summaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/R600ExpandSpecialInstrs.cpp
blob: b3cee4017640ff12c4832d0d58726be04f8a8315 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//===-- R600ExpandSpecialInstrs.cpp - Expand special instructions ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Vector, Reduction, and Cube instructions need to fill the entire instruction
// group to work correctly.  This pass expands these individual instructions
// into several instructions that will completely fill the instruction group.
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600RegisterInfo.h"
#include "R600MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"

using namespace llvm;

namespace {

class R600ExpandSpecialInstrsPass : public MachineFunctionPass {

private:
  static char ID;
  const R600InstrInfo *TII;

  bool ExpandInputPerspective(MachineInstr& MI);
  bool ExpandInputConstant(MachineInstr& MI);

public:
  R600ExpandSpecialInstrsPass(TargetMachine &tm) : MachineFunctionPass(ID),
    TII (static_cast<const R600InstrInfo *>(tm.getInstrInfo())) { }

  virtual bool runOnMachineFunction(MachineFunction &MF);

  const char *getPassName() const {
    return "R600 Expand special instructions pass";
  }
};

} // End anonymous namespace

char R600ExpandSpecialInstrsPass::ID = 0;

FunctionPass *llvm::createR600ExpandSpecialInstrsPass(TargetMachine &TM) {
  return new R600ExpandSpecialInstrsPass(TM);
}

bool R600ExpandSpecialInstrsPass::ExpandInputPerspective(MachineInstr &MI)
{
  const R600RegisterInfo &TRI = TII->getRegisterInfo();
  if (MI.getOpcode() != AMDGPU::input_perspective)
    return false;

  MachineBasicBlock::iterator I = &MI;
  unsigned DstReg = MI.getOperand(0).getReg();
  R600MachineFunctionInfo *MFI = MI.getParent()->getParent()
      ->getInfo<R600MachineFunctionInfo>();
  unsigned IJIndexBase;

  // In Evergreen ISA doc section 8.3.2 :
  // We need to interpolate XY and ZW in two different instruction groups.
  // An INTERP_* must occupy all 4 slots of an instruction group.
  // Output of INTERP_XY is written in X,Y slots
  // Output of INTERP_ZW is written in Z,W slots
  //
  // Thus interpolation requires the following sequences :
  //
  // AnyGPR.x = INTERP_ZW; (Write Masked Out)
  // AnyGPR.y = INTERP_ZW; (Write Masked Out)
  // DstGPR.z = INTERP_ZW;
  // DstGPR.w = INTERP_ZW; (End of first IG)
  // DstGPR.x = INTERP_XY;
  // DstGPR.y = INTERP_XY;
  // AnyGPR.z = INTERP_XY; (Write Masked Out)
  // AnyGPR.w = INTERP_XY; (Write Masked Out) (End of second IG)
  //
  switch (MI.getOperand(1).getImm()) {
  case 0:
    IJIndexBase = MFI->GetIJPerspectiveIndex();
    break;
  case 1:
    IJIndexBase = MFI->GetIJLinearIndex();
    break;
  default:
    assert(0 && "Unknow ij index");
  }

  for (unsigned i = 0; i < 8; i++) {
    unsigned IJIndex = AMDGPU::R600_TReg32RegClass.getRegister(
        2 * IJIndexBase + ((i + 1) % 2));
    unsigned ReadReg = AMDGPU::R600_TReg32RegClass.getRegister(
        4 * MI.getOperand(2).getImm());

    unsigned Sel;
    switch (i % 4) {
    case 0:Sel = AMDGPU::sel_x;break;
    case 1:Sel = AMDGPU::sel_y;break;
    case 2:Sel = AMDGPU::sel_z;break;
    case 3:Sel = AMDGPU::sel_w;break;
    default:break;
    }

    unsigned Res = TRI.getSubReg(DstReg, Sel);

    const MCInstrDesc &Opcode = (i < 4)?
        TII->get(AMDGPU::INTERP_ZW):
        TII->get(AMDGPU::INTERP_XY);

    MachineInstr *NewMI = BuildMI(*(MI.getParent()),
        I, MI.getParent()->findDebugLoc(I),
        Opcode, Res)
        .addReg(IJIndex)
        .addReg(ReadReg)
        .addImm(0);

    if (!(i> 1 && i < 6)) {
      TII->addFlag(NewMI, 0, MO_FLAG_MASK);
    }

    if (i % 4 !=  3)
      TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST);
  }

  MI.eraseFromParent();

  return true;
}

bool R600ExpandSpecialInstrsPass::ExpandInputConstant(MachineInstr &MI)
{
  const R600RegisterInfo &TRI = TII->getRegisterInfo();
  if (MI.getOpcode() != AMDGPU::input_constant)
    return false;

  MachineBasicBlock::iterator I = &MI;
  unsigned DstReg = MI.getOperand(0).getReg();

  for (unsigned i = 0; i < 4; i++) {
    unsigned ReadReg = AMDGPU::R600_TReg32RegClass.getRegister(
        4 * MI.getOperand(1).getImm() + i);

    unsigned Sel;
    switch (i % 4) {
    case 0:Sel = AMDGPU::sel_x;break;
    case 1:Sel = AMDGPU::sel_y;break;
    case 2:Sel = AMDGPU::sel_z;break;
    case 3:Sel = AMDGPU::sel_w;break;
    default:break;
    }

    unsigned Res = TRI.getSubReg(DstReg, Sel);

    MachineInstr *NewMI = BuildMI(*(MI.getParent()),
        I, MI.getParent()->findDebugLoc(I),
        TII->get(AMDGPU::INTERP_LOAD_P0), Res)
        .addReg(ReadReg)
        .addImm(0);

    if (i % 4 !=  3)
      TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST);
  }

  MI.eraseFromParent();

  return true;
}

bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) {

  const R600RegisterInfo &TRI = TII->getRegisterInfo();

  for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
                                                  BB != BB_E; ++BB) {
    MachineBasicBlock &MBB = *BB;
    MachineBasicBlock::iterator I = MBB.begin();
    while (I != MBB.end()) {
      MachineInstr &MI = *I;
      I = llvm::next(I);

      switch (MI.getOpcode()) {
      default: break;
      // Expand PRED_X to one of the PRED_SET instructions.
      case AMDGPU::PRED_X: {
        uint64_t Flags = MI.getOperand(3).getImm();
        // The native opcode used by PRED_X is stored as an immediate in the
        // third operand.
        MachineInstr *PredSet = TII->buildDefaultInstruction(MBB, I,
                                            MI.getOperand(2).getImm(), // opcode
                                            MI.getOperand(0).getReg(), // dst
                                            MI.getOperand(1).getReg(), // src0
                                            AMDGPU::ZERO);             // src1
        TII->addFlag(PredSet, 0, MO_FLAG_MASK);
        if (Flags & MO_FLAG_PUSH) {
          PredSet->getOperand(TII->getOperandIdx(
                  *PredSet, R600Operands::UPDATE_EXEC_MASK)).setImm(1);
        } else {
          PredSet->getOperand(
            TII->getOperandIdx(
                  *PredSet, R600Operands::UPDATE_PREDICATE)).setImm(1);
        }
        MI.eraseFromParent();
        continue;
        }
     }

    if (ExpandInputPerspective(MI))
      continue;
    if (ExpandInputConstant(MI))
      continue;

      bool IsReduction = TII->isReductionOp(MI.getOpcode());
      bool IsVector = TII->isVector(MI);
	    bool IsCube = TII->isCubeOp(MI.getOpcode());
      if (!IsReduction && !IsVector && !IsCube) {
        continue;
      }

      // Expand the instruction
      //
      // Reduction instructions:
      // T0_X = DP4 T1_XYZW, T2_XYZW
      // becomes:
      // TO_X = DP4 T1_X, T2_X
      // TO_Y (write masked) = DP4 T1_Y, T2_Y
      // TO_Z (write masked) = DP4 T1_Z, T2_Z
      // TO_W (write masked) = DP4 T1_W, T2_W
      //
      // Vector instructions:
      // T0_X = MULLO_INT T1_X, T2_X
      // becomes:
      // T0_X = MULLO_INT T1_X, T2_X
      // T0_Y (write masked) = MULLO_INT T1_X, T2_X
      // T0_Z (write masked) = MULLO_INT T1_X, T2_X
      // T0_W (write masked) = MULLO_INT T1_X, T2_X
      //
      // Cube instructions:
      // T0_XYZW = CUBE T1_XYZW
      // becomes:
      // TO_X = CUBE T1_Z, T1_Y
      // T0_Y = CUBE T1_Z, T1_X
      // T0_Z = CUBE T1_X, T1_Z
      // T0_W = CUBE T1_Y, T1_Z
      for (unsigned Chan = 0; Chan < 4; Chan++) {
        unsigned DstReg = MI.getOperand(
                            TII->getOperandIdx(MI, R600Operands::DST)).getReg();
        unsigned Src0 = MI.getOperand(
                           TII->getOperandIdx(MI, R600Operands::SRC0)).getReg();
        unsigned Src1 = 0;

        // Determine the correct source registers
        if (!IsCube) {
          int Src1Idx = TII->getOperandIdx(MI, R600Operands::SRC1);
          if (Src1Idx != -1) {
            Src1 = MI.getOperand(Src1Idx).getReg();
          }
        }
        if (IsReduction) {
          unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
          Src0 = TRI.getSubReg(Src0, SubRegIndex);
          Src1 = TRI.getSubReg(Src1, SubRegIndex);
        } else if (IsCube) {
          static const int CubeSrcSwz[] = {2, 2, 0, 1};
          unsigned SubRegIndex0 = TRI.getSubRegFromChannel(CubeSrcSwz[Chan]);
          unsigned SubRegIndex1 = TRI.getSubRegFromChannel(CubeSrcSwz[3 - Chan]);
          Src1 = TRI.getSubReg(Src0, SubRegIndex1);
          Src0 = TRI.getSubReg(Src0, SubRegIndex0);
        }

        // Determine the correct destination registers;
        unsigned Flags = 0;
        if (IsCube) {
          unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
          DstReg = TRI.getSubReg(DstReg, SubRegIndex);
        } else {
          // Mask the write if the original instruction does not write to
          // the current Channel.
          Flags |= (Chan != TRI.getHWRegChan(DstReg) ? MO_FLAG_MASK : 0);
          unsigned DstBase = TRI.getEncodingValue(DstReg) & HW_REG_MASK;
          DstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan);
        }

        // Set the IsLast bit
        Flags |= (Chan != 3 ? MO_FLAG_NOT_LAST : 0);

        // Add the new instruction
        unsigned Opcode;
        if (IsCube) {
          switch (MI.getOpcode()) {
          case AMDGPU::CUBE_r600_pseudo:
            Opcode = AMDGPU::CUBE_r600_real;
            break;
          case AMDGPU::CUBE_eg_pseudo:
            Opcode = AMDGPU::CUBE_eg_real;
            break;
          default:
            assert(!"Unknown CUBE instruction");
            Opcode = 0;
            break;
          }
        } else {
          Opcode = MI.getOpcode();
        }
        MachineInstr *NewMI =
          BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(Opcode), DstReg)
                  .addReg(Src0)
                  .addReg(Src1)
                  .addImm(0); // Flag

        NewMI->setIsInsideBundle(Chan != 0);
        TII->addFlag(NewMI, 0, Flags);
      }
      MI.eraseFromParent();
    }
  }
  return false;
}