summaryrefslogtreecommitdiff
path: root/lib/Target/R600/SIISelLowering.cpp
blob: 0a6166da58d6a758a302ab37423435815434a4ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//

#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#endif

#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/ADT/SmallString.h"

using namespace llvm;

SITargetLowering::SITargetLowering(TargetMachine &TM,
                                   const AMDGPUSubtarget &STI)
    : AMDGPUTargetLowering(TM, STI) {
  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);

  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);

  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);

  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);

  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);

  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);

  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);

  computeRegisterProperties(STI.getRegisterInfo());

  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);

  setOperationAction(ISD::ADD, MVT::i32, Legal);
  setOperationAction(ISD::ADDC, MVT::i32, Legal);
  setOperationAction(ISD::ADDE, MVT::i32, Legal);
  setOperationAction(ISD::SUBC, MVT::i32, Legal);
  setOperationAction(ISD::SUBE, MVT::i32, Legal);

  setOperationAction(ISD::FSIN, MVT::f32, Custom);
  setOperationAction(ISD::FCOS, MVT::f32, Custom);

  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
  setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
  setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);

  // We need to custom lower vector stores from local memory
  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);

  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
  setOperationAction(ISD::STORE, MVT::v16i32, Custom);

  setOperationAction(ISD::STORE, MVT::i1, Custom);
  setOperationAction(ISD::STORE, MVT::v4i32, Custom);

  setOperationAction(ISD::SELECT, MVT::i64, Custom);
  setOperationAction(ISD::SELECT, MVT::f64, Promote);
  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);

  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);

  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);

  setOperationAction(ISD::BSWAP, MVT::i32, Legal);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);

  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);

  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
  setOperationAction(ISD::BRCOND, MVT::Other, Custom);

  for (MVT VT : MVT::integer_valuetypes()) {
    if (VT == MVT::i64)
      continue;

    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);

    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);

    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
  }

  for (MVT VT : MVT::integer_vector_valuetypes()) {
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
  }

  for (MVT VT : MVT::fp_valuetypes())
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);

  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);

  setOperationAction(ISD::LOAD, MVT::i1, Custom);

  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);

  // These should use UDIVREM, so set them to expand
  setOperationAction(ISD::UDIV, MVT::i64, Expand);
  setOperationAction(ISD::UREM, MVT::i64, Expand);

  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
  setOperationAction(ISD::SELECT, MVT::i1, Promote);

  // We only support LOAD/STORE and vector manipulation ops for vectors
  // with > 4 elements.
  for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) {
    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
      switch(Op) {
      case ISD::LOAD:
      case ISD::STORE:
      case ISD::BUILD_VECTOR:
      case ISD::BITCAST:
      case ISD::EXTRACT_VECTOR_ELT:
      case ISD::INSERT_VECTOR_ELT:
      case ISD::INSERT_SUBVECTOR:
      case ISD::EXTRACT_SUBVECTOR:
        break;
      case ISD::CONCAT_VECTORS:
        setOperationAction(Op, VT, Custom);
        break;
      default:
        setOperationAction(Op, VT, Expand);
        break;
      }
    }
  }

  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
    setOperationAction(ISD::FRINT, MVT::f64, Legal);
  }

  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
  setOperationAction(ISD::FDIV, MVT::f32, Custom);
  setOperationAction(ISD::FDIV, MVT::f64, Custom);

  setTargetDAGCombine(ISD::FADD);
  setTargetDAGCombine(ISD::FSUB);
  setTargetDAGCombine(ISD::FMINNUM);
  setTargetDAGCombine(ISD::FMAXNUM);
  setTargetDAGCombine(ISD::SELECT_CC);
  setTargetDAGCombine(ISD::SETCC);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::OR);
  setTargetDAGCombine(ISD::UINT_TO_FP);

  // All memory operations. Some folding on the pointer operand is done to help
  // matching the constant offsets in the addressing modes.
  setTargetDAGCombine(ISD::LOAD);
  setTargetDAGCombine(ISD::STORE);
  setTargetDAGCombine(ISD::ATOMIC_LOAD);
  setTargetDAGCombine(ISD::ATOMIC_STORE);
  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
  setTargetDAGCombine(ISD::ATOMIC_SWAP);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);

  setSchedulingPreference(Sched::RegPressure);
}

//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//

bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
                                          EVT) const {
  // SI has some legal vector types, but no legal vector operations. Say no
  // shuffles are legal in order to prefer scalarizing some vector operations.
  return false;
}

// FIXME: This really needs an address space argument. The immediate offset
// size is different for different sets of memory instruction sets.

// The single offset DS instructions have a 16-bit unsigned byte offset.
//
// MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
// r + i with addr64. 32-bit has more addressing mode options. Depending on the
// resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
//
// SMRD instructions have an 8-bit, dword offset.
//
bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
                                             Type *Ty) const {
  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  // Allow a 16-bit unsigned immediate field, since this is what DS instructions
  // use.
  if (!isUInt<16>(AM.BaseOffs))
    return false;

  // Only support r+r,
  switch (AM.Scale) {
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
    break;
  case 1:
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
      return false;
    // Otherwise we have r+r or r+i.
    break;
  case 2:
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
      return false;
    // Allow 2*r as r+r.
    break;
  default: // Don't allow n * r
    return false;
  }

  return true;
}

bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
                                                      unsigned AddrSpace,
                                                      unsigned Align,
                                                      bool *IsFast) const {
  if (IsFast)
    *IsFast = false;

  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
  // which isn't a simple VT.
  if (!VT.isSimple() || VT == MVT::Other)
    return false;

  // TODO - CI+ supports unaligned memory accesses, but this requires driver
  // support.

  // XXX - The only mention I see of this in the ISA manual is for LDS direct
  // reads the "byte address and must be dword aligned". Is it also true for the
  // normal loads and stores?
  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
    // with adjacent offsets.
    return Align % 4 == 0;
  }

  // Smaller than dword value must be aligned.
  // FIXME: This should be allowed on CI+
  if (VT.bitsLT(MVT::i32))
    return false;

  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
  // byte-address are ignored, thus forcing Dword alignment.
  // This applies to private, global, and constant memory.
  if (IsFast)
    *IsFast = true;

  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}

EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
                                          unsigned SrcAlign, bool IsMemset,
                                          bool ZeroMemset,
                                          bool MemcpyStrSrc,
                                          MachineFunction &MF) const {
  // FIXME: Should account for address space here.

  // The default fallback uses the private pointer size as a guess for a type to
  // use. Make sure we switch these to 64-bit accesses.

  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
    return MVT::v4i32;

  if (Size >= 8 && DstAlign >= 4)
    return MVT::v2i32;

  // Use the default.
  return MVT::Other;
}

TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
    return TypeSplitVector;

  return TargetLoweringBase::getPreferredVectorAction(VT);
}

bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                                         Type *Ty) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
  return TII->isInlineConstant(Imm);
}

SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
                                         SDLoc SL, SDValue Chain,
                                         unsigned Offset, bool Signed) const {
  const DataLayout *DL = getDataLayout();
  MachineFunction &MF = DAG.getMachineFunction();
  const SIRegisterInfo *TRI =
      static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
  unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);

  Type *Ty = VT.getTypeForEVT(*DAG.getContext());

  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
  PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
  SDValue BasePtr =  DAG.getCopyFromReg(Chain, SL,
                           MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
  SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
                                             DAG.getConstant(Offset, MVT::i64));
  SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));

  return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
                     VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
                     false, // isVolatile
                     true, // isNonTemporal
                     true, // isInvariant
                     DL->getABITypeAlignment(Ty)); // Alignment
}

SDValue SITargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
    SmallVectorImpl<SDValue> &InVals) const {
  const SIRegisterInfo *TRI =
      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());

  MachineFunction &MF = DAG.getMachineFunction();
  FunctionType *FType = MF.getFunction()->getFunctionType();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  assert(CallConv == CallingConv::C);

  SmallVector<ISD::InputArg, 16> Splits;
  BitVector Skipped(Ins.size());

  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
    const ISD::InputArg &Arg = Ins[i];

    // First check if it's a PS input addr
    if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
        !Arg.Flags.isByVal()) {

      assert((PSInputNum <= 15) && "Too many PS inputs!");

      if (!Arg.Used) {
        // We can savely skip PS inputs
        Skipped.set(i);
        ++PSInputNum;
        continue;
      }

      Info->PSInputAddr |= 1 << PSInputNum++;
    }

    // Second split vertices into their elements
    if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
      ISD::InputArg NewArg = Arg;
      NewArg.Flags.setSplit();
      NewArg.VT = Arg.VT.getVectorElementType();

      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
      // three or five element vertex only needs three or five registers,
      // NOT four or eigth.
      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
      unsigned NumElements = ParamType->getVectorNumElements();

      for (unsigned j = 0; j != NumElements; ++j) {
        Splits.push_back(NewArg);
        NewArg.PartOffset += NewArg.VT.getStoreSize();
      }

    } else if (Info->getShaderType() != ShaderType::COMPUTE) {
      Splits.push_back(Arg);
    }
  }

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  // At least one interpolation mode must be enabled or else the GPU will hang.
  if (Info->getShaderType() == ShaderType::PIXEL &&
      (Info->PSInputAddr & 0x7F) == 0) {
    Info->PSInputAddr |= 1;
    CCInfo.AllocateReg(AMDGPU::VGPR0);
    CCInfo.AllocateReg(AMDGPU::VGPR1);
  }

  // The pointer to the list of arguments is stored in SGPR0, SGPR1
	// The pointer to the scratch buffer is stored in SGPR2, SGPR3
  if (Info->getShaderType() == ShaderType::COMPUTE) {
    if (Subtarget->isAmdHsaOS())
      Info->NumUserSGPRs = 2;  // FIXME: Need to support scratch buffers.
    else
      Info->NumUserSGPRs = 4;

    unsigned InputPtrReg =
        TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
    unsigned InputPtrRegLo =
        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
    unsigned InputPtrRegHi =
        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);

    unsigned ScratchPtrReg =
        TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
    unsigned ScratchPtrRegLo =
        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
    unsigned ScratchPtrRegHi =
        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);

    CCInfo.AllocateReg(InputPtrRegLo);
    CCInfo.AllocateReg(InputPtrRegHi);
    CCInfo.AllocateReg(ScratchPtrRegLo);
    CCInfo.AllocateReg(ScratchPtrRegHi);
    MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
    MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
  }

  if (Info->getShaderType() == ShaderType::COMPUTE) {
    getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
                            Splits);
  }

  AnalyzeFormalArguments(CCInfo, Splits);

  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {

    const ISD::InputArg &Arg = Ins[i];
    if (Skipped[i]) {
      InVals.push_back(DAG.getUNDEF(Arg.VT));
      continue;
    }

    CCValAssign &VA = ArgLocs[ArgIdx++];
    MVT VT = VA.getLocVT();

    if (VA.isMemLoc()) {
      VT = Ins[i].VT;
      EVT MemVT = Splits[i].VT;
      const unsigned Offset = 36 + VA.getLocMemOffset();
      // The first 36 bytes of the input buffer contains information about
      // thread group and global sizes.
      SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, DAG.getRoot(),
                                   Offset, Ins[i].Flags.isSExt());

      const PointerType *ParamTy =
        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
      if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
          ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
        // On SI local pointers are just offsets into LDS, so they are always
        // less than 16-bits.  On CI and newer they could potentially be
        // real pointers, so we can't guarantee their size.
        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
                          DAG.getValueType(MVT::i16));
      }

      InVals.push_back(Arg);
      Info->ABIArgOffset = Offset + MemVT.getStoreSize();
      continue;
    }
    assert(VA.isRegLoc() && "Parameter must be in a register!");

    unsigned Reg = VA.getLocReg();

    if (VT == MVT::i64) {
      // For now assume it is a pointer
      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
                                     &AMDGPU::SReg_64RegClass);
      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
      InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
      continue;
    }

    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);

    Reg = MF.addLiveIn(Reg, RC);
    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);

    if (Arg.VT.isVector()) {

      // Build a vector from the registers
      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
      unsigned NumElements = ParamType->getVectorNumElements();

      SmallVector<SDValue, 4> Regs;
      Regs.push_back(Val);
      for (unsigned j = 1; j != NumElements; ++j) {
        Reg = ArgLocs[ArgIdx++].getLocReg();
        Reg = MF.addLiveIn(Reg, RC);
        Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
      }

      // Fill up the missing vector elements
      NumElements = Arg.VT.getVectorNumElements() - NumElements;
      Regs.append(NumElements, DAG.getUNDEF(VT));

      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
      continue;
    }

    InVals.push_back(Val);
  }

  if (Info->getShaderType() != ShaderType::COMPUTE) {
    unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>(
        AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs()));
    Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
  }
  return Chain;
}

MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
    MachineInstr * MI, MachineBasicBlock * BB) const {

  MachineBasicBlock::iterator I = *MI;
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());

  switch (MI->getOpcode()) {
  default:
    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
  case AMDGPU::BRANCH:
    return BB;
  case AMDGPU::SI_RegisterStorePseudo: {
    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
    MachineInstrBuilder MIB =
        BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
                Reg);
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      MIB.addOperand(MI->getOperand(i));

    MI->eraseFromParent();
    break;
  }
  }
  return BB;
}

bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
  // This currently forces unfolding various combinations of fsub into fma with
  // free fneg'd operands. As long as we have fast FMA (controlled by
  // isFMAFasterThanFMulAndFAdd), we should perform these.

  // When fma is quarter rate, for f64 where add / sub are at best half rate,
  // most of these combines appear to be cycle neutral but save on instruction
  // count / code size.
  return true;
}

EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
  if (!VT.isVector()) {
    return MVT::i1;
  }
  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}

MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
  return MVT::i32;
}

// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
  VT = VT.getScalarType();

  if (!VT.isSimple())
    return false;

  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::f32:
    // This is as fast on some subtargets. However, we always have full rate f32
    // mad available which returns the same result as the separate operations
    // which we should prefer over fma. We can't use this if we want to support
    // denormals, so only report this in these cases.
    return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
  case MVT::f64:
    return true;
  default:
    break;
  }

  return false;
}

//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//

SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
  case ISD::LOAD: {
    SDValue Result = LowerLOAD(Op, DAG);
    assert((!Result.getNode() ||
            Result.getNode()->getNumValues() == 2) &&
           "Load should return a value and a chain");
    return Result;
  }

  case ISD::FSIN:
  case ISD::FCOS:
    return LowerTrig(Op, DAG);
  case ISD::SELECT: return LowerSELECT(Op, DAG);
  case ISD::FDIV: return LowerFDIV(Op, DAG);
  case ISD::STORE: return LowerSTORE(Op, DAG);
  case ISD::GlobalAddress: {
    MachineFunction &MF = DAG.getMachineFunction();
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    return LowerGlobalAddress(MFI, Op, DAG);
  }
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
  }
  return SDValue();
}

/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {

  SDNode *Parent = Value.getNode();
  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
       I != E; ++I) {

    if (I.getUse().get() != Value)
      continue;

    if (I->getOpcode() == Opcode)
      return *I;
  }
  return nullptr;
}

SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {

  FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
  unsigned FrameIndex = FINode->getIndex();

  return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
}

/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
                                      SelectionDAG &DAG) const {

  SDLoc DL(BRCOND);

  SDNode *Intr = BRCOND.getOperand(1).getNode();
  SDValue Target = BRCOND.getOperand(2);
  SDNode *BR = nullptr;

  if (Intr->getOpcode() == ISD::SETCC) {
    // As long as we negate the condition everything is fine
    SDNode *SetCC = Intr;
    assert(SetCC->getConstantOperandVal(1) == 1);
    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
           ISD::SETNE);
    Intr = SetCC->getOperand(0).getNode();

  } else {
    // Get the target from BR if we don't negate the condition
    BR = findUser(BRCOND, ISD::BR);
    Target = BR->getOperand(1);
  }

  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);

  // Build the result and
  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());

  // operands of the new intrinsic call
  SmallVector<SDValue, 4> Ops;
  Ops.push_back(BRCOND.getOperand(0));
  Ops.append(Intr->op_begin() + 1, Intr->op_end());
  Ops.push_back(Target);

  // build the new intrinsic call
  SDNode *Result = DAG.getNode(
    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
    DAG.getVTList(Res), Ops).getNode();

  if (BR) {
    // Give the branch instruction our target
    SDValue Ops[] = {
      BR->getOperand(0),
      BRCOND.getOperand(2)
    };
    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
    BR = NewBR.getNode();
  }

  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);

  // Copy the intrinsic results to registers
  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
    if (!CopyToReg)
      continue;

    Chain = DAG.getCopyToReg(
      Chain, DL,
      CopyToReg->getOperand(1),
      SDValue(Result, i - 1),
      SDValue());

    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
  }

  // Remove the old intrinsic from the chain
  DAG.ReplaceAllUsesOfValueWith(
    SDValue(Intr, Intr->getNumValues() - 1),
    Intr->getOperand(0));

  return Chain;
}

SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
                                             SDValue Op,
                                             SelectionDAG &DAG) const {
  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);

  if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);

  SDLoc DL(GSD);
  const GlobalValue *GV = GSD->getGlobal();
  MVT PtrVT = getPointerTy(GSD->getAddressSpace());

  SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);

  SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
                              DAG.getConstant(0, MVT::i32));
  SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
                              DAG.getConstant(1, MVT::i32));

  SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
                           PtrLo, GA);
  SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
                           PtrHi, DAG.getConstant(0, MVT::i32),
                           SDValue(Lo.getNode(), 1));
  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
}

SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
                                                  SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const SIRegisterInfo *TRI =
      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();

  switch (IntrinsicID) {
  case Intrinsic::r600_read_ngroups_x:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::NGROUPS_X, false);
  case Intrinsic::r600_read_ngroups_y:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::NGROUPS_Y, false);
  case Intrinsic::r600_read_ngroups_z:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::NGROUPS_Z, false);
  case Intrinsic::r600_read_global_size_x:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
  case Intrinsic::r600_read_global_size_y:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
  case Intrinsic::r600_read_global_size_z:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
  case Intrinsic::r600_read_local_size_x:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::LOCAL_SIZE_X, false);
  case Intrinsic::r600_read_local_size_y:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
  case Intrinsic::r600_read_local_size_z:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          SI::KernelInputOffsets::LOCAL_SIZE_Z, false);

  case Intrinsic::AMDGPU_read_workdim:
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                          MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
                          false);

  case Intrinsic::r600_read_tgid_x:
    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
  case Intrinsic::r600_read_tgid_y:
    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
  case Intrinsic::r600_read_tgid_z:
    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
  case Intrinsic::r600_read_tidig_x:
    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
  case Intrinsic::r600_read_tidig_y:
    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
  case Intrinsic::r600_read_tidig_z:
    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
  case AMDGPUIntrinsic::SI_load_const: {
    SDValue Ops[] = {
      Op.getOperand(1),
      Op.getOperand(2)
    };

    MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo(),
      MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
      VT.getStoreSize(), 4);
    return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
                                   Op->getVTList(), Ops, VT, MMO);
  }
  case AMDGPUIntrinsic::SI_sample:
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
  case AMDGPUIntrinsic::SI_sampleb:
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
  case AMDGPUIntrinsic::SI_sampled:
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
  case AMDGPUIntrinsic::SI_samplel:
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
  case AMDGPUIntrinsic::SI_vs_load_input:
    return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
                       Op.getOperand(1),
                       Op.getOperand(2),
                       Op.getOperand(3));

  case AMDGPUIntrinsic::AMDGPU_fract:
  case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
    return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
                       DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));

  default:
    return AMDGPUTargetLowering::LowerOperation(Op, DAG);
  }
}

SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
                                              SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  SDValue Chain = Op.getOperand(0);
  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();

  switch (IntrinsicID) {
  case AMDGPUIntrinsic::SI_tbuffer_store: {
    SDLoc DL(Op);
    SDValue Ops[] = {
      Chain,
      Op.getOperand(2),
      Op.getOperand(3),
      Op.getOperand(4),
      Op.getOperand(5),
      Op.getOperand(6),
      Op.getOperand(7),
      Op.getOperand(8),
      Op.getOperand(9),
      Op.getOperand(10),
      Op.getOperand(11),
      Op.getOperand(12),
      Op.getOperand(13),
      Op.getOperand(14)
    };

    EVT VT = Op.getOperand(3).getValueType();

    MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo(),
      MachineMemOperand::MOStore,
      VT.getStoreSize(), 4);
    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
                                   Op->getVTList(), Ops, VT, MMO);
  }
  default:
    return SDValue();
  }
}

SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  LoadSDNode *Load = cast<LoadSDNode>(Op);

  if (Op.getValueType().isVector()) {
    assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
           "Custom lowering for non-i32 vectors hasn't been implemented.");
    unsigned NumElements = Op.getValueType().getVectorNumElements();
    assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
    switch (Load->getAddressSpace()) {
      default: break;
      case AMDGPUAS::GLOBAL_ADDRESS:
      case AMDGPUAS::PRIVATE_ADDRESS:
        // v4 loads are supported for private and global memory.
        if (NumElements <= 4)
          break;
        // fall-through
      case AMDGPUAS::LOCAL_ADDRESS:
        return ScalarizeVectorLoad(Op, DAG);
    }
  }

  return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
}

SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
                                               const SDValue &Op,
                                               SelectionDAG &DAG) const {
  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
                     Op.getOperand(2),
                     Op.getOperand(3),
                     Op.getOperand(4));
}

SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
  if (Op.getValueType() != MVT::i64)
    return SDValue();

  SDLoc DL(Op);
  SDValue Cond = Op.getOperand(0);

  SDValue Zero = DAG.getConstant(0, MVT::i32);
  SDValue One = DAG.getConstant(1, MVT::i32);

  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));

  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);

  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);

  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);

  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);

  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}

// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
  SDLoc SL(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  EVT VT = Op.getValueType();
  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;

  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
    if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
        CLHS->isExactlyValue(1.0)) {
      // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
      // the CI documentation has a worst case error of 1 ulp.
      // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
      // use it as long as we aren't trying to use denormals.

      // 1.0 / sqrt(x) -> rsq(x)
      //
      // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
      // error seems really high at 2^29 ULP.
      if (RHS.getOpcode() == ISD::FSQRT)
        return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));

      // 1.0 / x -> rcp(x)
      return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
    }
  }

  if (Unsafe) {
    // Turn into multiply by the reciprocal.
    // x / y -> x * (1.0 / y)
    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
  }

  return SDValue();
}

SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
  SDValue FastLowered = LowerFastFDIV(Op, DAG);
  if (FastLowered.getNode())
    return FastLowered;

  // This uses v_rcp_f32 which does not handle denormals. Let this hit a
  // selection error for now rather than do something incorrect.
  if (Subtarget->hasFP32Denormals())
    return SDValue();

  SDLoc SL(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);

  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);

  const APFloat K0Val(BitsToFloat(0x6f800000));
  const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);

  const APFloat K1Val(BitsToFloat(0x2f800000));
  const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);

  const SDValue One = DAG.getConstantFP(1.0, MVT::f32);

  EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);

  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);

  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);

  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);

  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);

  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);

  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}

SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
  if (DAG.getTarget().Options.UnsafeFPMath)
    return LowerFastFDIV(Op, DAG);

  SDLoc SL(Op);
  SDValue X = Op.getOperand(0);
  SDValue Y = Op.getOperand(1);

  const SDValue One = DAG.getConstantFP(1.0, MVT::f64);

  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);

  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);

  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);

  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);

  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);

  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);

  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);

  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);

  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);

  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
                             NegDivScale0, Mul, DivScale1);

  SDValue Scale;

  if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
    // Workaround a hardware bug on SI where the condition output from div_scale
    // is not usable.

    const SDValue Hi = DAG.getConstant(1, MVT::i32);

    // Figure out if the scale to use for div_fmas.
    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);

    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);

    SDValue Scale0Hi
      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
    SDValue Scale1Hi
      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);

    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
  } else {
    Scale = DivScale1.getValue(1);
  }

  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
                             Fma4, Fma3, Mul, Scale);

  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}

SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  if (VT == MVT::f32)
    return LowerFDIV32(Op, DAG);

  if (VT == MVT::f64)
    return LowerFDIV64(Op, DAG);

  llvm_unreachable("Unexpected type for fdiv");
}

SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  StoreSDNode *Store = cast<StoreSDNode>(Op);
  EVT VT = Store->getMemoryVT();

  // These stores are legal.
  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
    if (VT.isVector() && VT.getVectorNumElements() > 4)
      return ScalarizeVectorStore(Op, DAG);
    return SDValue();
  }

  SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
  if (Ret.getNode())
    return Ret;

  if (VT.isVector() && VT.getVectorNumElements() >= 8)
      return ScalarizeVectorStore(Op, DAG);

  if (VT == MVT::i1)
    return DAG.getTruncStore(Store->getChain(), DL,
                        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
                        Store->getBasePtr(), MVT::i1, Store->getMemOperand());

  return SDValue();
}

SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDValue Arg = Op.getOperand(0);
  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
        DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
          DAG.getConstantFP(0.5 / M_PI, VT)));

  switch (Op.getOpcode()) {
  case ISD::FCOS:
    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
  case ISD::FSIN:
    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
  default:
    llvm_unreachable("Wrong trig opcode");
  }
}

//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//

SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
                                                     DAGCombinerInfo &DCI) const {
  EVT VT = N->getValueType(0);
  EVT ScalarVT = VT.getScalarType();
  if (ScalarVT != MVT::f32)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  SDValue Src = N->getOperand(0);
  EVT SrcVT = Src.getValueType();

  // TODO: We could try to match extracting the higher bytes, which would be
  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
  // about in practice.
  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
      DCI.AddToWorklist(Cvt.getNode());
      return Cvt;
    }
  }

  // We are primarily trying to catch operations on illegal vector types
  // before they are expanded.
  // For scalars, we can use the more flexible method of checking masked bits
  // after legalization.
  if (!DCI.isBeforeLegalize() ||
      !SrcVT.isVector() ||
      SrcVT.getVectorElementType() != MVT::i8) {
    return SDValue();
  }

  assert(DCI.isBeforeLegalize() && "Unexpected legal type");

  // Weird sized vectors are a pain to handle, but we know 3 is really the same
  // size as 4.
  unsigned NElts = SrcVT.getVectorNumElements();
  if (!SrcVT.isSimple() && NElts != 3)
    return SDValue();

  // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
  // prevent a mess from expanding to v4i32 and repacking.
  if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
    EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
    EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
    LoadSDNode *Load = cast<LoadSDNode>(Src);

    unsigned AS = Load->getAddressSpace();
    unsigned Align = Load->getAlignment();
    Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);

    // Don't try to replace the load if we have to expand it due to alignment
    // problems. Otherwise we will end up scalarizing the load, and trying to
    // repack into the vector for no real reason.
    if (Align < ABIAlignment &&
        !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
      return SDValue();
    }

    SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
                                     Load->getChain(),
                                     Load->getBasePtr(),
                                     LoadVT,
                                     Load->getMemOperand());

    // Make sure successors of the original load stay after it by updating
    // them to use the new Chain.
    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));

    SmallVector<SDValue, 4> Elts;
    if (RegVT.isVector())
      DAG.ExtractVectorElements(NewLoad, Elts);
    else
      Elts.push_back(NewLoad);

    SmallVector<SDValue, 4> Ops;

    unsigned EltIdx = 0;
    for (SDValue Elt : Elts) {
      unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
      for (unsigned I = 0; I < ComponentsInElt; ++I) {
        unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
        SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
        DCI.AddToWorklist(Cvt.getNode());
        Ops.push_back(Cvt);
      }

      ++EltIdx;
    }

    assert(Ops.size() == NElts);

    return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
  }

  return SDValue();
}

/// \brief Return true if the given offset Size in bytes can be folded into
/// the immediate offsets of a memory instruction for the given address space.
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
                          const AMDGPUSubtarget &STI) {
  switch (AS) {
  case AMDGPUAS::GLOBAL_ADDRESS: {
    // MUBUF instructions a 12-bit offset in bytes.
    return isUInt<12>(OffsetSize);
  }
  case AMDGPUAS::CONSTANT_ADDRESS: {
    // SMRD instructions have an 8-bit offset in dwords on SI and
    // a 20-bit offset in bytes on VI.
    if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
      return isUInt<20>(OffsetSize);
    else
      return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
  }
  case AMDGPUAS::LOCAL_ADDRESS:
  case AMDGPUAS::REGION_ADDRESS: {
    // The single offset versions have a 16-bit offset in bytes.
    return isUInt<16>(OffsetSize);
  }
  case AMDGPUAS::PRIVATE_ADDRESS:
  // Indirect register addressing does not use any offsets.
  default:
    return 0;
  }
}

// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)

// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
                                               unsigned AddrSpace,
                                               DAGCombinerInfo &DCI) const {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  if (N0.getOpcode() != ISD::ADD)
    return SDValue();

  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
  if (!CN1)
    return SDValue();

  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
  if (!CAdd)
    return SDValue();

  // If the resulting offset is too large, we can't fold it into the addressing
  // mode offset.
  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
  if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);
  EVT VT = N->getValueType(0);

  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
  SDValue COffset = DAG.getConstant(Offset, MVT::i32);

  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
}

SDValue SITargetLowering::performAndCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  if (DCI.isBeforeLegalize())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;

  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  if (LHS.getOpcode() == ISD::SETCC &&
      RHS.getOpcode() == ISD::SETCC) {
    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();

    SDValue X = LHS.getOperand(0);
    SDValue Y = RHS.getOperand(0);
    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
      return SDValue();

    if (LCC == ISD::SETO) {
      if (X != LHS.getOperand(1))
        return SDValue();

      if (RCC == ISD::SETUNE) {
        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
        if (!C1 || !C1->isInfinity() || C1->isNegative())
          return SDValue();

        const uint32_t Mask = SIInstrFlags::N_NORMAL |
                              SIInstrFlags::N_SUBNORMAL |
                              SIInstrFlags::N_ZERO |
                              SIInstrFlags::P_ZERO |
                              SIInstrFlags::P_SUBNORMAL |
                              SIInstrFlags::P_NORMAL;

        static_assert(((~(SIInstrFlags::S_NAN |
                          SIInstrFlags::Q_NAN |
                          SIInstrFlags::N_INFINITY |
                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
                      "mask not equal");

        return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
                           X, DAG.getConstant(Mask, MVT::i32));
      }
    }
  }

  return SDValue();
}

SDValue SITargetLowering::performOrCombine(SDNode *N,
                                           DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
  if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
      RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
    SDValue Src = LHS.getOperand(0);
    if (Src != RHS.getOperand(0))
      return SDValue();

    const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
    const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
    if (!CLHS || !CRHS)
      return SDValue();

    // Only 10 bits are used.
    static const uint32_t MaxMask = 0x3ff;

    uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
    return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
                       Src, DAG.getConstant(NewMask, MVT::i32));
  }

  return SDValue();
}

SDValue SITargetLowering::performClassCombine(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDValue Mask = N->getOperand(1);

  // fp_class x, 0 -> false
  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
    if (CMask->isNullValue())
      return DAG.getConstant(0, MVT::i1);
  }

  return SDValue();
}

static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
  switch (Opc) {
  case ISD::FMAXNUM:
    return AMDGPUISD::FMAX3;
  case AMDGPUISD::SMAX:
    return AMDGPUISD::SMAX3;
  case AMDGPUISD::UMAX:
    return AMDGPUISD::UMAX3;
  case ISD::FMINNUM:
    return AMDGPUISD::FMIN3;
  case AMDGPUISD::SMIN:
    return AMDGPUISD::SMIN3;
  case AMDGPUISD::UMIN:
    return AMDGPUISD::UMIN3;
  default:
    llvm_unreachable("Not a min/max opcode");
  }
}

SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
                                                 DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;

  unsigned Opc = N->getOpcode();
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);

  // Only do this if the inner op has one use since this will just increases
  // register pressure for no benefit.

  // max(max(a, b), c)
  if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
    SDLoc DL(N);
    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
                       DL,
                       N->getValueType(0),
                       Op0.getOperand(0),
                       Op0.getOperand(1),
                       Op1);
  }

  // max(a, max(b, c))
  if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
    SDLoc DL(N);
    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
                       DL,
                       N->getValueType(0),
                       Op0,
                       Op1.getOperand(0),
                       Op1.getOperand(1));
  }

  return SDValue();
}

SDValue SITargetLowering::performSetCCCombine(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  EVT VT = LHS.getValueType();

  if (VT != MVT::f32 && VT != MVT::f64)
    return SDValue();

  // Match isinf pattern
  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
    if (!CRHS)
      return SDValue();

    const APFloat &APF = CRHS->getValueAPF();
    if (APF.isInfinity() && !APF.isNegative()) {
      unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
                         LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
    }
  }

  return SDValue();
}

SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  switch (N->getOpcode()) {
  default:
    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
  case ISD::SETCC:
    return performSetCCCombine(N, DCI);
  case ISD::FMAXNUM: // TODO: What about fmax_legacy?
  case ISD::FMINNUM:
  case AMDGPUISD::SMAX:
  case AMDGPUISD::SMIN:
  case AMDGPUISD::UMAX:
  case AMDGPUISD::UMIN: {
    if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
        N->getValueType(0) != MVT::f64 &&
        getTargetMachine().getOptLevel() > CodeGenOpt::None)
      return performMin3Max3Combine(N, DCI);
    break;
  }

  case AMDGPUISD::CVT_F32_UBYTE0:
  case AMDGPUISD::CVT_F32_UBYTE1:
  case AMDGPUISD::CVT_F32_UBYTE2:
  case AMDGPUISD::CVT_F32_UBYTE3: {
    unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;

    SDValue Src = N->getOperand(0);
    APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);

    APInt KnownZero, KnownOne;
    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
                                          !DCI.isBeforeLegalizeOps());
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
        TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
      DCI.CommitTargetLoweringOpt(TLO);
    }

    break;
  }

  case ISD::UINT_TO_FP: {
    return performUCharToFloatCombine(N, DCI);

  case ISD::FADD: {
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
      break;

    EVT VT = N->getValueType(0);
    if (VT != MVT::f32)
      break;

    // Only do this if we are not trying to support denormals. v_mad_f32 does
    // not support denormals ever.
    if (Subtarget->hasFP32Denormals())
      break;

    SDValue LHS = N->getOperand(0);
    SDValue RHS = N->getOperand(1);

    // These should really be instruction patterns, but writing patterns with
    // source modiifiers is a pain.

    // fadd (fadd (a, a), b) -> mad 2.0, a, b
    if (LHS.getOpcode() == ISD::FADD) {
      SDValue A = LHS.getOperand(0);
      if (A == LHS.getOperand(1)) {
        const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
      }
    }

    // fadd (b, fadd (a, a)) -> mad 2.0, a, b
    if (RHS.getOpcode() == ISD::FADD) {
      SDValue A = RHS.getOperand(0);
      if (A == RHS.getOperand(1)) {
        const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
      }
    }

    return SDValue();
  }
  case ISD::FSUB: {
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
      break;

    EVT VT = N->getValueType(0);

    // Try to get the fneg to fold into the source modifier. This undoes generic
    // DAG combines and folds them into the mad.
    //
    // Only do this if we are not trying to support denormals. v_mad_f32 does
    // not support denormals ever.
    if (VT == MVT::f32 &&
        !Subtarget->hasFP32Denormals()) {
      SDValue LHS = N->getOperand(0);
      SDValue RHS = N->getOperand(1);
      if (LHS.getOpcode() == ISD::FADD) {
        // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)

        SDValue A = LHS.getOperand(0);
        if (A == LHS.getOperand(1)) {
          const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
          SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);

          return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
        }
      }

      if (RHS.getOpcode() == ISD::FADD) {
        // (fsub c, (fadd a, a)) -> mad -2.0, a, c

        SDValue A = RHS.getOperand(0);
        if (A == RHS.getOperand(1)) {
          const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
          return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
        }
      }

      return SDValue();
    }

    break;
  }
  }
  case ISD::LOAD:
  case ISD::STORE:
  case ISD::ATOMIC_LOAD:
  case ISD::ATOMIC_STORE:
  case ISD::ATOMIC_CMP_SWAP:
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
  case ISD::ATOMIC_SWAP:
  case ISD::ATOMIC_LOAD_ADD:
  case ISD::ATOMIC_LOAD_SUB:
  case ISD::ATOMIC_LOAD_AND:
  case ISD::ATOMIC_LOAD_OR:
  case ISD::ATOMIC_LOAD_XOR:
  case ISD::ATOMIC_LOAD_NAND:
  case ISD::ATOMIC_LOAD_MIN:
  case ISD::ATOMIC_LOAD_MAX:
  case ISD::ATOMIC_LOAD_UMIN:
  case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
    if (DCI.isBeforeLegalize())
      break;

    MemSDNode *MemNode = cast<MemSDNode>(N);
    SDValue Ptr = MemNode->getBasePtr();

    // TODO: We could also do this for multiplies.
    unsigned AS = MemNode->getAddressSpace();
    if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
      SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
      if (NewPtr) {
        SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());

        NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
        return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
      }
    }
    break;
  }
  case ISD::AND:
    return performAndCombine(N, DCI);
  case ISD::OR:
    return performOrCombine(N, DCI);
  case AMDGPUISD::FP_CLASS:
    return performClassCombine(N, DCI);
  }
  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}

/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {

  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());

  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
    if (TII->isInlineConstant(Node->getAPIntValue()))
      return 0;

    uint64_t Val = Node->getZExtValue();
    return isUInt<32>(Val) ? Val : -1;
  }

  if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
    if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
      return 0;

    if (Node->getValueType(0) == MVT::f32)
      return FloatToBits(Node->getValueAPF().convertToFloat());

    return -1;
  }

  return -1;
}

/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
  switch (Idx) {
  default: return 0;
  case AMDGPU::sub0: return 0;
  case AMDGPU::sub1: return 1;
  case AMDGPU::sub2: return 2;
  case AMDGPU::sub3: return 3;
  }
}

/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
                                       SelectionDAG &DAG) const {
  SDNode *Users[4] = { };
  unsigned Lane = 0;
  unsigned OldDmask = Node->getConstantOperandVal(0);
  unsigned NewDmask = 0;

  // Try to figure out the used register components
  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
       I != E; ++I) {

    // Abort if we can't understand the usage
    if (!I->isMachineOpcode() ||
        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
      return;

    // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
    // Note that subregs are packed, i.e. Lane==0 is the first bit set
    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
    // set, etc.
    Lane = SubIdx2Lane(I->getConstantOperandVal(1));

    // Set which texture component corresponds to the lane.
    unsigned Comp;
    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
      assert(Dmask);
      Comp = countTrailingZeros(Dmask);
      Dmask &= ~(1 << Comp);
    }

    // Abort if we have more than one user per component
    if (Users[Lane])
      return;

    Users[Lane] = *I;
    NewDmask |= 1 << Comp;
  }

  // Abort if there's no change
  if (NewDmask == OldDmask)
    return;

  // Adjust the writemask in the node
  std::vector<SDValue> Ops;
  Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
  Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);

  // If we only got one lane, replace it with a copy
  // (if NewDmask has only one bit set...)
  if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
    SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                      SDLoc(), Users[Lane]->getValueType(0),
                                      SDValue(Node, 0), RC);
    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
    return;
  }

  // Update the users of the node with the new indices
  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {

    SDNode *User = Users[i];
    if (!User)
      continue;

    SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);

    switch (Idx) {
    default: break;
    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
    }
  }
}

/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
                                                     SelectionDAG &DAG) const {

  SmallVector<SDValue, 8> Ops;
  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
    if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
      Ops.push_back(Node->getOperand(i));
      continue;
    }

    SDLoc DL(Node);
    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
                                     Node->getOperand(i).getValueType(),
                                     Node->getOperand(i)), 0));
  }

  DAG.UpdateNodeOperands(Node, Ops);
}

/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
                                          SelectionDAG &DAG) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());

  if (TII->isMIMG(Node->getMachineOpcode()))
    adjustWritemask(Node, DAG);

  if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
      Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
    legalizeTargetIndependentNode(Node, DAG);
    return Node;
  }
  return Node;
}

/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
                                                     SDNode *Node) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());

  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
  TII->legalizeOperands(MI);

  if (TII->isMIMG(MI->getOpcode())) {
    unsigned VReg = MI->getOperand(0).getReg();
    unsigned Writemask = MI->getOperand(1).getImm();
    unsigned BitsSet = 0;
    for (unsigned i = 0; i < 4; ++i)
      BitsSet += Writemask & (1 << i) ? 1 : 0;

    const TargetRegisterClass *RC;
    switch (BitsSet) {
    default: return;
    case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
    case 2:  RC = &AMDGPU::VReg_64RegClass; break;
    case 3:  RC = &AMDGPU::VReg_96RegClass; break;
    }

    unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
    MI->setDesc(TII->get(NewOpcode));
    MRI.setRegClass(VReg, RC);
    return;
  }

  // Replace unused atomics with the no return version.
  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
  if (NoRetAtomicOp != -1) {
    if (!Node->hasAnyUseOfValue(0)) {
      MI->setDesc(TII->get(NoRetAtomicOp));
      MI->RemoveOperand(0);
    }

    return;
  }
}

static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
  SDValue K = DAG.getTargetConstant(Val, MVT::i32);
  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}

MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
                                                SDLoc DL,
                                                SDValue Ptr) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
#if 1
    // XXX - Workaround for moveToVALU not handling different register class
    // inserts for REG_SEQUENCE.

    // Build the half of the subregister with the constants.
    const SDValue Ops0[] = {
      DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
      buildSMovImm32(DAG, DL, 0),
      DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
      buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
      DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
    };

    SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
                                                  MVT::v2i32, Ops0), 0);

    // Combine the constants and the pointer.
    const SDValue Ops1[] = {
      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
      Ptr,
      DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
      SubRegHi,
      DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
    };

    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
#else
    const SDValue Ops[] = {
      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
      Ptr,
      DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
      buildSMovImm32(DAG, DL, 0),
      DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
      buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
      DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
    };

    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);

#endif
}

/// \brief Return a resource descriptor with the 'Add TID' bit enabled
///        The TID (Thread ID) is multipled by the stride value (bits [61:48]
///        of the resource descriptor) to create an offset, which is added to the
///        resource ponter.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
                                           SDLoc DL,
                                           SDValue Ptr,
                                           uint32_t RsrcDword1,
                                           uint64_t RsrcDword2And3) const {
  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
  if (RsrcDword1) {
    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
                                     DAG.getConstant(RsrcDword1, MVT::i32)), 0);
  }

  SDValue DataLo = buildSMovImm32(DAG, DL,
                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);

  const SDValue Ops[] = {
    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
    PtrLo,
    DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
    PtrHi,
    DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
    DataLo,
    DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
    DataHi,
    DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
  };

  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}

MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
                                                  SDLoc DL,
                                                  SDValue Ptr) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
  uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
                  0xffffffff; // Size

  return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
}

SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
                                               const TargetRegisterClass *RC,
                                               unsigned Reg, EVT VT) const {
  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);

  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
                            cast<RegisterSDNode>(VReg)->getReg(), VT);
}

//===----------------------------------------------------------------------===//
//                         SI Inline Assembly Support
//===----------------------------------------------------------------------===//

std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                               const std::string &Constraint,
                                               MVT VT) const {
  if (Constraint == "r") {
    switch(VT.SimpleTy) {
      default: llvm_unreachable("Unhandled type for 'r' inline asm constraint");
      case MVT::i64:
        return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
      case MVT::i32:
        return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
    }
  }

  if (Constraint.size() > 1) {
    const TargetRegisterClass *RC = nullptr;
    if (Constraint[1] == 'v') {
      RC = &AMDGPU::VGPR_32RegClass;
    } else if (Constraint[1] == 's') {
      RC = &AMDGPU::SGPR_32RegClass;
    }

    if (RC) {
      unsigned Idx = std::atoi(Constraint.substr(2).c_str());
      if (Idx < RC->getNumRegs())
        return std::make_pair(RC->getRegister(Idx), RC);
    }
  }
  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}