero.zext(BitWidth);
    RHSKnownOne.zext(BitWidth);
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
    // The top bits are known to be zero.
    RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    break;
  }
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
    uint32_t SrcBitWidth = SrcTy->getBitWidth();
    
    APInt InputDemandedBits = DemandedMask & 
                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);

    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
    // If any of the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    if ((NewBits & DemandedMask) != 0)
      InputDemandedBits.set(SrcBitWidth-1);
      
    InputDemandedBits.trunc(SrcBitWidth);
    RHSKnownZero.trunc(SrcBitWidth);
    RHSKnownOne.trunc(SrcBitWidth);
    if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
                             RHSKnownZero, RHSKnownOne, Depth+1))
      return true;
    InputDemandedBits.zext(BitWidth);
    RHSKnownZero.zext(BitWidth);
    RHSKnownOne.zext(BitWidth);
    assert((RHSKnownZero & RHSKnownOne) == 0 && 
           "Bits known to be one AND zero?"); 
      
    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.

    // If the input sign bit is known zero, or if the NewBits are not demanded
    // convert this into a zero extension.
    if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
    {
      // Convert to ZExt cast
      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
      return UpdateValueUsesWith(I, NewCast);
    } else if (RHSKnownOne[SrcBitWidth-1]) {    // Input sign bit known set
      RHSKnownOne |= NewBits;
    }
    break;
  }
  case Instruction::Add: {
    // Figure out what the input bits are.  If the top bits of the and result
    // are not demanded, then the add doesn't demand them from its input
    // either.
    uint32_t NLZ = DemandedMask.countLeadingZeros();
      
    // If there is a constant on the RHS, there are a variety of xformations
    // we can do.
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // If null, this should be simplified elsewhere.  Some of the xforms here
      // won't work if the RHS is zero.
      if (RHS->isZero())
        break;
      
      // If the top bit of the output is demanded, demand everything from the
      // input.  Otherwise, we demand all the input bits except NLZ top bits.
      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));

      // Find information about known zero/one bits in the input.
      if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits, 
                               LHSKnownZero, LHSKnownOne, Depth+1))
        return true;

      // If the RHS of the add has bits set that can't affect the input, reduce
      // the constant.
      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
        return UpdateValueUsesWith(I, I);
      
      // Avoid excess work.
      if (LHSKnownZero == 0 && LHSKnownOne == 0)
        break;
      
      // Turn it into OR if input bits are zero.
      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
        Instruction *Or =
          BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
                                   I->getName());
        InsertNewInstBefore(Or, *I);
        return UpdateValueUsesWith(I, Or);
      }
      
      // We can say something about the output known-zero and known-one bits,
      // depending on potential carries from the input constant and the
      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
      // bits set and the RHS constant is 0x01001, then we know we have a known
      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
      
      // To compute this, we first compute the potential carry bits.  These are
      // the bits which may be modified.  I'm not aware of a better way to do
      // this scan.
      const APInt& RHSVal = RHS->getValue();
      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
      
      // Now that we know which bits have carries, compute the known-1/0 sets.
      
      // Bits are known one if they are known zero in one operand and one in the
      // other, and there is no input carry.
      RHSKnownOne = ((LHSKnownZero & RHSVal) | 
                     (LHSKnownOne & ~RHSVal)) & ~CarryBits;
      
      // Bits are known zero if they are known zero in both operands and there
      // is no input carry.
      RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
    } else {
      // If the high-bits of this ADD are not demanded, then it does not demand
      // the high bits of its LHS or RHS.
      if (DemandedMask[BitWidth-1] == 0) {
        // Right fill the mask of bits for this ADD to demand the most
        // significant bit and all those below it.
        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
        if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
                                 LHSKnownZero, LHSKnownOne, Depth+1))
          return true;
        if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
                                 LHSKnownZero, LHSKnownOne, Depth+1))
          return true;
      }
    }
    break;
  }
  case Instruction::Sub:
    // If the high-bits of this SUB are not demanded, then it does not demand
    // the high bits of its LHS or RHS.
    if (DemandedMask[BitWidth-1] == 0) {
      // Right fill the mask of bits for this SUB to demand the most
      // significant bit and all those below it.
      uint32_t NLZ = DemandedMask.countLeadingZeros();
      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
      if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
                               LHSKnownZero, LHSKnownOne, Depth+1))
        return true;
      if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
                               LHSKnownZero, LHSKnownOne, Depth+1))
        return true;
    }
    break;
  case Instruction::Shl:
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
      if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn, 
                               RHSKnownZero, RHSKnownOne, Depth+1))
        return true;
      assert((RHSKnownZero & RHSKnownOne) == 0 && 
             "Bits known to be one AND zero?"); 
      RHSKnownZero <<= ShiftAmt;
      RHSKnownOne  <<= ShiftAmt;
      // low bits known zero.
      if (ShiftAmt)
        RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    }
    break;
  case Instruction::LShr:
    // For a logical shift right
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
      
      // Unsigned shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
      if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
                               RHSKnownZero, RHSKnownOne, Depth+1))
        return true;
      assert((RHSKnownZero & RHSKnownOne) == 0 && 
             "Bits known to be one AND zero?"); 
      RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
      RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt);
      if (ShiftAmt) {
        // Compute the new bits that are at the top now.
        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
        RHSKnownZero |= HighBits;  // high bits known zero.
      }
    }
    break;
  case Instruction::AShr:
    // If this is an arithmetic shift right and only the low-bit is set, we can
    // always convert this into a logical shr, even if the shift amount is
    // variable.  The low bit of the shift cannot be an input sign bit unless
    // the shift amount is >= the size of the datatype, which is undefined.
    if (DemandedMask == 1) {
      // Perform the logical shift right.
      Value *NewVal = BinaryOperator::createLShr(
                        I->getOperand(0), I->getOperand(1), I->getName());
      InsertNewInstBefore(cast<Instruction>(NewVal), *I);
      return UpdateValueUsesWith(I, NewVal);
    }    

    // If the sign bit is the only bit demanded by this ashr, then there is no
    // need to do it, the shift doesn't change the high bit.
    if (DemandedMask.isSignBit())
      return UpdateValueUsesWith(I, I->getOperand(0));
    
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
      
      // Signed shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
      // If any of the "high bits" are demanded, we should set the sign bit as
      // demanded.
      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
        DemandedMaskIn.set(BitWidth-1);
      if (SimplifyDemandedBits(I->getOperand(0),
                               DemandedMaskIn,
                               RHSKnownZero, RHSKnownOne, Depth+1))
        return true;
      assert((RHSKnownZero & RHSKnownOne) == 0 && 
             "Bits known to be one AND zero?"); 
      // Compute the new bits that are at the top now.
      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
      RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
      RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt);
        
      // Handle the sign bits.
      APInt SignBit(APInt::getSignBit(BitWidth));
      // Adjust to where it is now in the mask.
      SignBit = APIntOps::lshr(SignBit, ShiftAmt);  
        
      // If the input sign bit is known to be zero, or if none of the top bits
      // are demanded, turn this into an unsigned shift right.
      if (RHSKnownZero[BitWidth-ShiftAmt-1] || 
          (HighBits & ~DemandedMask) == HighBits) {
        // Perform the logical shift right.
        Value *NewVal = BinaryOperator::createLShr(
                          I->getOperand(0), SA, I->getName());
        InsertNewInstBefore(cast<Instruction>(NewVal), *I);
        return UpdateValueUsesWith(I, NewVal);
      } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
        RHSKnownOne |= HighBits;
      }
    }
    break;
  }
  
  // If the client is only demanding bits that we know, return the known
  // constant.
  if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
    return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
  return false;
}


/// SimplifyDemandedVectorElts - The specified value producecs a vector with
/// 64 or fewer elements.  DemandedElts contains the set of elements that are
/// actually used by the caller.  This method analyzes which elements of the
/// operand are undef and returns that information in UndefElts.
///
/// If the information about demanded elements can be used to simplify the
/// operation, the operation is simplified, then the resultant value is
/// returned.  This returns null if no change was made.
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
                                                uint64_t &UndefElts,
                                                unsigned Depth) {
  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
  assert(VWidth <= 64 && "Vector too wide to analyze!");
  uint64_t EltMask = ~0ULL >> (64-VWidth);
  assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
         "Invalid DemandedElts!");

  if (isa<UndefValue>(V)) {
    // If the entire vector is undefined, just return this info.
    UndefElts = EltMask;
    return 0;
  } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
    UndefElts = EltMask;
    return UndefValue::get(V->getType());
  }
  
  UndefElts = 0;
  if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
    const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    Constant *Undef = UndefValue::get(EltTy);

    std::vector<Constant*> Elts;
    for (unsigned i = 0; i != VWidth; ++i)
      if (!(DemandedElts & (1ULL << i))) {   // If not demanded, set to undef.
        Elts.push_back(Undef);
        UndefElts |= (1ULL << i);
      } else if (isa<UndefValue>(CP->getOperand(i))) {   // Already undef.
        Elts.push_back(Undef);
        UndefElts |= (1ULL << i);
      } else {                               // Otherwise, defined.
        Elts.push_back(CP->getOperand(i));
      }
        
    // If we changed the constant, return it.
    Constant *NewCP = ConstantVector::get(Elts);
    return NewCP != CP ? NewCP : 0;
  } else if (isa<ConstantAggregateZero>(V)) {
    // Simplify the CAZ to a ConstantVector where the non-demanded elements are
    // set to undef.
    const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    Constant *Zero = Constant::getNullValue(EltTy);
    Constant *Undef = UndefValue::get(EltTy);
    std::vector<Constant*> Elts;
    for (unsigned i = 0; i != VWidth; ++i)
      Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
    UndefElts = DemandedElts ^ EltMask;
    return ConstantVector::get(Elts);
  }
  
  if (!V->hasOneUse()) {    // Other users may use these bits.
    if (Depth != 0) {       // Not at the root.
      // TODO: Just compute the UndefElts information recursively.
      return false;
    }
    return false;
  } else if (Depth == 10) {        // Limit search depth.
    return false;
  }
  
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;        // Only analyze instructions.
  
  bool MadeChange = false;
  uint64_t UndefElts2;
  Value *TmpV;
  switch (I->getOpcode()) {
  default: break;
    
  case Instruction::InsertElement: {
    // If this is a variable index, we don't know which element it overwrites.
    // demand exactly the same input as we produce.
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
    if (Idx == 0) {
      // Note that we can't propagate undef elt info, because we don't know
      // which elt is getting updated.
      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
                                        UndefElts2, Depth+1);
      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
      break;
    }
    
    // If this is inserting an element that isn't demanded, remove this
    // insertelement.
    unsigned IdxNo = Idx->getZExtValue();
    if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
      return AddSoonDeadInstToWorklist(*I, 0);
    
    // Otherwise, the element inserted overwrites whatever was there, so the
    // input demanded set is simpler than the output set.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
                                      DemandedElts & ~(1ULL << IdxNo),
                                      UndefElts, Depth+1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }

    // The inserted element is defined.
    UndefElts |= 1ULL << IdxNo;
    break;
  }
  case Instruction::BitCast: {
    // Vector->vector casts only.
    const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
    if (!VTy) break;
    unsigned InVWidth = VTy->getNumElements();
    uint64_t InputDemandedElts = 0;
    unsigned Ratio;

    if (VWidth == InVWidth) {
      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
      // elements as are demanded of us.
      Ratio = 1;
      InputDemandedElts = DemandedElts;
    } else if (VWidth > InVWidth) {
      // Untested so far.
      break;
      
      // If there are more elements in the result than there are in the source,
      // then an input element is live if any of the corresponding output
      // elements are live.
      Ratio = VWidth/InVWidth;
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
        if (DemandedElts & (1ULL << OutIdx))
          InputDemandedElts |= 1ULL << (OutIdx/Ratio);
      }
    } else {
      // Untested so far.
      break;
      
      // If there are more elements in the source than there are in the result,
      // then an input element is live if the corresponding output element is
      // live.
      Ratio = InVWidth/VWidth;
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
        if (DemandedElts & (1ULL << InIdx/Ratio))
          InputDemandedElts |= 1ULL << InIdx;
    }
    
    // div/rem demand all inputs, because they don't want divide by zero.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
                                      UndefElts2, Depth+1);
    if (TmpV) {
      I->setOperand(0, TmpV);
      MadeChange = true;
    }
    
    UndefElts = UndefElts2;
    if (VWidth > InVWidth) {
      assert(0 && "Unimp");
      // If there are more elements in the result than there are in the source,
      // then an output element is undef if the corresponding input element is
      // undef.
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
        if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
          UndefElts |= 1ULL << OutIdx;
    } else if (VWidth < InVWidth) {
      assert(0 && "Unimp");
      // If there are more elements in the source than there are in the result,
      // then a result element is undef if all of the corresponding input
      // elements are undef.
      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
        if ((UndefElts2 & (1ULL << InIdx)) == 0)    // Not undef?
          UndefElts &= ~(1ULL << (InIdx/Ratio));    // Clear undef bit.
    }
    break;
  }
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // div/rem demand all inputs, because they don't want divide by zero.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
                                      UndefElts, Depth+1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
                                      UndefElts2, Depth+1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
      
    // Output elements are undefined if both are undefined.  Consider things
    // like undef&0.  The result is known zero, not undef.
    UndefElts &= UndefElts2;
    break;
    
  case Instruction::Call: {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
    if (!II) break;
    switch (II->getIntrinsicID()) {
    default: break;
      
    // Binary vector operations that work column-wise.  A dest element is a
    // function of the corresponding input elements from the two inputs.
    case Intrinsic::x86_sse_sub_ss:
    case Intrinsic::x86_sse_mul_ss:
    case Intrinsic::x86_sse_min_ss:
    case Intrinsic::x86_sse_max_ss:
    case Intrinsic::x86_sse2_sub_sd:
    case Intrinsic::x86_sse2_mul_sd:
    case Intrinsic::x86_sse2_min_sd:
    case Intrinsic::x86_sse2_max_sd:
      TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
                                        UndefElts, Depth+1);
      if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
      TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
                                        UndefElts2, Depth+1);
      if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }

      // If only the low elt is demanded and this is a scalarizable intrinsic,
      // scalarize it now.
      if (DemandedElts == 1) {
        switch (II->getIntrinsicID()) {
        default: break;
        case Intrinsic::x86_sse_sub_ss:
        case Intrinsic::x86_sse_mul_ss:
        case Intrinsic::x86_sse2_sub_sd:
        case Intrinsic::x86_sse2_mul_sd:
          // TODO: Lower MIN/MAX/ABS/etc
          Value *LHS = II->getOperand(1);
          Value *RHS = II->getOperand(2);
          // Extract the element as scalars.
          LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
          RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
          
          switch (II->getIntrinsicID()) {
          default: assert(0 && "Case stmts out of sync!");
          case Intrinsic::x86_sse_sub_ss:
          case Intrinsic::x86_sse2_sub_sd:
            TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
                                                        II->getName()), *II);
            break;
          case Intrinsic::x86_sse_mul_ss:
          case Intrinsic::x86_sse2_mul_sd:
            TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
                                                         II->getName()), *II);
            break;
          }
          
          Instruction *New =
            new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
                                  II->getName());
          InsertNewInstBefore(New, *II);
          AddSoonDeadInstToWorklist(*II, 0);
          return New;
        }            
      }
        
      // Output elements are undefined if both are undefined.  Consider things
      // like undef&0.  The result is known zero, not undef.
      UndefElts &= UndefElts2;
      break;
    }
    break;
  }
  }
  return MadeChange ? I : 0;
}

/// @returns true if the specified compare predicate is
/// true when both operands are equal...
/// @brief Determine if the icmp Predicate is true when both operands are equal
static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
  return pred == ICmpInst::ICMP_EQ  || pred == ICmpInst::ICMP_UGE ||
         pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
         pred == ICmpInst::ICMP_SLE;
}

/// @returns true if the specified compare instruction is
/// true when both operands are equal...
/// @brief Determine if the ICmpInst returns true when both operands are equal
static bool isTrueWhenEqual(ICmpInst &ICI) {
  return isTrueWhenEqual(ICI.getPredicate());
}

/// AssociativeOpt - Perform an optimization on an associative operator.  This
/// function is designed to check a chain of associative operators for a
/// potential to apply a certain optimization.  Since the optimization may be
/// applicable if the expression was reassociated, this checks the chain, then
/// reassociates the expression as necessary to expose the optimization
/// opportunity.  This makes use of a special Functor, which must define
/// 'shouldApply' and 'apply' methods.
///
template<typename Functor>
Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
  unsigned Opcode = Root.getOpcode();
  Value *LHS = Root.getOperand(0);

  // Quick check, see if the immediate LHS matches...
  if (F.shouldApply(LHS))
    return F.apply(Root);

  // Otherwise, if the LHS is not of the same opcode as the root, return.
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
  while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
    // Should we apply this transform to the RHS?
    bool ShouldApply = F.shouldApply(LHSI->getOperand(1));

    // If not to the RHS, check to see if we should apply to the LHS...
    if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
      cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
      ShouldApply = true;
    }

    // If the functor wants to apply the optimization to the RHS of LHSI,
    // reassociate the expression from ((? op A) op B) to (? op (A op B))
    if (ShouldApply) {
      BasicBlock *BB = Root.getParent();

      // Now all of the instructions are in the current basic block, go ahead
      // and perform the reassociation.
      Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));

      // First move the selected RHS to the LHS of the root...
      Root.setOperand(0, LHSI->getOperand(1));

      // Make what used to be the LHS of the root be the user of the root...
      Value *ExtraOperand = TmpLHSI->getOperand(1);
      if (&Root == TmpLHSI) {
        Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
        return 0;
      }
      Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
      TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
      TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
      BasicBlock::iterator ARI = &Root; ++ARI;
      BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root
      ARI = Root;

      // Now propagate the ExtraOperand down the chain of instructions until we
      // get to LHSI.
      while (TmpLHSI != LHSI) {
        Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
        // Move the instruction to immediately before the chain we are
        // constructing to avoid breaking dominance properties.
        NextLHSI->getParent()->getInstList().remove(NextLHSI);
        BB->getInstList().insert(ARI, NextLHSI);
        ARI = NextLHSI;

        Value *NextOp = NextLHSI->getOperand(1);
        NextLHSI->setOperand(1, ExtraOperand);
        TmpLHSI = NextLHSI;
        ExtraOperand = NextOp;
      }

      // Now that the instructions are reassociated, have the functor perform
      // the transformation...
      return F.apply(Root);
    }

    LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
  }
  return 0;
}


// AddRHS - Implements: X + X --> X << 1
struct AddRHS {
  Value *RHS;
  AddRHS(Value *rhs) : RHS(rhs) {}
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
  Instruction *apply(BinaryOperator &Add) const {
    return BinaryOperator::createShl(Add.getOperand(0),
                                  ConstantInt::get(Add.getType(), 1));
  }
};

// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
//                 iff C1&C2 == 0
struct AddMaskingAnd {
  Constant *C2;
  AddMaskingAnd(Constant *c) : C2(c) {}
  bool shouldApply(Value *LHS) const {
    ConstantInt *C1;
    return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
           ConstantExpr::getAnd(C1, C2)->isNullValue();
  }
  Instruction *apply(BinaryOperator &Add) const {
    return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
  }
};

static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
                                             InstCombiner *IC) {
  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    if (Constant *SOC = dyn_cast<Constant>(SO))
      return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());

    return IC->InsertNewInstBefore(CastInst::create(
          CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
  }

  // Figure out if the constant is the left or the right argument.
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));

  if (Constant *SOC = dyn_cast<Constant>(SO)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
  }

  Value *Op0 = SO, *Op1 = ConstOperand;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);
  Instruction *New;
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
    New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
  else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
    New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1, 
                          SO->getName()+".cmp");
  else {
    assert(0 && "Unknown binary instruction type!");
    abort();
  }
  return IC->InsertNewInstBefore(New, I);
}

// FoldOpIntoSelect - Given an instruction with a select as one operand and a
// constant as the other operand, try to fold the binary operator into the
// select arguments.  This also works for Cast instructions, which obviously do
// not have a second operand.
static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
                                     InstCombiner *IC) {
  // Don't modify shared select instructions
  if (!SI->hasOneUse()) return 0;
  Value *TV = SI->getOperand(1);
  Value *FV = SI->getOperand(2);

  if (isa<Constant>(TV) || isa<Constant>(FV)) {
    // Bool selects with constant operands can be folded to logical ops.
    if (SI->getType() == Type::Int1Ty) return 0;

    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);

    return new SelectInst(SI->getCondition(), SelectTrueVal,
                          SelectFalseVal);
  }
  return 0;
}


/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
/// node as operand #0, see if we can fold the instruction into the PHI (which
/// is only possible if all operands to the PHI are constants).
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
  PHINode *PN = cast<PHINode>(I.getOperand(0));
  unsigned NumPHIValues = PN->getNumIncomingValues();
  if (!PN->hasOneUse() || NumPHIValues == 0) return 0;

  // Check to see if all of the operands of the PHI are constants.  If there is
  // one non-constant value, remember the BB it is.  If there is more than one
  // or if *it* is a PHI, bail out.
  BasicBlock *NonConstBB = 0;
  for (unsigned i = 0; i != NumPHIValues; ++i)
    if (!isa<Constant>(PN->getIncomingValue(i))) {
      if (NonConstBB) return 0;  // More than one non-const value.
      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
      NonConstBB = PN->getIncomingBlock(i);
      
      // If the incoming non-constant value is in I's block, we have an infinite
      // loop.
      if (NonConstBB == I.getParent())
        return 0;
    }
  
  // If there is exactly one non-constant value, we can insert a copy of the
  // operation in that block.  However, if this is a critical edge, we would be
  // inserting the computation one some other paths (e.g. inside a loop).  Only
  // do this if the pred block is unconditionally branching into the phi block.
  if (NonConstBB) {
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    if (!BI || !BI->isUnconditional()) return 0;
  }

  // Okay, we can do the transformation: create the new PHI node.
  PHINode *NewPN = new PHINode(I.getType(), "");
  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
  InsertNewInstBefore(NewPN, *PN);
  NewPN->takeName(PN);

  // Next, add all of the operands to the PHI.
  if (I.getNumOperands() == 2) {
    Constant *C = cast<Constant>(I.getOperand(1));
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = 0;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
        else
          InV = ConstantExpr::get(I.getOpcode(), InC, C);
      } else {
        assert(PN->getIncomingBlock(i) == NonConstBB);
        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
          InV = BinaryOperator::create(BO->getOpcode(),
                                       PN->getIncomingValue(i), C, "phitmp",
                                       NonConstBB->getTerminator());
        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
          InV = CmpInst::create(CI->getOpcode(), 
                                CI->getPredicate(),
                                PN->getIncomingValue(i), C, "phitmp",
                                NonConstBB->getTerminator());
        else
          assert(0 && "Unknown binop!");
        
        AddToWorkList(cast<Instruction>(InV));
      }
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else { 
    CastInst *CI = cast<CastInst>(&I);
    const Type *RetTy = CI->getType();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
      } else {
        assert(PN->getIncomingBlock(i) == NonConstBB);
        InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i), 
                               I.getType(), "phitmp", 
                               NonConstBB->getTerminator());
        AddToWorkList(cast<Instruction>(InV));
      }
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  }
  return ReplaceInstUsesWith(I, NewPN);
}

Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);

  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    // X + undef -> undef
    if (isa<UndefValue>(RHS))
      return ReplaceInstUsesWith(I, RHS);

    // X + 0 --> X
    if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
      if (RHSC->isNullValue())
        return ReplaceInstUsesWith(I, LHS);
    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
      if (CFP->isExactlyValue(ConstantFP::getNegativeZero
                              (I.getType())->getValueAPF()))
        return ReplaceInstUsesWith(I, LHS);
    }

    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
      // X + (signbit) --> X ^ signbit
      const APInt& Val = CI->getValue();
      uint32_t BitWidth = Val.getBitWidth();
      if (Val == APInt::getSignBit(BitWidth))
        return BinaryOperator::createXor(LHS, RHS);
      
      // See if SimplifyDemandedBits can simplify this.  This handles stuff like
      // (X & 254)+1 -> (X&254)|1
      if (!isa<VectorType>(I.getType())) {
        APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
        if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
                                 KnownZero, KnownOne))
          return &I;
      }
    }

    if (isa<PHINode>(LHS))
      if (Instruction *NV = FoldOpIntoPhi(I))
        return NV;
    
    ConstantInt *XorRHS = 0;
    Value *XorLHS = 0;
    if (isa<ConstantInt>(RHSC) &&
        match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
      uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
      const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
      
      uint32_t Size = TySizeBits / 2;
      APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
      APInt CFF80Val(-C0080Val);
      do {
        if (TySizeBits > Size) {
          // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
          // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
          if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
              (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
            // This is a sign extend if the top bits are known zero.
            if (!MaskedValueIsZero(XorLHS, 
                   APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
              Size = 0;  // Not a sign ext, but can't be any others either.
            break;
          }
        }
        Size >>= 1;
        C0080Val = APIntOps::lshr(C0080Val, Size);
        CFF80Val = APIntOps::ashr(CFF80Val, Size);
      } while (Size >= 1);
      
      // FIXME: This shouldn't be necessary. When the backends can handle types
      // with funny bit widths then this whole cascade of if statements should
      // be removed. It is just here to get the size of the "middle" type back
      // up to something that the back ends can handle.
      const Type *MiddleType = 0;
      switch (Size) {
        default: break;
        case 32: MiddleType = Type::Int32Ty; break;
        case 16: MiddleType = Type::Int16Ty; break;
        case  8: MiddleType = Type::Int8Ty; break;
      }
      if (MiddleType) {
        Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
        InsertNewInstBefore(NewTrunc, I);
        return new SExtInst(NewTrunc, I.getType(), I.getName());
      }
    }
  }

  // X + X --> X << 1
  if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
    if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;

    if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
      if (RHSI->getOpcode() == Instruction::Sub)
        if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
          return ReplaceInstUsesWith(I, RHSI->getOperand(0));
    }
    if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
      if (LHSI->getOpcode() == Instruction::Sub)
        if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
          return ReplaceInstUsesWith(I, LHSI->getOperand(0));
    }
  }

  // -A + B  -->  B - A
  if (Value *V = dyn_castNegVal(LHS))
    return BinaryOperator::createSub(RHS, V);

  // A + -B  -->  A - B
  if (!isa<Constant>(RHS))
    if (Value *V = dyn_castNegVal(RHS))
      return BinaryOperator::createSub(LHS, V);


  ConstantInt *C2;
  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
    if (X == RHS)   // X*C + X --> X * (C+1)
      return BinaryOperator::createMul(RHS, AddOne(C2));

    // X*C1 + X*C2 --> X * (C1+C2)
    ConstantInt *C1;
    if (X == dyn_castFoldableMul(RHS, C1))
      return BinaryOperator::createMul(X, Add(C1, C2));
  }

  // X + X*C --> X * (C+1)
  if (dyn_castFoldableMul(RHS, C2) == LHS)
    return BinaryOperator::createMul(LHS, AddOne(C2));

  // X + ~X --> -1   since   ~X = -X-1
  if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
    return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
  

  // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
  if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
    if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
      return R;

  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
    Value *X = 0;
    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
      return BinaryOperator::createSub(SubOne(CRHS), X);

    // (X & FF00) + xx00  -> (X+xx00) & FF00
    if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
      Constant *Anded = And(CRHS, C2);
      if (Anded == CRHS) {
        // See if all bits from the first bit set in the Add RHS up are included
        // in the mask.  First, get the rightmost bit.
        const APInt& AddRHSV = CRHS->getValue();

        // Form a mask of all bits from the lowest bit added through the top.
        APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));

        // See if the and mask includes all of these bits.
        APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());

        if (AddRHSHighBits == AddRHSHighBitsAnd) {
          // Okay, the xform is safe.  Insert the new add pronto.
          Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
                                                            LHS->getName()), I);
          return BinaryOperator::createAnd(NewAdd, C2);
        }
      }
    }

    // Try to fold constant add into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;
  }

  // add (cast *A to intptrtype) B -> 
  //   cast (GEP (cast *A to sbyte*) B)  -->  intptrtype
  {
    CastInst *CI = dyn_cast<CastInst>(LHS);
    Value *Other = RHS;
    if (!CI) {
      CI = dyn_cast<CastInst>(RHS);
      Other = LHS;
    }
    if (CI && CI->getType()->isSized() && 
        (CI->getType()->getPrimitiveSizeInBits() == 
         TD->getIntPtrType()->getPrimitiveSizeInBits()) 
        && isa<PointerType>(CI->getOperand(0)->getType())) {
      unsigned AS =
        cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
      Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
                                   PointerType::get(Type::Int8Ty, AS), I);
      I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
      return new PtrToIntInst(I2, CI->getType());
    }
  }
  
  // add (select X 0 (sub n A)) A  -->  select X A n
  {
    SelectInst *SI = dyn_cast<SelectInst>(LHS);
    Value *Other = RHS;
    if (!SI) {
      SI = dyn_cast<SelectInst>(RHS);
      Other = LHS;
    }
    if (SI && SI->hasOneUse()) {
      Value *TV = SI->getTrueValue();
      Value *FV = SI->getFalseValue();
      Value *A, *N;

      // Can we fold the add into the argument of the select?
      // We check both true and false select arguments for a matching subtract.
      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
          A == Other)  // Fold the add into the true select value.
        return new SelectInst(SI->getCondition(), N, A);
      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) && 
          A == Other)  // Fold the add into the false select value.
        return new SelectInst(SI->getCondition(), A, N);
    }
  }

  return Changed ? &I : 0;
}

// isSignBit - Return true if the value represented by the constant only has the
// highest order bit set.
static bool isSignBit(ConstantInt *CI) {
  uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
  return CI->getValue() == APInt::getSignBit(NumBits);
}

Instruction *InstCombiner::visitSub(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (Op0 == Op1)         // sub X, X  -> 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // If this is a 'B = x-(-A)', change to B = x+A...
  if (Value *V = dyn_castNegVal(Op1))
    return BinaryOperator::createAdd(Op0, V);

  if (isa<UndefValue>(Op0))
    return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
  if (isa<UndefValue>(Op1))
    return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef

  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
    // Replace (-1 - A) with (~A)...
    if (C->isAllOnesValue())
      return BinaryOperator::createNot(Op1);

    // C - ~X == X + (1+C)
    Value *X = 0;
    if (match(Op1, m_Not(m_Value(X))))
      return BinaryOperator::createAdd(X, AddOne(C));

    // -(X >>u 31) -> (X >>s 31)
    // -(X >>s 31) -> (X >>u 31)
    if (C->isZero()) {
      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
        if (SI->getOpcode() == Instruction::LShr) {
          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
            // Check to see if we are shifting out everything but the sign bit.
            if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
                SI->getType()->getPrimitiveSizeInBits()-1) {
              // Ok, the transformation is safe.  Insert AShr.
              return BinaryOperator::create(Instruction::AShr, 
                                          SI->getOperand(0), CU, SI->getName());
            }
          }
        }
        else if (SI->getOpcode() == Instruction::AShr) {
          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
            // Check to see if we are shifting out everything but the sign bit.
            if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
                SI->getType()->getPrimitiveSizeInBits()-1) {
              // Ok, the transformation is safe.  Insert LShr. 
              return BinaryOperator::createLShr(
                                          SI->getOperand(0), CU, SI->getName());
            }
          }
        } 
    }

    // Try to fold constant sub into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;

    if (isa<PHINode>(Op0))
      if (Instruction *NV = FoldOpIntoPhi(I))
        return NV;
  }

  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
    if (Op1I->getOpcode() == Instruction::Add &&
        !Op0->getType()->isFPOrFPVector()) {
      if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
        return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
      else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
        return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
      else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
          // C1-(X+C2) --> (C1-C2)-X
          return BinaryOperator::createSub(Subtract(CI1, CI2), 
                                           Op1I->getOperand(0));
      }
    }

    if (Op1I->hasOneUse()) {
      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
      // is not used by anyone else...
      //
      if (Op1I->getOpcode() == Instruction::Sub &&
          !Op1I->getType()->isFPOrFPVector()) {
        // Swap the two operands of the subexpr...
        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
        Op1I->setOperand(0, IIOp1);
        Op1I->setOperand(1, IIOp0);

        // Create the new top level add instruction...
        return BinaryOperator::createAdd(Op0, Op1);
      }

      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
      //
      if (Op1I->getOpcode() == Instruction::And &&
          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);

        Value *NewNot =
          InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
        return BinaryOperator::createAnd(Op0, NewNot);
      }

      // 0 - (X sdiv C)  -> (X sdiv -C)
      if (Op1I->getOpcode() == Instruction::SDiv)
        if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
          if (CSI->isZero())
            if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
              return BinaryOperator::createSDiv(Op1I->getOperand(0),
                                               ConstantExpr::getNeg(DivRHS));

      // X - X*C --> X * (1-C)
      ConstantInt *C2 = 0;
      if (dyn_castFoldableMul(Op1I, C2) == Op0) {
        Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
        return BinaryOperator::createMul(Op0, CP1);
      }

      // X - ((X / Y) * Y) --> X % Y
      if (Op1I->getOpcode() == Instruction::Mul)
        if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
          if (Op0 == I->getOperand(0) &&
              Op1I->getOperand(1) == I->getOperand(1)) {
            if (I->getOpcode() == Instruction::SDiv)
              return BinaryOperator::createSRem(Op0, Op1I->getOperand(1));
            if (I->getOpcode() == Instruction::UDiv)
              return BinaryOperator::createURem(Op0, Op1I->getOperand(1));
          }
    }
  }

  if (!Op0->getType()->isFPOrFPVector())
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
      if (Op0I->getOpcode() == Instruction::Add) {
        if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
          return ReplaceInstUsesWith(I, Op0I->getOperand(1));
        else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
          return ReplaceInstUsesWith(I, Op0I->getOperand(0));
      } else if (Op0I->getOpcode() == Instruction::Sub) {
        if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
          return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
      }

  ConstantInt *C1;
  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
    if (X == Op1)  // X*C - X --> X * (C-1)
      return BinaryOperator::createMul(Op1, SubOne(C1));

    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
    if (X == dyn_castFoldableMul(Op1, C2))
      return BinaryOperator::createMul(Op1, Subtract(C1, C2));
  }
  return 0;
}

/// isSignBitCheck - Given an exploded icmp instruction, return true if the
/// comparison only checks the sign bit.  If it only checks the sign bit, set
/// TrueIfSigned if the result of the comparison is true when the input value is
/// signed.
static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
                           bool &TrueIfSigned) {
  switch (pred) {
  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    TrueIfSigned = true;
    return RHS->isZero();
  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    TrueIfSigned = true;
    return RHS->isAllOnesValue();
  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    TrueIfSigned = false;
    return RHS->isAllOnesValue();
  case ICmpInst::ICMP_UGT:
    // True if LHS u> RHS and RHS == high-bit-mask - 1
    TrueIfSigned = true;
    return RHS->getValue() ==
      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
  case ICmpInst::ICMP_UGE: 
    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    TrueIfSigned = true;
    return RHS->getValue() == 
      APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
  default:
    return false;
  }
}

Instruction *InstCombiner::visitMul(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0);

  if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // Simplify mul instructions with a constant RHS...
  if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {

      // ((X << C1)*C2) == (X * (C2 << C1))
      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
        if (SI->getOpcode() == Instruction::Shl)
          if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
            return BinaryOperator::createMul(SI->getOperand(0),
                                             ConstantExpr::getShl(CI, ShOp));

      if (CI->isZero())
        return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
      if (CI->equalsInt(1))                  // X * 1  == X
        return ReplaceInstUsesWith(I, Op0);
      if (CI->isAllOnesValue())              // X * -1 == 0 - X
        return BinaryOperator::createNeg(Op0, I.getName());

      const APInt& Val = cast<ConstantInt>(CI)->getValue();
      if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
        return BinaryOperator::createShl(Op0,
                 ConstantInt::get(Op0->getType(), Val.logBase2()));
      }
    } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
      if (Op1F->isNullValue())
        return ReplaceInstUsesWith(I, Op1);

      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
      // We need a better interface for long double here.
      if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
        if (Op1F->isExactlyValue(1.0))
          return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
    }
    
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
      if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
          isa<ConstantInt>(Op0I->getOperand(1))) {
        // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
        Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
                                                     Op1, "tmp");
        InsertNewInstBefore(Add, I);
        Value *C1C2 = ConstantExpr::getMul(Op1, 
                                           cast<Constant>(Op0I->getOperand(1)));
        return BinaryOperator::createAdd(Add, C1C2);
        
      }

    // Try to fold constant mul into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;

    if (isa<PHINode>(Op0))
      if (Instruction *NV = FoldOpIntoPhi(I))
        return NV;
  }

  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
    if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
      return BinaryOperator::createMul(Op0v, Op1v);

  // If one of the operands of the multiply is a cast from a boolean value, then
  // we know the bool is either zero or one, so this is a 'masking' multiply.
  // See if we can simplify things based on how the boolean was originally
  // formed.
  CastInst *BoolCast = 0;
  if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
    if (CI->getOperand(0)->getType() == Type::Int1Ty)
      BoolCast = CI;
  if (!BoolCast)
    if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
      if (CI->getOperand(0)->getType() == Type::Int1Ty)
        BoolCast = CI;
  if (BoolCast) {
    if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
      Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
      const Type *SCOpTy = SCIOp0->getType();
      bool TIS = false;
      
      // If the icmp is true iff the sign bit of X is set, then convert this
      // multiply into a shift/and combination.
      if (isa<ConstantInt>(SCIOp1) &&
          isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
          TIS) {
        // Shift the X value right to turn it into "all signbits".
        Constant *Amt = ConstantInt::get(SCIOp0->getType(),
                                          SCOpTy->getPrimitiveSizeInBits()-1);
        Value *V =
          InsertNewInstBefore(
            BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
                                            BoolCast->getOperand(0)->getName()+
                                            ".mask"), I);

        // If the multiply type is not the same as the source type, sign extend
        // or truncate to the multiply type.
        if (I.getType() != V->getType()) {
          uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
          uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
          Instruction::CastOps opcode = 
            (SrcBits == DstBits ? Instruction::BitCast : 
             (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
          V = InsertCastBefore(opcode, V, I.getType(), I);
        }

        Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
        return BinaryOperator::createAnd(V, OtherOp);
      }
    }
  }

  return Changed ? &I : 0;
}

/// This function implements the transforms on div instructions that work
/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
/// used by the visitors to those instructions.
/// @brief Transforms common to all three div instructions
Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // undef / X -> 0
  if (isa<UndefValue>(Op0))
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // X / undef -> undef
  if (isa<UndefValue>(Op1))
    return ReplaceInstUsesWith(I, Op1);

  // Handle cases involving: div X, (select Cond, Y, Z)
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
    // div X, (Cond ? 0 : Y) -> div X, Y.  If the div and the select are in the
    // same basic block, then we replace the select with Y, and the condition 
    // of the select with false (if the cond value is in the same BB).  If the
    // select has uses other than the div, this allows them to be simplified
    // also. Note that div X, Y is just as good as div X, 0 (undef)
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
      if (ST->isNullValue()) {
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
        if (CondI && CondI->getParent() == I.getParent())
          UpdateValueUsesWith(CondI, ConstantInt::getFalse());
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
          I.setOperand(1, SI->getOperand(2));
        else
          UpdateValueUsesWith(SI, SI->getOperand(2));
        return &I;
      }

    // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
      if (ST->isNullValue()) {
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
        if (CondI && CondI->getParent() == I.getParent())
          UpdateValueUsesWith(CondI, ConstantInt::getTrue());
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
          I.setOperand(1, SI->getOperand(1));
        else
          UpdateValueUsesWith(SI, SI->getOperand(1));
        return &I;
      }
  }

  return 0;
}

/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
/// @brief Common integer divide transforms
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (Instruction *Common = commonDivTransforms(I))
    return Common;

  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    // div X, 1 == X
    if (RHS->equalsInt(1))
      return ReplaceInstUsesWith(I, Op0);

    // (X / C1) / C2  -> X / (C1*C2)
    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
          return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
                                        Multiply(RHS, LHSRHS));
        }

    if (!RHS->isZero()) { // avoid X udiv 0
      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
          return R;
      if (isa<PHINode>(Op0))
        if (Instruction *NV = FoldOpIntoPhi(I))
          return NV;
    }
  }

  // 0 / X == 0, we don't need to preserve faults!
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
    if (LHS->equalsInt(0))
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  return 0;
}

Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Handle the integer div common cases
  if (Instruction *Common = commonIDivTransforms(I))
    return Common;

  // X udiv C^2 -> X >> C
  // Check to see if this is an unsigned division with an exact power of 2,
  // if so, convert to a right shift.
  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
    if (C->getValue().isPowerOf2())  // 0 not included in isPowerOf2
      return BinaryOperator::createLShr(Op0, 
               ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
  }

  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
  if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
    if (RHSI->getOpcode() == Instruction::Shl &&
        isa<ConstantInt>(RHSI->getOperand(0))) {
      const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
      if (C1.isPowerOf2()) {
        Value *N = RHSI->getOperand(1);
        const Type *NTy = N->getType();
        if (uint32_t C2 = C1.logBase2()) {
          Constant *C2V = ConstantInt::get(NTy, C2);
          N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
        }
        return BinaryOperator::createLShr(Op0, N);
      }
    }
  }
  
  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
  // where C1&C2 are powers of two.
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 
    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2)))  {
        const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
        if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
          // Compute the shift amounts
          uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
          // Construct the "on true" case of the select
          Constant *TC = ConstantInt::get(Op0->getType(), TSA);
          Instruction *TSI = BinaryOperator::createLShr(
                                                 Op0, TC, SI->getName()+".t");
          TSI = InsertNewInstBefore(TSI, I);
  
          // Construct the "on false" case of the select
          Constant *FC = ConstantInt::get(Op0->getType(), FSA); 
          Instruction *FSI = BinaryOperator::createLShr(
                                                 Op0, FC, SI->getName()+".f");
          FSI = InsertNewInstBefore(FSI, I);

          // construct the select instruction and return it.
          return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
        }
      }
  return 0;
}

Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Handle the integer div common cases
  if (Instruction *Common = commonIDivTransforms(I))
    return Common;

  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    // sdiv X, -1 == -X
    if (RHS->isAllOnesValue())
      return BinaryOperator::createNeg(Op0);

    // -X/C -> X/-C
    if (Value *LHSNeg = dyn_castNegVal(Op0))
      return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
  }

  // If the sign bits of both operands are zero (i.e. we can prove they are
  // unsigned inputs), turn this into a udiv.
  if (I.getType()->isInteger()) {
    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
      // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
      return BinaryOperator::createUDiv(Op0, Op1, I.getName());
    }
  }      
  
  return 0;
}

Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
  return commonDivTransforms(I);
}

/// GetFactor - If we can prove that the specified value is at least a multiple
/// of some factor, return that factor.
static Constant *GetFactor(Value *V) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    return CI;
  
  // Unless we can be tricky, we know this is a multiple of 1.
  Constant *Result = ConstantInt::get(V->getType(), 1);
  
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return Result;
  
  if (I->getOpcode() == Instruction::Mul) {
    // Handle multiplies by a constant, etc.
    return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
                                GetFactor(I->getOperand(1)));
  } else if (I->getOpcode() == Instruction::Shl) {
    // (X<<C) -> X * (1 << C)
    if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
      ShRHS = ConstantExpr::getShl(Result, ShRHS);
      return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
    }
  } else if (I->getOpcode() == Instruction::And) {
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // X & 0xFFF0 is known to be a multiple of 16.
      uint32_t Zeros = RHS->getValue().countTrailingZeros();
      if (Zeros != V->getType()->getPrimitiveSizeInBits())// don't shift by "32"
        return ConstantExpr::getShl(Result, 
                                    ConstantInt::get(Result->getType(), Zeros));
    }
  } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    // Only handle int->int casts.
    if (!CI->isIntegerCast())
      return Result;
    Value *Op = CI->getOperand(0);
    return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
  }    
  return Result;
}

/// This function implements the transforms on rem instructions that work
/// regardless of the kind of rem instruction it is (urem, srem, or frem). It 
/// is used by the visitors to those instructions.
/// @brief Transforms common to all three rem instructions
Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // 0 % X == 0, we don't need to preserve faults!
  if (Constant *LHS = dyn_cast<Constant>(Op0))
    if (LHS->isNullValue())
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  if (isa<UndefValue>(Op0))              // undef % X -> 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
  if (isa<UndefValue>(Op1))
    return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef

  // Handle cases involving: rem X, (select Cond, Y, Z)
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
    // rem X, (Cond ? 0 : Y) -> rem X, Y.  If the rem and the select are in
    // the same basic block, then we replace the select with Y, and the
    // condition of the select with false (if the cond value is in the same
    // BB).  If the select has uses other than the div, this allows them to be
    // simplified also.
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
      if (ST->isNullValue()) {
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
        if (CondI && CondI->getParent() == I.getParent())
          UpdateValueUsesWith(CondI, ConstantInt::getFalse());
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
          I.setOperand(1, SI->getOperand(2));
        else
          UpdateValueUsesWith(SI, SI->getOperand(2));
        return &I;
      }
    // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
      if (ST->isNullValue()) {
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
        if (CondI && CondI->getParent() == I.getParent())
          UpdateValueUsesWith(CondI, ConstantInt::getTrue());
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
          I.setOperand(1, SI->getOperand(1));
        else
          UpdateValueUsesWith(SI, SI->getOperand(1));
        return &I;
      }
  }

  return 0;
}

/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
/// @brief Common integer remainder transforms
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (Instruction *common = commonRemTransforms(I))
    return common;

  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    // X % 0 == undef, we don't need to preserve faults!
    if (RHS->equalsInt(0))
      return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
    
    if (RHS->equalsInt(1))  // X % 1 == 0
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
          return R;
      } else if (isa<PHINode>(Op0I)) {
        if (Instruction *NV = FoldOpIntoPhi(I))
          return NV;
      }
      // (X * C1) % C2 --> 0  iff  C1 % C2 == 0
      if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
        return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    }
  }

  return 0;
}

Instruction *InstCombiner::visitURem(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (Instruction *common = commonIRemTransforms(I))
    return common;
  
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    // X urem C^2 -> X and C
    // Check to see if this is an unsigned remainder with an exact power of 2,
    // if so, convert to a bitwise and.
    if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
      if (C->getValue().isPowerOf2())
        return BinaryOperator::createAnd(Op0, SubOne(C));
  }

  if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
    // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)  
    if (RHSI->getOpcode() == Instruction::Shl &&
        isa<ConstantInt>(RHSI->getOperand(0))) {
      if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
        Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
        Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
                                                                   "tmp"), I);
        return BinaryOperator::createAnd(Op0, Add);
      }
    }
  }

  // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
  // where C1&C2 are powers of two.
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
        // STO == 0 and SFO == 0 handled above.
        if ((STO->getValue().isPowerOf2()) && 
            (SFO->getValue().isPowerOf2())) {
          Value *TrueAnd = InsertNewInstBefore(
            BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
          Value *FalseAnd = InsertNewInstBefore(
            BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
          return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
        }
      }
  }
  
  return 0;
}

Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Handle the integer rem common cases
  if (Instruction *common = commonIRemTransforms(I))
    return common;
  
  if (Value *RHSNeg = dyn_castNegVal(Op1))
    if (!isa<ConstantInt>(RHSNeg) || 
        cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
      // X % -Y -> X % Y
      AddUsesToWorkList(I);
      I.setOperand(1, RHSNeg);
      return &I;
    }
 
  // If the sign bits of both operands are zero (i.e. we can prove they are
  // unsigned inputs), turn this into a urem.
  if (I.getType()->isInteger()) {
    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
      return BinaryOperator::createURem(Op0, Op1, I.getName());
    }
  }

  return 0;
}

Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
  return commonRemTransforms(I);
}

// isMaxValueMinusOne - return true if this is Max-1
static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
  uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
  if (!isSigned)
    return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
  return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
}

// isMinValuePlusOne - return true if this is Min+1
static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
  if (!isSigned)
    return C->getValue() == 1; // unsigned
    
  // Calculate 1111111111000000000000
  uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
  return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
}

// isOneBitSet - Return true if there is exactly one bit set in the specified
// constant.
static bool isOneBitSet(const ConstantInt *CI) {
  return CI->getValue().isPowerOf2();
}

// isHighOnes - Return true if the constant is of the form 1+0+.
// This is the same as lowones(~X).
static bool isHighOnes(const ConstantInt *CI) {
  return (~CI->getValue() + 1).isPowerOf2();
}

/// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
/// are carefully arranged to allow folding of expressions such as:
///
///      (A < B) | (A > B) --> (A != B)
///
/// Note that this is only valid if the first and second predicates have the
/// same sign. Is illegal to do: (A u< B) | (A s> B) 
///
/// Three bits are used to represent the condition, as follows:
///   0  A > B
///   1  A == B
///   2  A < B
///
/// <=>  Value  Definition
/// 000     0   Always false
/// 001     1   A >  B
/// 010     2   A == B
/// 011     3   A >= B
/// 100     4   A <  B
/// 101     5   A != B
/// 110     6   A <= B
/// 111     7   Always true
///  
static unsigned getICmpCode(const ICmpInst *ICI) {
  switch (ICI->getPredicate()) {
    // False -> 0
  case ICmpInst::ICMP_UGT: return 1;  // 001
  case ICmpInst::ICMP_SGT: return 1;  // 001
  case ICmpInst::ICMP_EQ:  return 2;  // 010
  case ICmpInst::ICMP_UGE: return 3;  // 011
  case ICmpInst::ICMP_SGE: return 3;  // 011
  case ICmpInst::ICMP_ULT: return 4;  // 100
  case ICmpInst::ICMP_SLT: return 4;  // 100
  case ICmpInst::ICMP_NE:  return 5;  // 101
  case ICmpInst::ICMP_ULE: return 6;  // 110
  case ICmpInst::ICMP_SLE: return 6;  // 110
    // True -> 7
  default:
    assert(0 && "Invalid ICmp predicate!");
    return 0;
  }
}

/// getICmpValue - This is the complement of getICmpCode, which turns an
/// opcode and two operands into either a constant true or false, or a brand 
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in new icmp instructions.
static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
  switch (code) {
  default: assert(0 && "Illegal ICmp code!");
  case  0: return ConstantInt::getFalse();
  case  1: 
    if (sign)
      return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
    else
      return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
  case  2: return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS);
  case  3: 
    if (sign)
      return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
    else
      return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
  case  4: 
    if (sign)
      return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
    else
      return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
  case  5: return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS);
  case  6: 
    if (sign)
      return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
    else
      return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
  case  7: return ConstantInt::getTrue();
  }
}

static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
  return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
    (ICmpInst::isSignedPredicate(p1) && 
     (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
    (ICmpInst::isSignedPredicate(p2) && 
     (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
}

namespace { 
// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
struct FoldICmpLogical {
  InstCombiner &IC;
  Value *LHS, *RHS;
  ICmpInst::Predicate pred;
  FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
    : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
      pred(ICI->getPredicate()) {}
  bool shouldApply(Value *V) const {
    if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
      if (PredicatesFoldable(pred, ICI->getPredicate()))
        return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
                ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
    return false;
  }
  Instruction *apply(Instruction &Log) const {
    ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
    if (ICI->getOperand(0) != LHS) {
      assert(ICI->getOperand(1) == LHS);
      ICI->swapOperands();  // Swap the LHS and RHS of the ICmp
    }

    ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
    unsigned LHSCode = getICmpCode(ICI);
    unsigned RHSCode = getICmpCode(RHSICI);
    unsigned Code;
    switch (Log.getOpcode()) {
    case Instruction::And: Code = LHSCode & RHSCode; break;
    case Instruction::Or:  Code = LHSCode | RHSCode; break;
    case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
    default: assert(0 && "Illegal logical opcode!"); return 0;
    }

    bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) || 
                    ICmpInst::isSignedPredicate(ICI->getPredicate());
      
    Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
    if (Instruction *I = dyn_cast<Instruction>(RV))
      return I;
    // Otherwise, it's a constant boolean value...
    return IC.ReplaceInstUsesWith(Log, RV);
  }
};
} // end anonymous namespace

// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
// guaranteed to be a binary operator.
Instruction *InstCombiner::OptAndOp(Instruction *Op,
                                    ConstantInt *OpRHS,
                                    ConstantInt *AndRHS,
                                    BinaryOperator &TheAnd) {
  Value *X = Op->getOperand(0);
  Constant *Together = 0;
  if (!Op->isShift())
    Together = And(AndRHS, OpRHS);

  switch (Op->getOpcode()) {
  case Instruction::Xor:
    if (Op->hasOneUse()) {
      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
      Instruction *And = BinaryOperator::createAnd(X, AndRHS);
      InsertNewInstBefore(And, TheAnd);
      And->takeName(Op);
      return BinaryOperator::createXor(And, Together);
    }
    break;
  case Instruction::Or:
    if (Together == AndRHS) // (X | C) & C --> C
      return ReplaceInstUsesWith(TheAnd, AndRHS);

    if (Op->hasOneUse() && Together != OpRHS) {
      // (X | C1) & C2 --> (X | (C1&C2)) & C2
      Instruction *Or = BinaryOperator::createOr(X, Together);
      InsertNewInstBefore(Or, TheAnd);
      Or->takeName(Op);
      return BinaryOperator::createAnd(Or, AndRHS);
    }
    break;
  case Instruction::Add:
    if (Op->hasOneUse()) {
      // Adding a one to a single bit bit-field should be turned into an XOR
      // of the bit.  First thing to check is to see if this AND is with a
      // single bit constant.
      const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();

      // If there is only one bit set...
      if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
        // Ok, at this point, we know that we are masking the result of the
        // ADD down to exactly one bit.  If the constant we are adding has
        // no bits set below this bit, then we can eliminate the ADD.
        const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();

        // Check to see if any bits below the one bit set in AndRHSV are set.
        if ((AddRHS & (AndRHSV-1)) == 0) {
          // If not, the only thing that can effect the output of the AND is
          // the bit specified by AndRHSV.  If that bit is set, the effect of
          // the XOR is to toggle the bit.  If it is clear, then the ADD has
          // no effect.
          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
            TheAnd.setOperand(0, X);
            return &TheAnd;
          } else {
            // Pull the XOR out of the AND.
            Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
            InsertNewInstBefore(NewAnd, TheAnd);
            NewAnd->takeName(Op);
            return BinaryOperator::createXor(NewAnd, AndRHS);
          }
        }
      }
    }
    break;

  case Instruction::Shl: {
    // We know that the AND will not produce any of the bits shifted in, so if
    // the anded constant includes them, clear them now!
    //
    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);

    if (CI->getValue() == ShlMask) { 
    // Masking out bits that the shift already masks
      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    } else if (CI != AndRHS) {                  // Reducing bits set in and.
      TheAnd.setOperand(1, CI);
      return &TheAnd;
    }
    break;
  }
  case Instruction::LShr:
  {
    // We know that the AND will not produce any of the bits shifted in, so if
    // the anded constant includes them, clear them now!  This only applies to
    // unsigned shifts, because a signed shr may bring in set bits!
    //
    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);

    if (CI->getValue() == ShrMask) {   
    // Masking out bits that the shift already masks.
      return ReplaceInstUsesWith(TheAnd, Op);
    } else if (CI != AndRHS) {
      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
      return &TheAnd;
    }
    break;
  }
  case Instruction::AShr:
    // Signed shr.
    // See if this is shifting in some sign extension, then masking it out
    // with an and.
    if (Op->hasOneUse()) {
      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
      Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
      if (C == AndRHS) {          // Masking out bits shifted in.
        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
        // Make the argument unsigned.
        Value *ShVal = Op->getOperand(0);
        ShVal = InsertNewInstBefore(
            BinaryOperator::createLShr(ShVal, OpRHS, 
                                   Op->getName()), TheAnd);
        return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
      }
    }
    break;
  }
  return 0;
}


/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
/// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
/// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
/// whether to treat the V, Lo and HI as signed or not. IB is the location to
/// insert new instructions.
Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
                                           bool isSigned, bool Inside, 
                                           Instruction &IB) {
  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 
            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
         "Lo is not <= Hi in range emission code!");
    
  if (Inside) {
    if (Lo == Hi)  // Trivially false.
      return new ICmpInst(ICmpInst::ICMP_NE, V, V);

    // V >= Min && V < Hi --> V < Hi
    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
      ICmpInst::Predicate pred = (isSigned ? 
        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
      return new ICmpInst(pred, V, Hi);
    }

    // Emit V-Lo <u Hi-Lo
    Constant *NegLo = ConstantExpr::getNeg(Lo);
    Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
    InsertNewInstBefore(Add, IB);
    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
  }

  if (Lo == Hi)  // Trivially true.
    return new ICmpInst(ICmpInst::ICMP_EQ, V, V);

  // V < Min || V >= Hi -> V > Hi-1
  Hi = SubOne(cast<ConstantInt>(Hi));
  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    ICmpInst::Predicate pred = (isSigned ? 
        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    return new ICmpInst(pred, V, Hi);
  }

  // Emit V-Lo >u Hi-1-Lo
  // Note that Hi has already had one subtracted from it, above.
  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
  Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
  InsertNewInstBefore(Add, IB);
  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
  return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
}

// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
// not, since all 1s are not contiguous.
static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
  const APInt& V = Val->getValue();
  uint32_t BitWidth = Val->getType()->getBitWidth();
  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;

  // look for the first zero bit after the run of ones
  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
  // look for the first non-zero bit
  ME = V.getActiveBits(); 
  return true;
}

/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
/// where isSub determines whether the operator is a sub.  If we can fold one of
/// the following xforms:
/// 
/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
///
/// return (A +/- B).
///
Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
                                        ConstantInt *Mask, bool isSub,
                                        Instruction &I) {
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
  if (!LHSI || LHSI->getNumOperands() != 2 ||
      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;

  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));

  switch (LHSI->getOpcode()) {
  default: return 0;
  case Instruction::And:
    if (And(N, Mask) == Mask) {
      // If the AndRHS is a power of two minus one (0+1+), this is simple.
      if ((Mask->getValue().countLeadingZeros() + 
           Mask->getValue().countPopulation()) == 
          Mask->getValue().getBitWidth())
        break;

      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
      // part, we don't need any explicit masks to take them out of A.  If that
      // is all N is, ignore it.
      uint32_t MB = 0, ME = 0;
      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
        if (MaskedValueIsZero(RHS, Mask))
          break;
      }
    }
    return 0;
  case Instruction::Or:
  case Instruction::Xor:
    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    if ((Mask->getValue().countLeadingZeros() + 
         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
        && And(N, Mask)->isZero())
      break;
    return 0;
  }
  
  Instruction *New;
  if (isSub)
    New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
  else
    New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
  return InsertNewInstBefore(New, I);
}

Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (isa<UndefValue>(Op1))                         // X & undef -> 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // and X, X = X
  if (Op0 == Op1)
    return ReplaceInstUsesWith(I, Op1);

  // See if we can simplify any instructions used by the instruction whose sole 
  // purpose is to compute bits we don't care about.
  if (!isa<VectorType>(I.getType())) {
    uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
                             KnownZero, KnownOne))
      return &I;
  } else {
    if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
      if (CP->isAllOnesValue())            // X & <-1,-1> -> X
        return ReplaceInstUsesWith(I, I.getOperand(0));
    } else if (isa<ConstantAggregateZero>(Op1)) {
      return ReplaceInstUsesWith(I, Op1);  // X & <0,0> -> <0,0>
    }
  }
  
  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
    const APInt& AndRHSMask = AndRHS->getValue();
    APInt NotAndRHS(~AndRHSMask);

    // Optimize a variety of ((val OP C1) & C2) combinations...
    if (isa<BinaryOperator>(Op0)) {
      Instruction *Op0I = cast<Instruction>(Op0);
      Value *Op0LHS = Op0I->getOperand(0);
      Value *Op0RHS = Op0I->getOperand(1);
      switch (Op0I->getOpcode()) {
      case Instruction::Xor:
      case Instruction::Or:
        // If the mask is only needed on one incoming arm, push it up.
        if (Op0I->hasOneUse()) {
          if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
            // Not masking anything out for the LHS, move to RHS.
            Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
                                                   Op0RHS->getName()+".masked");
            InsertNewInstBefore(NewRHS, I);
            return BinaryOperator::create(
                       cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
          }
          if (!isa<Constant>(Op0RHS) &&
              MaskedValueIsZero(Op0RHS, NotAndRHS)) {
            // Not masking anything out for the RHS, move to LHS.
            Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
                                                   Op0LHS->getName()+".masked");
            InsertNewInstBefore(NewLHS, I);
            return BinaryOperator::create(
                       cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
          }
        }

        break;
      case Instruction::Add:
        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
          return BinaryOperator::createAnd(V, AndRHS);
        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
          return BinaryOperator::createAnd(V, AndRHS);  // Add commutes
        break;

      case Instruction::Sub:
        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
          return BinaryOperator::createAnd(V, AndRHS);
        break;
      }

      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
          return Res;
    } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
      // If this is an integer truncation or change from signed-to-unsigned, and
      // if the source is an and/or with immediate, transform it.  This
      // frequently occurs for bitfield accesses.
      if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
        if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
            CastOp->getNumOperands() == 2)
          if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
            if (CastOp->getOpcode() == Instruction::And) {
              // Change: and (cast (and X, C1) to T), C2
              // into  : and (cast X to T), trunc_or_bitcast(C1)&C2
              // This will fold the two constants together, which may allow 
              // other simplifications.
              Instruction *NewCast = CastInst::createTruncOrBitCast(
                CastOp->getOperand(0), I.getType(), 
                CastOp->getName()+".shrunk");
              NewCast = InsertNewInstBefore(NewCast, I);
              // trunc_or_bitcast(C1)&C2
              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
              C3 = ConstantExpr::getAnd(C3, AndRHS);
              return BinaryOperator::createAnd(NewCast, C3);
            } else if (CastOp->getOpcode() == Instruction::Or) {
              // Change: and (cast (or X, C1) to T), C2
              // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2
              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
              if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)   // trunc(C1)&C2
                return ReplaceInstUsesWith(I, AndRHS);
            }
      }
    }

    // Try to fold constant and into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;
    if (isa<PHINode>(Op0))
      if (Instruction *NV = FoldOpIntoPhi(I))
        return NV;
  }

  Value *Op0NotVal = dyn_castNotVal(Op0);
  Value *Op1NotVal = dyn_castNotVal(Op1);

  if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // (~A & ~B) == (~(A | B)) - De Morgan's Law
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
    Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
                                               I.getName()+".demorgan");
    InsertNewInstBefore(Or, I);
    return BinaryOperator::createNot(Or);
  }
  
  {
    Value *A = 0, *B = 0, *C = 0, *D = 0;
    if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
      if (A == Op1 || B == Op1)    // (A | ?) & A  --> A
        return ReplaceInstUsesWith(I, Op1);
    
      // (A|B) & ~(A&B) -> A^B
      if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
        if ((A == C && B == D) || (A == D && B == C))
          return BinaryOperator::createXor(A, B);
      }
    }
    
    if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
      if (A == Op0 || B == Op0)    // A & (A | ?)  --> A
        return ReplaceInstUsesWith(I, Op0);

      // ~(A&B) & (A|B) -> A^B
      if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
        if ((A == C && B == D) || (A == D && B == C))
          return BinaryOperator::createXor(A, B);
      }
    }
    
    if (Op0->hasOneUse() &&
        match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
      if (A == Op1) {                                // (A^B)&A -> A&(A^B)
        I.swapOperands();     // Simplify below
        std::swap(Op0, Op1);
      } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
        cast<BinaryOperator>(Op0)->swapOperands();
        I.swapOperands();     // Simplify below
        std::swap(Op0, Op1);
      }
    }
    if (Op1->hasOneUse() &&
        match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
      if (B == Op0) {                                // B&(A^B) -> B&(B^A)
        cast<BinaryOperator>(Op1)->swapOperands();
        std::swap(A, B);
      }
      if (A == Op0) {                                // A&(A^B) -> A & ~B
        Instruction *NotB = BinaryOperator::createNot(B, "tmp");
        InsertNewInstBefore(NotB, I);
        return BinaryOperator::createAnd(A, NotB);
      }
    }
  }
  
  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
    // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
      return R;

    Value *LHSVal, *RHSVal;
    ConstantInt *LHSCst, *RHSCst;
    ICmpInst::Predicate LHSCC, RHSCC;
    if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
      if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
        if (LHSVal == RHSVal &&    // Found (X icmp C1) & (X icmp C2)
            // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
            LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
            RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
            LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
            RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
            
            // Don't try to fold ICMP_SLT + ICMP_ULT.
            (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
             ICmpInst::isSignedPredicate(LHSCC) == 
                 ICmpInst::isSignedPredicate(RHSCC))) {
          // Ensure that the larger constant is on the RHS.
          ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ? 
            ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
          Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
          ICmpInst *LHS = cast<ICmpInst>(Op0);
          if (cast<ConstantInt>(Cmp)->getZExtValue()) {
            std::swap(LHS, RHS);
            std::swap(LHSCst, RHSCst);
            std::swap(LHSCC, RHSCC);
          }

          // At this point, we know we have have two icmp instructions
          // comparing a value against two constants and and'ing the result
          // together.  Because of the above check, we know that we only have
          // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 
          // (from the FoldICmpLogical check above), that the two constants 
          // are not equal and that the larger constant is on the RHS
          assert(LHSCst != RHSCst && "Compares not folded above?");

          switch (LHSCC) {
          default: assert(0 && "Unknown integer condition code!");
          case ICmpInst::ICMP_EQ:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false
            case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false
            case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
            case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
            case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
            case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
              return ReplaceInstUsesWith(I, LHS);
            }
          case ICmpInst::ICMP_NE:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_ULT:
              if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
                return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
              break;                        // (X != 13 & X u< 15) -> no change
            case ICmpInst::ICMP_SLT:
              if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
                return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
              break;                        // (X != 13 & X s< 15) -> no change
            case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
            case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
            case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
              return ReplaceInstUsesWith(I, RHS);
            case ICmpInst::ICMP_NE:
              if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
                Constant *AddCST = ConstantExpr::getNeg(LHSCst);
                Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
                                                      LHSVal->getName()+".off");
                InsertNewInstBefore(Add, I);
                return new ICmpInst(ICmpInst::ICMP_UGT, Add,
                                    ConstantInt::get(Add->getType(), 1));
              }
              break;                        // (X != 13 & X != 15) -> no change
            }
            break;
          case ICmpInst::ICMP_ULT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
            case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
            case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
            case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
              return ReplaceInstUsesWith(I, LHS);
            case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
              break;
            }
            break;
          case ICmpInst::ICMP_SLT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false
            case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
            case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
            case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
              return ReplaceInstUsesWith(I, LHS);
            case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
              break;
            }
            break;
          case ICmpInst::ICMP_UGT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X > 13
              return ReplaceInstUsesWith(I, LHS);
            case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
              return ReplaceInstUsesWith(I, RHS);
            case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:
              if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
                return new ICmpInst(LHSCC, LHSVal, RHSCst);
              break;                        // (X u> 13 & X != 15) -> no change
            case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) ->(X-14) <u 1
              return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false, 
                                     true, I);
            case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
              break;
            }
            break;
          case ICmpInst::ICMP_SGT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
            case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
              return ReplaceInstUsesWith(I, RHS);
            case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:
              if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
                return new ICmpInst(LHSCC, LHSVal, RHSCst);
              break;                        // (X s> 13 & X != 15) -> no change
            case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) ->(X-14) s< 1
              return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, 
                                     true, I);
            case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
              break;
            }
            break;
          }
        }
  }

  // fold (and (cast A), (cast B)) -> (cast (and A, B))
  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
        const Type *SrcTy = Op0C->getOperand(0)->getType();
        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
            // Only do this if the casts both really cause code to be generated.
            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
                              I.getType(), TD) &&
            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
                              I.getType(), TD)) {
          Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
                                                         Op1C->getOperand(0),
                                                         I.getName());
          InsertNewInstBefore(NewOp, I);
          return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
        }
      }
    
  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
          SI0->getOperand(1) == SI1->getOperand(1) &&
          (SI0->hasOneUse() || SI1->hasOneUse())) {
        Instruction *NewOp =
          InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
                                                        SI1->getOperand(0),
                                                        SI0->getName()), I);
        return BinaryOperator::create(SI1->getOpcode(), NewOp, 
                                      SI1->getOperand(1));
      }
  }

  // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
      if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
          RHS->getPredicate() == FCmpInst::FCMP_ORD)
        if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
          if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
            // If either of the constants are nans, then the whole thing returns
            // false.
            if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
            return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
                                RHS->getOperand(0));
          }
    }
  }
      
  return Changed ? &I : 0;
}

/// CollectBSwapParts - Look to see if the specified value defines a single byte
/// in the result.  If it does, and if the specified byte hasn't been filled in
/// yet, fill it in and return false.
static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) return true;

  // If this is an or instruction, it is an inner node of the bswap.
  if (I->getOpcode() == Instruction::Or)
    return CollectBSwapParts(I->getOperand(0), ByteValues) ||
           CollectBSwapParts(I->getOperand(1), ByteValues);
  
  uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
  // If this is a shift by a constant int, and it is "24", then its operand
  // defines a byte.  We only handle unsigned types here.
  if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
    // Not shifting the entire input by N-1 bytes?
    if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
        8*(ByteValues.size()-1))
      return true;
    
    unsigned DestNo;
    if (I->getOpcode() == Instruction::Shl) {
      // X << 24 defines the top byte with the lowest of the input bytes.
      DestNo = ByteValues.size()-1;
    } else {
      // X >>u 24 defines the low byte with the highest of the input bytes.
      DestNo = 0;
    }
    
    // If the destination byte value is already defined, the values are or'd
    // together, which isn't a bswap (unless it's an or of the same bits).
    if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
      return true;
    ByteValues[DestNo] = I->getOperand(0);
    return false;
  }
  
  // Otherwise, we can only handle and(shift X, imm), imm).  Bail out of if we
  // don't have this.
  Value *Shift = 0, *ShiftLHS = 0;
  ConstantInt *AndAmt = 0, *ShiftAmt = 0;
  if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
      !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
    return true;
  Instruction *SI = cast<Instruction>(Shift);

  // Make sure that the shift amount is by a multiple of 8 and isn't too big.
  if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
      ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
    return true;
  
  // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
  unsigned DestByte;
  if (AndAmt->getValue().getActiveBits() > 64)
    return true;
  uint64_t AndAmtVal = AndAmt->getZExtValue();
  for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
    if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
      break;
  // Unknown mask for bswap.
  if (DestByte == ByteValues.size()) return true;
  
  unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
  unsigned SrcByte;
  if (SI->getOpcode() == Instruction::Shl)
    SrcByte = DestByte - ShiftBytes;
  else
    SrcByte = DestByte + ShiftBytes;
  
  // If the SrcByte isn't a bswapped value from the DestByte, reject it.
  if (SrcByte != ByteValues.size()-DestByte-1)
    return true;
  
  // If the destination byte value is already defined, the values are or'd
  // together, which isn't a bswap (unless it's an or of the same bits).
  if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
    return true;
  ByteValues[DestByte] = SI->getOperand(0);
  return false;
}

/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
/// If so, insert the new bswap intrinsic and return it.
Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
  const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
  if (!ITy || ITy->getBitWidth() % 16) 
    return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
  
  /// ByteValues - For each byte of the result, we keep track of which value
  /// defines each byte.
  SmallVector<Value*, 8> ByteValues;
  ByteValues.resize(ITy->getBitWidth()/8);
    
  // Try to find all the pieces corresponding to the bswap.
  if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
      CollectBSwapParts(I.getOperand(1), ByteValues))
    return 0;
  
  // Check to see if all of the bytes come from the same value.
  Value *V = ByteValues[0];
  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
  
  // Check to make sure that all of the bytes come from the same value.
  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
    if (ByteValues[i] != V)
      return 0;
  const Type *Tys[] = { ITy };
  Module *M = I.getParent()->getParent()->getParent();
  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
  return new CallInst(F, V);
}


Instruction *InstCombiner::visitOr(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (isa<UndefValue>(Op1))                       // X | undef -> -1
    return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));

  // or X, X = X
  if (Op0 == Op1)
    return ReplaceInstUsesWith(I, Op0);

  // See if we can simplify any instructions used by the instruction whose sole 
  // purpose is to compute bits we don't care about.
  if (!isa<VectorType>(I.getType())) {
    uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
                             KnownZero, KnownOne))
      return &I;
  } else if (isa<ConstantAggregateZero>(Op1)) {
    return ReplaceInstUsesWith(I, Op0);  // X | <0,0> -> X
  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
    if (CP->isAllOnesValue())            // X | <-1,-1> -> <-1,-1>
      return ReplaceInstUsesWith(I, I.getOperand(1));
  }
    

  
  // or X, -1 == -1
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    ConstantInt *C1 = 0; Value *X = 0;
    // (X & C1) | C2 --> (X | C2) & (C1|C2)
    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
      Instruction *Or = BinaryOperator::createOr(X, RHS);
      InsertNewInstBefore(Or, I);
      Or->takeName(Op0);
      return BinaryOperator::createAnd(Or, 
               ConstantInt::get(RHS->getValue() | C1->getValue()));
    }

    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
      Instruction *Or = BinaryOperator::createOr(X, RHS);
      InsertNewInstBefore(Or, I);
      Or->takeName(Op0);
      return BinaryOperator::createXor(Or,
                 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
    }

    // Try to fold constant and into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;
    if (isa<PHINode>(Op0))
      if (Instruction *NV = FoldOpIntoPhi(I))
        return NV;
  }

  Value *A = 0, *B = 0;
  ConstantInt *C1 = 0, *C2 = 0;

  if (match(Op0, m_And(m_Value(A), m_Value(B))))
    if (A == Op1 || B == Op1)    // (A & ?) | A  --> A
      return ReplaceInstUsesWith(I, Op1);
  if (match(Op1, m_And(m_Value(A), m_Value(B))))
    if (A == Op0 || B == Op0)    // A | (A & ?)  --> A
      return ReplaceInstUsesWith(I, Op0);

  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
  if (match(Op0, m_Or(m_Value(), m_Value())) ||
      match(Op1, m_Or(m_Value(), m_Value())) ||
      (match(Op0, m_Shift(m_Value(), m_Value())) &&
       match(Op1, m_Shift(m_Value(), m_Value())))) {
    if (Instruction *BSwap = MatchBSwap(I))
      return BSwap;
  }
  
  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
  if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
      MaskedValueIsZero(Op1, C1->getValue())) {
    Instruction *NOr = BinaryOperator::createOr(A, Op1);
    InsertNewInstBefore(NOr, I);
    NOr->takeName(Op0);
    return BinaryOperator::createXor(NOr, C1);
  }

  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
  if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
      MaskedValueIsZero(Op0, C1->getValue())) {
    Instruction *NOr = BinaryOperator::createOr(A, Op0);
    InsertNewInstBefore(NOr, I);
    NOr->takeName(Op0);
    return BinaryOperator::createXor(NOr, C1);
  }

  // (A & C)|(B & D)
  Value *C = 0, *D = 0;
  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
      match(Op1, m_And(m_Value(B), m_Value(D)))) {
    Value *V1 = 0, *V2 = 0, *V3 = 0;
    C1 = dyn_cast<ConstantInt>(C);
    C2 = dyn_cast<ConstantInt>(D);
    if (C1 && C2) {  // (A & C1)|(B & C2)
      // If we have: ((V + N) & C1) | (V & C2)
      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
      // replace with V+N.
      if (C1->getValue() == ~C2->getValue()) {
        if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
            match(A, m_Add(m_Value(V1), m_Value(V2)))) {
          // Add commutes, try both ways.
          if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
            return ReplaceInstUsesWith(I, A);
          if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
            return ReplaceInstUsesWith(I, A);
        }
        // Or commutes, try both ways.
        if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
            match(B, m_Add(m_Value(V1), m_Value(V2)))) {
          // Add commutes, try both ways.
          if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
            return ReplaceInstUsesWith(I, B);
          if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
            return ReplaceInstUsesWith(I, B);
        }
      }
      V1 = 0; V2 = 0; V3 = 0;
    }
    
    // Check to see if we have any common things being and'ed.  If so, find the
    // terms for V1 & (V2|V3).
    if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
      if (A == B)      // (A & C)|(A & D) == A & (C|D)
        V1 = A, V2 = C, V3 = D;
      else if (A == D) // (A & C)|(B & A) == A & (B|C)
        V1 = A, V2 = B, V3 = C;
      else if (C == B) // (A & C)|(C & D) == C & (A|D)
        V1 = C, V2 = A, V3 = D;
      else if (C == D) // (A & C)|(B & C) == C & (A|B)
        V1 = C, V2 = A, V3 = B;
      
      if (V1) {
        Value *Or =
          InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
        return BinaryOperator::createAnd(V1, Or);
      }
    }
  }
  
  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
          SI0->getOperand(1) == SI1->getOperand(1) &&
          (SI0->hasOneUse() || SI1->hasOneUse())) {
        Instruction *NewOp =
        InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
                                                     SI1->getOperand(0),
                                                     SI0->getName()), I);
        return BinaryOperator::create(SI1->getOpcode(), NewOp, 
                                      SI1->getOperand(1));
      }
  }

  if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1
    if (A == Op1)   // ~A | A == -1
      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
  } else {
    A = 0;
  }
  // Note, A is still live here!
  if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B
    if (Op0 == B)
      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));

    // (~A | ~B) == (~(A & B)) - De Morgan's Law
    if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
      Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
                                              I.getName()+".demorgan"), I);
      return BinaryOperator::createNot(And);
    }
  }

  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
    if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
      return R;

    Value *LHSVal, *RHSVal;
    ConstantInt *LHSCst, *RHSCst;
    ICmpInst::Predicate LHSCC, RHSCC;
    if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
      if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
        if (LHSVal == RHSVal &&    // Found (X icmp C1) | (X icmp C2)
            // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
            LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
            RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
            LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
            RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
            // We can't fold (ugt x, C) | (sgt x, C2).
            PredicatesFoldable(LHSCC, RHSCC)) {
          // Ensure that the larger constant is on the RHS.
          ICmpInst *LHS = cast<ICmpInst>(Op0);
          bool NeedsSwap;
          if (ICmpInst::isSignedPredicate(LHSCC))
            NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
          else
            NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
            
          if (NeedsSwap) {
            std::swap(LHS, RHS);
            std::swap(LHSCst, RHSCst);
            std::swap(LHSCC, RHSCC);
          }

          // At this point, we know we have have two icmp instructions
          // comparing a value against two constants and or'ing the result
          // together.  Because of the above check, we know that we only have
          // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
          // FoldICmpLogical check above), that the two constants are not
          // equal.
          assert(LHSCst != RHSCst && "Compares not folded above?");

          switch (LHSCC) {
          default: assert(0 && "Unknown integer condition code!");
          case ICmpInst::ICMP_EQ:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:
              if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
                Constant *AddCST = ConstantExpr::getNeg(LHSCst);
                Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
                                                      LHSVal->getName()+".off");
                InsertNewInstBefore(Add, I);
                AddCST = Subtract(AddOne(RHSCst), LHSCst);
                return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
              }
              break;                         // (X == 13 | X == 15) -> no change
            case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
            case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
              break;
            case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
            case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
            case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
              return ReplaceInstUsesWith(I, RHS);
            }
            break;
          case ICmpInst::ICMP_NE:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
            case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
            case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
              return ReplaceInstUsesWith(I, LHS);
            case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
            case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
            case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
            }
            break;
          case ICmpInst::ICMP_ULT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
              break;
            case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) ->(X-13) u> 2
              // If RHSCst is [us]MAXINT, it is always false.  Not handling
              // this can cause overflow.
              if (RHSCst->isMaxValue(false))
                return ReplaceInstUsesWith(I, LHS);
              return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, 
                                     false, I);
            case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
            case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
              return ReplaceInstUsesWith(I, RHS);
            case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
              break;
            }
            break;
          case ICmpInst::ICMP_SLT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
              break;
            case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) ->(X-13) s> 2
              // If RHSCst is [us]MAXINT, it is always false.  Not handling
              // this can cause overflow.
              if (RHSCst->isMaxValue(true))
                return ReplaceInstUsesWith(I, LHS);
              return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true, 
                                     false, I);
            case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
            case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
              return ReplaceInstUsesWith(I, RHS);
            case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
              break;
            }
            break;
          case ICmpInst::ICMP_UGT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
            case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
              return ReplaceInstUsesWith(I, LHS);
            case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
            case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
            case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
              break;
            }
            break;
          case ICmpInst::ICMP_SGT:
            switch (RHSCC) {
            default: assert(0 && "Unknown integer condition code!");
            case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
            case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
              return ReplaceInstUsesWith(I, LHS);
            case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
              break;
            case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
            case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
            case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
              break;
            }
            break;
          }
        }
  }
    
  // fold (or (cast A), (cast B)) -> (cast (or A, B))
  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
      if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
        const Type *SrcTy = Op0C->getOperand(0)->getType();
        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
            // Only do this if the casts both really cause code to be generated.
            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
                              I.getType(), TD) &&
            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
                              I.getType(), TD)) {
          Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
                                                        Op1C->getOperand(0),
                                                        I.getName());
          InsertNewInstBefore(NewOp, I);
          return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
        }
      }
  }
  
    
  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
      if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
          RHS->getPredicate() == FCmpInst::FCMP_UNO)
        if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
          if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
            // If either of the constants are nans, then the whole thing returns
            // true.
            if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
            
            // Otherwise, no need to compare the two constants, compare the
            // rest.
            return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
                                RHS->getOperand(0));
          }
    }
  }

  return Changed ? &I : 0;
}

// XorSelf - Implements: X ^ X --> 0
struct XorSelf {
  Value *RHS;
  XorSelf(Value *rhs) : RHS(rhs) {}
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
  Instruction *apply(BinaryOperator &Xor) const {
    return &Xor;
  }
};


Instruction *InstCombiner::visitXor(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (isa<UndefValue>(Op1))
    return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef

  // xor X, X = 0, even if X is nested in a sequence of Xor's.
  if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
    assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
  }
  
  // See if we can simplify any instructions used by the instruction whose sole 
  // purpose is to compute bits we don't care about.
  if (!isa<VectorType>(I.getType())) {
    uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
                             KnownZero, KnownOne))
      return &I;
  } else if (isa<ConstantAggregateZero>(Op1)) {
    return ReplaceInstUsesWith(I, Op0);  // X ^ <0,0> -> X
  }

  // Is this a ~ operation?
  if (Value *NotOp = dyn_castNotVal(&I)) {
    // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
    // ~(~X | Y) === (X & ~Y) - De Morgan's Law
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
      if (Op0I->getOpcode() == Instruction::And || 
          Op0I->getOpcode() == Instruction::Or) {
        if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
          Instruction *NotY =
            BinaryOperator::createNot(Op0I->getOperand(1),
                                      Op0I->getOperand(1)->getName()+".not");
          InsertNewInstBefore(NotY, I);
          if (Op0I->getOpcode() == Instruction::And)
            return BinaryOperator::createOr(Op0NotVal, NotY);
          else
            return BinaryOperator::createAnd(Op0NotVal, NotY);
        }
      }
    }
  }
  
  
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
    if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
        return new ICmpInst(ICI->getInversePredicate(),
                            ICI->getOperand(0), ICI->getOperand(1));

      if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
        return new FCmpInst(FCI->getInversePredicate(),
                            FCI->getOperand(0), FCI->getOperand(1));
    }

    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
      // ~(c-X) == X-c-1 == X+(-c-1)
      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
                                              ConstantInt::get(I.getType(), 1));
          return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
        }
          
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
        if (Op0I->getOpcode() == Instruction::Add) {
          // ~(X-c) --> (-c-1)-X
          if (RHS->isAllOnesValue()) {
            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
            return BinaryOperator::createSub(
                           ConstantExpr::getSub(NegOp0CI,
                                             ConstantInt::get(I.getType(), 1)),
                                          Op0I->getOperand(0));
          } else if (RHS->getValue().isSignBit()) {
            // (X + C) ^ signbit -> (X + C + signbit)
            Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
            return BinaryOperator::createAdd(Op0I->getOperand(0), C);

          }
        } else if (Op0I->getOpcode() == Instruction::Or) {
          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
            // Anything in both C1 and C2 is known to be zero, remove it from
            // NewRHS.
            Constant *CommonBits = And(Op0CI, RHS);
            NewRHS = ConstantExpr::getAnd(NewRHS, 
                                          ConstantExpr::getNot(CommonBits));
            AddToWorkList(Op0I);
            I.setOperand(0, Op0I->getOperand(0));
            I.setOperand(1, NewRHS);
            return &I;
          }
        }
    }

    // Try to fold constant and into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;
    if (isa<PHINode>(Op0))
      if (Instruction *NV = FoldOpIntoPhi(I))
        return NV;
  }

  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
    if (X == Op1)
      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));

  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
    if (X == Op0)
      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));

  
  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
  if (Op1I) {
    Value *A, *B;
    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
      if (A == Op0) {              // B^(B|A) == (A|B)^B
        Op1I->swapOperands();
        I.swapOperands();
        std::swap(Op0, Op1);
      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
        I.swapOperands();     // Simplified below.
        std::swap(Op0, Op1);
      }
    } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
      if (Op0 == A)                                          // A^(A^B) == B
        return ReplaceInstUsesWith(I, B);
      else if (Op0 == B)                                     // A^(B^A) == B
        return ReplaceInstUsesWith(I, A);
    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
        Op1I->swapOperands();
        std::swap(A, B);
      }
      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
        I.swapOperands();     // Simplified below.
        std::swap(Op0, Op1);
      }
    }
  }
  
  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
  if (Op0I) {
    Value *A, *B;
    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
      if (A == Op1)                                  // (B|A)^B == (A|B)^B
        std::swap(A, B);
      if (B == Op1) {                                // (A|B)^B == A & ~B
        Instruction *NotB =
          InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
        return BinaryOperator::createAnd(A, NotB);
      }
    } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
      if (Op1 == A)                                          // (A^B)^A == B
        return ReplaceInstUsesWith(I, B);
      else if (Op1 == B)                                     // (B^A)^A == B
        return ReplaceInstUsesWith(I, A);
    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
        std::swap(A, B);
      if (B == Op1 &&                                      // (B&A)^A == ~B & A
          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
        Instruction *N =
          InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
        return BinaryOperator::createAnd(N, Op1);
      }
    }
  }
  
  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
  if (Op0I && Op1I && Op0I->isShift() && 
      Op0I->getOpcode() == Op1I->getOpcode() && 
      Op0I->getOperand(1) == Op1I->getOperand(1) &&
      (Op1I->hasOneUse() || Op1I->hasOneUse())) {
    Instruction *NewOp =
      InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
                                                    Op1I->getOperand(0),
                                                    Op0I->getName()), I);
    return BinaryOperator::create(Op1I->getOpcode(), NewOp, 
                                  Op1I->getOperand(1));
  }
    
  if (Op0I && Op1I) {
    Value *A, *B, *C, *D;
    // (A & B)^(A | B) -> A ^ B
    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
      if ((A == C && B == D) || (A == D && B == C)) 
        return BinaryOperator::createXor(A, B);
    }
    // (A | B)^(A & B) -> A ^ B
    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
      if ((A == C && B == D) || (A == D && B == C)) 
        return BinaryOperator::createXor(A, B);
    }
    
    // (A & B)^(C & D)
    if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
        match(Op0I, m_And(m_Value(A), m_Value(B))) &&
        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
      // (X & Y)^(X & Y) -> (Y^Z) & X
      Value *X = 0, *Y = 0, *Z = 0;
      if (A == C)
        X = A, Y = B, Z = D;
      else if (A == D)
        X = A, Y = B, Z = C;
      else if (B == C)
        X = B, Y = A, Z = D;
      else if (B == D)
        X = B, Y = A, Z = C;
      
      if (X) {
        Instruction *NewOp =
        InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
        return BinaryOperator::createAnd(NewOp, X);
      }
    }
  }
    
  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
    if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
      return R;

  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
        const Type *SrcTy = Op0C->getOperand(0)->getType();
        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
            // Only do this if the casts both really cause code to be generated.
            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
                              I.getType(), TD) &&
            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
                              I.getType(), TD)) {
          Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
                                                         Op1C->getOperand(0),
                                                         I.getName());
          InsertNewInstBefore(NewOp, I);
          return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
        }
      }
  }
  return Changed ? &I : 0;
}

/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
/// overflowed for this type.
static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
                            ConstantInt *In2, bool IsSigned = false) {
  Result = cast<ConstantInt>(Add(In1, In2));

  if (IsSigned)
    if (In2->getValue().isNegative())
      return Result->getValue().sgt(In1->getValue());
    else
      return Result->getValue().slt(In1->getValue());
  else
    return Result->getValue().ult(In1->getValue());
}

/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
/// code necessary to compute the offset from the base pointer (without adding
/// in the base pointer).  Return the result as a signed integer of intptr size.
static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
  TargetData &TD = IC.getTargetData();
  gep_type_iterator GTI = gep_type_begin(GEP);
  const Type *IntPtrTy = TD.getIntPtrType();
  Value *Result = Constant::getNullValue(IntPtrTy);

  // Build a mask for high order bits.
  unsigned IntPtrWidth = TD.getPointerSize()*8;
  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);

  for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
    Value *Op = GEP->getOperand(i);
    uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
    if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
      if (OpC->isZero()) continue;
      
      // Handle a struct index, which adds its field offset to the pointer.
      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
        Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
        
        if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
          Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
        else
          Result = IC.InsertNewInstBefore(
                   BinaryOperator::createAdd(Result,
                                             ConstantInt::get(IntPtrTy, Size),
                                             GEP->getName()+".offs"), I);
        continue;
      }
      
      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
      Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
      Scale = ConstantExpr::getMul(OC, Scale);
      if (Constant *RC = dyn_cast<Constant>(Result))
        Result = ConstantExpr::getAdd(RC, Scale);
      else {
        // Emit an add instruction.
        Result = IC.InsertNewInstBefore(
           BinaryOperator::createAdd(Result, Scale,
                                     GEP->getName()+".offs"), I);
      }
      continue;
    }
    // Convert to correct type.
    if (Op->getType() != IntPtrTy) {
      if (Constant *OpC = dyn_cast<Constant>(Op))
        Op = ConstantExpr::getSExt(OpC, IntPtrTy);
      else
        Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
                                                 Op->getName()+".c"), I);
    }
    if (Size != 1) {
      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
      if (Constant *OpC = dyn_cast<Constant>(Op))
        Op = ConstantExpr::getMul(OpC, Scale);
      else    // We'll let instcombine(mul) convert this to a shl if possible.
        Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
                                                  GEP->getName()+".idx"), I);
    }

    // Emit an add instruction.
    if (isa<Constant>(Op) && isa<Constant>(Result))
      Result = ConstantExpr::getAdd(cast<Constant>(Op),
                                    cast<Constant>(Result));
    else
      Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
                                                  GEP->getName()+".offs"), I);
  }
  return Result;
}

/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
/// else.  At this point we know that the GEP is on the LHS of the comparison.
Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
                                       ICmpInst::Predicate Cond,
                                       Instruction &I) {
  assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");

  if (CastInst *CI = dyn_cast<CastInst>(RHS))
    if (isa<PointerType>(CI->getOperand(0)->getType()))
      RHS = CI->getOperand(0);

  Value *PtrBase = GEPLHS->getOperand(0);
  if (PtrBase == RHS) {
    // As an optimization, we don't actually have to compute the actual value of
    // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether 
    // each index is zero or not.
    if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
      Instruction *InVal = 0;
      gep_type_iterator GTI = gep_type_begin(GEPLHS);
      for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
        bool EmitIt = true;
        if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
          if (isa<UndefValue>(C))  // undef index -> undef.
            return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
          if (C->isNullValue())
            EmitIt = false;
          else if (TD->getABITypeSize(GTI.getIndexedType()) == 0) {
            EmitIt = false;  // This is indexing into a zero sized array?
          } else if (isa<ConstantInt>(C))
            return ReplaceInstUsesWith(I, // No comparison is needed here.
                                 ConstantInt::get(Type::Int1Ty, 
                                                  Cond == ICmpInst::ICMP_NE));
        }

        if (EmitIt) {
          Instruction *Comp =
            new ICmpInst(Cond, GEPLHS->getOperand(i),
                    Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
          if (InVal == 0)
            InVal = Comp;
          else {
            InVal = InsertNewInstBefore(InVal, I);
            InsertNewInstBefore(Comp, I);
            if (Cond == ICmpInst::ICMP_NE)   // True if any are unequal
              InVal = BinaryOperator::createOr(InVal, Comp);
            else                              // True if all are equal
              InVal = BinaryOperator::createAnd(InVal, Comp);
          }
        }
      }

      if (InVal)
        return InVal;
      else
        // No comparison is needed here, all indexes = 0
        ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
                                                Cond == ICmpInst::ICMP_EQ));
    }

    // Only lower this if the icmp is the only user of the GEP or if we expect
    // the result to fold to a constant!
    if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
      // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
      Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
                          Constant::getNullValue(Offset->getType()));
    }
  } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
    // If the base pointers are different, but the indices are the same, just
    // compare the base pointer.
    if (PtrBase != GEPRHS->getOperand(0)) {
      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
                        GEPRHS->getOperand(0)->getType();
      if (IndicesTheSame)
        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
            IndicesTheSame = false;
            break;
          }

      // If all indices are the same, just compare the base pointers.
      if (IndicesTheSame)
        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), 
                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));

      // Otherwise, the base pointers are different and the indices are
      // different, bail out.
      return 0;
    }

    // If one of the GEPs has all zero indices, recurse.
    bool AllZeros = true;
    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
        AllZeros = false;
        break;
      }
    if (AllZeros)
      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
                          ICmpInst::getSwappedPredicate(Cond), I);

    // If the other GEP has all zero indices, recurse.
    AllZeros = true;
    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
        AllZeros = false;
        break;
      }
    if (AllZeros)
      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);

    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
      // If the GEPs only differ by one index, compare it.
      unsigned NumDifferences = 0;  // Keep track of # differences.
      unsigned DiffOperand = 0;     // The operand that differs.
      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
            // Irreconcilable differences.
            NumDifferences = 2;
            break;
          } else {
            if (NumDifferences++) break;
            DiffOperand = i;
          }
        }

      if (NumDifferences == 0)   // SAME GEP?
        return ReplaceInstUsesWith(I, // No comparison is needed here.
                                   ConstantInt::get(Type::Int1Ty,
                                                    isTrueWhenEqual(Cond)));

      else if (NumDifferences == 1) {
        Value *LHSV = GEPLHS->getOperand(DiffOperand);
        Value *RHSV = GEPRHS->getOperand(DiffOperand);
        // Make sure we do a signed comparison here.
        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
      }
    }

    // Only lower this if the icmp is the only user of the GEP or if we expect
    // the result to fold to a constant!
    if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
      Value *L = EmitGEPOffset(GEPLHS, I, *this);
      Value *R = EmitGEPOffset(GEPRHS, I, *this);
      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    }
  }
  return 0;
}

Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
  bool Changed = SimplifyCompare(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Fold trivial predicates.
  if (I.getPredicate() == FCmpInst::FCMP_FALSE)
    return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
  if (I.getPredicate() == FCmpInst::FCMP_TRUE)
    return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
  
  // Simplify 'fcmp pred X, X'
  if (Op0 == Op1) {
    switch (I.getPredicate()) {
    default: assert(0 && "Unknown predicate!");
    case FCmpInst::FCMP_UEQ:    // True if unordered or equal
    case FCmpInst::FCMP_UGE:    // True if unordered, greater than, or equal
    case FCmpInst::FCMP_ULE:    // True if unordered, less than, or equal
      return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
    case FCmpInst::FCMP_OGT:    // True if ordered and greater than
    case FCmpInst::FCMP_OLT:    // True if ordered and less than
    case FCmpInst::FCMP_ONE:    // True if ordered and operands are unequal
      return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
      
    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
    case FCmpInst::FCMP_ULT:    // True if unordered or less than
    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
      // Canonicalize these to be 'fcmp uno %X, 0.0'.
      I.setPredicate(FCmpInst::FCMP_UNO);
      I.setOperand(1, Constant::getNullValue(Op0->getType()));
      return &I;
      
    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
      // Canonicalize these to be 'fcmp ord %X, 0.0'.
      I.setPredicate(FCmpInst::FCMP_ORD);
      I.setOperand(1, Constant::getNullValue(Op0->getType()));
      return &I;
    }
  }
    
  if (isa<UndefValue>(Op1))                  // fcmp pred X, undef -> undef
    return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));

  // Handle fcmp with constant RHS
  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
      switch (LHSI->getOpcode()) {
      case Instruction::PHI:
        if (Instruction *NV = FoldOpIntoPhi(I))
          return NV;
        break;
      case Instruction::Select:
        // If either operand of the select is a constant, we can fold the
        // comparison into the select arms, which will cause one to be
        // constant folded and the select turned into a bitwise or.
        Value *Op1 = 0, *Op2 = 0;
        if (LHSI->hasOneUse()) {
          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
            // Fold the known value into the constant operand.
            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
            // Insert a new FCmp of the other select operand.
            Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
                                                      LHSI->getOperand(2), RHSC,
                                                      I.getName()), I);
          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
            // Fold the known value into the constant operand.
            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
            // Insert a new FCmp of the other select operand.
            Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
                                                      LHSI->getOperand(1), RHSC,
                                                      I.getName()), I);
          }
        }

        if (Op1)
          return new SelectInst(LHSI->getOperand(0), Op1, Op2);
        break;
      }
  }

  return Changed ? &I : 0;
}

Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
  bool Changed = SimplifyCompare(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  const Type *Ty = Op0->getType();

  // icmp X, X
  if (Op0 == Op1)
    return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
                                                   isTrueWhenEqual(I)));

  if (isa<UndefValue>(Op1))                  // X icmp undef -> undef
    return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
  
  // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
  // addresses never equal each other!  We already know that Op0 != Op1.
  if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
       isa<ConstantPointerNull>(Op0)) &&
      (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
       isa<ConstantPointerNull>(Op1)))
    return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
                                                   !isTrueWhenEqual(I)));

  // icmp's with boolean values can always be turned into bitwise operations
  if (Ty == Type::Int1Ty) {
    switch (I.getPredicate()) {
    default: assert(0 && "Invalid icmp instruction!");
    case ICmpInst::ICMP_EQ: {               // icmp eq bool %A, %B -> ~(A^B)
      Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
      InsertNewInstBefore(Xor, I);
      return BinaryOperator::createNot(Xor);
    }
    case ICmpInst::ICMP_NE:                  // icmp eq bool %A, %B -> A^B
      return BinaryOperator::createXor(Op0, Op1);

    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_SGT:
      std::swap(Op0, Op1);                   // Change icmp gt -> icmp lt
      // FALL THROUGH
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_SLT: {               // icmp lt bool A, B -> ~X & Y
      Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
      InsertNewInstBefore(Not, I);
      return BinaryOperator::createAnd(Not, Op1);
    }
    case ICmpInst::ICMP_UGE:
    case ICmpInst::ICMP_SGE:
      std::swap(Op0, Op1);                   // Change icmp ge -> icmp le
      // FALL THROUGH
    case ICmpInst::ICMP_ULE:
    case ICmpInst::ICMP_SLE: {               //  icmp le bool %A, %B -> ~A | B
      Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
      InsertNewInstBefore(Not, I);
      return BinaryOperator::createOr(Not, Op1);
    }
    }
  }

  // See if we are doing a comparison between a constant and an instruction that
  // can be folded into the comparison.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
      Value *A, *B;
    
    // (icmp cond (sub A B) 0) -> ...
    if (CI->isNullValue() && match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
      // (icmp cond A B) if cond is signed or equality
      if (CmpInst::isSigned(I.getPredicate()) || I.isEquality())
        return new ICmpInst(I.getPredicate(), A, B);
      // (icmp ne A B) if cond is ugt
      else if (I.getPredicate() == ICmpInst::ICMP_UGT)
        return new ICmpInst(ICmpInst::ICMP_NE, A, B);
      // (icmp eq A B) if cond is ule
      else if (I.getPredicate() == ICmpInst::ICMP_ULE)
        return new ICmpInst(ICmpInst::ICMP_EQ, A, B);
    }
    
    switch (I.getPredicate()) {
    default: break;
    case ICmpInst::ICMP_ULT:                        // A <u MIN -> FALSE
      if (CI->isMinValue(false))
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
      if (CI->isMaxValue(false))                    // A <u MAX -> A != MAX
        return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
      if (isMinValuePlusOne(CI,false))              // A <u MIN+1 -> A == MIN
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
      // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
      if (CI->isMinValue(true))
        return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
                            ConstantInt::getAllOnesValue(Op0->getType()));
          
      break;

    case ICmpInst::ICMP_SLT:
      if (CI->isMinValue(true))                    // A <s MIN -> FALSE
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
      if (CI->isMaxValue(true))                    // A <s MAX -> A != MAX
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
      if (isMinValuePlusOne(CI,true))              // A <s MIN+1 -> A == MIN
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
      
      // (icmp slt (sub A B) 1) -> (icmp sle A B)
      if (CI->isOne() && match(Op0, m_Sub(m_Value(A), m_Value(B))))
        return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
      break;

    case ICmpInst::ICMP_UGT:
      if (CI->isMaxValue(false))                  // A >u MAX -> FALSE
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
      if (CI->isMinValue(false))                  // A >u MIN -> A != MIN
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
      if (isMaxValueMinusOne(CI, false))          // A >u MAX-1 -> A == MAX
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
        
      // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
      if (CI->isMaxValue(true))
        return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
                            ConstantInt::getNullValue(Op0->getType()));
      break;

    case ICmpInst::ICMP_SGT:
      if (CI->isMaxValue(true))                   // A >s MAX -> FALSE
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
      if (CI->isMinValue(true))                   // A >s MIN -> A != MIN
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
      if (isMaxValueMinusOne(CI, true))           // A >s MAX-1 -> A == MAX
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
      
      // (icmp sgt (sub A B) -1) -> (icmp sge A B)
      if (CI->getValue().getSExtValue() == -1 && 
          match(Op0, m_Sub(m_Value(A), m_Value(B))))
        return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
      break;

    case ICmpInst::ICMP_ULE:
      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
      if (CI->isMinValue(false))                 // A <=u MIN -> A == MIN
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
      if (isMaxValueMinusOne(CI,false))          // A <=u MAX-1 -> A != MAX
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
      break;

    case ICmpInst::ICMP_SLE:
      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
      if (CI->isMinValue(true))                  // A <=s MIN -> A == MIN
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
      if (isMaxValueMinusOne(CI,true))           // A <=s MAX-1 -> A != MAX
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
      break;

    case ICmpInst::ICMP_UGE:
      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
      if (CI->isMaxValue(false))                 // A >=u MAX -> A == MAX
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
      if (isMinValuePlusOne(CI,false))           // A >=u MIN-1 -> A != MIN
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
      break;

    case ICmpInst::ICMP_SGE:
      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
      if (CI->isMaxValue(true))                  // A >=s MAX -> A == MAX
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
      if (isMinValuePlusOne(CI,true))            // A >=s MIN-1 -> A != MIN
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
      break;
    }

    // If we still have a icmp le or icmp ge instruction, turn it into the
    // appropriate icmp lt or icmp gt instruction.  Since the border cases have
    // already been handled above, this requires little checking.
    //
    switch (I.getPredicate()) {
    default: break;
    case ICmpInst::ICMP_ULE: 
      return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
    case ICmpInst::ICMP_SLE:
      return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
    case ICmpInst::ICMP_UGE:
      return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
    case ICmpInst::ICMP_SGE:
      return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
    }
    
    // See if we can fold the comparison based on bits known to be zero or one
    // in the input.  If this comparison is a normal comparison, it demands all
    // bits, if it is a sign bit comparison, it only demands the sign bit.
    
    bool UnusedBit;
    bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
    
    uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    if (SimplifyDemandedBits(Op0, 
                             isSignBit ? APInt::getSignBit(BitWidth)
                                       : APInt::getAllOnesValue(BitWidth),
                             KnownZero, KnownOne, 0))
      return &I;
        
    // Given the known and unknown bits, compute a range that the LHS could be
    // in.
    if ((KnownOne | KnownZero) != 0) {
      // Compute the Min, Max and RHS values based on the known bits. For the
      // EQ and NE we use unsigned values.
      APInt Min(BitWidth, 0), Max(BitWidth, 0);
      const APInt& RHSVal = CI->getValue();
      if (ICmpInst::isSignedPredicate(I.getPredicate())) {
        ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, 
                                               Max);
      } else {
        ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, 
                                                 Max);
      }
      switch (I.getPredicate()) {  // LE/GE have been folded already.
      default: assert(0 && "Unknown icmp opcode!");
      case ICmpInst::ICMP_EQ:
        if (Max.ult(RHSVal) || Min.ugt(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
        break;
      case ICmpInst::ICMP_NE:
        if (Max.ult(RHSVal) || Min.ugt(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
        break;
      case ICmpInst::ICMP_ULT:
        if (Max.ult(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
        if (Min.uge(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
        break;
      case ICmpInst::ICMP_UGT:
        if (Min.ugt(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
        if (Max.ule(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
        break;
      case ICmpInst::ICMP_SLT:
        if (Max.slt(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
        if (Min.sgt(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
        break;
      case ICmpInst::ICMP_SGT: 
        if (Min.sgt(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
        if (Max.sle(RHSVal))
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
        break;
      }
    }
          
    // Since the RHS is a ConstantInt (CI), if the left hand side is an 
    // instruction, see if that instruction also has constants so that the 
    // instruction can be folded into the icmp 
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
        return Res;
  }

  // Handle icmp with constant (but not simple integer constant) RHS
  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
      switch (LHSI->getOpcode()) {
      case Instruction::GetElementPtr:
        if (RHSC->isNullValue()) {
          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
          bool isAllZeros = true;
          for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
            if (!isa<Constant>(LHSI->getOperand(i)) ||
                !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
              isAllZeros = false;
              break;
            }
          if (isAllZeros)
            return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
                    Constant::getNullValue(LHSI->getOperand(0)->getType()));
        }
        break;

      case Instruction::PHI:
        if (Instruction *NV = FoldOpIntoPhi(I))
          return NV;
        break;
      case Instruction::Select: {
        // If either operand of the select is a constant, we can fold the
        // comparison into the select arms, which will cause one to be
        // constant folded and the select turned into a bitwise or.
        Value *Op1 = 0, *Op2 = 0;
        if (LHSI->hasOneUse()) {
          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
            // Fold the known value into the constant operand.
            Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
            // Insert a new ICmp of the other select operand.
            Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
                                                   LHSI->getOperand(2), RHSC,
                                                   I.getName()), I);
          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
            // Fold the known value into the constant operand.
            Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
            // Insert a new ICmp of the other select operand.
            Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
                                                   LHSI->getOperand(1), RHSC,
                                                   I.getName()), I);
          }
        }

        if (Op1)
          return new SelectInst(LHSI->getOperand(0), Op1, Op2);
        break;
      }
      case Instruction::Malloc:
        // If we have (malloc != null), and if the malloc has a single use, we
        // can assume it is successful and remove the malloc.
        if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
          AddToWorkList(LHSI);
          return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
                                                         !isTrueWhenEqual(I)));
        }
        break;
      }
  }

  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
  if (User *GEP = dyn_castGetElementPtr(Op0))
    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
      return NI;
  if (User *GEP = dyn_castGetElementPtr(Op1))
    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
      return NI;

  // Test to see if the operands of the icmp are casted versions of other
  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
  // now.
  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
    if (isa<PointerType>(Op0->getType()) && 
        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 
      // We keep moving the cast from the left operand over to the right
      // operand, where it can often be eliminated completely.
      Op0 = CI->getOperand(0);

      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
      // so eliminate it as well.
      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
        Op1 = CI2->getOperand(0);

      // If Op1 is a constant, we can fold the cast into the constant.
      if (Op0->getType() != Op1->getType())
        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
        } else {
          // Otherwise, cast the RHS right before the icmp
          Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
        }
      return new ICmpInst(I.getPredicate(), Op0, Op1);
    }
  }
  
  if (isa<CastInst>(Op0)) {
    // Handle the special case of: icmp (cast bool to X), <cst>
    // This comes up when you have code like
    //   int X = A < B;
    //   if (X) ...
    // For generality, we handle any zero-extension of any operand comparison
    // with a constant or another cast from the same type.
    if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
      if (Instruction *R = visitICmpInstWithCastAndCast(I))
        return R;
  }
  
  if (I.isEquality()) {
    Value *A, *B, *C, *D;
    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
        Value *OtherVal = A == Op1 ? B : A;
        return new ICmpInst(I.getPredicate(), OtherVal,
                            Constant::getNullValue(A->getType()));
      }

      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
        // A^c1 == C^c2 --> A == C^(c1^c2)
        if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
          if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
            if (Op1->hasOneUse()) {
              Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
              Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
              return new ICmpInst(I.getPredicate(), A,
                                  InsertNewInstBefore(Xor, I));
            }
        
        // A^B == A^D -> B == D
        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
      }
    }
    
    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
        (A == Op0 || B == Op0)) {
      // A == (A^B)  ->  B == 0
      Value *OtherVal = A == Op0 ? B : A;
      return new ICmpInst(I.getPredicate(), OtherVal,
                          Constant::getNullValue(A->getType()));
    }
    if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
      // (A-B) == A  ->  B == 0
      return new ICmpInst(I.getPredicate(), B,
                          Constant::getNullValue(B->getType()));
    }
    if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
      // A == (A-B)  ->  B == 0
      return new ICmpInst(I.getPredicate(), B,
                          Constant::getNullValue(B->getType()));
    }
    
    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
    if (Op0->hasOneUse() && Op1->hasOneUse() &&
        match(Op0, m_And(m_Value(A), m_Value(B))) && 
        match(Op1, m_And(m_Value(C), m_Value(D)))) {
      Value *X = 0, *Y = 0, *Z = 0;
      
      if (A == C) {
        X = B; Y = D; Z = A;
      } else if (A == D) {
        X = B; Y = C; Z = A;
      } else if (B == C) {
        X = A; Y = D; Z = B;
      } else if (B == D) {
        X = A; Y = C; Z = B;
      }
      
      if (X) {   // Build (X^Y) & Z
        Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
        Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
        I.setOperand(0, Op1);
        I.setOperand(1, Constant::getNullValue(Op1->getType()));
        return &I;
      }
    }
  }
  return Changed ? &I : 0;
}


/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
/// and CmpRHS are both known to be integer constants.
Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
                                          ConstantInt *DivRHS) {
  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
  const APInt &CmpRHSV = CmpRHS->getValue();
  
  // FIXME: If the operand types don't match the type of the divide 
  // then don't attempt this transform. The code below doesn't have the
  // logic to deal with a signed divide and an unsigned compare (and
  // vice versa). This is because (x /s C1) <s C2  produces different 
  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
  // (x /u C1) <u C2.  Simply casting the operands and result won't 
  // work. :(  The if statement below tests that condition and bails 
  // if it finds it. 
  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
  if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
    return 0;
  if (DivRHS->isZero())
    return 0; // The ProdOV computation fails on divide by zero.

  // Compute Prod = CI * DivRHS. We are essentially solving an equation
  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 
  // C2 (CI). By solving for X we can turn this into a range check 
  // instead of computing a divide. 
  ConstantInt *Prod = Multiply(CmpRHS, DivRHS);

  // Determine if the product overflows by seeing if the product is
  // not equal to the divide. Make sure we do the same kind of divide
  // as in the LHS instruction that we're folding. 
  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;

  // Get the ICmp opcode
  ICmpInst::Predicate Pred = ICI.getPredicate();

  // Figure out the interval that is being checked.  For example, a comparison
  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 
  // Compute this interval based on the constants involved and the signedness of
  // the compare/divide.  This computes a half-open interval, keeping track of
  // whether either value in the interval overflows.  After analysis each
  // overflow variable is set to 0 if it's corresponding bound variable is valid
  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
  int LoOverflow = 0, HiOverflow = 0;
  ConstantInt *LoBound = 0, *HiBound = 0;
  
  
  if (!DivIsSigned) {  // udiv
    // e.g. X/5 op 3  --> [15, 20)
    LoBound = Prod;
    HiOverflow = LoOverflow = ProdOV;
    if (!HiOverflow)
      HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
  } else if (DivRHS->getValue().isPositive()) { // Divisor is > 0.
    if (CmpRHSV == 0) {       // (X / pos) op 0
      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
      LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
      HiBound = DivRHS;
    } else if (CmpRHSV.isPositive()) {   // (X / pos) op pos
      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
      HiOverflow = LoOverflow = ProdOV;
      if (!HiOverflow)
        HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
    } else {                       // (X / pos) op neg
      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
      Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
      LoOverflow = AddWithOverflow(LoBound, Prod,
                                   cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
      HiBound = AddOne(Prod);
      HiOverflow = ProdOV ? -1 : 0;
    }
  } else {                         // Divisor is < 0.
    if (CmpRHSV == 0) {       // (X / neg) op 0
      // e.g. X/-5 op 0  --> [-4, 5)
      LoBound = AddOne(DivRHS);
      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
        HiOverflow = 1;            // [INTMIN+1, overflow)
        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
      }
    } else if (CmpRHSV.isPositive()) {   // (X / neg) op pos
      // e.g. X/-5 op 3  --> [-19, -14)
      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
      if (!LoOverflow)
        LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
      HiBound = AddOne(Prod);
    } else {                       // (X / neg) op neg
      // e.g. X/-5 op -3  --> [15, 20)
      LoBound = Prod;
      LoOverflow = HiOverflow = ProdOV ? 1 : 0;
      HiBound = Subtract(Prod, DivRHS);
    }
    
    // Dividing by a negative swaps the condition.  LT <-> GT
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  Value *X = DivI->getOperand(0);
  switch (Pred) {
  default: assert(0 && "Unhandled icmp opcode!");
  case ICmpInst::ICMP_EQ:
    if (LoOverflow && HiOverflow)
      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
    else if (HiOverflow)
      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 
                          ICmpInst::ICMP_UGE, X, LoBound);
    else if (LoOverflow)
      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 
                          ICmpInst::ICMP_ULT, X, HiBound);
    else
      return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
  case ICmpInst::ICMP_NE:
    if (LoOverflow && HiOverflow)
      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
    else if (HiOverflow)
      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 
                          ICmpInst::ICMP_ULT, X, LoBound);
    else if (LoOverflow)
      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 
                          ICmpInst::ICMP_UGE, X, HiBound);
    else
      return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_SLT:
    if (LoOverflow == +1)   // Low bound is greater than input range.
      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
    if (LoOverflow == -1)   // Low bound is less than input range.
      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
    return new ICmpInst(Pred, X, LoBound);
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_SGT:
    if (HiOverflow == +1)       // High bound greater than input range.
      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
    else if (HiOverflow == -1)  // High bound less than input range.
      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
    if (Pred == ICmpInst::ICMP_UGT)
      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    else
      return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
  }
}


/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
///
Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
                                                          Instruction *LHSI,
                                                          ConstantInt *RHS) {
  const APInt &RHSV = RHS->getValue();
  
  switch (LHSI->getOpcode()) {
  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
      // fold the xor.
      if (ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0 ||
          ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue()) {
        Value *CompareVal = LHSI->getOperand(0);
        
        // If the sign bit of the XorCST is not set, there is no change to
        // the operation, just stop using the Xor.
        if (!XorCST->getValue().isNegative()) {
          ICI.setOperand(0, CompareVal);
          AddToWorkList(LHSI);
          return &ICI;
        }
        
        // Was the old condition true if the operand is positive?
        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
        
        // If so, the new one isn't.
        isTrueIfPositive ^= true;
        
        if (isTrueIfPositive)
          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
        else
          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
      }
    }
    break;
  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
        LHSI->getOperand(0)->hasOneUse()) {
      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
      
      // If the LHS is an AND of a truncating cast, we can widen the
      // and/compare to be the input width without changing the value
      // produced, eliminating a cast.
      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
        // We can do this transformation if either the AND constant does not
        // have its sign bit set or if it is an equality comparison. 
        // Extending a relational comparison when we're checking the sign
        // bit would not work.
        if (Cast->hasOneUse() &&
            (ICI.isEquality() || AndCST->getValue().isPositive() && 
             RHSV.isPositive())) {
          uint32_t BitWidth = 
            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
          APInt NewCST = AndCST->getValue();
          NewCST.zext(BitWidth);
          APInt NewCI = RHSV;
          NewCI.zext(BitWidth);
          Instruction *NewAnd = 
            BinaryOperator::createAnd(Cast->getOperand(0),
                                      ConstantInt::get(NewCST),LHSI->getName());
          InsertNewInstBefore(NewAnd, ICI);
          return new ICmpInst(ICI.getPredicate(), NewAnd,
                              ConstantInt::get(NewCI));
        }
      }
      
      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
      // happens a LOT in code produced by the C front-end, for bitfield
      // access.
      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
      if (Shift && !Shift->isShift())
        Shift = 0;
      
      ConstantInt *ShAmt;
      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
      const Type *AndTy = AndCST->getType();          // Type of the and.
      
      // We can fold this as long as we can't shift unknown bits
      // into the mask.  This can only happen with signed shift
      // rights, as they sign-extend.
      if (ShAmt) {
        bool CanFold = Shift->isLogicalShift();
        if (!CanFold) {
          // To test for the bad case of the signed shr, see if any
          // of the bits shifted in could be tested after the mask.
          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
          
          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & 
               AndCST->getValue()) == 0)
            CanFold = true;
        }
        
        if (CanFold) {
          Constant *NewCst;
          if (Shift->getOpcode() == Instruction::Shl)
            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
          else
            NewCst = ConstantExpr::getShl(RHS, ShAmt);
          
          // Check to see if we are shifting out any of the bits being
          // compared.
          if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
            // If we shifted bits out, the fold is not going to work out.
            // As a special case, check to see if this means that the
            // result is always true or false now.
            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
              return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
              return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
          } else {
            ICI.setOperand(1, NewCst);
            Constant *NewAndCST;
            if (Shift->getOpcode() == Instruction::Shl)
              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
            else
              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
            LHSI->setOperand(1, NewAndCST);
            LHSI->setOperand(0, Shift->getOperand(0));
            AddToWorkList(Shift); // Shift is dead.
            AddUsesToWorkList(ICI);
            return &ICI;
          }
        }
      }
      
      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
      // preferable because it allows the C<<Y expression to be hoisted out
      // of a loop if Y is invariant and X is not.
      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
          ICI.isEquality() && !Shift->isArithmeticShift() &&
          isa<Instruction>(Shift->getOperand(0))) {
        // Compute C << Y.
        Value *NS;
        if (Shift->getOpcode() == Instruction::LShr) {
          NS = BinaryOperator::createShl(AndCST, 
                                         Shift->getOperand(1), "tmp");
        } else {
          // Insert a logical shift.
          NS = BinaryOperator::createLShr(AndCST,
                                          Shift->getOperand(1), "tmp");
        }
        InsertNewInstBefore(cast<Instruction>(NS), ICI);
        
        // Compute X & (C << Y).
        Instruction *NewAnd = 
          BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
        InsertNewInstBefore(NewAnd, ICI);
        
        ICI.setOperand(0, NewAnd);
        return &ICI;
      }
    }
    break;
    
  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
    if (!ShAmt) break;
    
    uint32_t TypeBits = RHSV.getBitWidth();
    
    // Check that the shift amount is in range.  If not, don't perform
    // undefined shifts.  When the shift is visited it will be
    // simplified.
    if (ShAmt->uge(TypeBits))
      break;
    
    if (ICI.isEquality()) {
      // If we are comparing against bits always shifted out, the
      // comparison cannot succeed.
      Constant *Comp =
        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
      if (Comp != RHS) {// Comparing against a bit that we know is zero.
        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
        Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
        return ReplaceInstUsesWith(ICI, Cst);
      }
      
      if (LHSI->hasOneUse()) {
        // Otherwise strength reduce the shift into an and.
        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
        Constant *Mask =
          ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
        
        Instruction *AndI =
          BinaryOperator::createAnd(LHSI->getOperand(0),
                                    Mask, LHSI->getName()+".mask");
        Value *And = InsertNewInstBefore(AndI, ICI);
        return new ICmpInst(ICI.getPredicate(), And,
                            ConstantInt::get(RHSV.lshr(ShAmtVal)));
      }
    }
    
    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
    bool TrueIfSigned = false;
    if (LHSI->hasOneUse() &&
        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
      // (X << 31) <s 0  --> (X&1) != 0
      Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
                                           (TypeBits-ShAmt->getZExtValue()-1));
      Instruction *AndI =
        BinaryOperator::createAnd(LHSI->getOperand(0),
                                  Mask, LHSI->getName()+".mask");
      Value *And = InsertNewInstBefore(AndI, ICI);
      
      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
                          And, Constant::getNullValue(And->getType()));
    }
    break;
  }
    
  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
  case Instruction::AShr: {
    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
    if (!ShAmt) break;

    if (ICI.isEquality()) {
      // Check that the shift amount is in range.  If not, don't perform
      // undefined shifts.  When the shift is visited it will be
      // simplified.
      uint32_t TypeBits = RHSV.getBitWidth();
      if (ShAmt->uge(TypeBits))
        break;
      uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
      
      // If we are comparing against bits always shifted out, the
      // comparison cannot succeed.
      APInt Comp = RHSV << ShAmtVal;
      if (LHSI->getOpcode() == Instruction::LShr)
        Comp = Comp.lshr(ShAmtVal);
      else
        Comp = Comp.ashr(ShAmtVal);
      
      if (Comp != RHSV) { // Comparing against a bit that we know is zero.
        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
        Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
        return ReplaceInstUsesWith(ICI, Cst);
      }
      
      if (LHSI->hasOneUse() || RHSV == 0) {
        // Otherwise strength reduce the shift into an and.
        APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
        Constant *Mask = ConstantInt::get(Val);
        
        Instruction *AndI =
          BinaryOperator::createAnd(LHSI->getOperand(0),
                                    Mask, LHSI->getName()+".mask");
        Value *And = InsertNewInstBefore(AndI, ICI);
        return new ICmpInst(ICI.getPredicate(), And,
                            ConstantExpr::getShl(RHS, ShAmt));
      }
    }
    break;
  }
    
  case Instruction::SDiv:
  case Instruction::UDiv:
    // Fold: icmp pred ([us]div X, C1), C2 -> range test
    // Fold this div into the comparison, producing a range check. 
    // Determine, based on the divide type, what the range is being 
    // checked.  If there is an overflow on the low or high side, remember 
    // it, otherwise compute the range [low, hi) bounding the new value.
    // See: InsertRangeTest above for the kinds of replacements possible.
    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
                                          DivRHS))
        return R;
    break;
  }
  
  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
  if (ICI.isEquality()) {
    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
    
    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 
    // the second operand is a constant, simplify a bit.
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
      switch (BO->getOpcode()) {
      case Instruction::SRem:
        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
          if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
            Instruction *NewRem =
              BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
                                         BO->getName());
            InsertNewInstBefore(NewRem, ICI);
            return new ICmpInst(ICI.getPredicate(), NewRem, 
                                Constant::getNullValue(BO->getType()));
          }
        }
        break;
      case Instruction::Add:
        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
          if (BO->hasOneUse())
            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
                                Subtract(RHS, BOp1C));
        } else if (RHSV == 0) {
          // Replace ((add A, B) != 0) with (A != -B) if A or B is
          // efficiently invertible, or if the add has just this one use.
          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
          
          if (Value *NegVal = dyn_castNegVal(BOp1))
            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
          else if (Value *NegVal = dyn_castNegVal(BOp0))
            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
          else if (BO->hasOneUse()) {
            Instruction *Neg = BinaryOperator::createNeg(BOp1);
            InsertNewInstBefore(Neg, ICI);
            Neg->takeName(BO);
            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
          }
        }
        break;
      case Instruction::Xor:
        // For the xor case, we can xor two constants together, eliminating
        // the explicit xor.
        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 
                              ConstantExpr::getXor(RHS, BOC));
        
        // FALLTHROUGH
      case Instruction::Sub:
        // Replace (([sub|xor] A, B) != 0) with (A != B)
        if (RHSV == 0)
          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
                              BO->getOperand(1));
        break;
        
      case Instruction::Or:
        // If bits are being or'd in that are not present in the constant we
        // are comparing against, then the comparison could never succeed!
        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
          Constant *NotCI = ConstantExpr::getNot(RHS);
          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
            return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, 
                                                             isICMP_NE));
        }
        break;
        
      case Instruction::And:
        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
          // If bits are being compared against that are and'd out, then the
          // comparison can never succeed!
          if ((RHSV & ~BOC->getValue()) != 0)
            return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
                                                             isICMP_NE));
          
          // If we have ((X & C) == C), turn it into ((X & C) != 0).
          if (RHS == BOC && RHSV.isPowerOf2())
            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
                                ICmpInst::ICMP_NE, LHSI,
                                Constant::getNullValue(RHS->getType()));
          
          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
          if (isSignBit(BOC)) {
            Value *X = BO->getOperand(0);
            Constant *Zero = Constant::getNullValue(X->getType());
            ICmpInst::Predicate pred = isICMP_NE ? 
              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
            return new ICmpInst(pred, X, Zero);
          }
          
          // ((X & ~7) == 0) --> X < 8
          if (RHSV == 0 && isHighOnes(BOC)) {
            Value *X = BO->getOperand(0);
            Constant *NegX = ConstantExpr::getNeg(BOC);
            ICmpInst::Predicate pred = isICMP_NE ? 
              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
            return new ICmpInst(pred, X, NegX);
          }
        }
      default: break;
      }
    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
      // Handle icmp {eq|ne} <intrinsic>, intcst.
      if (II->getIntrinsicID() == Intrinsic::bswap) {
        AddToWorkList(II);
        ICI.setOperand(0, II->getOperand(1));
        ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
        return &ICI;
      }
    }
  } else {  // Not a ICMP_EQ/ICMP_NE
            // If the LHS is a cast from an integral value of the same size, 
            // then since we know the RHS is a constant, try to simlify.
    if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
      Value *CastOp = Cast->getOperand(0);
      const Type *SrcTy = CastOp->getType();
      uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
      if (SrcTy->isInteger() && 
          SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
        // If this is an unsigned comparison, try to make the comparison use
        // smaller constant values.
        if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
          // X u< 128 => X s> -1
          return new ICmpInst(ICmpInst::ICMP_SGT, CastOp, 
                           ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
        } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
                   RHSV == APInt::getSignedMaxValue(SrcTySize)) {
          // X u> 127 => X s< 0
          return new ICmpInst(ICmpInst::ICMP_SLT, CastOp, 
                              Constant::getNullValue(SrcTy));
        }
      }
    }
  }
  return 0;
}

/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
/// We only handle extending casts so far.
///
Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
  Value *LHSCIOp        = LHSCI->getOperand(0);
  const Type *SrcTy     = LHSCIOp->getType();
  const Type *DestTy    = LHSCI->getType();
  Value *RHSCIOp;

  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 
  // integer type is the same size as the pointer type.
  if (LHSCI->getOpcode() == Instruction::PtrToInt &&
      getTargetData().getPointerSizeInBits() == 
         cast<IntegerType>(DestTy)->getBitWidth()) {
    Value *RHSOp = 0;
    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
      RHSOp = RHSC->getOperand(0);
      // If the pointer types don't match, insert a bitcast.
      if (LHSCIOp->getType() != RHSOp->getType())
        RHSOp = InsertCastBefore(Instruction::BitCast, RHSOp,
                                 LHSCIOp->getType(), ICI);
    }

    if (RHSOp)
      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
  }
  
  // The code below only handles extension cast instructions, so far.
  // Enforce this.
  if (LHSCI->getOpcode() != Instruction::ZExt &&
      LHSCI->getOpcode() != Instruction::SExt)
    return 0;

  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
  bool isSignedCmp = ICI.isSignedPredicate();

  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
    // Not an extension from the same type?
    RHSCIOp = CI->getOperand(0);
    if (RHSCIOp->getType() != LHSCIOp->getType()) 
      return 0;
    
    // If the signedness of the two compares doesn't agree (i.e. one is a sext
    // and the other is a zext), then we can't handle this.
    if (CI->getOpcode() != LHSCI->getOpcode())
      return 0;

    // Likewise, if the signedness of the [sz]exts and the compare don't match, 
    // then we can't handle this.
    if (isSignedExt != isSignedCmp && !ICI.isEquality())
      return 0;
    
    // Okay, just insert a compare of the reduced operands now!
    return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
  }

  // If we aren't dealing with a constant on the RHS, exit early
  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
  if (!CI)
    return 0;

  // Compute the constant that would happen if we truncated to SrcTy then
  // reextended to DestTy.
  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);

  // If the re-extended constant didn't change...
  if (Res2 == CI) {
    // Make sure that sign of the Cmp and the sign of the Cast are the same.
    // For example, we might have:
    //    %A = sext short %X to uint
    //    %B = icmp ugt uint %A, 1330
    // It is incorrect to transform this into 
    //    %B = icmp ugt short %X, 1330 
    // because %A may have negative value. 
    //
    // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
    // OR operation is EQ/NE.
    if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
    else
      return 0;
  }

  // The re-extended constant changed so the constant cannot be represented 
  // in the shorter type. Consequently, we cannot emit a simple comparison.

  // First, handle some easy cases. We know the result cannot be equal at this
  // point so handle the ICI.isEquality() cases
  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());

  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
  // should have been folded away previously and not enter in here.
  Value *Result;
  if (isSignedCmp) {
    // We're performing a signed comparison.
    if (cast<ConstantInt>(CI)->getValue().isNegative())
      Result = ConstantInt::getFalse();          // X < (small) --> false
    else
      Result = ConstantInt::getTrue();           // X < (large) --> true
  } else {
    // We're performing an unsigned comparison.
    if (isSignedExt) {
      // We're performing an unsigned comp with a sign extended value.
      // This is true if the input is >= 0. [aka >s -1]
      Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
      Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
                                   NegOne, ICI.getName()), ICI);
    } else {
      // Unsigned extend & unsigned compare -> always true.
      Result = ConstantInt::getTrue();
    }
  }

  // Finally, return the value computed.
  if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
      ICI.getPredicate() == ICmpInst::ICMP_SLT) {
    return ReplaceInstUsesWith(ICI, Result);
  } else {
    assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || 
            ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
           "ICmp should be folded!");
    if (Constant *CI = dyn_cast<Constant>(Result))
      return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
    else
      return BinaryOperator::createNot(Result);
  }
}

Instruction *InstCombiner::visitShl(BinaryOperator &I) {
  return commonShiftTransforms(I);
}

Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
  return commonShiftTransforms(I);
}

Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
  if (Instruction *R = commonShiftTransforms(I))
    return R;
  
  Value *Op0 = I.getOperand(0);
  
  // ashr int -1, X = -1   (for any arithmetic shift rights of ~0)
  if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
    if (CSI->isAllOnesValue())
      return ReplaceInstUsesWith(I, CSI);
  
  // See if we can turn a signed shr into an unsigned shr.
  if (MaskedValueIsZero(Op0, 
                      APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
    return BinaryOperator::createLShr(Op0, I.getOperand(1));
  
  return 0;
}

Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // shl X, 0 == X and shr X, 0 == X
  // shl 0, X == 0 and shr 0, X == 0
  if (Op1 == Constant::getNullValue(Op1->getType()) ||
      Op0 == Constant::getNullValue(Op0->getType()))
    return ReplaceInstUsesWith(I, Op0);
  
  if (isa<UndefValue>(Op0)) {            
    if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
      return ReplaceInstUsesWith(I, Op0);
    else                                    // undef << X -> 0, undef >>u X -> 0
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
  }
  if (isa<UndefValue>(Op1)) {
    if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X
      return ReplaceInstUsesWith(I, Op0);          
    else                                     // X << undef, X >>u undef -> 0
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
  }

  // Try to fold constant and into select arguments.
  if (isa<Constant>(Op0))
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
        return R;

  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
      return Res;
  return 0;
}

Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
                                               BinaryOperator &I) {
  bool isLeftShift    = I.getOpcode() == Instruction::Shl;

  // See if we can simplify any instructions used by the instruction whose sole 
  // purpose is to compute bits we don't care about.
  uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
  APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
  if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
                           KnownZero, KnownOne))
    return &I;
  
  // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
  // of a signed value.
  //
  if (Op1->uge(TypeBits)) {
    if (I.getOpcode() != Instruction::AShr)
      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
    else {
      I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
      return &I;
    }
  }
  
  // ((X*C1) << C2) == (X * (C1 << C2))
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
        return BinaryOperator::createMul(BO->getOperand(0),
                                         ConstantExpr::getShl(BOOp, Op1));
  
  // Try to fold constant and into select arguments.
  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    if (Instruction *R = FoldOpIntoSelect(I, SI, this))
      return R;
  if (isa<PHINode>(Op0))
    if (Instruction *NV = FoldOpIntoPhi(I))
      return NV;
  
  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    // place.  Don't try to do this transformation in this case.  Also, we
    // require that the input operand is a shift-by-constant so that we have
    // confidence that the shifts will get folded together.  We could do this
    // xform in more cases, but it is unlikely to be profitable.
    if (TrOp && I.isLogicalShift() && TrOp->isShift() && 
        isa<ConstantInt>(TrOp->getOperand(1))) {
      // Okay, we'll do this xform.  Make the shift of shift.
      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
      Instruction *NSh = BinaryOperator::create(I.getOpcode(), TrOp, ShAmt,
                                                I.getName());
      InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)

      // For logical shifts, the truncation has the effect of making the high
      // part of the register be zeros.  Emulate this by inserting an AND to
      // clear the top bits as needed.  This 'and' will usually be zapped by
      // other xforms later if dead.
      unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
      unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
      
      // The mask we constructed says what the trunc would do if occurring
      // between the shifts.  We want to know the effect *after* the second
      // shift.  We know that it is a logical shift by a constant, so adjust the
      // mask as appropriate.
      if (I.getOpcode() == Instruction::Shl)
        MaskV <<= Op1->getZExtValue();
      else {
        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
        MaskV = MaskV.lshr(Op1->getZExtValue());
      }

      Instruction *And = BinaryOperator::createAnd(NSh, ConstantInt::get(MaskV),
                                                   TI->getName());
      InsertNewInstBefore(And, I); // shift1 & 0x00FF

      // Return the value truncated to the interesting size.
      return new TruncInst(And, I.getType());
    }
  }
  
  if (Op0->hasOneUse()) {
    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
      Value *V1, *V2;
      ConstantInt *CC;
      switch (Op0BO->getOpcode()) {
        default: break;
        case Instruction::Add:
        case Instruction::And:
        case Instruction::Or:
        case Instruction::Xor: {
          // These operators commute.
          // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
          if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
              match(Op0BO->getOperand(1),
                    m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
            Instruction *YS = BinaryOperator::createShl(
                                            Op0BO->getOperand(0), Op1,
                                            Op0BO->getName());
            InsertNewInstBefore(YS, I); // (Y << C)
            Instruction *X = 
              BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
                                     Op0BO->getOperand(1)->getName());
            InsertNewInstBefore(X, I);  // (X + (Y << C))
            uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
            return BinaryOperator::createAnd(X, ConstantInt::get(
                       APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
          }
          
          // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
          Value *Op0BOOp1 = Op0BO->getOperand(1);
          if (isLeftShift && Op0BOOp1->hasOneUse() &&
              match(Op0BOOp1, 
                    m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
              cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
              V2 == Op1) {
            Instruction *YS = BinaryOperator::createShl(
                                                     Op0BO->getOperand(0), Op1,
                                                     Op0BO->getName());
            InsertNewInstBefore(YS, I); // (Y << C)
            Instruction *XM =
              BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");
            InsertNewInstBefore(XM, I); // X & (CC << C)
            
            return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
          }
        }
          
        // FALL THROUGH.
        case Instruction::Sub: {
          // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
              match(Op0BO->getOperand(0),
                    m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
            Instruction *YS = BinaryOperator::createShl(
                                                     Op0BO->getOperand(1), Op1,
                                                     Op0BO->getName());
            InsertNewInstBefore(YS, I); // (Y << C)
            Instruction *X =
              BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
                                     Op0BO->getOperand(0)->getName());
            InsertNewInstBefore(X, I);  // (X + (Y << C))
            uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
            return BinaryOperator::createAnd(X, ConstantInt::get(
                       APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
          }
          
          // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
              match(Op0BO->getOperand(0),
                    m_And(m_Shr(m_Value(V1), m_Value(V2)),
                          m_ConstantInt(CC))) && V2 == Op1 &&
              cast<BinaryOperator>(Op0BO->getOperand(0))
                  ->getOperand(0)->hasOneUse()) {
            Instruction *YS = BinaryOperator::createShl(
                                                     Op0BO->getOperand(1), Op1,
                                                     Op0BO->getName());
            InsertNewInstBefore(YS, I); // (Y << C)
            Instruction *XM =
              BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");
            InsertNewInstBefore(XM, I); // X & (CC << C)
            
            return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
          }
          
          break;
        }
      }
      
      
      // If the operand is an bitwise operator with a constant RHS, and the
      // shift is the only use, we can pull it out of the shift.
      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
        bool isValid = true;     // Valid only for And, Or, Xor
        bool highBitSet = false; // Transform if high bit of constant set?
        
        switch (Op0BO->getOpcode()) {
          default: isValid = false; break;   // Do not perform transform!
          case Instruction::Add:
            isValid = isLeftShift;
            break;
          case Instruction::Or:
          case Instruction::Xor:
            highBitSet = false;
            break;
          case Instruction::And:
            highBitSet = true;
            break;
        }
        
        // If this is a signed shift right, and the high bit is modified
        // by the logical operation, do not perform the transformation.
        // The highBitSet boolean indicates the value of the high bit of
        // the constant which would cause it to be modified for this
        // operation.
        //
        if (isValid && I.getOpcode() == Instruction::AShr)
          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
        
        if (isValid) {
          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
          
          Instruction *NewShift =
            BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
          InsertNewInstBefore(NewShift, I);
          NewShift->takeName(Op0BO);
          
          return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
                                        NewRHS);
        }
      }
    }
  }
  
  // Find out if this is a shift of a shift by a constant.
  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
  if (ShiftOp && !ShiftOp->isShift())
    ShiftOp = 0;
  
  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
    Value *X = ShiftOp->getOperand(0);
    
    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
    if (AmtSum > TypeBits)
      AmtSum = TypeBits;
    
    const IntegerType *Ty = cast<IntegerType>(I.getType());
    
    // Check for (X << c1) << c2  and  (X >> c1) >> c2
    if (I.getOpcode() == ShiftOp->getOpcode()) {
      return BinaryOperator::create(I.getOpcode(), X,
                                    ConstantInt::get(Ty, AmtSum));
    } else if (ShiftOp->getOpcode() == Instruction::LShr &&
               I.getOpcode() == Instruction::AShr) {
      // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0.
      return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
    } else if (ShiftOp->getOpcode() == Instruction::AShr &&
               I.getOpcode() == Instruction::LShr) {
      // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
      Instruction *Shift =
        BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
      InsertNewInstBefore(Shift, I);

      APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
      return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
    }
    
    // Okay, if we get here, one shift must be left, and the other shift must be
    // right.  See if the amounts are equal.
    if (ShiftAmt1 == ShiftAmt2) {
      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
      if (I.getOpcode() == Instruction::Shl) {
        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
        return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
      }
      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
      if (I.getOpcode() == Instruction::LShr) {
        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
        return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
      }
      // We can simplify ((X << C) >>s C) into a trunc + sext.
      // NOTE: we could do this for any C, but that would make 'unusual' integer
      // types.  For now, just stick to ones well-supported by the code
      // generators.
      const Type *SExtType = 0;
      switch (Ty->getBitWidth() - ShiftAmt1) {
      case 1  :
      case 8  :
      case 16 :
      case 32 :
      case 64 :
      case 128:
        SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
        break;
      default: break;
      }
      if (SExtType) {
        Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
        InsertNewInstBefore(NewTrunc, I);
        return new SExtInst(NewTrunc, Ty);
      }
      // Otherwise, we can't handle it yet.
    } else if (ShiftAmt1 < ShiftAmt2) {
      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
      
      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
      if (I.getOpcode() == Instruction::Shl) {
        assert(ShiftOp->getOpcode() == Instruction::LShr ||
               ShiftOp->getOpcode() == Instruction::AShr);
        Instruction *Shift =
          BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
        InsertNewInstBefore(Shift, I);
        
        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
      }
      
      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
      if (I.getOpcode() == Instruction::LShr) {
        assert(ShiftOp->getOpcode() == Instruction::Shl);
        Instruction *Shift =
          BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
        InsertNewInstBefore(Shift, I);
        
        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
      }
      
      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
    } else {
      assert(ShiftAmt2 < ShiftAmt1);
      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;

      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
      if (I.getOpcode() == Instruction::Shl) {
        assert(ShiftOp->getOpcode() == Instruction::LShr ||
               ShiftOp->getOpcode() == Instruction::AShr);
        Instruction *Shift =
          BinaryOperator::create(ShiftOp->getOpcode(), X,
                                 ConstantInt::get(Ty, ShiftDiff));
        InsertNewInstBefore(Shift, I);
        
        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
      }
      
      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
      if (I.getOpcode() == Instruction::LShr) {
        assert(ShiftOp->getOpcode() == Instruction::Shl);
        Instruction *Shift =
          BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
        InsertNewInstBefore(Shift, I);
        
        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
      }
      
      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
    }
  }
  return 0;
}


/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
/// expression.  If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
///
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
                                        int &Offset) {
  assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    Offset = CI->getZExtValue();
    Scale  = 0;
    return ConstantInt::get(Type::Int32Ty, 0);
  } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      if (I->getOpcode() == Instruction::Shl) {
        // This is a value scaled by '1 << the shift amt'.
        Scale = 1U << RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      } else if (I->getOpcode() == Instruction::Mul) {
        // This value is scaled by 'RHS'.
        Scale = RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      } else if (I->getOpcode() == Instruction::Add) {
        // We have X+C.  Check to see if we really have (X*C2)+C1, 
        // where C1 is divisible by C2.
        unsigned SubScale;
        Value *SubVal = 
          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
        Offset += RHS->getZExtValue();
        Scale = SubScale;
        return SubVal;
      }
    }
  }

  // Otherwise, we can't look past this.
  Scale = 1;
  Offset = 0;
  return Val;
}


/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
/// try to eliminate the cast by moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
                                                   AllocationInst &AI) {
  const PointerType *PTy = cast<PointerType>(CI.getType());
  
  // Remove any uses of AI that are dead.
  assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
  
  for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
    Instruction *User = cast<Instruction>(*UI++);
    if (isInstructionTriviallyDead(User)) {
      while (UI != E && *UI == User)
        ++UI; // If this instruction uses AI more than once, don't break UI.
      
      ++NumDeadInst;
      DOUT << "IC: DCE: " << *User;
      EraseInstFromFunction(*User);
    }
  }
  
  // Get the type really allocated and the type casted to.
  const Type *AllocElTy = AI.getAllocatedType();
  const Type *CastElTy = PTy->getElementType();
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;

  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
  if (CastElTyAlign < AllocElTyAlign) return 0;

  // If the allocation has multiple uses, only promote it if we are strictly
  // increasing the alignment of the resultant allocation.  If we keep it the
  // same, we open the door to infinite loops of various kinds.
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;

  uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
  uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
  if (CastElTySize == 0 || AllocElTySize == 0) return 0;

  // See if we can satisfy the modulus by pulling a scale out of the array
  // size argument.
  unsigned ArraySizeScale;
  int ArrayOffset;
  Value *NumElements = // See if the array size is a decomposable linear expr.
    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 
  // If we can now satisfy the modulus, by using a non-1 scale, we really can
  // do the xform.
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;

  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
  Value *Amt = 0;
  if (Scale == 1) {
    Amt = NumElements;
  } else {
    // If the allocation size is constant, form a constant mul expression
    Amt = ConstantInt::get(Type::Int32Ty, Scale);
    if (isa<ConstantInt>(NumElements))
      Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
    // otherwise multiply the amount and the number of elements
    else if (Scale != 1) {
      Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
      Amt = InsertNewInstBefore(Tmp, AI);
    }
  }
  
  if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
    Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
    Amt = InsertNewInstBefore(Tmp, AI);
  }
  
  AllocationInst *New;
  if (isa<MallocInst>(AI))
    New = new MallocInst(CastElTy, Amt, AI.getAlignment());
  else
    New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
  InsertNewInstBefore(New, AI);
  New->takeName(&AI);
  
  // If the allocation has multiple uses, insert a cast and change all things
  // that used it to use the new cast.  This will also hack on CI, but it will
  // die soon.
  if (!AI.hasOneUse()) {
    AddUsesToWorkList(AI);
    // New is the allocation instruction, pointer typed. AI is the original
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
    InsertNewInstBefore(NewCast, AI);
    AI.replaceAllUsesWith(NewCast);
  }
  return ReplaceInstUsesWith(CI, New);
}

/// CanEvaluateInDifferentType - Return true if we can take the specified value
/// and return it as type Ty without inserting any new casts and without
/// changing the computed value.  This is used by code that tries to decide
/// whether promoting or shrinking integer operations to wider or smaller types
/// will allow us to eliminate a truncate or extend.
///
/// This is a truncation operation if Ty is smaller than V->getType(), or an
/// extension operation if Ty is larger.
static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
                                       unsigned CastOpc, int &NumCastsRemoved) {
  // We can always evaluate constants in another type.
  if (isa<ConstantInt>(V))
    return true;
  
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;
  
  const IntegerType *OrigTy = cast<IntegerType>(V->getType());
  
  // If this is an extension or truncate, we can often eliminate it.
  if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
    // If this is a cast from the destination type, we can trivially eliminate
    // it, and this will remove a cast overall.
    if (I->getOperand(0)->getType() == Ty) {
      // If the first operand is itself a cast, and is eliminable, do not count
      // this as an eliminable cast.  We would prefer to eliminate those two
      // casts first.
      if (!isa<CastInst>(I->getOperand(0)))
        ++NumCastsRemoved;
      return true;
    }
  }

  // We can't extend or shrink something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // These operators can all arbitrarily be extended or truncated.
    return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
                                      NumCastsRemoved) &&
           CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
                                      NumCastsRemoved);

  case Instruction::Shl:
    // If we are truncating the result of this SHL, and if it's a shift of a
    // constant amount, we can always perform a SHL in a smaller type.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint32_t BitWidth = Ty->getBitWidth();
      if (BitWidth < OrigTy->getBitWidth() && 
          CI->getLimitedValue(BitWidth) < BitWidth)
        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
                                          NumCastsRemoved);
    }
    break;
  case Instruction::LShr:
    // If this is a truncate of a logical shr, we can truncate it to a smaller
    // lshr iff we know that the bits we would otherwise be shifting in are
    // already zeros.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint32_t OrigBitWidth = OrigTy->getBitWidth();
      uint32_t BitWidth = Ty->getBitWidth();
      if (BitWidth < OrigBitWidth &&
          MaskedValueIsZero(I->getOperand(0),
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
          CI->getLimitedValue(BitWidth) < BitWidth) {
        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
                                          NumCastsRemoved);
      }
    }
    break;
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::Trunc:
    // If this is the same kind of case as our original (e.g. zext+zext), we
    // can safely replace it.  Note that replacing it does not reduce the number
    // of casts in the input.
    if (I->getOpcode() == CastOpc)
      return true;
    
    break;
  default:
    // TODO: Can handle more cases here.
    break;
  }
  
  return false;
}

/// EvaluateInDifferentType - Given an expression that 
/// CanEvaluateInDifferentType returns true for, actually insert the code to
/// evaluate the expression.
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, 
                                             bool isSigned) {
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);

  // Otherwise, it must be an instruction.
  Instruction *I = cast<Instruction>(V);
  Instruction *Res = 0;
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::AShr:
  case Instruction::LShr:
  case Instruction::Shl: {
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
                                 LHS, RHS, I->getName());
    break;
  }    
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
    // If the source type of the cast is the type we're trying for then we can
    // just return the source.  There's no need to insert it because it is not
    // new.
    if (I->getOperand(0)->getType() == Ty)
      return I->getOperand(0);
    
    // Otherwise, must be the same type of case, so just reinsert a new one.
    Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
                           Ty, I->getName());
    break;
  default: 
    // TODO: Can handle more cases here.
    assert(0 && "Unreachable!");
    break;
  }
  
  return InsertNewInstBefore(Res, *I);
}

/// @brief Implement the transforms common to all CastInst visitors.
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
  Value *Src = CI.getOperand(0);

  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
  // eliminate it now.
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    if (Instruction::CastOps opc = 
        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
      // The first cast (CSrc) is eliminable so we need to fix up or replace
      // the second cast (CI). CSrc will then have a good chance of being dead.
      return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
    }
  }

  // If we are casting a select then fold the cast into the select
  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
      return NV;

  // If we are casting a PHI then fold the cast into the PHI
  if (isa<PHINode>(Src))
    if (Instruction *NV = FoldOpIntoPhi(CI))
      return NV;
  
  return 0;
}

/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
  Value *Src = CI.getOperand(0);
  
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
    // If casting the result of a getelementptr instruction with no offset, turn
    // this into a cast of the original pointer!
    if (GEP->hasAllZeroIndices()) {
      // Changing the cast operand is usually not a good idea but it is safe
      // here because the pointer operand is being replaced with another 
      // pointer operand so the opcode doesn't need to change.
      AddToWorkList(GEP);
      CI.setOperand(0, GEP->getOperand(0));
      return &CI;
    }
    
    // If the GEP has a single use, and the base pointer is a bitcast, and the
    // GEP computes a constant offset, see if we can convert these three
    // instructions into fewer.  This typically happens with unions and other
    // non-type-safe code.
    if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
      if (GEP->hasAllConstantIndices()) {
        // We are guaranteed to get a constant from EmitGEPOffset.
        ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
        int64_t Offset = OffsetV->getSExtValue();
        
        // Get the base pointer input of the bitcast, and the type it points to.
        Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
        const Type *GEPIdxTy =
          cast<PointerType>(OrigBase->getType())->getElementType();
        if (GEPIdxTy->isSized()) {
          SmallVector<Value*, 8> NewIndices;
          
          // Start with the index over the outer type.  Note that the type size
          // might be zero (even if the offset isn't zero) if the indexed type
          // is something like [0 x {int, int}]
          const Type *IntPtrTy = TD->getIntPtrType();
          int64_t FirstIdx = 0;
          if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
            FirstIdx = Offset/TySize;
            Offset %= TySize;
          
            // Handle silly modulus not returning values values [0..TySize).
            if (Offset < 0) {
              --FirstIdx;
              Offset += TySize;
              assert(Offset >= 0);
            }
            assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
          }
          
          NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));

          // Index into the types.  If we fail, set OrigBase to null.
          while (Offset) {
            if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
              const StructLayout *SL = TD->getStructLayout(STy);
              if (Offset < (int64_t)SL->getSizeInBytes()) {
                unsigned Elt = SL->getElementContainingOffset(Offset);
                NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
              
                Offset -= SL->getElementOffset(Elt);
                GEPIdxTy = STy->getElementType(Elt);
              } else {
                // Otherwise, we can't index into this, bail out.
                Offset = 0;
                OrigBase = 0;
              }
            } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
              const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
              if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
                NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
                Offset %= EltSize;
              } else {
                NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
              }
              GEPIdxTy = STy->getElementType();
            } else {
              // Otherwise, we can't index into this, bail out.
              Offset = 0;
              OrigBase = 0;
            }
          }
          if (OrigBase) {
            // If we were able to index down into an element, create the GEP
            // and bitcast the result.  This eliminates one bitcast, potentially
            // two.
            Instruction *NGEP = new GetElementPtrInst(OrigBase, 
                                                      NewIndices.begin(),
                                                      NewIndices.end(), "");
            InsertNewInstBefore(NGEP, CI);
            NGEP->takeName(GEP);
            
            if (isa<BitCastInst>(CI))
              return new BitCastInst(NGEP, CI.getType());
            assert(isa<PtrToIntInst>(CI));
            return new PtrToIntInst(NGEP, CI.getType());
          }
        }
      }      
    }
  }
    
  return commonCastTransforms(CI);
}



/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
/// integer types. This function implements the common transforms for all those
/// cases.
/// @brief Implement the transforms common to CastInst with integer operands
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
  if (Instruction *Result = commonCastTransforms(CI))
    return Result;

  Value *Src = CI.getOperand(0);
  const Type *SrcTy = Src->getType();
  const Type *DestTy = CI.getType();
  uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();

  // See if we can simplify any instructions used by the LHS whose sole 
  // purpose is to compute bits we don't care about.
  APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
  if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
                           KnownZero, KnownOne))
    return &CI;

  // If the source isn't an instruction or has more than one use then we
  // can't do anything more. 
  Instruction *SrcI = dyn_cast<Instruction>(Src);
  if (!SrcI || !Src->hasOneUse())
    return 0;

  // Attempt to propagate the cast into the instruction for int->int casts.
  int NumCastsRemoved = 0;
  if (!isa<BitCastInst>(CI) &&
      CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
                                 CI.getOpcode(), NumCastsRemoved)) {
    // If this cast is a truncate, evaluting in a different type always
    // eliminates the cast, so it is always a win.  If this is a zero-extension,
    // we need to do an AND to maintain the clear top-part of the computation,
    // so we require that the input have eliminated at least one cast.  If this
    // is a sign extension, we insert two new casts (to do the extension) so we
    // require that two casts have been eliminated.
    bool DoXForm;
    switch (CI.getOpcode()) {
    default:
      // All the others use floating point so we shouldn't actually 
      // get here because of the check above.
      assert(0 && "Unknown cast type");
    case Instruction::Trunc:
      DoXForm = true;
      break;
    case Instruction::ZExt:
      DoXForm = NumCastsRemoved >= 1;
      break;
    case Instruction::SExt:
      DoXForm = NumCastsRemoved >= 2;
      break;
    }
    
    if (DoXForm) {
      Value *Res = EvaluateInDifferentType(SrcI, DestTy, 
                                           CI.getOpcode() == Instruction::SExt);
      assert(Res->getType() == DestTy);
      switch (CI.getOpcode()) {
      default: assert(0 && "Unknown cast type!");
      case Instruction::Trunc:
      case Instruction::BitCast:
        // Just replace this cast with the result.
        return ReplaceInstUsesWith(CI, Res);
      case Instruction::ZExt: {
        // We need to emit an AND to clear the high bits.
        assert(SrcBitSize < DestBitSize && "Not a zext?");
        Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
                                                            SrcBitSize));
        return BinaryOperator::createAnd(Res, C);
      }
      case Instruction::SExt:
        // We need to emit a cast to truncate, then a cast to sext.
        return CastInst::create(Instruction::SExt,
            InsertCastBefore(Instruction::Trunc, Res, Src->getType(), 
                             CI), DestTy);
      }
    }
  }
  
  Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
  Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;

  switch (SrcI->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // If we are discarding information, rewrite.
    if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
      // Don't insert two casts if they cannot be eliminated.  We allow 
      // two casts to be inserted if the sizes are the same.  This could 
      // only be converting signedness, which is a noop.
      if (DestBitSize == SrcBitSize || 
          !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
          !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
        Instruction::CastOps opcode = CI.getOpcode();
        Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
        Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
        return BinaryOperator::create(
            cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
      }
    }

    // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1
    if (isa<ZExtInst>(CI) && SrcBitSize == 1 && 
        SrcI->getOpcode() == Instruction::Xor &&
        Op1 == ConstantInt::getTrue() &&
        (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
      Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
      return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
    }
    break;
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    // If we are just changing the sign, rewrite.
    if (DestBitSize == SrcBitSize) {
      // Don't insert two casts if they cannot be eliminated.  We allow 
      // two casts to be inserted if the sizes are the same.  This could 
      // only be converting signedness, which is a noop.
      if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || 
          !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
        Value *Op0c = InsertOperandCastBefore(Instruction::BitCast, 
                                              Op0, DestTy, SrcI);
        Value *Op1c = InsertOperandCastBefore(Instruction::BitCast, 
                                              Op1, DestTy, SrcI);
        return BinaryOperator::create(
          cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
      }
    }
    break;

  case Instruction::Shl:
    // Allow changing the sign of the source operand.  Do not allow 
    // changing the size of the shift, UNLESS the shift amount is a 
    // constant.  We must not change variable sized shifts to a smaller 
    // size, because it is undefined to shift more bits out than exist 
    // in the value.
    if (DestBitSize == SrcBitSize ||
        (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
      Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
          Instruction::BitCast : Instruction::Trunc);
      Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
      Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
      return BinaryOperator::createShl(Op0c, Op1c);
    }
    break;
  case Instruction::AShr:
    // If this is a signed shr, and if all bits shifted in are about to be
    // truncated off, turn it into an unsigned shr to allow greater
    // simplifications.
    if (DestBitSize < SrcBitSize &&
        isa<ConstantInt>(Op1)) {
      uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
      if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
        // Insert the new logical shift right.
        return BinaryOperator::createLShr(Op0, Op1);
      }
    }
    break;
  }
  return 0;
}

Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
  if (Instruction *Result = commonIntCastTransforms(CI))
    return Result;
  
  Value *Src = CI.getOperand(0);
  const Type *Ty = CI.getType();
  uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
  uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
  
  if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
    switch (SrcI->getOpcode()) {
    default: break;
    case Instruction::LShr:
      // We can shrink lshr to something smaller if we know the bits shifted in
      // are already zeros.
      if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
        uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
        
        // Get a mask for the bits shifting in.
        APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
        Value* SrcIOp0 = SrcI->getOperand(0);
        if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
          if (ShAmt >= DestBitWidth)        // All zeros.
            return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));

          // Okay, we can shrink this.  Truncate the input, then return a new
          // shift.
          Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
          Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
                                       Ty, CI);
          return BinaryOperator::createLShr(V1, V2);
        }
      } else {     // This is a variable shr.
        
        // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'.  This is
        // more LLVM instructions, but allows '1 << Y' to be hoisted if
        // loop-invariant and CSE'd.
        if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
          Value *One = ConstantInt::get(SrcI->getType(), 1);

          Value *V = InsertNewInstBefore(
              BinaryOperator::createShl(One, SrcI->getOperand(1),
                                     "tmp"), CI);
          V = InsertNewInstBefore(BinaryOperator::createAnd(V,
                                                            SrcI->getOperand(0),
                                                            "tmp"), CI);
          Value *Zero = Constant::getNullValue(V->getType());
          return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
        }
      }
      break;
    }
  }
  
  return 0;
}

Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
  // If one of the common conversion will work ..
  if (Instruction *Result = commonIntCastTransforms(CI))
    return Result;

  Value *Src = CI.getOperand(0);

  // If this is a cast of a cast
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    // types and if the sizes are just right we can convert this into a logical
    // 'and' which will be much cheaper than the pair of casts.
    if (isa<TruncInst>(CSrc)) {
      // Get the sizes of the types involved
      Value *A = CSrc->getOperand(0);
      uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
      uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
      uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
      // If we're actually extending zero bits and the trunc is a no-op
      if (MidSize < DstSize && SrcSize == DstSize) {
        // Replace both of the casts with an And of the type mask.
        APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
        Constant *AndConst = ConstantInt::get(AndValue);
        Instruction *And = 
          BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
        // Unfortunately, if the type changed, we need to cast it back.
        if (And->getType() != CI.getType()) {
          And->setName(CSrc->getName()+".mask");
          InsertNewInstBefore(And, CI);
          And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
        }
        return And;
      }
    }
  }

  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
    // If we are just checking for a icmp eq of a single bit and zext'ing it
    // to an integer, then shift the bit to the appropriate place and then
    // cast to integer to avoid the comparison.
    if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
      const APInt &Op1CV = Op1C->getValue();
      
      // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
      // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
      if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
          (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
        Value *In = ICI->getOperand(0);
        Value *Sh = ConstantInt::get(In->getType(),
                                    In->getType()->getPrimitiveSizeInBits()-1);
        In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
                                                        In->getName()+".lobit"),
                                 CI);
        if (In->getType() != CI.getType())
          In = CastInst::createIntegerCast(In, CI.getType(),
                                           false/*ZExt*/, "tmp", &CI);

        if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
          Constant *One = ConstantInt::get(In->getType(), 1);
          In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
                                                          In->getName()+".not"),
                                   CI);
        }

        return ReplaceInstUsesWith(CI, In);
      }
      
      
      
      // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
      // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
      // zext (X == 1) to i32 --> X        iff X has only the low bit set.
      // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
      // zext (X != 0) to i32 --> X        iff X has only the low bit set.
      // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
      // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
      // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
      if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 
          // This only works for EQ and NE
          ICI->isEquality()) {
        // If Op1C some other power of two, convert:
        uint32_t BitWidth = Op1C->getType()->getBitWidth();
        APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
        APInt TypeMask(APInt::getAllOnesValue(BitWidth));
        ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
        
        APInt KnownZeroMask(~KnownZero);
        if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
          bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
          if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
            // (X&4) == 2 --> false
            // (X&4) != 2 --> true
            Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
            Res = ConstantExpr::getZExt(Res, CI.getType());
            return ReplaceInstUsesWith(CI, Res);
          }
          
          uint32_t ShiftAmt = KnownZeroMask.logBase2();
          Value *In = ICI->getOperand(0);
          if (ShiftAmt) {
            // Perform a logical shr by shiftamt.
            // Insert the shift to put the result in the low bit.
            In = InsertNewInstBefore(
                   BinaryOperator::createLShr(In,
                                     ConstantInt::get(In->getType(), ShiftAmt),
                                              In->getName()+".lobit"), CI);
          }
          
          if ((Op1CV != 0) == isNE) { // Toggle the low bit.
            Constant *One = ConstantInt::get(In->getType(), 1);
            In = BinaryOperator::createXor(In, One, "tmp");
            InsertNewInstBefore(cast<Instruction>(In), CI);
          }
          
          if (CI.getType() == In->getType())
            return ReplaceInstUsesWith(CI, In);
          else
            return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
        }
      }
    }
  }    
  return 0;
}

Instruction *InstCombiner::visitSExt(SExtInst &CI) {
  if (Instruction *I = commonIntCastTransforms(CI))
    return I;
  
  Value *Src = CI.getOperand(0);
  
  // sext (x <s 0) -> ashr x, 31   -> all ones if signed
  // sext (x >s -1) -> ashr x, 31  -> all ones if not signed
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
    // If we are just checking for a icmp eq of a single bit and zext'ing it
    // to an integer, then shift the bit to the appropriate place and then
    // cast to integer to avoid the comparison.
    if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
      const APInt &Op1CV = Op1C->getValue();
      
      // sext (x <s  0) to i32 --> x>>s31      true if signbit set.
      // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
      if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
          (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
        Value *In = ICI->getOperand(0);
        Value *Sh = ConstantInt::get(In->getType(),
                                     In->getType()->getPrimitiveSizeInBits()-1);
        In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
                                                        In->getName()+".lobit"),
                                 CI);
        if (In->getType() != CI.getType())
          In = CastInst::createIntegerCast(In, CI.getType(),
                                           true/*SExt*/, "tmp", &CI);
        
        if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
          In = InsertNewInstBefore(BinaryOperator::createNot(In,
                                     In->getName()+".not"), CI);
        
        return ReplaceInstUsesWith(CI, In);
      }
    }
  }
      
  return 0;
}

Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitFPExt(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
  return commonPointerCastTransforms(CI);
}

Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
  // If the operands are integer typed then apply the integer transforms,
  // otherwise just apply the common ones.
  Value *Src = CI.getOperand(0);
  const Type *SrcTy = Src->getType();
  const Type *DestTy = CI.getType();

  if (SrcTy->isInteger() && DestTy->isInteger()) {
    if (Instruction *Result = commonIntCastTransforms(CI))
      return Result;
  } else if (isa<PointerType>(SrcTy)) {
    if (Instruction *I = commonPointerCastTransforms(CI))
      return I;
  } else {
    if (Instruction *Result = commonCastTransforms(CI))
      return Result;
  }


  // Get rid of casts from one type to the same type. These are useless and can
  // be replaced by the operand.
  if (DestTy == Src->getType())
    return ReplaceInstUsesWith(CI, Src);

  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
    const Type *DstElTy = DstPTy->getElementType();
    const Type *SrcElTy = SrcPTy->getElementType();
    
    // If we are casting a malloc or alloca to a pointer to a type of the same
    // size, rewrite the allocation instruction to allocate the "right" type.
    if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
        return V;
    
    // If the source and destination are pointers, and this cast is equivalent
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
    // This can enhance SROA and other transforms that want type-safe pointers.
    Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
    unsigned NumZeros = 0;
    while (SrcElTy != DstElTy && 
           isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
           SrcElTy->getNumContainedTypes() /* not "{}" */) {
      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
      ++NumZeros;
    }

    // If we found a path from the src to dest, create the getelementptr now.
    if (SrcElTy == DstElTy) {
      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
      return new GetElementPtrInst(Src, Idxs.begin(), Idxs.end(), "", 
                                   ((Instruction*) NULL));
    }
  }

  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
    if (SVI->hasOneUse()) {
      // Okay, we have (bitconvert (shuffle ..)).  Check to see if this is
      // a bitconvert to a vector with the same # elts.
      if (isa<VectorType>(DestTy) && 
          cast<VectorType>(DestTy)->getNumElements() == 
                SVI->getType()->getNumElements()) {
        CastInst *Tmp;
        // If either of the operands is a cast from CI.getType(), then
        // evaluating the shuffle in the casted destination's type will allow
        // us to eliminate at least one cast.
        if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && 
             Tmp->getOperand(0)->getType() == DestTy) ||
            ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && 
             Tmp->getOperand(0)->getType() == DestTy)) {
          Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
                                               SVI->getOperand(0), DestTy, &CI);
          Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
                                               SVI->getOperand(1), DestTy, &CI);
          // Return a new shuffle vector.  Use the same element ID's, as we
          // know the vector types match #elts.
          return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
        }
      }
    }
  }
  return 0;
}

/// GetSelectFoldableOperands - We want to turn code that looks like this:
///   %C = or %A, %B
///   %D = select %cond, %C, %A
/// into:
///   %C = select %cond, %B, 0
///   %D = or %A, %C
///
/// Assuming that the specified instruction is an operand to the select, return
/// a bitmask indicating which operands of this instruction are foldable if they
/// equal the other incoming value of the select.
///
static unsigned GetSelectFoldableOperands(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    return 3;              // Can fold through either operand.
  case Instruction::Sub:   // Can only fold on the amount subtracted.
  case Instruction::Shl:   // Can only fold on the shift amount.
  case Instruction::LShr:
  case Instruction::AShr:
    return 1;
  default:
    return 0;              // Cannot fold
  }
}

/// GetSelectFoldableConstant - For the same transformation as the previous
/// function, return the identity constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I) {
  switch (I->getOpcode()) {
  default: assert(0 && "This cannot happen!"); abort();
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return Constant::getNullValue(I->getType());
  case Instruction::And:
    return Constant::getAllOnesValue(I->getType());
  case Instruction::Mul:
    return ConstantInt::get(I->getType(), 1);
  }
}

/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
/// have the same opcode and only one use each.  Try to simplify this.
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
                                          Instruction *FI) {
  if (TI->getNumOperands() == 1) {
    // If this is a non-volatile load or a cast from the same type,
    // merge.
    if (TI->isCast()) {
      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
        return 0;
    } else {
      return 0;  // unknown unary op.
    }

    // Fold this by inserting a select from the input values.
    SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
                                       FI->getOperand(0), SI.getName()+".v");
    InsertNewInstBefore(NewSI, SI);
    return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI, 
                            TI->getType());
  }

  // Only handle binary operators here.
  if (!isa<BinaryOperator>(TI))
    return 0;

  // Figure out if the operations have any operands in common.
  Value *MatchOp, *OtherOpT, *OtherOpF;
  bool MatchIsOpZero;
  if (TI->getOperand(0) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = false;
  } else if (!TI->isCommutative()) {
    return 0;
  } else if (TI->getOperand(0) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else {
    return 0;
  }

  // If we reach here, they do have operations in common.
  SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
                                     OtherOpF, SI.getName()+".v");
  InsertNewInstBefore(NewSI, SI);

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    if (MatchIsOpZero)
      return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
    else
      return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
  }
  assert(0 && "Shouldn't get here");
  return 0;
}

Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
  Value *CondVal = SI.getCondition();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  // select true, X, Y  -> X
  // select false, X, Y -> Y
  if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
    return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);

  // select C, X, X -> X
  if (TrueVal == FalseVal)
    return ReplaceInstUsesWith(SI, TrueVal);

  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
    return ReplaceInstUsesWith(SI, FalseVal);
  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
    return ReplaceInstUsesWith(SI, TrueVal);
  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
    if (isa<Constant>(TrueVal))
      return ReplaceInstUsesWith(SI, TrueVal);
    else
      return ReplaceInstUsesWith(SI, FalseVal);
  }

  if (SI.getType() == Type::Int1Ty) {
    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
      if (C->getZExtValue()) {
        // Change: A = select B, true, C --> A = or B, C
        return BinaryOperator::createOr(CondVal, FalseVal);
      } else {
        // Change: A = select B, false, C --> A = and !B, C
        Value *NotCond =
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
                                             "not."+CondVal->getName()), SI);
        return BinaryOperator::createAnd(NotCond, FalseVal);
      }
    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
      if (C->getZExtValue() == false) {
        // Change: A = select B, C, false --> A = and B, C
        return BinaryOperator::createAnd(CondVal, TrueVal);
      } else {
        // Change: A = select B, C, true --> A = or !B, C
        Value *NotCond =
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
                                             "not."+CondVal->getName()), SI);
        return BinaryOperator::createOr(NotCond, TrueVal);
      }
    }
    
    // select a, b, a  -> a&b
    // select a, a, b  -> a|b
    if (CondVal == TrueVal)
      return BinaryOperator::createOr(CondVal, FalseVal);
    else if (CondVal == FalseVal)
      return BinaryOperator::createAnd(CondVal, TrueVal);
  }

  // Selecting between two integer constants?
  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
      // select C, 1, 0 -> zext C to int
      if (FalseValC->isZero() && TrueValC->getValue() == 1) {
        return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
      } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
        // select C, 0, 1 -> zext !C to int
        Value *NotCond =
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
                                               "not."+CondVal->getName()), SI);
        return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
      }
      
      // FIXME: Turn select 0/-1 and -1/0 into sext from condition!

      if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {

        // (x <s 0) ? -1 : 0 -> ashr x, 31
        if (TrueValC->isAllOnesValue() && FalseValC->isZero())
          if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
            if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
              // The comparison constant and the result are not neccessarily the
              // same width. Make an all-ones value by inserting a AShr.
              Value *X = IC->getOperand(0);
              uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
              Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
              Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
                                                        ShAmt, "ones");
              InsertNewInstBefore(SRA, SI);
              
              // Finally, convert to the type of the select RHS.  We figure out
              // if this requires a SExt, Trunc or BitCast based on the sizes.
              Instruction::CastOps opc = Instruction::BitCast;
              uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
              uint32_t SISize  = SI.getType()->getPrimitiveSizeInBits();
              if (SRASize < SISize)
                opc = Instruction::SExt;
              else if (SRASize > SISize)
                opc = Instruction::Trunc;
              return CastInst::create(opc, SRA, SI.getType());
            }
          }


        // If one of the constants is zero (we know they can't both be) and we
        // have an icmp instruction with zero, and we have an 'and' with the
        // non-constant value, eliminate this whole mess.  This corresponds to
        // cases like this: ((X & 27) ? 27 : 0)
        if (TrueValC->isZero() || FalseValC->isZero())
          if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
              cast<Constant>(IC->getOperand(1))->isNullValue())
            if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
              if (ICA->getOpcode() == Instruction::And &&
                  isa<ConstantInt>(ICA->getOperand(1)) &&
                  (ICA->getOperand(1) == TrueValC ||
                   ICA->getOperand(1) == FalseValC) &&
                  isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
                // Okay, now we know that everything is set up, we just don't
                // know whether we have a icmp_ne or icmp_eq and whether the 
                // true or false val is the zero.
                bool ShouldNotVal = !TrueValC->isZero();
                ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
                Value *V = ICA;
                if (ShouldNotVal)
                  V = InsertNewInstBefore(BinaryOperator::create(
                                  Instruction::Xor, V, ICA->getOperand(1)), SI);
                return ReplaceInstUsesWith(SI, V);
              }
      }
    }

  // See if we are selecting two values based on a comparison of the two values.
  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
      // Transform (X == Y) ? X : Y  -> Y
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
        // This is not safe in general for floating point:  
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
        return ReplaceInstUsesWith(SI, FalseVal);
      }
      // Transform (X != Y) ? X : Y  -> X
      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
        return ReplaceInstUsesWith(SI, TrueVal);
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.

    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
      // Transform (X == Y) ? Y : X  -> X
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
        // This is not safe in general for floating point:  
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
          return ReplaceInstUsesWith(SI, FalseVal);
      }
      // Transform (X != Y) ? Y : X  -> Y
      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
        return ReplaceInstUsesWith(SI, TrueVal);
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
    }
  }

  // See if we are selecting two values based on a comparison of the two values.
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
    if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
      // Transform (X == Y) ? X : Y  -> Y
      if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
        return ReplaceInstUsesWith(SI, FalseVal);
      // Transform (X != Y) ? X : Y  -> X
      if (ICI->getPredicate() == ICmpInst::ICMP_NE)
        return ReplaceInstUsesWith(SI, TrueVal);
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.

    } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
      // Transform (X == Y) ? Y : X  -> X
      if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
        return ReplaceInstUsesWith(SI, FalseVal);
      // Transform (X != Y) ? Y : X  -> Y
      if (ICI->getPredicate() == ICmpInst::ICMP_NE)
        return ReplaceInstUsesWith(SI, TrueVal);
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
    }
  }

  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
      if (TI->hasOneUse() && FI->hasOneUse()) {
        Instruction *AddOp = 0, *SubOp = 0;

        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
        if (TI->getOpcode() == FI->getOpcode())
          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
            return IV;

        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
        // even legal for FP.
        if (TI->getOpcode() == Instruction::Sub &&
            FI->getOpcode() == Instruction::Add) {
          AddOp = FI; SubOp = TI;
        } else if (FI->getOpcode() == Instruction::Sub &&
                   TI->getOpcode() == Instruction::Add) {
          AddOp = TI; SubOp = FI;
        }

        if (AddOp) {
          Value *OtherAddOp = 0;
          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
            OtherAddOp = AddOp->getOperand(1);
          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
            OtherAddOp = AddOp->getOperand(0);
          }

          if (OtherAddOp) {
            // So at this point we know we have (Y -> OtherAddOp):
            //        select C, (add X, Y), (sub X, Z)
            Value *NegVal;  // Compute -Z
            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
              NegVal = ConstantExpr::getNeg(C);
            } else {
              NegVal = InsertNewInstBefore(
                    BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
            }

            Value *NewTrueOp = OtherAddOp;
            Value *NewFalseOp = NegVal;
            if (AddOp != TI)
              std::swap(NewTrueOp, NewFalseOp);
            Instruction *NewSel =
              new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");

            NewSel = InsertNewInstBefore(NewSel, SI);
            return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
          }
        }
      }

  // See if we can fold the select into one of our operands.
  if (SI.getType()->isInteger()) {
    // See the comment above GetSelectFoldableOperands for a description of the
    // transformation we are doing here.
    if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
      if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
          !isa<Constant>(FalseVal))
        if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
          unsigned OpToFold = 0;
          if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
            OpToFold = 1;
          } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
            OpToFold = 2;
          }

          if (OpToFold) {
            Constant *C = GetSelectFoldableConstant(TVI);
            Instruction *NewSel =
              new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
            InsertNewInstBefore(NewSel, SI);
            NewSel->takeName(TVI);
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
              return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
            else {
              assert(0 && "Unknown instruction!!");
            }
          }
        }

    if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
      if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
          !isa<Constant>(TrueVal))
        if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
          unsigned OpToFold = 0;
          if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
            OpToFold = 1;
          } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
            OpToFold = 2;
          }

          if (OpToFold) {
            Constant *C = GetSelectFoldableConstant(FVI);
            Instruction *NewSel =
              new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
            InsertNewInstBefore(NewSel, SI);
            NewSel->takeName(FVI);
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
              return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
            else
              assert(0 && "Unknown instruction!!");
          }
        }
  }

  if (BinaryOperator::isNot(CondVal)) {
    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    SI.setOperand(1, FalseVal);
    SI.setOperand(2, TrueVal);
    return &SI;
  }

  return 0;
}

/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
static unsigned GetOrEnforceKnownAlignment(Value *V, TargetData *TD,
                                           unsigned PrefAlign = 0) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    unsigned Align = GV->getAlignment();
    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) 
      Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());

    // If there is a large requested alignment and we can, bump up the alignment
    // of the global.
    if (PrefAlign > Align && GV->hasInitializer()) {
      GV->setAlignment(PrefAlign);
      Align = PrefAlign;
    }
    return Align;
  } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
    unsigned Align = AI->getAlignment();
    if (Align == 0 && TD) {
      if (isa<AllocaInst>(AI))
        Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
      else if (isa<MallocInst>(AI)) {
        // Malloc returns maximally aligned memory.
        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
        Align =
          std::max(Align,
                   (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
        Align =
          std::max(Align,
                   (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
      }
    }
    
    // If there is a requested alignment and if this is an alloca, round up.  We
    // don't do this for malloc, because some systems can't respect the request.
    if (PrefAlign > Align && isa<AllocaInst>(AI)) {
      AI->setAlignment(PrefAlign);
      Align = PrefAlign;
    }
    return Align;
  } else if (isa<BitCastInst>(V) ||
             (isa<ConstantExpr>(V) && 
              cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
    return GetOrEnforceKnownAlignment(cast<User>(V)->getOperand(0),
                                      TD, PrefAlign);
  } else if (User *GEPI = dyn_castGetElementPtr(V)) {
    // If all indexes are zero, it is just the alignment of the base pointer.
    bool AllZeroOperands = true;
    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
      if (!isa<Constant>(GEPI->getOperand(i)) ||
          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
        AllZeroOperands = false;
        break;
      }

    if (AllZeroOperands) {
      // Treat this like a bitcast.
      return GetOrEnforceKnownAlignment(GEPI->getOperand(0), TD, PrefAlign);
    }

    unsigned BaseAlignment = GetOrEnforceKnownAlignment(GEPI->getOperand(0),TD);
    if (BaseAlignment == 0) return 0;

    // Otherwise, if the base alignment is >= the alignment we expect for the
    // base pointer type, then we know that the resultant pointer is aligned at
    // least as much as its type requires.
    if (!TD) return 0;

    const Type *BasePtrTy = GEPI->getOperand(0)->getType();
    const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
    unsigned Align = TD->getABITypeAlignment(PtrTy->getElementType());
    if (Align <= BaseAlignment) {
      const Type *GEPTy = GEPI->getType();
      const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
      Align = std::min(Align, (unsigned)
                       TD->getABITypeAlignment(GEPPtrTy->getElementType()));
      return Align;
    }
    return 0;
  }
  return 0;
}


/// visitCallInst - CallInst simplification.  This mostly only handles folding 
/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
/// the heavy lifting.
///
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
  if (!II) return visitCallSite(&CI);
  
  // Intrinsics cannot occur in an invoke, so handle them here instead of in
  // visitCallSite.
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
    bool Changed = false;

    // memmove/cpy/set of zero bytes is a noop.
    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);

      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
        if (CI->getZExtValue() == 1) {
          // Replace the instruction with just byte operations.  We would
          // transform other cases to loads/stores, but we don't know if
          // alignment is sufficient.
        }
    }

    // If we have a memmove and the source operation is a constant global,
    // then the source and dest pointers can't alias, so we can change this
    // into a call to memcpy.
    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
        if (GVSrc->isConstant()) {
          Module *M = CI.getParent()->getParent()->getParent();
          const char *Name;
          if (CI.getCalledFunction()->getFunctionType()->getParamType(2) == 
              Type::Int32Ty)
            Name = "llvm.memcpy.i32";
          else
            Name = "llvm.memcpy.i64";
          Constant *MemCpy = M->getOrInsertFunction(Name,
                                     CI.getCalledFunction()->getFunctionType());
          CI.setOperand(0, MemCpy);
          Changed = true;
        }
    }

    // If we can determine a pointer alignment that is bigger than currently
    // set, update the alignment.
    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
      unsigned Alignment1 = GetOrEnforceKnownAlignment(MI->getOperand(1), TD);
      unsigned Alignment2 = GetOrEnforceKnownAlignment(MI->getOperand(2), TD);
      unsigned Align = std::min(Alignment1, Alignment2);
      if (MI->getAlignment()->getZExtValue() < Align) {
        MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
        Changed = true;
      }

      // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
      // load/store.
      ConstantInt *MemOpLength = dyn_cast<ConstantInt>(CI.getOperand(3));
      if (MemOpLength) {
        unsigned Size = MemOpLength->getZExtValue();
        unsigned Align = cast<ConstantInt>(CI.getOperand(4))->getZExtValue();
        PointerType *NewPtrTy = NULL;
        // Destination pointer type is always i8 *
        // If Size is 8 then use Int64Ty
        // If Size is 4 then use Int32Ty
        // If Size is 2 then use Int16Ty
        // If Size is 1 then use Int8Ty
        if (Size && Size <=8 && !(Size&(Size-1)))
          NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));

        if (NewPtrTy) {
          Value *Src = InsertCastBefore(Instruction::BitCast, CI.getOperand(2),
                                        NewPtrTy, CI);
          Value *Dest = InsertCastBefore(Instruction::BitCast, CI.getOperand(1),
                                         NewPtrTy, CI);
          Value *L = new LoadInst(Src, "tmp", false, Align, &CI);
          Value *NS = new StoreInst(L, Dest, false, Align, &CI);
          CI.replaceAllUsesWith(NS);
          Changed = true;
          return EraseInstFromFunction(CI);
        }
      }
    } else if (isa<MemSetInst>(MI)) {
      unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest(), TD);
      if (MI->getAlignment()->getZExtValue() < Alignment) {
        MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
        Changed = true;
      }
    }
          
    if (Changed) return II;
  } else {
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::ppc_altivec_lvx:
    case Intrinsic::ppc_altivec_lvxl:
    case Intrinsic::x86_sse_loadu_ps:
    case Intrinsic::x86_sse2_loadu_pd:
    case Intrinsic::x86_sse2_loadu_dq:
      // Turn PPC lvx     -> load if the pointer is known aligned.
      // Turn X86 loadups -> load if the pointer is known aligned.
      if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
        Value *Ptr = 
          InsertCastBefore(Instruction::BitCast, II->getOperand(1),
                           PointerType::getUnqual(II->getType()), CI);
        return new LoadInst(Ptr);
      }
      break;
    case Intrinsic::ppc_altivec_stvx:
    case Intrinsic::ppc_altivec_stvxl:
      // Turn stvx -> store if the pointer is known aligned.
      if (GetOrEnforceKnownAlignment(II->getOperand(2), TD, 16) >= 16) {
        const Type *OpPtrTy = 
          PointerType::getUnqual(II->getOperand(1)->getType());
        Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
                                      OpPtrTy, CI);
        return new StoreInst(II->getOperand(1), Ptr);
      }
      break;
    case Intrinsic::x86_sse_storeu_ps:
    case Intrinsic::x86_sse2_storeu_pd:
    case Intrinsic::x86_sse2_storeu_dq:
    case Intrinsic::x86_sse2_storel_dq:
      // Turn X86 storeu -> store if the pointer is known aligned.
      if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
        const Type *OpPtrTy = 
          PointerType::getUnqual(II->getOperand(2)->getType());
        Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
                                      OpPtrTy, CI);
        return new StoreInst(II->getOperand(2), Ptr);
      }
      break;
      
    case Intrinsic::x86_sse_cvttss2si: {
      // These intrinsics only demands the 0th element of its input vector.  If
      // we can simplify the input based on that, do so now.
      uint64_t UndefElts;
      if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1, 
                                                UndefElts)) {
        II->setOperand(1, V);
        return II;
      }
      break;
    }
      
    case Intrinsic::ppc_altivec_vperm:
      // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
      if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
        assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
        
        // Check that all of the elements are integer constants or undefs.
        bool AllEltsOk = true;
        for (unsigned i = 0; i != 16; ++i) {
          if (!isa<ConstantInt>(Mask->getOperand(i)) && 
              !isa<UndefValue>(Mask->getOperand(i))) {
            AllEltsOk = false;
            break;
          }
        }
        
        if (AllEltsOk) {
          // Cast the input vectors to byte vectors.
          Value *Op0 = InsertCastBefore(Instruction::BitCast, 
                                        II->getOperand(1), Mask->getType(), CI);
          Value *Op1 = InsertCastBefore(Instruction::BitCast,
                                        II->getOperand(2), Mask->getType(), CI);
          Value *Result = UndefValue::get(Op0->getType());
          
          // Only extract each element once.
          Value *ExtractedElts[32];
          memset(ExtractedElts, 0, sizeof(ExtractedElts));
          
          for (unsigned i = 0; i != 16; ++i) {
            if (isa<UndefValue>(Mask->getOperand(i)))
              continue;
            unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
            Idx &= 31;  // Match the hardware behavior.
            
            if (ExtractedElts[Idx] == 0) {
              Instruction *Elt = 
                new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
              InsertNewInstBefore(Elt, CI);
              ExtractedElts[Idx] = Elt;
            }
          
            // Insert this value into the result vector.
            Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
            InsertNewInstBefore(cast<Instruction>(Result), CI);
          }
          return CastInst::create(Instruction::BitCast, Result, CI.getType());
        }
      }
      break;

    case Intrinsic::stackrestore: {
      // If the save is right next to the restore, remove the restore.  This can
      // happen when variable allocas are DCE'd.
      if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
        if (SS->getIntrinsicID() == Intrinsic::stacksave) {
          BasicBlock::iterator BI = SS;
          if (&*++BI == II)
            return EraseInstFromFunction(CI);
        }
      }
      
      // If the stack restore is in a return/unwind block and if there are no
      // allocas or calls between the restore and the return, nuke the restore.
      TerminatorInst *TI = II->getParent()->getTerminator();
      if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
        BasicBlock::iterator BI = II;
        bool CannotRemove = false;
        for (++BI; &*BI != TI; ++BI) {
          if (isa<AllocaInst>(BI) ||
              (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
            CannotRemove = true;
            break;
          }
        }
        if (!CannotRemove)
          return EraseInstFromFunction(CI);
      }
      break;
    }
    }
  }

  return visitCallSite(II);
}

// InvokeInst simplification
//
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
  return visitCallSite(&II);
}

// visitCallSite - Improvements for call and invoke instructions.
//
Instruction *InstCombiner::visitCallSite(CallSite CS) {
  bool Changed = false;

  // If the callee is a constexpr cast of a function, attempt to move the cast
  // to the arguments of the call/invoke.
  if (transformConstExprCastCall(CS)) return 0;

  Value *Callee = CS.getCalledValue();

  if (Function *CalleeF = dyn_cast<Function>(Callee))
    if (CalleeF->getCallingConv() != CS.getCallingConv()) {
      Instruction *OldCall = CS.getInstruction();
      // If the call and callee calling conventions don't match, this call must
      // be unreachable, as the call is undefined.
      new StoreInst(ConstantInt::getTrue(),
                    UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), 
                                    OldCall);
      if (!OldCall->use_empty())
        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
      if (isa<CallInst>(OldCall))   // Not worth removing an invoke here.
        return EraseInstFromFunction(*OldCall);
      return 0;
    }

  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
    // This instruction is not reachable, just remove it.  We insert a store to
    // undef so that we know that this code is not reachable, despite the fact
    // that we can't modify the CFG here.
    new StoreInst(ConstantInt::getTrue(),
                  UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
                  CS.getInstruction());

    if (!CS.getInstruction()->use_empty())
      CS.getInstruction()->
        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));

    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
      // Don't break the CFG, insert a dummy cond branch.
      new BranchInst(II->getNormalDest(), II->getUnwindDest(),
                     ConstantInt::getTrue(), II);
    }
    return EraseInstFromFunction(*CS.getInstruction());
  }

  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
        return transformCallThroughTrampoline(CS);

  const PointerType *PTy = cast<PointerType>(Callee->getType());
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  if (FTy->isVarArg()) {
    // See if we can optimize any arguments passed through the varargs area of
    // the call.
    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
           E = CS.arg_end(); I != E; ++I)
      if (CastInst *CI = dyn_cast<CastInst>(*I)) {
        // If this cast does not effect the value passed through the varargs
        // area, we can eliminate the use of the cast.
        Value *Op = CI->getOperand(0);
        if (CI->isLosslessCast()) {
          *I = Op;
          Changed = true;
        }
      }
  }

  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
    // Inline asm calls cannot throw - mark them 'nounwind'.
    CS.setDoesNotThrow();
    Changed = true;
  }

  return Changed ? CS.getInstruction() : 0;
}

// transformConstExprCastCall - If the callee is a constexpr cast of a function,
// attempt to move the cast to the arguments of the call/invoke.
//
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
  if (CE->getOpcode() != Instruction::BitCast || 
      !isa<Function>(CE->getOperand(0)))
    return false;
  Function *Callee = cast<Function>(CE->getOperand(0));
  Instruction *Caller = CS.getInstruction();

  // Okay, this is a cast from a function to a different type.  Unless doing so
  // would cause a type conversion of one of our arguments, change this call to
  // be a direct call with arguments casted to the appropriate types.
  //
  const FunctionType *FT = Callee->getFunctionType();
  const Type *OldRetTy = Caller->getType();

  const ParamAttrsList* CallerPAL = 0;
  if (CallInst *CallerCI = dyn_cast<CallInst>(Caller))
    CallerPAL = CallerCI->getParamAttrs();
  else if (InvokeInst *CallerII = dyn_cast<InvokeInst>(Caller))
    CallerPAL = CallerII->getParamAttrs();

  // If the parameter attributes are not compatible, don't do the xform.  We
  // don't want to lose an sret attribute or something.
  if (!ParamAttrsList::areCompatible(CallerPAL, Callee->getParamAttrs()))
    return false;

  // Check to see if we are changing the return type...
  if (OldRetTy != FT->getReturnType()) {
    if (Callee->isDeclaration() && !Caller->use_empty() && 
        // Conversion is ok if changing from pointer to int of same size.
        !(isa<PointerType>(FT->getReturnType()) &&
          TD->getIntPtrType() == OldRetTy))
      return false;   // Cannot transform this return value.

    // If the callsite is an invoke instruction, and the return value is used by
    // a PHI node in a successor, we cannot change the return type of the call
    // because there is no place to put the cast instruction (without breaking
    // the critical edge).  Bail out in this case.
    if (!Caller->use_empty())
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
             UI != E; ++UI)
          if (PHINode *PN = dyn_cast<PHINode>(*UI))
            if (PN->getParent() == II->getNormalDest() ||
                PN->getParent() == II->getUnwindDest())
              return false;
  }

  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);

  CallSite::arg_iterator AI = CS.arg_begin();
  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
    const Type *ParamTy = FT->getParamType(i);
    const Type *ActTy = (*AI)->getType();
    ConstantInt *c = dyn_cast<ConstantInt>(*AI);
    //Some conversions are safe even if we do not have a body.
    //Either we can cast directly, or we can upconvert the argument
    bool isConvertible = ActTy == ParamTy ||
      (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
      (ParamTy->isInteger() && ActTy->isInteger() &&
       ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
      (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
       && c->getValue().isStrictlyPositive());
    if (Callee->isDeclaration() && !isConvertible) return false;

    // Most other conversions can be done if we have a body, even if these
    // lose information, e.g. int->short.
    // Some conversions cannot be done at all, e.g. float to pointer.
    // Logic here parallels CastInst::getCastOpcode (the design there
    // requires legality checks like this be done before calling it).
    if (ParamTy->isInteger()) {
      if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
        if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
          return false;
      }
      if (!ActTy->isInteger() && !ActTy->isFloatingPoint() &&
          !isa<PointerType>(ActTy))
        return false;
    } else if (ParamTy->isFloatingPoint()) {
      if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
        if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
          return false;
      }
      if (!ActTy->isInteger() && !ActTy->isFloatingPoint())
        return false;
    } else if (const VectorType *VParamTy = dyn_cast<VectorType>(ParamTy)) {
      if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
        if (VActTy->getBitWidth() != VParamTy->getBitWidth())
          return false;
      }
      if (VParamTy->getBitWidth() != ActTy->getPrimitiveSizeInBits())      
        return false;
    } else if (isa<PointerType>(ParamTy)) {
      if (!ActTy->isInteger() && !isa<PointerType>(ActTy))
        return false;
    } else {
      return false;
    }
  }

  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
      Callee->isDeclaration())
    return false;   // Do not delete arguments unless we have a function body...

  // Okay, we decided that this is a safe thing to do: go ahead and start
  // inserting cast instructions as necessary...
  std::vector<Value*> Args;
  Args.reserve(NumActualArgs);

  AI = CS.arg_begin();
  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
    const Type *ParamTy = FT->getParamType(i);
    if ((*AI)->getType() == ParamTy) {
      Args.push_back(*AI);
    } else {
      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
          false, ParamTy, false);
      CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
      Args.push_back(InsertNewInstBefore(NewCast, *Caller));
    }
  }

  // If the function takes more arguments than the call was taking, add them
  // now...
  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
    Args.push_back(Constant::getNullValue(FT->getParamType(i)));

  // If we are removing arguments to the function, emit an obnoxious warning...
  if (FT->getNumParams() < NumActualArgs)
    if (!FT->isVarArg()) {
      cerr << "WARNING: While resolving call to function '"
           << Callee->getName() << "' arguments were dropped!\n";
    } else {
      // Add all of the arguments in their promoted form to the arg list...
      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
        const Type *PTy = getPromotedType((*AI)->getType());
        if (PTy != (*AI)->getType()) {
          // Must promote to pass through va_arg area!
          Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, 
                                                                PTy, false);
          Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
          InsertNewInstBefore(Cast, *Caller);
          Args.push_back(Cast);
        } else {
          Args.push_back(*AI);
        }
      }
    }

  if (FT->getReturnType() == Type::VoidTy)
    Caller->setName("");   // Void type should not have a name.

  Instruction *NC;
  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
    NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
                        Args.begin(), Args.end(), Caller->getName(), Caller);
    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
    cast<InvokeInst>(NC)->setParamAttrs(CallerPAL);
  } else {
    NC = new CallInst(Callee, Args.begin(), Args.end(),
                      Caller->getName(), Caller);
    CallInst *CI = cast<CallInst>(Caller);
    if (CI->isTailCall())
      cast<CallInst>(NC)->setTailCall();
    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
    cast<CallInst>(NC)->setParamAttrs(CallerPAL);
  }

  // Insert a cast of the return type as necessary.
  Value *NV = NC;
  if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
    if (NV->getType() != Type::VoidTy) {
      const Type *CallerTy = Caller->getType();
      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, 
                                                            CallerTy, false);
      NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");

      // If this is an invoke instruction, we should insert it after the first
      // non-phi, instruction in the normal successor block.
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
        BasicBlock::iterator I = II->getNormalDest()->begin();
        while (isa<PHINode>(I)) ++I;
        InsertNewInstBefore(NC, *I);
      } else {
        // Otherwise, it's a call, just insert cast right after the call instr
        InsertNewInstBefore(NC, *Caller);
      }
      AddUsersToWorkList(*Caller);
    } else {
      NV = UndefValue::get(Caller->getType());
    }
  }

  if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
    Caller->replaceAllUsesWith(NV);
  Caller->eraseFromParent();
  RemoveFromWorkList(Caller);
  return true;
}

// transformCallThroughTrampoline - Turn a call to a function created by the
// init_trampoline intrinsic into a direct call to the underlying function.
//
Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
  Value *Callee = CS.getCalledValue();
  const PointerType *PTy = cast<PointerType>(Callee->getType());
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());

  IntrinsicInst *Tramp =
    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));

  Function *NestF =
    cast<Function>(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2)));
  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());

  if (const ParamAttrsList *NestAttrs = NestF->getParamAttrs()) {
    unsigned NestIdx = 1;
    const Type *NestTy = 0;
    uint16_t NestAttr = 0;

    // Look for a parameter marked with the 'nest' attribute.
    for (FunctionType::param_iterator I = NestFTy->param_begin(),
         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
      if (NestAttrs->paramHasAttr(NestIdx, ParamAttr::Nest)) {
        // Record the parameter type and any other attributes.
        NestTy = *I;
        NestAttr = NestAttrs->getParamAttrs(NestIdx);
        break;
      }

    if (NestTy) {
      Instruction *Caller = CS.getInstruction();
      std::vector<Value*> NewArgs;
      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);

      // Insert the nest argument into the call argument list, which may
      // mean appending it.
      {
        unsigned Idx = 1;
        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
        do {
          if (Idx == NestIdx) {
            // Add the chain argument.
            Value *NestVal = Tramp->getOperand(3);
            if (NestVal->getType() != NestTy)
              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
            NewArgs.push_back(NestVal);
          }

          if (I == E)
            break;

          // Add the original argument.
          NewArgs.push_back(*I);

          ++Idx, ++I;
        } while (1);
      }

      // The trampoline may have been bitcast to a bogus type (FTy).
      // Handle this by synthesizing a new function type, equal to FTy
      // with the chain parameter inserted.  Likewise for attributes.

      const ParamAttrsList *Attrs = CS.getParamAttrs();
      std::vector<const Type*> NewTypes;
      ParamAttrsVector NewAttrs;
      NewTypes.reserve(FTy->getNumParams()+1);

      // Add any function result attributes.
      uint16_t Attr = Attrs ? Attrs->getParamAttrs(0) : 0;
      if (Attr)
        NewAttrs.push_back (ParamAttrsWithIndex::get(0, Attr));

      // Insert the chain's type into the list of parameter types, which may
      // mean appending it.  Likewise for the chain's attributes.
      {
        unsigned Idx = 1;
        FunctionType::param_iterator I = FTy->param_begin(),
          E = FTy->param_end();

        do {
          if (Idx == NestIdx) {
            // Add the chain's type and attributes.
            NewTypes.push_back(NestTy);
            NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
          }

          if (I == E)
            break;

          // Add the original type and attributes.
          NewTypes.push_back(*I);
          Attr = Attrs ? Attrs->getParamAttrs(Idx) : 0;
          if (Attr)
            NewAttrs.push_back
              (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));

          ++Idx, ++I;
        } while (1);
      }

      // Replace the trampoline call with a direct call.  Let the generic
      // code sort out any function type mismatches.
      FunctionType *NewFTy =
        FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
      Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
        NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
      const ParamAttrsList *NewPAL = ParamAttrsList::get(NewAttrs);

      Instruction *NewCaller;
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
        NewCaller = new InvokeInst(NewCallee,
                                   II->getNormalDest(), II->getUnwindDest(),
                                   NewArgs.begin(), NewArgs.end(),
                                   Caller->getName(), Caller);
        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
        cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
      } else {
        NewCaller = new CallInst(NewCallee, NewArgs.begin(), NewArgs.end(),
                                 Caller->getName(), Caller);
        if (cast<CallInst>(Caller)->isTailCall())
          cast<CallInst>(NewCaller)->setTailCall();
        cast<CallInst>(NewCaller)->
          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
        cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
      }
      if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
        Caller->replaceAllUsesWith(NewCaller);
      Caller->eraseFromParent();
      RemoveFromWorkList(Caller);
      return 0;
    }
  }

  // Replace the trampoline call with a direct call.  Since there is no 'nest'
  // parameter, there is no need to adjust the argument list.  Let the generic
  // code sort out any function type mismatches.
  Constant *NewCallee =
    NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
  CS.setCalledFunction(NewCallee);
  return CS.getInstruction();
}

/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
/// and a single binop.
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
  assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
         isa<CmpInst>(FirstInst));
  unsigned Opc = FirstInst->getOpcode();
  Value *LHSVal = FirstInst->getOperand(0);
  Value *RHSVal = FirstInst->getOperand(1);
    
  const Type *LHSType = LHSVal->getType();
  const Type *RHSType = RHSVal->getType();
  
  // Scan to see if all operands are the same opcode, all have one use, and all
  // kill their operands (i.e. the operands have one use).
  for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
        // Verify type of the LHS matches so we don't fold cmp's of different
        // types or GEP's with different index types.
        I->getOperand(0)->getType() != LHSType ||
        I->getOperand(1)->getType() != RHSType)
      return 0;

    // If they are CmpInst instructions, check their predicates
    if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
      if (cast<CmpInst>(I)->getPredicate() !=
          cast<CmpInst>(FirstInst)->getPredicate())
        return 0;
    
    // Keep track of which operand needs a phi node.
    if (I->getOperand(0) != LHSVal) LHSVal = 0;
    if (I->getOperand(1) != RHSVal) RHSVal = 0;
  }
  
  // Otherwise, this is safe to transform, determine if it is profitable.

  // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
  // Indexes are often folded into load/store instructions, so we don't want to
  // hide them behind a phi.
  if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
    return 0;
  
  Value *InLHS = FirstInst->getOperand(0);
  Value *InRHS = FirstInst->getOperand(1);
  PHINode *NewLHS = 0, *NewRHS = 0;
  if (LHSVal == 0) {
    NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
    NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
    InsertNewInstBefore(NewLHS, PN);
    LHSVal = NewLHS;
  }
  
  if (RHSVal == 0) {
    NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
    NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
    InsertNewInstBefore(NewRHS, PN);
    RHSVal = NewRHS;
  }
  
  // Add all operands to the new PHIs.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    if (NewLHS) {
      Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
      NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
    }
    if (NewRHS) {
      Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
      NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
    }
  }
    
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
    return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
  else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
    return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, 
                           RHSVal);
  else {
    assert(isa<GetElementPtrInst>(FirstInst));
    return new GetElementPtrInst(LHSVal, RHSVal);
  }
}

/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
/// of the block that defines it.  This means that it must be obvious the value
/// of the load is not changed from the point of the load to the end of the
/// block it is in.
///
/// Finally, it is safe, but not profitable, to sink a load targetting a
/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
/// to a register.
static bool isSafeToSinkLoad(LoadInst *L) {
  BasicBlock::iterator BBI = L, E = L->getParent()->end();
  
  for (++BBI; BBI != E; ++BBI)
    if (BBI->mayWriteToMemory())
      return false;
  
  // Check for non-address taken alloca.  If not address-taken already, it isn't
  // profitable to do this xform.
  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
    bool isAddressTaken = false;
    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
         UI != E; ++UI) {
      if (isa<LoadInst>(UI)) continue;
      if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
        // If storing TO the alloca, then the address isn't taken.
        if (SI->getOperand(1) == AI) continue;
      }
      isAddressTaken = true;
      break;
    }
    
    if (!isAddressTaken)
      return false;
  }
  
  return true;
}


// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
// inputs, and do the operation once, to the result of the PHI.
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));

  // Scan the instruction, looking for input operations that can be folded away.
  // If all input operands to the phi are the same instruction (e.g. a cast from
  // the same type or "+42") we can pull the operation through the PHI, reducing
  // code size and simplifying code.
  Constant *ConstantOp = 0;
  const Type *CastSrcTy = 0;
  bool isVolatile = false;
  if (isa<CastInst>(FirstInst)) {
    CastSrcTy = FirstInst->getOperand(0)->getType();
  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
    // Can fold binop, compare or shift here if the RHS is a constant, 
    // otherwise call FoldPHIArgBinOpIntoPHI.
    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
    if (ConstantOp == 0)
      return FoldPHIArgBinOpIntoPHI(PN);
  } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
    isVolatile = LI->isVolatile();
    // We can't sink the load if the loaded value could be modified between the
    // load and the PHI.
    if (LI->getParent() != PN.getIncomingBlock(0) ||
        !isSafeToSinkLoad(LI))
      return 0;
  } else if (isa<GetElementPtrInst>(FirstInst)) {
    if (FirstInst->getNumOperands() == 2)
      return FoldPHIArgBinOpIntoPHI(PN);
    // Can't handle general GEPs yet.
    return 0;
  } else {
    return 0;  // Cannot fold this operation.
  }

  // Check to see if all arguments are the same operation.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
    Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
    if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
      return 0;
    if (CastSrcTy) {
      if (I->getOperand(0)->getType() != CastSrcTy)
        return 0;  // Cast operation must match.
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      // We can't sink the load if the loaded value could be modified between 
      // the load and the PHI.
      if (LI->isVolatile() != isVolatile ||
          LI->getParent() != PN.getIncomingBlock(i) ||
          !isSafeToSinkLoad(LI))
        return 0;
    } else if (I->getOperand(1) != ConstantOp) {
      return 0;
    }
  }

  // Okay, they are all the same operation.  Create a new PHI node of the
  // correct type, and PHI together all of the LHS's of the instructions.
  PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
                               PN.getName()+".in");
  NewPN->reserveOperandSpace(PN.getNumOperands()/2);

  Value *InVal = FirstInst->getOperand(0);
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));

  // Add all operands to the new PHI.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
    if (NewInVal != InVal)
      InVal = 0;
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
  }

  Value *PhiVal;
  if (InVal) {
    // The new PHI unions all of the same values together.  This is really
    // common, so we handle it intelligently here for compile-time speed.
    PhiVal = InVal;
    delete NewPN;
  } else {
    InsertNewInstBefore(NewPN, PN);
    PhiVal = NewPN;
  }

  // Insert and return the new operation.
  if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
    return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
  else if (isa<LoadInst>(FirstInst))
    return new LoadInst(PhiVal, "", isVolatile);
  else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
    return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
  else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
    return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), 
                           PhiVal, ConstantOp);
  else
    assert(0 && "Unknown operation");
  return 0;
}

/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
/// that is dead.
static bool DeadPHICycle(PHINode *PN,
                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
  if (PN->use_empty()) return true;
  if (!PN->hasOneUse()) return false;

  // Remember this node, and if we find the cycle, return.
  if (!PotentiallyDeadPHIs.insert(PN))
    return true;
  
  // Don't scan crazily complex things.
  if (PotentiallyDeadPHIs.size() == 16)
    return false;

  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
    return DeadPHICycle(PU, PotentiallyDeadPHIs);

  return false;
}

/// PHIsEqualValue - Return true if this phi node is always equal to
/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
///   z = some value; x = phi (y, z); y = phi (x, z)
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 
                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
  // See if we already saw this PHI node.
  if (!ValueEqualPHIs.insert(PN))
    return true;
  
  // Don't scan crazily complex things.
  if (ValueEqualPHIs.size() == 16)
    return false;
 
  // Scan the operands to see if they are either phi nodes or are equal to
  // the value.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *Op = PN->getIncomingValue(i);
    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
        return false;
    } else if (Op != NonPhiInVal)
      return false;
  }
  
  return true;
}


// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
  // If LCSSA is around, don't mess with Phi nodes
  if (MustPreserveLCSSA) return 0;
  
  if (Value *V = PN.hasConstantValue())
    return ReplaceInstUsesWith(PN, V);

  // If all PHI operands are the same operation, pull them through the PHI,
  // reducing code size.
  if (isa<Instruction>(PN.getIncomingValue(0)) &&
      PN.getIncomingValue(0)->hasOneUse())
    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
      return Result;

  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
  // PHI)... break the cycle.
  if (PN.hasOneUse()) {
    Instruction *PHIUser = cast<Instruction>(PN.use_back());
    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
      PotentiallyDeadPHIs.insert(&PN);
      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
    }
   
    // If this phi has a single use, and if that use just computes a value for
    // the next iteration of a loop, delete the phi.  This occurs with unused
    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
    // common case here is good because the only other things that catch this
    // are induction variable analysis (sometimes) and ADCE, which is only run
    // late.
    if (PHIUser->hasOneUse() &&
        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
        PHIUser->use_back() == &PN) {
      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
    }
  }

  // We sometimes end up with phi cycles that non-obviously end up being the
  // same value, for example:
  //   z = some value; x = phi (y, z); y = phi (x, z)
  // where the phi nodes don't necessarily need to be in the same block.  Do a
  // quick check to see if the PHI node only contains a single non-phi value, if
  // so, scan to see if the phi cycle is actually equal to that value.
  {
    unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
    // Scan for the first non-phi operand.
    while (InValNo != NumOperandVals && 
           isa<PHINode>(PN.getIncomingValue(InValNo)))
      ++InValNo;

    if (InValNo != NumOperandVals) {
      Value *NonPhiInVal = PN.getOperand(InValNo);
      
      // Scan the rest of the operands to see if there are any conflicts, if so
      // there is no need to recursively scan other phis.
      for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
        Value *OpVal = PN.getIncomingValue(InValNo);
        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
          break;
      }
      
      // If we scanned over all operands, then we have one unique value plus
      // phi values.  Scan PHI nodes to see if they all merge in each other or
      // the value.
      if (InValNo == NumOperandVals) {
        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
          return ReplaceInstUsesWith(PN, NonPhiInVal);
      }
    }
  }
  return 0;
}

static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
                                   Instruction *InsertPoint,
                                   InstCombiner *IC) {
  unsigned PtrSize = DTy->getPrimitiveSizeInBits();
  unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
  // We must cast correctly to the pointer type. Ensure that we
  // sign extend the integer value if it is smaller as this is
  // used for address computation.
  Instruction::CastOps opcode = 
     (VTySize < PtrSize ? Instruction::SExt :
      (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
  return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
}


Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  Value *PtrOp = GEP.getOperand(0);
  // Is it 'getelementptr %P, i32 0'  or 'getelementptr %P'
  // If so, eliminate the noop.
  if (GEP.getNumOperands() == 1)
    return ReplaceInstUsesWith(GEP, PtrOp);

  if (isa<UndefValue>(GEP.getOperand(0)))
    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));

  bool HasZeroPointerIndex = false;
  if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
    HasZeroPointerIndex = C->isNullValue();

  if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
    return ReplaceInstUsesWith(GEP, PtrOp);

  // Eliminate unneeded casts for indices.
  bool MadeChange = false;
  
  gep_type_iterator GTI = gep_type_begin(GEP);
  for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
    if (isa<SequentialType>(*GTI)) {
      if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
        if (CI->getOpcode() == Instruction::ZExt ||
            CI->getOpcode() == Instruction::SExt) {
          const Type *SrcTy = CI->getOperand(0)->getType();
          // We can eliminate a cast from i32 to i64 iff the target 
          // is a 32-bit pointer target.
          if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
            MadeChange = true;
            GEP.setOperand(i, CI->getOperand(0));
          }
        }
      }
      // If we are using a wider index than needed for this platform, shrink it
      // to what we need.  If the incoming value needs a cast instruction,
      // insert it.  This explicit cast can make subsequent optimizations more
      // obvious.
      Value *Op = GEP.getOperand(i);
      if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits())
        if (Constant *C = dyn_cast<Constant>(Op)) {
          GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
          MadeChange = true;
        } else {
          Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
                                GEP);
          GEP.setOperand(i, Op);
          MadeChange = true;
        }
    }
  }
  if (MadeChange) return &GEP;

  // If this GEP instruction doesn't move the pointer, and if the input operand
  // is a bitcast of another pointer, just replace the GEP with a bitcast of the
  // real input to the dest type.
  if (GEP.hasAllZeroIndices()) {
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
      // If the bitcast is of an allocation, and the allocation will be
      // converted to match the type of the cast, don't touch this.
      if (isa<AllocationInst>(BCI->getOperand(0))) {
        // See if the bitcast simplifies, if so, don't nuke this GEP yet.
        if (Instruction *I = visitBitCast(*BCI)) {
          if (I != BCI) {
            I->takeName(BCI);
            BCI->getParent()->getInstList().insert(BCI, I);
            ReplaceInstUsesWith(*BCI, I);
          }
          return &GEP;
        }
      }
      return new BitCastInst(BCI->getOperand(0), GEP.getType());
    }
  }
  
  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  //
  SmallVector<Value*, 8> SrcGEPOperands;
  if (User *Src = dyn_castGetElementPtr(PtrOp))
    SrcGEPOperands.append(Src->op_begin(), Src->op_end());

  if (!SrcGEPOperands.empty()) {
    // Note that if our source is a gep chain itself that we wait for that
    // chain to be resolved before we perform this transformation.  This
    // avoids us creating a TON of code in some cases.
    //
    if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
        cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
      return 0;   // Wait until our source is folded to completion.

    SmallVector<Value*, 8> Indices;

    // Find out whether the last index in the source GEP is a sequential idx.
    bool EndsWithSequential = false;
    for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
           E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
      EndsWithSequential = !isa<StructType>(*I);

    // Can we combine the two pointer arithmetics offsets?
    if (EndsWithSequential) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      //
      Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
      if (SO1 == Constant::getNullValue(SO1->getType())) {
        Sum = GO1;
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
        Sum = SO1;
      } else {
        // If they aren't the same type, convert both to an integer of the
        // target's pointer size.
        if (SO1->getType() != GO1->getType()) {
          if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
            SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
          } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
            GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
          } else {
            unsigned PS = TD->getPointerSizeInBits();
            if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
              // Convert GO1 to SO1's type.
              GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);

            } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
              // Convert SO1 to GO1's type.
              SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
            } else {
              const Type *PT = TD->getIntPtrType();
              SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
              GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
            }
          }
        }
        if (isa<Constant>(SO1) && isa<Constant>(GO1))
          Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
        else {
          Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
          InsertNewInstBefore(cast<Instruction>(Sum), GEP);
        }
      }

      // Recycle the GEP we already have if possible.
      if (SrcGEPOperands.size() == 2) {
        GEP.setOperand(0, SrcGEPOperands[0]);
        GEP.setOperand(1, Sum);
        return &GEP;
      } else {
        Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
                       SrcGEPOperands.end()-1);
        Indices.push_back(Sum);
        Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
      }
    } else if (isa<Constant>(*GEP.idx_begin()) &&
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
               SrcGEPOperands.size() != 1) {
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
                     SrcGEPOperands.end());
      Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
    }

    if (!Indices.empty())
      return new GetElementPtrInst(SrcGEPOperands[0], Indices.begin(),
                                   Indices.end(), GEP.getName());

  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
    // GEP of global variable.  If all of the indices for this GEP are
    // constants, we can promote this to a constexpr instead of an instruction.

    // Scan for nonconstants...
    SmallVector<Constant*, 8> Indices;
    User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
    for (; I != E && isa<Constant>(*I); ++I)
      Indices.push_back(cast<Constant>(*I));

    if (I == E) {  // If they are all constants...
      Constant *CE = ConstantExpr::getGetElementPtr(GV,
                                                    &Indices[0],Indices.size());

      // Replace all uses of the GEP with the new constexpr...
      return ReplaceInstUsesWith(GEP, CE);
    }
  } else if (Value *X = getBitCastOperand(PtrOp)) {  // Is the operand a cast?
    if (!isa<PointerType>(X->getType())) {
      // Not interesting.  Source pointer must be a cast from pointer.
    } else if (HasZeroPointerIndex) {
      // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
      // into     : GEP [10 x i8]* X, i32 0, ...
      //
      // This occurs when the program declares an array extern like "int X[];"
      //
      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
      const PointerType *XTy = cast<PointerType>(X->getType());
      if (const ArrayType *XATy =
          dyn_cast<ArrayType>(XTy->getElementType()))
        if (const ArrayType *CATy =
            dyn_cast<ArrayType>(CPTy->getElementType()))
          if (CATy->getElementType() == XATy->getElementType()) {
            // At this point, we know that the cast source type is a pointer
            // to an array of the same type as the destination pointer
            // array.  Because the array type is never stepped over (there
            // is a leading zero) we can fold the cast into this GEP.
            GEP.setOperand(0, X);
            return &GEP;
          }
    } else if (GEP.getNumOperands() == 2) {
      // Transform things like:
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
      const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
      if (isa<ArrayType>(SrcElTy) &&
          TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
          TD->getABITypeSize(ResElTy)) {
        Value *Idx[2];
        Idx[0] = Constant::getNullValue(Type::Int32Ty);
        Idx[1] = GEP.getOperand(1);
        Value *V = InsertNewInstBefore(
               new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName()), GEP);
        // V and GEP are both pointer types --> BitCast
        return new BitCastInst(V, GEP.getType());
      }
      
      // Transform things like:
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
      //   (where tmp = 8*tmp2) into:
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
      
      if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
        uint64_t ArrayEltSize =
            TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
        
        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
        // allow either a mul, shift, or constant here.
        Value *NewIdx = 0;
        ConstantInt *Scale = 0;
        if (ArrayEltSize == 1) {
          NewIdx = GEP.getOperand(1);
          Scale = ConstantInt::get(NewIdx->getType(), 1);
        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
          NewIdx = ConstantInt::get(CI->getType(), 1);
          Scale = CI;
        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
          if (Inst->getOpcode() == Instruction::Shl &&
              isa<ConstantInt>(Inst->getOperand(1))) {
            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
            Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
            NewIdx = Inst->getOperand(0);
          } else if (Inst->getOpcode() == Instruction::Mul &&
                     isa<ConstantInt>(Inst->getOperand(1))) {
            Scale = cast<ConstantInt>(Inst->getOperand(1));
            NewIdx = Inst->getOperand(0);
          }
        }
        
        // If the index will be to exactly the right offset with the scale taken
        // out, perform the transformation. Note, we don't know whether Scale is
        // signed or not. We'll use unsigned version of division/modulo
        // operation after making sure Scale doesn't have the sign bit set.
        if (Scale && Scale->getSExtValue() >= 0LL &&
            Scale->getZExtValue() % ArrayEltSize == 0) {
          Scale = ConstantInt::get(Scale->getType(),
                                   Scale->getZExtValue() / ArrayEltSize);
          if (Scale->getZExtValue() != 1) {
            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
                                                       false /*ZExt*/);
            Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
            NewIdx = InsertNewInstBefore(Sc, GEP);
          }

          // Insert the new GEP instruction.
          Value *Idx[2];
          Idx[0] = Constant::getNullValue(Type::Int32Ty);
          Idx[1] = NewIdx;
          Instruction *NewGEP =
            new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName());
          NewGEP = InsertNewInstBefore(NewGEP, GEP);
          // The NewGEP must be pointer typed, so must the old one -> BitCast
          return new BitCastInst(NewGEP, GEP.getType());
        }
      }
    }
  }

  return 0;
}

Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
  // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
  if (AI.isArrayAllocation())    // Check C != 1
    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
      const Type *NewTy = 
        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
      AllocationInst *New = 0;

      // Create and insert the replacement instruction...
      if (isa<MallocInst>(AI))
        New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
      else {
        assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
        New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
      }

      InsertNewInstBefore(New, AI);

      // Scan to the end of the allocation instructions, to skip over a block of
      // allocas if possible...
      //
      BasicBlock::iterator It = New;
      while (isa<AllocationInst>(*It)) ++It;

      // Now that I is pointing to the first non-allocation-inst in the block,
      // insert our getelementptr instruction...
      //
      Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
      Value *Idx[2];
      Idx[0] = NullIdx;
      Idx[1] = NullIdx;
      Value *V = new GetElementPtrInst(New, Idx, Idx + 2,
                                       New->getName()+".sub", It);

      // Now make everything use the getelementptr instead of the original
      // allocation.
      return ReplaceInstUsesWith(AI, V);
    } else if (isa<UndefValue>(AI.getArraySize())) {
      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
    }

  // If alloca'ing a zero byte object, replace the alloca with a null pointer.
  // Note that we only do this for alloca's, because malloc should allocate and
  // return a unique pointer, even for a zero byte allocation.
  if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
      TD->getABITypeSize(AI.getAllocatedType()) == 0)
    return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));

  return 0;
}

Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
  Value *Op = FI.getOperand(0);

  // free undef -> unreachable.
  if (isa<UndefValue>(Op)) {
    // Insert a new store to null because we cannot modify the CFG here.
    new StoreInst(ConstantInt::getTrue(),
                  UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
    return EraseInstFromFunction(FI);
  }
  
  // If we have 'free null' delete the instruction.  This can happen in stl code
  // when lots of inlining happens.
  if (isa<ConstantPointerNull>(Op))
    return EraseInstFromFunction(FI);
  
  // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
    FI.setOperand(0, CI->getOperand(0));
    return &FI;
  }
  
  // Change free (gep X, 0,0,0,0) into free(X)
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
    if (GEPI->hasAllZeroIndices()) {
      AddToWorkList(GEPI);
      FI.setOperand(0, GEPI->getOperand(0));
      return &FI;
    }
  }
  
  // Change free(malloc) into nothing, if the malloc has a single use.
  if (MallocInst *MI = dyn_cast<MallocInst>(Op))
    if (MI->hasOneUse()) {
      EraseInstFromFunction(FI);
      return EraseInstFromFunction(*MI);
    }

  return 0;
}


/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
					const TargetData *TD) {
  User *CI = cast<User>(LI.getOperand(0));
  Value *CastOp = CI->getOperand(0);

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
    // Instead of loading constant c string, use corresponding integer value
    // directly if string length is small enough.
    const std::string &Str = CE->getOperand(0)->getStringValue();
    if (!Str.empty()) {
      unsigned len = Str.length();
      const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
      unsigned numBits = Ty->getPrimitiveSizeInBits();
      // Replace LI with immediate integer store.
      if ((numBits >> 3) == len + 1) {
	APInt StrVal(numBits, 0);
	APInt SingleChar(numBits, 0);
	if (TD->isLittleEndian()) {
	  for (signed i = len-1; i >= 0; i--) {
	    SingleChar = (uint64_t) Str[i];
	    StrVal = (StrVal << 8) | SingleChar;
	  }
	} else {
	  for (unsigned i = 0; i < len; i++) {
	    SingleChar = (uint64_t) Str[i];
		StrVal = (StrVal << 8) | SingleChar;
	  }
	  // Append NULL at the end.
	  SingleChar = 0;
	  StrVal = (StrVal << 8) | SingleChar;
	}
	Value *NL = ConstantInt::get(StrVal);
	return IC.ReplaceInstUsesWith(LI, NL);
      }
    }
  }

  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
    const Type *SrcPTy = SrcTy->getElementType();

    if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || 
         isa<VectorType>(DestPTy)) {
      // If the source is an array, the code below will not succeed.  Check to
      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
      // constants.
      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
          if (ASrcTy->getNumElements() != 0) {
            Value *Idxs[2];
            Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
            SrcTy = cast<PointerType>(CastOp->getType());
            SrcPTy = SrcTy->getElementType();
          }

      if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || 
            isa<VectorType>(SrcPTy)) &&
          // Do not allow turning this into a load of an integer, which is then
          // casted to a pointer, this pessimizes pointer analysis a lot.
          (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
          IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
               IC.getTargetData().getTypeSizeInBits(DestPTy)) {

        // Okay, we are casting from one integer or pointer type to another of
        // the same size.  Instead of casting the pointer before the load, cast
        // the result of the loaded value.
        Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
                                                             CI->getName(),
                                                         LI.isVolatile()),LI);
        // Now cast the result of the load.
        return new BitCastInst(NewLoad, LI.getType());
      }
    }
  }
  return 0;
}

/// isSafeToLoadUnconditionally - Return true if we know that executing a load
/// from this value cannot trap.  If it is not obviously safe to load from the
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
  // If it is an alloca it is always safe to load from.
  if (isa<AllocaInst>(V)) return true;

  // If it is a global variable it is mostly safe to load from.
  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
    // Don't try to evaluate aliases.  External weak GV can be null.
    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();

  // Otherwise, be a little bit agressive by scanning the local block where we
  // want to check to see if the pointer is already being loaded or stored
  // from/to.  If so, the previous load or store would have already trapped,
  // so there is no harm doing an extra load (also, CSE will later eliminate
  // the load entirely).
  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();

  while (BBI != E) {
    --BBI;

    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
      if (LI->getOperand(0) == V) return true;
    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
      if (SI->getOperand(1) == V) return true;

  }
  return false;
}

/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
/// until we find the underlying object a pointer is referring to or something
/// we don't understand.  Note that the returned pointer may be offset from the
/// input, because we ignore GEP indices.
static Value *GetUnderlyingObject(Value *Ptr) {
  while (1) {
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
      if (CE->getOpcode() == Instruction::BitCast ||
          CE->getOpcode() == Instruction::GetElementPtr)
        Ptr = CE->getOperand(0);
      else
        return Ptr;
    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
      Ptr = BCI->getOperand(0);
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
      Ptr = GEP->getOperand(0);
    } else {
      return Ptr;
    }
  }
}

Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
  Value *Op = LI.getOperand(0);

  // Attempt to improve the alignment.
  unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD);
  if (KnownAlign > LI.getAlignment())
    LI.setAlignment(KnownAlign);

  // load (cast X) --> cast (load X) iff safe
  if (isa<CastInst>(Op))
    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
      return Res;

  // None of the following transforms are legal for volatile loads.
  if (LI.isVolatile()) return 0;
  
  if (&LI.getParent()->front() != &LI) {
    BasicBlock::iterator BBI = &LI; --BBI;
    // If the instruction immediately before this is a store to the same
    // address, do a simple form of store->load forwarding.
    if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
      if (SI->getOperand(1) == LI.getOperand(0))
        return ReplaceInstUsesWith(LI, SI->getOperand(0));
    if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
      if (LIB->getOperand(0) == LI.getOperand(0))
        return ReplaceInstUsesWith(LI, LIB);
  }

  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
    const Value *GEPI0 = GEPI->getOperand(0);
    // TODO: Consider a target hook for valid address spaces for this xform.
    if (isa<ConstantPointerNull>(GEPI0) &&
        cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
      // Insert a new store to null instruction before the load to indicate
      // that this code is not reachable.  We do this instead of inserting
      // an unreachable instruction directly because we cannot modify the
      // CFG.
      new StoreInst(UndefValue::get(LI.getType()),
                    Constant::getNullValue(Op->getType()), &LI);
      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
    }
  } 

  if (Constant *C = dyn_cast<Constant>(Op)) {
    // load null/undef -> undef
    // TODO: Consider a target hook for valid address spaces for this xform.
    if (isa<UndefValue>(C) || (C->isNullValue() && 
        cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
      // Insert a new store to null instruction before the load to indicate that
      // this code is not reachable.  We do this instead of inserting an
      // unreachable instruction directly because we cannot modify the CFG.
      new StoreInst(UndefValue::get(LI.getType()),
                    Constant::getNullValue(Op->getType()), &LI);
      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
    }

    // Instcombine load (constant global) into the value loaded.
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
      if (GV->isConstant() && !GV->isDeclaration())
        return ReplaceInstUsesWith(LI, GV->getInitializer());

    // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
          if (GV->isConstant() && !GV->isDeclaration())
            if (Constant *V = 
               ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
              return ReplaceInstUsesWith(LI, V);
        if (CE->getOperand(0)->isNullValue()) {
          // Insert a new store to null instruction before the load to indicate
          // that this code is not reachable.  We do this instead of inserting
          // an unreachable instruction directly because we cannot modify the
          // CFG.
          new StoreInst(UndefValue::get(LI.getType()),
                        Constant::getNullValue(Op->getType()), &LI);
          return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
        }

      } else if (CE->isCast()) {
        if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
          return Res;
      }
  }
    
  // If this load comes from anywhere in a constant global, and if the global
  // is all undef or zero, we know what it loads.
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
    if (GV->isConstant() && GV->hasInitializer()) {
      if (GV->getInitializer()->isNullValue())
        return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
      else if (isa<UndefValue>(GV->getInitializer()))
        return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
    }
  }

  if (Op->hasOneUse()) {
    // Change select and PHI nodes to select values instead of addresses: this
    // helps alias analysis out a lot, allows many others simplifications, and
    // exposes redundancy in the code.
    //
    // Note that we cannot do the transformation unless we know that the
    // introduced loads cannot trap!  Something like this is valid as long as
    // the condition is always false: load (select bool %C, int* null, int* %G),
    // but it would not be valid if we transformed it to load from null
    // unconditionally.
    //
    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
          isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
        Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
                                     SI->getOperand(1)->getName()+".val"), LI);
        Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
                                     SI->getOperand(2)->getName()+".val"), LI);
        return new SelectInst(SI->getCondition(), V1, V2);
      }

      // load (select (cond, null, P)) -> load P
      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
        if (C->isNullValue()) {
          LI.setOperand(0, SI->getOperand(2));
          return &LI;
        }

      // load (select (cond, P, null)) -> load P
      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
        if (C->isNullValue()) {
          LI.setOperand(0, SI->getOperand(1));
          return &LI;
        }
    }
  }
  return 0;
}

/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
/// when possible.
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
  User *CI = cast<User>(SI.getOperand(1));
  Value *CastOp = CI->getOperand(0);

  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
    const Type *SrcPTy = SrcTy->getElementType();

    if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
      // If the source is an array, the code below will not succeed.  Check to
      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
      // constants.
      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
          if (ASrcTy->getNumElements() != 0) {
            Value* Idxs[2];
            Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
            SrcTy = cast<PointerType>(CastOp->getType());
            SrcPTy = SrcTy->getElementType();
          }

      if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
          IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
               IC.getTargetData().getTypeSizeInBits(DestPTy)) {

        // Okay, we are casting from one integer or pointer type to another of
        // the same size.  Instead of casting the pointer before 
        // the store, cast the value to be stored.
        Value *NewCast;
        Value *SIOp0 = SI.getOperand(0);
        Instruction::CastOps opcode = Instruction::BitCast;
        const Type* CastSrcTy = SIOp0->getType();
        const Type* CastDstTy = SrcPTy;
        if (isa<PointerType>(CastDstTy)) {
          if (CastSrcTy->isInteger())
            opcode = Instruction::IntToPtr;
        } else if (isa<IntegerType>(CastDstTy)) {
          if (isa<PointerType>(SIOp0->getType()))
            opcode = Instruction::PtrToInt;
        }
        if (Constant *C = dyn_cast<Constant>(SIOp0))
          NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
        else
          NewCast = IC.InsertNewInstBefore(
            CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"), 
            SI);
        return new StoreInst(NewCast, CastOp);
      }
    }
  }
  return 0;
}

Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
  Value *Val = SI.getOperand(0);
  Value *Ptr = SI.getOperand(1);

  if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile)
    EraseInstFromFunction(SI);
    ++NumCombined;
    return 0;
  }
  
  // If the RHS is an alloca with a single use, zapify the store, making the
  // alloca dead.
  if (Ptr->hasOneUse()) {
    if (isa<AllocaInst>(Ptr)) {
      EraseInstFromFunction(SI);
      ++NumCombined;
      return 0;
    }
    
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
      if (isa<AllocaInst>(GEP->getOperand(0)) &&
          GEP->getOperand(0)->hasOneUse()) {
        EraseInstFromFunction(SI);
        ++NumCombined;
        return 0;
      }
  }

  // Attempt to improve the alignment.
  unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD);
  if (KnownAlign > SI.getAlignment())
    SI.setAlignment(KnownAlign);

  // Do really simple DSE, to catch cases where there are several consequtive
  // stores to the same location, separated by a few arithmetic operations. This
  // situation often occurs with bitfield accesses.
  BasicBlock::iterator BBI = &SI;
  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
       --ScanInsts) {
    --BBI;
    
    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
      // Prev store isn't volatile, and stores to the same location?
      if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
        ++NumDeadStore;
        ++BBI;
        EraseInstFromFunction(*PrevSI);
        continue;
      }
      break;
    }
    
    // If this is a load, we have to stop.  However, if the loaded value is from
    // the pointer we're loading and is producing the pointer we're storing,
    // then *this* store is dead (X = load P; store X -> P).
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
      if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
        EraseInstFromFunction(SI);
        ++NumCombined;
        return 0;
      }
      // Otherwise, this is a load from some other location.  Stores before it
      // may not be dead.
      break;
    }
    
    // Don't skip over loads or things that can modify memory.
    if (BBI->mayWriteToMemory())
      break;
  }
  
  
  if (SI.isVolatile()) return 0;  // Don't hack volatile stores.

  // store X, null    -> turns into 'unreachable' in SimplifyCFG
  if (isa<ConstantPointerNull>(Ptr)) {
    if (!isa<UndefValue>(Val)) {
      SI.setOperand(0, UndefValue::get(Val->getType()));
      if (Instruction *U = dyn_cast<Instruction>(Val))
        AddToWorkList(U);  // Dropped a use.
      ++NumCombined;
    }
    return 0;  // Do not modify these!
  }

  // store undef, Ptr -> noop
  if (isa<UndefValue>(Val)) {
    EraseInstFromFunction(SI);
    ++NumCombined;
    return 0;
  }

  // If the pointer destination is a cast, see if we can fold the cast into the
  // source instead.
  if (isa<CastInst>(Ptr))
    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
      return Res;
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    if (CE->isCast())
      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
        return Res;

  
  // If this store is the last instruction in the basic block, and if the block
  // ends with an unconditional branch, try to move it to the successor block.
  BBI = &SI; ++BBI;
  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
    if (BI->isUnconditional())
      if (SimplifyStoreAtEndOfBlock(SI))
        return 0;  // xform done!
  
  return 0;
}

/// SimplifyStoreAtEndOfBlock - Turn things like:
///   if () { *P = v1; } else { *P = v2 }
/// into a phi node with a store in the successor.
///
/// Simplify things like:
///   *P = v1; if () { *P = v2; }
/// into a phi node with a store in the successor.
///
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
  BasicBlock *StoreBB = SI.getParent();
  
  // Check to see if the successor block has exactly two incoming edges.  If
  // so, see if the other predecessor contains a store to the same location.
  // if so, insert a PHI node (if needed) and move the stores down.
  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
  
  // Determine whether Dest has exactly two predecessors and, if so, compute
  // the other predecessor.
  pred_iterator PI = pred_begin(DestBB);
  BasicBlock *OtherBB = 0;
  if (*PI != StoreBB)
    OtherBB = *PI;
  ++PI;
  if (PI == pred_end(DestBB))
    return false;
  
  if (*PI != StoreBB) {
    if (OtherBB)
      return false;
    OtherBB = *PI;
  }
  if (++PI != pred_end(DestBB))
    return false;
  
  
  // Verify that the other block ends in a branch and is not otherwise empty.
  BasicBlock::iterator BBI = OtherBB->getTerminator();
  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
  if (!OtherBr || BBI == OtherBB->begin())
    return false;
  
  // If the other block ends in an unconditional branch, check for the 'if then
  // else' case.  there is an instruction before the branch.
  StoreInst *OtherStore = 0;
  if (OtherBr->isUnconditional()) {
    // If this isn't a store, or isn't a store to the same location, bail out.
    --BBI;
    OtherStore = dyn_cast<StoreInst>(BBI);
    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
      return false;
  } else {
    // Otherwise, the other block ended with a conditional branch. If one of the
    // destinations is StoreBB, then we have the if/then case.
    if (OtherBr->getSuccessor(0) != StoreBB && 
        OtherBr->getSuccessor(1) != StoreBB)
      return false;
    
    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
    // if/then triangle.  See if there is a store to the same ptr as SI that
    // lives in OtherBB.
    for (;; --BBI) {
      // Check to see if we find the matching store.
      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
        if (OtherStore->getOperand(1) != SI.getOperand(1))
          return false;
        break;
      }
      // If we find something that may be using the stored value, or if we run
      // out of instructions, we can't do the xform.
      if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
          BBI == OtherBB->begin())
        return false;
    }
    
    // In order to eliminate the store in OtherBr, we have to
    // make sure nothing reads the stored value in StoreBB.
    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
      // FIXME: This should really be AA driven.
      if (isa<LoadInst>(I) || I->mayWriteToMemory())
        return false;
    }
  }
  
  // Insert a PHI node now if we need it.
  Value *MergedVal = OtherStore->getOperand(0);
  if (MergedVal != SI.getOperand(0)) {
    PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
    PN->reserveOperandSpace(2);
    PN->addIncoming(SI.getOperand(0), SI.getParent());
    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
    MergedVal = InsertNewInstBefore(PN, DestBB->front());
  }
  
  // Advance to a place where it is safe to insert the new store and
  // insert it.
  BBI = DestBB->begin();
  while (isa<PHINode>(BBI)) ++BBI;
  InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
                                    OtherStore->isVolatile()), *BBI);
  
  // Nuke the old stores.
  EraseInstFromFunction(SI);
  EraseInstFromFunction(*OtherStore);
  ++NumCombined;
  return true;
}


Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
  // Change br (not X), label True, label False to: br X, label False, True
  Value *X = 0;
  BasicBlock *TrueDest;
  BasicBlock *FalseDest;
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
      !isa<Constant>(X)) {
    // Swap Destinations and condition...
    BI.setCondition(X);
    BI.setSuccessor(0, FalseDest);
    BI.setSuccessor(1, TrueDest);
    return &BI;
  }

  // Cannonicalize fcmp_one -> fcmp_oeq
  FCmpInst::Predicate FPred; Value *Y;
  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
                             TrueDest, FalseDest)))
    if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
         FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
      FCmpInst *I = cast<FCmpInst>(BI.getCondition());
      FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
      Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
      NewSCC->takeName(I);
      // Swap Destinations and condition...
      BI.setCondition(NewSCC);
      BI.setSuccessor(0, FalseDest);
      BI.setSuccessor(1, TrueDest);
      RemoveFromWorkList(I);
      I->eraseFromParent();
      AddToWorkList(NewSCC);
      return &BI;
    }

  // Cannonicalize icmp_ne -> icmp_eq
  ICmpInst::Predicate IPred;
  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
                      TrueDest, FalseDest)))
    if ((IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
         IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
      ICmpInst *I = cast<ICmpInst>(BI.getCondition());
      ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
      Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
      NewSCC->takeName(I);
      // Swap Destinations and condition...
      BI.setCondition(NewSCC);
      BI.setSuccessor(0, FalseDest);
      BI.setSuccessor(1, TrueDest);
      RemoveFromWorkList(I);
      I->eraseFromParent();;
      AddToWorkList(NewSCC);
      return &BI;
    }

  return 0;
}

Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
  Value *Cond = SI.getCondition();
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
    if (I->getOpcode() == Instruction::Add)
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
          SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
                                                AddRHS));
        SI.setOperand(0, I->getOperand(0));
        AddToWorkList(I);
        return &SI;
      }
  }
  return 0;
}

/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
/// is to leave as a vector operation.
static bool CheapToScalarize(Value *V, bool isConstant) {
  if (isa<ConstantAggregateZero>(V)) 
    return true;
  if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
    if (isConstant) return true;
    // If all elts are the same, we can extract.
    Constant *Op0 = C->getOperand(0);
    for (unsigned i = 1; i < C->getNumOperands(); ++i)
      if (C->getOperand(i) != Op0)
        return false;
    return true;
  }
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;
  
  // Insert element gets simplified to the inserted element or is deleted if
  // this is constant idx extract element and its a constant idx insertelt.
  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
      isa<ConstantInt>(I->getOperand(2)))
    return true;
  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
    return true;
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
    if (BO->hasOneUse() &&
        (CheapToScalarize(BO->getOperand(0), isConstant) ||
         CheapToScalarize(BO->getOperand(1), isConstant)))
      return true;
  if (CmpInst *CI = dyn_cast<CmpInst>(I))
    if (CI->hasOneUse() &&
        (CheapToScalarize(CI->getOperand(0), isConstant) ||
         CheapToScalarize(CI->getOperand(1), isConstant)))
      return true;
  
  return false;
}

/// Read and decode a shufflevector mask.
///
/// It turns undef elements into values that are larger than the number of
/// elements in the input.
static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
  unsigned NElts = SVI->getType()->getNumElements();
  if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
    return std::vector<unsigned>(NElts, 0);
  if (isa<UndefValue>(SVI->getOperand(2)))
    return std::vector<unsigned>(NElts, 2*NElts);

  std::vector<unsigned> Result;
  const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
  for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    if (isa<UndefValue>(CP->getOperand(i)))
      Result.push_back(NElts*2);  // undef -> 8
    else
      Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
  return Result;
}

/// FindScalarElement - Given a vector and an element number, see if the scalar
/// value is already around as a register, for example if it were inserted then
/// extracted from the vector.
static Value *FindScalarElement(Value *V, unsigned EltNo) {
  assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
  const VectorType *PTy = cast<VectorType>(V->getType());
  unsigned Width = PTy->getNumElements();
  if (EltNo >= Width)  // Out of range access.
    return UndefValue::get(PTy->getElementType());
  
  if (isa<UndefValue>(V))
    return UndefValue::get(PTy->getElementType());
  else if (isa<ConstantAggregateZero>(V))
    return Constant::getNullValue(PTy->getElementType());
  else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
    return CP->getOperand(EltNo);
  else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert to a variable element, we don't know what it is.
    if (!isa<ConstantInt>(III->getOperand(2))) 
      return 0;
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
    
    // If this is an insert to the element we are looking for, return the
    // inserted value.
    if (EltNo == IIElt) 
      return III->getOperand(1);
    
    // Otherwise, the insertelement doesn't modify the value, recurse on its
    // vector input.
    return FindScalarElement(III->getOperand(0), EltNo);
  } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
    unsigned InEl = getShuffleMask(SVI)[EltNo];
    if (InEl < Width)
      return FindScalarElement(SVI->getOperand(0), InEl);
    else if (InEl < Width*2)
      return FindScalarElement(SVI->getOperand(1), InEl - Width);
    else
      return UndefValue::get(PTy->getElementType());
  }
  
  // Otherwise, we don't know.
  return 0;
}

Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {

  // If vector val is undef, replace extract with scalar undef.
  if (isa<UndefValue>(EI.getOperand(0)))
    return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));

  // If vector val is constant 0, replace extract with scalar 0.
  if (isa<ConstantAggregateZero>(EI.getOperand(0)))
    return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
  
  if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
    // If vector val is constant with uniform operands, replace EI
    // with that operand
    Constant *op0 = C->getOperand(0);
    for (unsigned i = 1; i < C->getNumOperands(); ++i)
      if (C->getOperand(i) != op0) {
        op0 = 0; 
        break;
      }
    if (op0)
      return ReplaceInstUsesWith(EI, op0);
  }
  
  // If extracting a specified index from the vector, see if we can recursively
  // find a previously computed scalar that was inserted into the vector.
  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
    unsigned IndexVal = IdxC->getZExtValue();
    unsigned VectorWidth = 
      cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
      
    // If this is extracting an invalid index, turn this into undef, to avoid
    // crashing the code below.
    if (IndexVal >= VectorWidth)
      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
    
    // This instruction only demands the single element from the input vector.
    // If the input vector has a single use, simplify it based on this use
    // property.
    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
      uint64_t UndefElts;
      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
                                                1 << IndexVal,
                                                UndefElts)) {
        EI.setOperand(0, V);
        return &EI;
      }
    }
    
    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
      return ReplaceInstUsesWith(EI, Elt);
    
    // If the this extractelement is directly using a bitcast from a vector of
    // the same number of elements, see if we can find the source element from
    // it.  In this case, we will end up needing to bitcast the scalars.
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
      if (const VectorType *VT = 
              dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
        if (VT->getNumElements() == VectorWidth)
          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
            return new BitCastInst(Elt, EI.getType());
    }
  }
  
  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
    if (I->hasOneUse()) {
      // Push extractelement into predecessor operation if legal and
      // profitable to do so
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
        bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
        if (CheapToScalarize(BO, isConstantElt)) {
          ExtractElementInst *newEI0 = 
            new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
                                   EI.getName()+".lhs");
          ExtractElementInst *newEI1 =
            new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
                                   EI.getName()+".rhs");
          InsertNewInstBefore(newEI0, EI);
          InsertNewInstBefore(newEI1, EI);
          return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
        }
      } else if (isa<LoadInst>(I)) {
        unsigned AS = 
          cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
        Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
                                      PointerType::get(EI.getType(), AS), EI);
        GetElementPtrInst *GEP = 
          new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
        InsertNewInstBefore(GEP, EI);
        return new LoadInst(GEP);
      }
    }
    if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
      // Extracting the inserted element?
      if (IE->getOperand(2) == EI.getOperand(1))
        return ReplaceInstUsesWith(EI, IE->getOperand(1));
      // If the inserted and extracted elements are constants, they must not
      // be the same value, extract from the pre-inserted value instead.
      if (isa<Constant>(IE->getOperand(2)) &&
          isa<Constant>(EI.getOperand(1))) {
        AddUsesToWorkList(EI);
        EI.setOperand(0, IE->getOperand(0));
        return &EI;
      }
    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
      // If this is extracting an element from a shufflevector, figure out where
      // it came from and extract from the appropriate input element instead.
      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
        unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
        Value *Src;
        if (SrcIdx < SVI->getType()->getNumElements())
          Src = SVI->getOperand(0);
        else if (SrcIdx < SVI->getType()->getNumElements()*2) {
          SrcIdx -= SVI->getType()->getNumElements();
          Src = SVI->getOperand(1);
        } else {
          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
        }
        return new ExtractElementInst(Src, SrcIdx);
      }
    }
  }
  return 0;
}

/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
/// elements from either LHS or RHS, return the shuffle mask and true. 
/// Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                         std::vector<Constant*> &Mask) {
  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
         "Invalid CollectSingleShuffleElements");
  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
    return true;
  } else if (V == LHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
    return true;
  } else if (V == RHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
    return true;
  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);
    
    if (!isa<ConstantInt>(IdxOp))
      return false;
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
    
    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
      // Okay, we can handle this if the vector we are insertinting into is
      // transitively ok.
      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
        // If so, update the mask to reflect the inserted undef.
        Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
        return true;
      }      
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
      if (isa<ConstantInt>(EI->getOperand(1)) &&
          EI->getOperand(0)->getType() == V->getType()) {
        unsigned ExtractedIdx =
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        
        // This must be extracting from either LHS or RHS.
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
          // Okay, we can handle this if the vector we are insertinting into is
          // transitively ok.
          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
            // If so, update the mask to reflect the inserted value.
            if (EI->getOperand(0) == LHS) {
              Mask[InsertedIdx & (NumElts-1)] = 
                 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
            } else {
              assert(EI->getOperand(0) == RHS);
              Mask[InsertedIdx & (NumElts-1)] = 
                ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
              
            }
            return true;
          }
        }
      }
    }
  }
  // TODO: Handle shufflevector here!
  
  return false;
}

/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
/// that computes V and the LHS value of the shuffle.
static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
                                     Value *&RHS) {
  assert(isa<VectorType>(V->getType()) && 
         (RHS == 0 || V->getType() == RHS->getType()) &&
         "Invalid shuffle!");
  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
    return V;
  } else if (isa<ConstantAggregateZero>(V)) {
    Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
    return V;
  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);
    
    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
          EI->getOperand(0)->getType() == V->getType()) {
        unsigned ExtractedIdx =
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
        
        // Either the extracted from or inserted into vector must be RHSVec,
        // otherwise we'd end up with a shuffle of three inputs.
        if (EI->getOperand(0) == RHS || RHS == 0) {
          RHS = EI->getOperand(0);
          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
          Mask[InsertedIdx & (NumElts-1)] = 
            ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
          return V;
        }
        
        if (VecOp == RHS) {
          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
          // Everything but the extracted element is replaced with the RHS.
          for (unsigned i = 0; i != NumElts; ++i) {
            if (i != InsertedIdx)
              Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
          }
          return V;
        }
        
        // If this insertelement is a chain that comes from exactly these two
        // vectors, return the vector and the effective shuffle.
        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
          return EI->getOperand(0);
        
      }
    }
  }
  // TODO: Handle shufflevector here!
  
  // Otherwise, can't do anything fancy.  Return an identity vector.
  for (unsigned i = 0; i != NumElts; ++i)
    Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
  return V;
}

Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
  Value *VecOp    = IE.getOperand(0);
  Value *ScalarOp = IE.getOperand(1);
  Value *IdxOp    = IE.getOperand(2);
  
  // Inserting an undef or into an undefined place, remove this.
  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
    ReplaceInstUsesWith(IE, VecOp);
  
  // If the inserted element was extracted from some other vector, and if the 
  // indexes are constant, try to turn this into a shufflevector operation.
  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
        EI->getOperand(0)->getType() == IE.getType()) {
      unsigned NumVectorElts = IE.getType()->getNumElements();
      unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
      
      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
        return ReplaceInstUsesWith(IE, VecOp);
      
      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
      
      // If we are extracting a value from a vector, then inserting it right
      // back into the same place, just use the input vector.
      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
        return ReplaceInstUsesWith(IE, VecOp);      
      
      // We could theoretically do this for ANY input.  However, doing so could
      // turn chains of insertelement instructions into a chain of shufflevector
      // instructions, and right now we do not merge shufflevectors.  As such,
      // only do this in a situation where it is clear that there is benefit.
      if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
        // Turn this into shuffle(EIOp0, VecOp, Mask).  The result has all of
        // the values of VecOp, except then one read from EIOp0.
        // Build a new shuffle mask.
        std::vector<Constant*> Mask;
        if (isa<UndefValue>(VecOp))
          Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
        else {
          assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
          Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
                                                       NumVectorElts));
        } 
        Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
        return new ShuffleVectorInst(EI->getOperand(0), VecOp,
                                     ConstantVector::get(Mask));
      }
      
      // If this insertelement isn't used by some other insertelement, turn it
      // (and any insertelements it points to), into one big shuffle.
      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
        std::vector<Constant*> Mask;
        Value *RHS = 0;
        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
        // We now have a shuffle of LHS, RHS, Mask.
        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
      }
    }
  }

  return 0;
}


Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  Value *LHS = SVI.getOperand(0);
  Value *RHS = SVI.getOperand(1);
  std::vector<unsigned> Mask = getShuffleMask(&SVI);

  bool MadeChange = false;
  
  // Undefined shuffle mask -> undefined value.
  if (isa<UndefValue>(SVI.getOperand(2)))
    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
  
  // If we have shuffle(x, undef, mask) and any elements of mask refer to
  // the undef, change them to undefs.
  if (isa<UndefValue>(SVI.getOperand(1))) {
    // Scan to see if there are any references to the RHS.  If so, replace them
    // with undef element refs and set MadeChange to true.
    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
      if (Mask[i] >= e && Mask[i] != 2*e) {
        Mask[i] = 2*e;
        MadeChange = true;
      }
    }
    
    if (MadeChange) {
      // Remap any references to RHS to use LHS.
      std::vector<Constant*> Elts;
      for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
        if (Mask[i] == 2*e)
          Elts.push_back(UndefValue::get(Type::Int32Ty));
        else
          Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
      }
      SVI.setOperand(2, ConstantVector::get(Elts));
    }
  }
  
  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
  if (LHS == RHS || isa<UndefValue>(LHS)) {
    if (isa<UndefValue>(LHS) && LHS == RHS) {
      // shuffle(undef,undef,mask) -> undef.
      return ReplaceInstUsesWith(SVI, LHS);
    }
    
    // Remap any references to RHS to use LHS.
    std::vector<Constant*> Elts;
    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
      if (Mask[i] >= 2*e)
        Elts.push_back(UndefValue::get(Type::Int32Ty));
      else {
        if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
            (Mask[i] <  e && isa<UndefValue>(LHS)))
          Mask[i] = 2*e;     // Turn into undef.
        else
          Mask[i] &= (e-1);  // Force to LHS.
        Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
      }
    }
    SVI.setOperand(0, SVI.getOperand(1));
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
    SVI.setOperand(2, ConstantVector::get(Elts));
    LHS = SVI.getOperand(0);
    RHS = SVI.getOperand(1);
    MadeChange = true;
  }
  
  // Analyze the shuffle, are the LHS or RHS and identity shuffles?
  bool isLHSID = true, isRHSID = true;
    
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] >= e*2) continue;  // Ignore undef values.
    // Is this an identity shuffle of the LHS value?
    isLHSID &= (Mask[i] == i);
      
    // Is this an identity shuffle of the RHS value?
    isRHSID &= (Mask[i]-e == i);
  }

  // Eliminate identity shuffles.
  if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
  if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
  
  // If the LHS is a shufflevector itself, see if we can combine it with this
  // one without producing an unusual shuffle.  Here we are really conservative:
  // we are absolutely afraid of producing a shuffle mask not in the input
  // program, because the code gen may not be smart enough to turn a merged
  // shuffle into two specific shuffles: it may produce worse code.  As such,
  // we only merge two shuffles if the result is one of the two input shuffle
  // masks.  In this case, merging the shuffles just removes one instruction,
  // which we know is safe.  This is good for things like turning:
  // (splat(splat)) -> splat.
  if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
    if (isa<UndefValue>(RHS)) {
      std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);

      std::vector<unsigned> NewMask;
      for (unsigned i = 0, e = Mask.size(); i != e; ++i)
        if (Mask[i] >= 2*e)
          NewMask.push_back(2*e);
        else
          NewMask.push_back(LHSMask[Mask[i]]);
      
      // If the result mask is equal to the src shuffle or this shuffle mask, do
      // the replacement.
      if (NewMask == LHSMask || NewMask == Mask) {
        std::vector<Constant*> Elts;
        for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
          if (NewMask[i] >= e*2) {
            Elts.push_back(UndefValue::get(Type::Int32Ty));
          } else {
            Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
          }
        }
        return new ShuffleVectorInst(LHSSVI->getOperand(0),
                                     LHSSVI->getOperand(1),
                                     ConstantVector::get(Elts));
      }
    }
  }

  return MadeChange ? &SVI : 0;
}




/// TryToSinkInstruction - Try to move the specified instruction from its
/// current block into the beginning of DestBlock, which can only happen if it's
/// safe to move the instruction past all of the instructions between it and the
/// end of its block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
  assert(I->hasOneUse() && "Invariants didn't hold!");

  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
  if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;

  // Do not sink alloca instructions out of the entry block.
  if (isa<AllocaInst>(I) && I->getParent() ==
        &DestBlock->getParent()->getEntryBlock())
    return false;

  // We can only sink load instructions if there is nothing between the load and
  // the end of block that could change the value.
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
         Scan != E; ++Scan)
      if (Scan->mayWriteToMemory())
        return false;
  }

  BasicBlock::iterator InsertPos = DestBlock->begin();
  while (isa<PHINode>(InsertPos)) ++InsertPos;

  I->moveBefore(InsertPos);
  ++NumSunkInst;
  return true;
}


/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
/// all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful.  In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant).  Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
///
static void AddReachableCodeToWorklist(BasicBlock *BB, 
                                       SmallPtrSet<BasicBlock*, 64> &Visited,
                                       InstCombiner &IC,
                                       const TargetData *TD) {
  std::vector<BasicBlock*> Worklist;
  Worklist.push_back(BB);

  while (!Worklist.empty()) {
    BB = Worklist.back();
    Worklist.pop_back();
    
    // We have now visited this block!  If we've already been here, ignore it.
    if (!Visited.insert(BB)) continue;
    
    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
      Instruction *Inst = BBI++;
      
      // DCE instruction if trivially dead.
      if (isInstructionTriviallyDead(Inst)) {
        ++NumDeadInst;
        DOUT << "IC: DCE: " << *Inst;
        Inst->eraseFromParent();
        continue;
      }
      
      // ConstantProp instruction if trivially constant.
      if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
        DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
        Inst->replaceAllUsesWith(C);
        ++NumConstProp;
        Inst->eraseFromParent();
        continue;
      }
     
      IC.AddToWorkList(Inst);
    }

    // Recursively visit successors.  If this is a branch or switch on a
    // constant, only visit the reachable successor.
    TerminatorInst *TI = BB->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
        Worklist.push_back(BI->getSuccessor(!CondVal));
        continue;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
        // See if this is an explicit destination.
        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
          if (SI->getCaseValue(i) == Cond) {
            Worklist.push_back(SI->getSuccessor(i));
            continue;
          }
        
        // Otherwise it is the default destination.
        Worklist.push_back(SI->getSuccessor(0));
        continue;
      }
    }
    
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      Worklist.push_back(TI->getSuccessor(i));
  }
}

bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
  bool Changed = false;
  TD = &getAnalysis<TargetData>();
  
  DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
             << F.getNameStr() << "\n");

  {
    // Do a depth-first traversal of the function, populate the worklist with
    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
    // track of which blocks we visit.
    SmallPtrSet<BasicBlock*, 64> Visited;
    AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);

    // Do a quick scan over the function.  If we find any blocks that are
    // unreachable, remove any instructions inside of them.  This prevents
    // the instcombine code from having to deal with some bad special cases.
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
      if (!Visited.count(BB)) {
        Instruction *Term = BB->getTerminator();
        while (Term != BB->begin()) {   // Remove instrs bottom-up
          BasicBlock::iterator I = Term; --I;

          DOUT << "IC: DCE: " << *I;
          ++NumDeadInst;

          if (!I->use_empty())
            I->replaceAllUsesWith(UndefValue::get(I->getType()));
          I->eraseFromParent();
        }
      }
  }

  while (!Worklist.empty()) {
    Instruction *I = RemoveOneFromWorkList();
    if (I == 0) continue;  // skip null values.

    // Check to see if we can DCE the instruction.
    if (isInstructionTriviallyDead(I)) {
      // Add operands to the worklist.
      if (I->getNumOperands() < 4)
        AddUsesToWorkList(*I);
      ++NumDeadInst;

      DOUT << "IC: DCE: " << *I;

      I->eraseFromParent();
      RemoveFromWorkList(I);
      continue;
    }

    // Instruction isn't dead, see if we can constant propagate it.
    if (Constant *C = ConstantFoldInstruction(I, TD)) {
      DOUT << "IC: ConstFold to: " << *C << " from: " << *I;

      // Add operands to the worklist.
      AddUsesToWorkList(*I);
      ReplaceInstUsesWith(*I, C);

      ++NumConstProp;
      I->eraseFromParent();
      RemoveFromWorkList(I);
      continue;
    }

    // See if we can trivially sink this instruction to a successor basic block.
    if (I->hasOneUse()) {
      BasicBlock *BB = I->getParent();
      BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
      if (UserParent != BB) {
        bool UserIsSuccessor = false;
        // See if the user is one of our successors.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          if (*SI == UserParent) {
            UserIsSuccessor = true;
            break;
          }

        // If the user is one of our immediate successors, and if that successor
        // only has us as a predecessors (we'd have to split the critical edge
        // otherwise), we can keep going.
        if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
            next(pred_begin(UserParent)) == pred_end(UserParent))
          // Okay, the CFG is simple enough, try to sink this instruction.
          Changed |= TryToSinkInstruction(I, UserParent);
      }
    }

    // Now that we have an instruction, try combining it to simplify it...
#ifndef NDEBUG
    std::string OrigI;
#endif
    DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        DOUT << "IC: Old = " << *I
             << "    New = " << *Result;

        // Everything uses the new instruction now.
        I->replaceAllUsesWith(Result);

        // Push the new instruction and any users onto the worklist.
        AddToWorkList(Result);
        AddUsersToWorkList(*Result);

        // Move the name to the new instruction first.
        Result->takeName(I);

        // Insert the new instruction into the basic block...
        BasicBlock *InstParent = I->getParent();
        BasicBlock::iterator InsertPos = I;

        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
            ++InsertPos;

        InstParent->getInstList().insert(InsertPos, Result);

        // Make sure that we reprocess all operands now that we reduced their
        // use counts.
        AddUsesToWorkList(*I);

        // Instructions can end up on the worklist more than once.  Make sure
        // we do not process an instruction that has been deleted.
        RemoveFromWorkList(I);

        // Erase the old instruction.
        InstParent->getInstList().erase(I);
      } else {
#ifndef NDEBUG
        DOUT << "IC: Mod = " << OrigI
             << "    New = " << *I;
#endif

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (isInstructionTriviallyDead(I)) {
          // Make sure we process all operands now that we are reducing their
          // use counts.
          AddUsesToWorkList(*I);

          // Instructions may end up in the worklist more than once.  Erase all
          // occurrences of this instruction.
          RemoveFromWorkList(I);
          I->eraseFromParent();
        } else {
          AddToWorkList(I);
          AddUsersToWorkList(*I);
        }
      }
      Changed = true;
    }
  }

  assert(WorklistMap.empty() && "Worklist empty, but map not?");
    
  // Do an explicit clear, this shrinks the map if needed.
  WorklistMap.clear();
  return Changed;
}


bool InstCombiner::runOnFunction(Function &F) {
  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
  
  bool EverMadeChange = false;

  // Iterate while there is work to do.
  unsigned Iteration = 0;
  while (DoOneIteration(F, Iteration++)) 
    EverMadeChange = true;
  return EverMadeChange;
}

FunctionPass *llvm::createInstructionCombiningPass() {
  return new InstCombiner();
}