summaryrefslogtreecommitdiff
path: root/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
blob: f1f0bfa89ac02c43387b478626057c942830bb3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// \brief Defines an instruction selector for the AMDGPU target.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUInstrInfo.h"
#include "AMDGPUISelLowering.h" // For AMDGPUISD
#include "AMDGPURegisterInfo.h"
#include "R600InstrInfo.h"
#include "SIISelLowering.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Function.h"

using namespace llvm;

//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//

namespace {
/// AMDGPU specific code to select AMDGPU machine instructions for
/// SelectionDAG operations.
class AMDGPUDAGToDAGISel : public SelectionDAGISel {
  // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
  // make the right decision when generating code for different targets.
  const AMDGPUSubtarget &Subtarget;
public:
  AMDGPUDAGToDAGISel(TargetMachine &TM);
  virtual ~AMDGPUDAGToDAGISel();

  SDNode *Select(SDNode *N) override;
  const char *getPassName() const override;
  void PostprocessISelDAG() override;

private:
  bool isInlineImmediate(SDNode *N) const;
  inline SDValue getSmallIPtrImm(unsigned Imm);
  bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs,
                   const R600InstrInfo *TII);
  bool FoldOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);
  bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);

  // Complex pattern selectors
  bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2);
  bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2);
  bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2);

  static bool checkType(const Value *ptr, unsigned int addrspace);
  static bool checkPrivateAddress(const MachineMemOperand *Op);

  static bool isGlobalStore(const StoreSDNode *N);
  static bool isPrivateStore(const StoreSDNode *N);
  static bool isLocalStore(const StoreSDNode *N);
  static bool isRegionStore(const StoreSDNode *N);

  bool isCPLoad(const LoadSDNode *N) const;
  bool isConstantLoad(const LoadSDNode *N, int cbID) const;
  bool isGlobalLoad(const LoadSDNode *N) const;
  bool isParamLoad(const LoadSDNode *N) const;
  bool isPrivateLoad(const LoadSDNode *N) const;
  bool isLocalLoad(const LoadSDNode *N) const;
  bool isRegionLoad(const LoadSDNode *N) const;

  /// \returns True if the current basic block being selected is at control
  ///          flow depth 0.  Meaning that the current block dominates the
  //           exit block.
  bool isCFDepth0() const;

  const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
  bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
  bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
                                       SDValue& Offset);
  bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
  bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);

  // Include the pieces autogenerated from the target description.
#include "AMDGPUGenDAGISel.inc"
};
}  // end anonymous namespace

/// \brief This pass converts a legalized DAG into a AMDGPU-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM) {
  return new AMDGPUDAGToDAGISel(TM);
}

AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM)
  : SelectionDAGISel(TM), Subtarget(TM.getSubtarget<AMDGPUSubtarget>()) {
}

AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() {
}

bool AMDGPUDAGToDAGISel::isInlineImmediate(SDNode *N) const {
  const SITargetLowering *TL
      = static_cast<const SITargetLowering *>(getTargetLowering());
  return TL->analyzeImmediate(N) == 0;
}

/// \brief Determine the register class for \p OpNo
/// \returns The register class of the virtual register that will be used for
/// the given operand number \OpNo or NULL if the register class cannot be
/// determined.
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
                                                          unsigned OpNo) const {
  if (!N->isMachineOpcode())
    return nullptr;

  switch (N->getMachineOpcode()) {
  default: {
    const MCInstrDesc &Desc = TM.getInstrInfo()->get(N->getMachineOpcode());
    unsigned OpIdx = Desc.getNumDefs() + OpNo;
    if (OpIdx >= Desc.getNumOperands())
      return nullptr;
    int RegClass = Desc.OpInfo[OpIdx].RegClass;
    if (RegClass == -1)
      return nullptr;

    return TM.getRegisterInfo()->getRegClass(RegClass);
  }
  case AMDGPU::REG_SEQUENCE: {
    unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    const TargetRegisterClass *SuperRC = TM.getRegisterInfo()->getRegClass(RCID);

    SDValue SubRegOp = N->getOperand(OpNo + 1);
    unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
    return TM.getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx);
  }
  }
}

SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) {
  return CurDAG->getTargetConstant(Imm, MVT::i32);
}

bool AMDGPUDAGToDAGISel::SelectADDRParam(
  SDValue Addr, SDValue& R1, SDValue& R2) {

  if (Addr.getOpcode() == ISD::FrameIndex) {
    if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
      R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
      R2 = CurDAG->getTargetConstant(0, MVT::i32);
    } else {
      R1 = Addr;
      R2 = CurDAG->getTargetConstant(0, MVT::i32);
    }
  } else if (Addr.getOpcode() == ISD::ADD) {
    R1 = Addr.getOperand(0);
    R2 = Addr.getOperand(1);
  } else {
    R1 = Addr;
    R2 = CurDAG->getTargetConstant(0, MVT::i32);
  }
  return true;
}

bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) {
  if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
      Addr.getOpcode() == ISD::TargetGlobalAddress) {
    return false;
  }
  return SelectADDRParam(Addr, R1, R2);
}


bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) {
  if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
      Addr.getOpcode() == ISD::TargetGlobalAddress) {
    return false;
  }

  if (Addr.getOpcode() == ISD::FrameIndex) {
    if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
      R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64);
      R2 = CurDAG->getTargetConstant(0, MVT::i64);
    } else {
      R1 = Addr;
      R2 = CurDAG->getTargetConstant(0, MVT::i64);
    }
  } else if (Addr.getOpcode() == ISD::ADD) {
    R1 = Addr.getOperand(0);
    R2 = Addr.getOperand(1);
  } else {
    R1 = Addr;
    R2 = CurDAG->getTargetConstant(0, MVT::i64);
  }
  return true;
}

SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    N->setNodeId(-1);
    return nullptr;   // Already selected.
  }

  const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
  switch (Opc) {
  default: break;
  // We are selecting i64 ADD here instead of custom lower it during
  // DAG legalization, so we can fold some i64 ADDs used for address
  // calculation into the LOAD and STORE instructions.
  case ISD::ADD: {
    if (N->getValueType(0) != MVT::i64 ||
        ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS)
      break;

    SDLoc DL(N);
    SDValue LHS = N->getOperand(0);
    SDValue RHS = N->getOperand(1);

    SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
    SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);

    SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                         DL, MVT::i32, LHS, Sub0);
    SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                         DL, MVT::i32, LHS, Sub1);

    SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                         DL, MVT::i32, RHS, Sub0);
    SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                         DL, MVT::i32, RHS, Sub1);

    SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);

    SmallVector<SDValue, 8> AddLoArgs;
    AddLoArgs.push_back(SDValue(Lo0, 0));
    AddLoArgs.push_back(SDValue(Lo1, 0));

    SDNode *AddLo = CurDAG->getMachineNode(
        isCFDepth0() ? AMDGPU::S_ADD_I32 : AMDGPU::V_ADD_I32_e32,
        DL, VTList, AddLoArgs);
    SDValue Carry = SDValue(AddLo, 1);
    SDNode *AddHi = CurDAG->getMachineNode(
        isCFDepth0() ? AMDGPU::S_ADDC_U32 : AMDGPU::V_ADDC_U32_e32,
        DL, MVT::i32, SDValue(Hi0, 0), SDValue(Hi1, 0), Carry);

    SDValue Args[5] = {
      CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
      SDValue(AddLo,0),
      Sub0,
      SDValue(AddHi,0),
      Sub1,
    };
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args);
  }
  case ISD::BUILD_VECTOR: {
    unsigned RegClassID;
    const AMDGPURegisterInfo *TRI =
                   static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo());
    const SIRegisterInfo *SIRI =
                   static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
    EVT VT = N->getValueType(0);
    unsigned NumVectorElts = VT.getVectorNumElements();
    assert(VT.getVectorElementType().bitsEq(MVT::i32));
    if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
      bool UseVReg = true;
      for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
                                                    U != E; ++U) {
        if (!U->isMachineOpcode()) {
          continue;
        }
        const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
        if (!RC) {
          continue;
        }
        if (SIRI->isSGPRClass(RC)) {
          UseVReg = false;
        }
      }
      switch(NumVectorElts) {
      case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID :
                                     AMDGPU::SReg_32RegClassID;
        break;
      case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID :
                                     AMDGPU::SReg_64RegClassID;
        break;
      case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID :
                                     AMDGPU::SReg_128RegClassID;
        break;
      case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID :
                                     AMDGPU::SReg_256RegClassID;
        break;
      case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID :
                                      AMDGPU::SReg_512RegClassID;
        break;
      default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
      }
    } else {
      // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
      // that adds a 128 bits reg copy when going through TwoAddressInstructions
      // pass. We want to avoid 128 bits copies as much as possible because they
      // can't be bundled by our scheduler.
      switch(NumVectorElts) {
      case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
      case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break;
      default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
      }
    }

    SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32);

    if (NumVectorElts == 1) {
      return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS,
                                  VT.getVectorElementType(),
                                  N->getOperand(0), RegClass);
    }

    assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not "
                                  "supported yet");
    // 16 = Max Num Vector Elements
    // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
    // 1 = Vector Register Class
    SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(N->getNumOperands() * 2 + 1);

    RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32);
    bool IsRegSeq = true;
    for (unsigned i = 0; i < N->getNumOperands(); i++) {
      // XXX: Why is this here?
      if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
        IsRegSeq = false;
        break;
      }
      RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
      RegSeqArgs[1 + (2 * i) + 1] =
              CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32);
    }
    if (!IsRegSeq)
      break;
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
                                RegSeqArgs);
  }
  case ISD::BUILD_PAIR: {
    SDValue RC, SubReg0, SubReg1;
    if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }
    if (N->getValueType(0) == MVT::i128) {
      RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32);
    } else if (N->getValueType(0) == MVT::i64) {
      RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
    } else {
      llvm_unreachable("Unhandled value type for BUILD_PAIR");
    }
    const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
                            N->getOperand(1), SubReg1 };
    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
                                  SDLoc(N), N->getValueType(0), Ops);
  }

  case ISD::Constant:
  case ISD::ConstantFP: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
        N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
      break;

    uint64_t Imm;
    if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
      Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
    else {
      ConstantSDNode *C = cast<ConstantSDNode>(N);
      Imm = C->getZExtValue();
    }

    SDNode *Lo = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
                                CurDAG->getConstant(Imm & 0xFFFFFFFF, MVT::i32));
    SDNode *Hi = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
                                CurDAG->getConstant(Imm >> 32, MVT::i32));
    const SDValue Ops[] = {
      CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
      SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
      SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32)
    };

    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N),
                                  N->getValueType(0), Ops);
  }

  case AMDGPUISD::REGISTER_LOAD: {
    if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
      break;
    SDValue Addr, Offset;

    SelectADDRIndirect(N->getOperand(1), Addr, Offset);
    const SDValue Ops[] = {
      Addr,
      Offset,
      CurDAG->getTargetConstant(0, MVT::i32),
      N->getOperand(0),
    };
    return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N),
                                  CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other),
                                  Ops);
  }
  case AMDGPUISD::REGISTER_STORE: {
    if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
      break;
    SDValue Addr, Offset;
    SelectADDRIndirect(N->getOperand(2), Addr, Offset);
    const SDValue Ops[] = {
      N->getOperand(1),
      Addr,
      Offset,
      CurDAG->getTargetConstant(0, MVT::i32),
      N->getOperand(0),
    };
    return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N),
                                        CurDAG->getVTList(MVT::Other),
                                        Ops);
  }

  case AMDGPUISD::BFE_I32:
  case AMDGPUISD::BFE_U32: {
    if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS)
      break;

    // There is a scalar version available, but unlike the vector version which
    // has a separate operand for the offset and width, the scalar version packs
    // the width and offset into a single operand. Try to move to the scalar
    // version if the offsets are constant, so that we can try to keep extended
    // loads of kernel arguments in SGPRs.

    // TODO: Technically we could try to pattern match scalar bitshifts of
    // dynamic values, but it's probably not useful.
    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (!Offset)
      break;

    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
    if (!Width)
      break;

    bool Signed = Opc == AMDGPUISD::BFE_I32;

    // Transformation function, pack the offset and width of a BFE into
    // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
    // source, bits [5:0] contain the offset and bits [22:16] the width.

    uint32_t OffsetVal = Offset->getZExtValue();
    uint32_t WidthVal = Width->getZExtValue();

    uint32_t PackedVal = OffsetVal | WidthVal << 16;

    SDValue PackedOffsetWidth = CurDAG->getTargetConstant(PackedVal, MVT::i32);
    return CurDAG->getMachineNode(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
                                  SDLoc(N),
                                  MVT::i32,
                                  N->getOperand(0),
                                  PackedOffsetWidth);

  }
  }
  return SelectCode(N);
}


bool AMDGPUDAGToDAGISel::checkType(const Value *Ptr, unsigned AS) {
  assert(AS != 0 && "Use checkPrivateAddress instead.");
  if (!Ptr)
    return false;

  return Ptr->getType()->getPointerAddressSpace() == AS;
}

bool AMDGPUDAGToDAGISel::checkPrivateAddress(const MachineMemOperand *Op) {
  if (Op->getPseudoValue())
    return true;

  if (PointerType *PT = dyn_cast<PointerType>(Op->getValue()->getType()))
    return PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;

  return false;
}

bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) {
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) {
  const Value *MemVal = N->getMemOperand()->getValue();
  return (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
          !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
          !checkType(MemVal, AMDGPUAS::REGION_ADDRESS));
}

bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) {
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) {
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const {
  const Value *MemVal = N->getMemOperand()->getValue();
  if (CbId == -1)
    return checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS);

  return checkType(MemVal, AMDGPUAS::CONSTANT_BUFFER_0 + CbId);
}

bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const {
  if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
        N->getMemoryVT().bitsLT(MVT::i32)) {
      return true;
    }
  }
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const {
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::PARAM_I_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isLocalLoad(const  LoadSDNode *N) const {
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isRegionLoad(const  LoadSDNode *N) const {
  return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const {
  MachineMemOperand *MMO = N->getMemOperand();
  if (checkPrivateAddress(N->getMemOperand())) {
    if (MMO) {
      const PseudoSourceValue *PSV = MMO->getPseudoValue();
      if (PSV && PSV == PseudoSourceValue::getConstantPool()) {
        return true;
      }
    }
  }
  return false;
}

bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const {
  if (checkPrivateAddress(N->getMemOperand())) {
    // Check to make sure we are not a constant pool load or a constant load
    // that is marked as a private load
    if (isCPLoad(N) || isConstantLoad(N, -1)) {
      return false;
    }
  }

  const Value *MemVal = N->getMemOperand()->getValue();
  if (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
      !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
      !checkType(MemVal, AMDGPUAS::REGION_ADDRESS) &&
      !checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS) &&
      !checkType(MemVal, AMDGPUAS::PARAM_D_ADDRESS) &&
      !checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)){
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::isCFDepth0() const {
  // FIXME: Figure out a way to use DominatorTree analysis here.
  const BasicBlock *CurBlock = FuncInfo->MBB->getBasicBlock();
  const Function *Fn = FuncInfo->Fn;
  return &Fn->front() == CurBlock || &Fn->back() == CurBlock;
}


const char *AMDGPUDAGToDAGISel::getPassName() const {
  return "AMDGPU DAG->DAG Pattern Instruction Selection";
}

#ifdef DEBUGTMP
#undef INT64_C
#endif
#undef DEBUGTMP

//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//

bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
                                                         SDValue& IntPtr) {
  if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
    IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true);
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
    SDValue& BaseReg, SDValue &Offset) {
  if (!isa<ConstantSDNode>(Addr)) {
    BaseReg = Addr;
    Offset = CurDAG->getIntPtrConstant(0, true);
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
                                           SDValue &Offset) {
  ConstantSDNode *IMMOffset;

  if (Addr.getOpcode() == ISD::ADD
      && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
      && isInt<16>(IMMOffset->getZExtValue())) {

      Base = Addr.getOperand(0);
      Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
      return true;
  // If the pointer address is constant, we can move it to the offset field.
  } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
             && isInt<16>(IMMOffset->getZExtValue())) {
    Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
                                  SDLoc(CurDAG->getEntryNode()),
                                  AMDGPU::ZERO, MVT::i32);
    Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
    return true;
  }

  // Default case, no offset
  Base = Addr;
  Offset = CurDAG->getTargetConstant(0, MVT::i32);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
                                            SDValue &Offset) {
  ConstantSDNode *C;

  if ((C = dyn_cast<ConstantSDNode>(Addr))) {
    Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
  } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
            (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
    Base = Addr.getOperand(0);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
  } else {
    Base = Addr;
    Offset = CurDAG->getTargetConstant(0, MVT::i32);
  }

  return true;
}

void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
  const AMDGPUTargetLowering& Lowering =
    *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
  bool IsModified = false;
  do {
    IsModified = false;
    // Go over all selected nodes and try to fold them a bit more
    for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
         E = CurDAG->allnodes_end(); I != E; ++I) {

      SDNode *Node = I;

      MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
      if (!MachineNode)
        continue;

      SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
      if (ResNode != Node) {
        ReplaceUses(Node, ResNode);
        IsModified = true;
      }
    }
    CurDAG->RemoveDeadNodes();
  } while (IsModified);
}