summaryrefslogtreecommitdiff
path: root/lib/CodeGen/StrongPHIElimination.cpp
blob: 39fd600d4abfb6d16504995a6817b81c3c4dba9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates PHI instructions by aggressively coalescing the copies
// that would be inserted by a naive algorithm and only inserting the copies
// that are necessary. The coalescing technique initially assumes that all
// registers appearing in a PHI instruction do not interfere. It then eliminates
// proven interferences, using dominators to only perform a linear number of
// interference tests instead of the quadratic number of interference tests
// that this would naively require. This is a technique derived from:
// 
//    Budimlic, et al. Fast copy coalescing and live-range identification.
//    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
//    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
//    PLDI '02. ACM, New York, NY, 25-32.
//
// The original implementation constructs a data structure they call a dominance
// forest for this purpose. The dominance forest was shown to be unnecessary,
// as it is possible to emulate the creation and traversal of a dominance forest
// by directly using the dominator tree, rather than actually constructing the
// dominance forest.  This technique is explained in:
//
//   Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
//     Quality and Efficiency,
//   In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
//   Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
//   CGO '09. IEEE, Washington, DC, 114-125.
//
// Careful implementation allows for all of the dominator forest interference
// checks to be performed at once in a single depth-first traversal of the
// dominator tree, which is what is implemented here.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "strongphielim"
#include "PHIEliminationUtils.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

namespace {
  class StrongPHIElimination : public MachineFunctionPass {
  public:
    static char ID; // Pass identification, replacement for typeid
    StrongPHIElimination() : MachineFunctionPass(ID) {
      initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
    }

    virtual void getAnalysisUsage(AnalysisUsage&) const;
    bool runOnMachineFunction(MachineFunction&);

  private:
    /// This struct represents a single node in the union-find data structure
    /// representing the variable congruence classes. There is one difference
    /// from a normal union-find data structure. We steal two bits from the parent
    /// pointer . One of these bits is used to represent whether the register
    /// itself has been isolated, and the other is used to represent whether the
    /// PHI with that register as its destination has been isolated.
    ///
    /// Note that this leads to the strange situation where the leader of a
    /// congruence class may no longer logically be a member, due to being
    /// isolated.
    struct Node {
      enum Flags {
        kRegisterIsolatedFlag = 1,
        kPHIIsolatedFlag = 2
      };
      Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }

      Node *getLeader();

      PointerIntPair<Node*, 2> parent;
      unsigned value;
      unsigned rank;
    };

    /// Add a register in a new congruence class containing only itself.
    void addReg(unsigned);

    /// Join the congruence classes of two registers. This function is biased
    /// towards the left argument, i.e. after
    ///
    /// addReg(r2);
    /// unionRegs(r1, r2);
    ///
    /// the leader of the unioned congruence class is the same as the leader of
    /// r1's congruence class prior to the union. This is actually relied upon
    /// in the copy insertion code.
    void unionRegs(unsigned, unsigned);

    /// Get the color of a register. The color is 0 if the register has been
    /// isolated.
    unsigned getRegColor(unsigned);

    // Isolate a register.
    void isolateReg(unsigned);

    /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
    /// isolated. Otherwise, it is the original color of its destination and
    /// all of its operands (before they were isolated, if they were).
    unsigned getPHIColor(MachineInstr*);

    /// Isolate a PHI.
    void isolatePHI(MachineInstr*);

    /// Traverses a basic block, splitting any interferences found between
    /// registers in the same congruence class. It takes two DenseMaps as
    /// arguments that it also updates: CurrentDominatingParent, which maps
    /// a color to the register in that congruence class whose definition was
    /// most recently seen, and ImmediateDominatingParent, which maps a register
    /// to the register in the same congruence class that most immediately
    /// dominates it.
    ///
    /// This function assumes that it is being called in a depth-first traversal
    /// of the dominator tree.
    void SplitInterferencesForBasicBlock(
      MachineBasicBlock&,
      DenseMap<unsigned, unsigned> &CurrentDominatingParent,
      DenseMap<unsigned, unsigned> &ImmediateDominatingParent);

    // Lowers a PHI instruction, inserting copies of the source and destination
    // registers as necessary.
    void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);

    // Merges the live interval of Reg into NewReg and renames Reg to NewReg
    // everywhere that Reg appears. Requires Reg and NewReg to have non-
    // overlapping lifetimes.
    void MergeLIsAndRename(unsigned Reg, unsigned NewReg);

    MachineRegisterInfo *MRI;
    const TargetInstrInfo *TII;
    MachineDominatorTree *DT;
    LiveIntervals *LI;

    BumpPtrAllocator Allocator;

    DenseMap<unsigned, Node*> RegNodeMap;

    // Maps a basic block to a list of its defs of registers that appear as PHI
    // sources.
    DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;

    // Maps a color to a pair of a MachineInstr* and a virtual register, which
    // is the operand of that PHI corresponding to the current basic block.
    DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;

    // FIXME: Can these two data structures be combined? Would a std::multimap
    // be any better?

    // Stores pairs of predecessor basic blocks and the source registers of
    // inserted copy instructions.
    typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
    SrcCopySet InsertedSrcCopySet;

    // Maps pairs of predecessor basic blocks and colors to their defining copy
    // instructions.
    typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
      SrcCopyMap;
    SrcCopyMap InsertedSrcCopyMap;

    // Maps inserted destination copy registers to their defining copy
    // instructions.
    typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
    DestCopyMap InsertedDestCopies;
  };

  struct MIIndexCompare {
    MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }

    bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
      return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
    }

    LiveIntervals *LI;
  };
} // namespace

STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");

char StrongPHIElimination::ID = 0;
INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
  "Eliminate PHI nodes for register allocation, intelligently", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
  "Eliminate PHI nodes for register allocation, intelligently", false, false)

char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;

void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<MachineDominatorTree>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
  // FIXME: This only needs to check from the first terminator, as only the
  // first terminator can use a virtual register.
  for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
    assert (RI != MBB->rend());
    MachineInstr *MI = &*RI;

    for (MachineInstr::mop_iterator OI = MI->operands_begin(),
         OE = MI->operands_end(); OI != OE; ++OI) {
      MachineOperand &MO = *OI;
      if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
        return &MO;
    }
  }
}

bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
  MRI = &MF.getRegInfo();
  TII = MF.getTarget().getInstrInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  LI = &getAnalysis<LiveIntervals>();

  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->isPHI(); ++BBI) {
      unsigned DestReg = BBI->getOperand(0).getReg();
      addReg(DestReg);
      PHISrcDefs[I].push_back(BBI);

      for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
        MachineOperand &SrcMO = BBI->getOperand(i);
        unsigned SrcReg = SrcMO.getReg();
        addReg(SrcReg);
        unionRegs(DestReg, SrcReg);

        MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
        if (DefMI)
          PHISrcDefs[DefMI->getParent()].push_back(DefMI);
      }
    }
  }

  // Perform a depth-first traversal of the dominator tree, splitting
  // interferences amongst PHI-congruence classes.
  DenseMap<unsigned, unsigned> CurrentDominatingParent;
  DenseMap<unsigned, unsigned> ImmediateDominatingParent;
  for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
    SplitInterferencesForBasicBlock(*DI->getBlock(),
                                    CurrentDominatingParent,
                                    ImmediateDominatingParent);
  }

  // Insert copies for all PHI source and destination registers.
  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->isPHI(); ++BBI) {
      InsertCopiesForPHI(BBI, I);
    }
  }

  // FIXME: Preserve the equivalence classes during copy insertion and use
  // the preversed equivalence classes instead of recomputing them.
  RegNodeMap.clear();
  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->isPHI(); ++BBI) {
      unsigned DestReg = BBI->getOperand(0).getReg();
      addReg(DestReg);

      for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
        unsigned SrcReg = BBI->getOperand(i).getReg();
        addReg(SrcReg);
        unionRegs(DestReg, SrcReg);
      }
    }
  }

  DenseMap<unsigned, unsigned> RegRenamingMap;
  bool Changed = false;
  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
    while (BBI != BBE && BBI->isPHI()) {
      MachineInstr *PHI = BBI;

      assert(PHI->getNumOperands() > 0);

      unsigned SrcReg = PHI->getOperand(1).getReg();
      unsigned SrcColor = getRegColor(SrcReg);
      unsigned NewReg = RegRenamingMap[SrcColor];
      if (!NewReg) {
        NewReg = SrcReg;
        RegRenamingMap[SrcColor] = SrcReg;
      }
      MergeLIsAndRename(SrcReg, NewReg);

      unsigned DestReg = PHI->getOperand(0).getReg();
      if (!InsertedDestCopies.count(DestReg))
        MergeLIsAndRename(DestReg, NewReg);

      for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
        unsigned SrcReg = PHI->getOperand(i).getReg();
        MergeLIsAndRename(SrcReg, NewReg);
      }

      ++BBI;
      LI->RemoveMachineInstrFromMaps(PHI);
      PHI->eraseFromParent();
      Changed = true;
    }
  }

  // Due to the insertion of copies to split live ranges, the live intervals are
  // guaranteed to not overlap, except in one case: an original PHI source and a
  // PHI destination copy. In this case, they have the same value and thus don't
  // truly intersect, so we merge them into the value live at that point.
  // FIXME: Is there some better way we can handle this?
  for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
       E = InsertedDestCopies.end(); I != E; ++I) {
    unsigned DestReg = I->first;
    unsigned DestColor = getRegColor(DestReg);
    unsigned NewReg = RegRenamingMap[DestColor];

    LiveInterval &DestLI = LI->getInterval(DestReg);
    LiveInterval &NewLI = LI->getInterval(NewReg);

    assert(DestLI.ranges.size() == 1
           && "PHI destination copy's live interval should be a single live "
               "range from the beginning of the BB to the copy instruction.");
    LiveRange *DestLR = DestLI.begin();
    VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
    if (!NewVNI) {
      NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
      MachineInstr *CopyInstr = I->second;
      CopyInstr->getOperand(1).setIsKill(true);
    }

    LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
    NewLI.addRange(NewLR);

    LI->removeInterval(DestReg);
    MRI->replaceRegWith(DestReg, NewReg);
  }

  // Adjust the live intervals of all PHI source registers to handle the case
  // where the PHIs in successor blocks were the only later uses of the source
  // register.
  for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
       E = InsertedSrcCopySet.end(); I != E; ++I) {
    MachineBasicBlock *MBB = I->first;
    unsigned SrcReg = I->second;
    if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
      SrcReg = RenamedRegister;

    LiveInterval &SrcLI = LI->getInterval(SrcReg);

    bool isLiveOut = false;
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
      if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
        isLiveOut = true;
        break;
      }
    }

    if (isLiveOut)
      continue;

    MachineOperand *LastUse = findLastUse(MBB, SrcReg);
    assert(LastUse);
    SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
    SrcLI.removeRange(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB));
    LastUse->setIsKill(true);
  }

  Allocator.Reset();
  RegNodeMap.clear();
  PHISrcDefs.clear();
  InsertedSrcCopySet.clear();
  InsertedSrcCopyMap.clear();
  InsertedDestCopies.clear();

  return Changed;
}

void StrongPHIElimination::addReg(unsigned Reg) {
  Node *&N = RegNodeMap[Reg];
  if (!N)
    N = new (Allocator) Node(Reg);
}

StrongPHIElimination::Node*
StrongPHIElimination::Node::getLeader() {
  Node *N = this;
  Node *Parent = parent.getPointer();
  Node *Grandparent = Parent->parent.getPointer();

  while (Parent != Grandparent) {
    N->parent.setPointer(Grandparent);
    N = Grandparent;
    Parent = Parent->parent.getPointer();
    Grandparent = Parent->parent.getPointer();
  }

  return Parent;
}

unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
  DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
  if (RI == RegNodeMap.end())
    return 0;
  Node *Node = RI->second;
  if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
    return 0;
  return Node->getLeader()->value;
}

void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
  Node *Node1 = RegNodeMap[Reg1]->getLeader();
  Node *Node2 = RegNodeMap[Reg2]->getLeader();

  if (Node1->rank > Node2->rank) {
    Node2->parent.setPointer(Node1->getLeader());
  } else if (Node1->rank < Node2->rank) {
    Node1->parent.setPointer(Node2->getLeader());
  } else if (Node1 != Node2) {
    Node2->parent.setPointer(Node1->getLeader());
    Node1->rank++;
  }
}

void StrongPHIElimination::isolateReg(unsigned Reg) {
  Node *Node = RegNodeMap[Reg];
  Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
}

unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
  assert(PHI->isPHI());

  unsigned DestReg = PHI->getOperand(0).getReg();
  Node *DestNode = RegNodeMap[DestReg];
  if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
    return 0;

  for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
    unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
    if (SrcColor)
      return SrcColor;
  }
  return 0;
}

void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
  assert(PHI->isPHI());
  Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
  Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
}

/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
/// interferences found between registers in the same congruence class. It
/// takes two DenseMaps as arguments that it also updates:
///
/// 1) CurrentDominatingParent, which maps a color to the register in that
///    congruence class whose definition was most recently seen.
///
/// 2) ImmediateDominatingParent, which maps a register to the register in the
///    same congruence class that most immediately dominates it.
///
/// This function assumes that it is being called in a depth-first traversal
/// of the dominator tree.
///
/// The algorithm used here is a generalization of the dominance-based SSA test
/// for two variables. If there are variables a_1, ..., a_n such that
///
///   def(a_1) dom ... dom def(a_n),
///
/// then we can test for an interference between any two a_i by only using O(n)
/// interference tests between pairs of variables. If i < j and a_i and a_j
/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
/// Thus, in order to test for an interference involving a_i, we need only check
/// for a potential interference with a_i+1.
///
/// This method can be generalized to arbitrary sets of variables by performing
/// a depth-first traversal of the dominator tree. As we traverse down a branch
/// of the dominator tree, we keep track of the current dominating variable and
/// only perform an interference test with that variable. However, when we go to
/// another branch of the dominator tree, the definition of the current dominating
/// variable may no longer dominate the current block. In order to correct this,
/// we need to use a stack of past choices of the current dominating variable
/// and pop from this stack until we find a variable whose definition actually
/// dominates the current block.
/// 
/// There will be one push on this stack for each variable that has become the
/// current dominating variable, so instead of using an explicit stack we can
/// simply associate the previous choice for a current dominating variable with
/// the new choice. This works better in our implementation, where we test for
/// interference in multiple distinct sets at once.
void
StrongPHIElimination::SplitInterferencesForBasicBlock(
    MachineBasicBlock &MBB,
    DenseMap<unsigned, unsigned> &CurrentDominatingParent,
    DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
  // Sort defs by their order in the original basic block, as the code below
  // assumes that it is processing definitions in dominance order.
  std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
  std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));

  for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
       BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
    for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
         E = (*BBI)->operands_end(); I != E; ++I) {
      const MachineOperand &MO = *I;

      // FIXME: This would be faster if it were possible to bail out of checking
      // an instruction's operands after the explicit defs, but this is incorrect
      // for variadic instructions, which may appear before register allocation
      // in the future.
      if (!MO.isReg() || !MO.isDef())
        continue;

      unsigned DestReg = MO.getReg();
      if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
        continue;

      // If the virtual register being defined is not used in any PHI or has
      // already been isolated, then there are no more interferences to check.
      unsigned DestColor = getRegColor(DestReg);
      if (!DestColor)
        continue;

      // The input to this pass sometimes is not in SSA form in every basic
      // block, as some virtual registers have redefinitions. We could eliminate
      // this by fixing the passes that generate the non-SSA code, or we could
      // handle it here by tracking defining machine instructions rather than
      // virtual registers. For now, we just handle the situation conservatively
      // in a way that will possibly lead to false interferences.
      unsigned &CurrentParent = CurrentDominatingParent[DestColor];
      unsigned NewParent = CurrentParent;
      if (NewParent == DestReg)
        continue;

      // Pop registers from the stack represented by ImmediateDominatingParent
      // until we find a parent that dominates the current instruction.
      while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
                           || !getRegColor(NewParent)))
        NewParent = ImmediateDominatingParent[NewParent];

      // If NewParent is nonzero, then its definition dominates the current
      // instruction, so it is only necessary to check for the liveness of
      // NewParent in order to check for an interference.
      if (NewParent
          && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
        // If there is an interference, always isolate the new register. This
        // could be improved by using a heuristic that decides which of the two
        // registers to isolate.
        isolateReg(DestReg);
        CurrentParent = NewParent;
      } else {
        // If there is no interference, update ImmediateDominatingParent and set
        // the CurrentDominatingParent for this color to the current register.
        ImmediateDominatingParent[DestReg] = NewParent;
        CurrentParent = DestReg;
      }
    }
  }

  // We now walk the PHIs in successor blocks and check for interferences. This
  // is necessary because the use of a PHI's operands are logically contained in
  // the predecessor block. The def of a PHI's destination register is processed
  // along with the other defs in a basic block.

  CurrentPHIForColor.clear();

  for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
       SE = MBB.succ_end(); SI != SE; ++SI) {
    for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
         BBI != BBE && BBI->isPHI(); ++BBI) {
      MachineInstr *PHI = BBI;

      // If a PHI is already isolated, either by being isolated directly or
      // having all of its operands isolated, ignore it.
      unsigned Color = getPHIColor(PHI);
      if (!Color)
        continue;

      // Find the index of the PHI operand that corresponds to this basic block.
      unsigned PredIndex;
      for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
        if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
          break;
      }
      assert(PredIndex < PHI->getNumOperands());
      unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();

      // Pop registers from the stack represented by ImmediateDominatingParent
      // until we find a parent that dominates the current instruction.
      unsigned &CurrentParent = CurrentDominatingParent[Color];
      unsigned NewParent = CurrentParent;
      while (NewParent
             && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
                 || !getRegColor(NewParent)))
        NewParent = ImmediateDominatingParent[NewParent];
      CurrentParent = NewParent;

      // If there is an interference with a register, always isolate the
      // register rather than the PHI. It is also possible to isolate the
      // PHI, but that introduces copies for all of the registers involved
      // in that PHI.
      if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
                    && NewParent != PredOperandReg)
        isolateReg(NewParent);

      std::pair<MachineInstr*, unsigned>
        &CurrentPHI = CurrentPHIForColor[Color];

      // If two PHIs have the same operand from every shared predecessor, then
      // they don't actually interfere. Otherwise, isolate the current PHI. This
      // could possibly be improved, e.g. we could isolate the PHI with the
      // fewest operands.
      if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
        isolatePHI(PHI);
      else
        CurrentPHI = std::make_pair(PHI, PredOperandReg);
    }
  }
}

void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
                                              MachineBasicBlock *MBB) {
  assert(PHI->isPHI());
  ++NumPHIsLowered;
  unsigned PHIColor = getPHIColor(PHI);

  for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
    MachineOperand &SrcMO = PHI->getOperand(i);

    // If a source is defined by an implicit def, there is no need to insert a
    // copy in the predecessor.
    if (SrcMO.isUndef())
      continue;

    unsigned SrcReg = SrcMO.getReg();
    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
           "Machine PHI Operands must all be virtual registers!");

    MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
    unsigned SrcColor = getRegColor(SrcReg);

    // If neither the PHI nor the operand were isolated, then we only need to
    // set the phi-kill flag on the VNInfo at this PHI.
    if (PHIColor && SrcColor == PHIColor) {
      LiveInterval &SrcInterval = LI->getInterval(SrcReg);
      SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
      VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
      (void)SrcVNI;
      assert(SrcVNI);
      continue;
    }

    unsigned CopyReg = 0;
    if (PHIColor) {
      SrcCopyMap::const_iterator I
        = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
      CopyReg
        = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
    }

    if (!CopyReg) {
      const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
      CopyReg = MRI->createVirtualRegister(RC);

      MachineBasicBlock::iterator
        CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
      unsigned SrcSubReg = SrcMO.getSubReg();
      MachineInstr *CopyInstr = BuildMI(*PredBB,
                                        CopyInsertPoint,
                                        PHI->getDebugLoc(),
                                        TII->get(TargetOpcode::COPY),
                                        CopyReg).addReg(SrcReg, 0, SrcSubReg);
      LI->InsertMachineInstrInMaps(CopyInstr);
      ++NumSrcCopiesInserted;

      // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
      // the newly added range.
      LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
      InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));

      addReg(CopyReg);
      if (PHIColor) {
        unionRegs(PHIColor, CopyReg);
        assert(getRegColor(CopyReg) != CopyReg);
      } else {
        PHIColor = CopyReg;
        assert(getRegColor(CopyReg) == CopyReg);
      }

      // Insert into map if not already there.
      InsertedSrcCopyMap.insert(std::make_pair(std::make_pair(PredBB, PHIColor),
                                               CopyInstr));
    }

    SrcMO.setReg(CopyReg);

    // If SrcReg is not live beyond the PHI, trim its interval so that it is no
    // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
    // processed later, but this is still correct to do at this point because we
    // never rely on LiveIntervals being correct while inserting copies.
    // FIXME: Should this just count uses at PHIs like the normal PHIElimination
    // pass does?
    LiveInterval &SrcLI = LI->getInterval(SrcReg);
    SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
    SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
    SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
    if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
      SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
  }

  unsigned DestReg = PHI->getOperand(0).getReg();
  unsigned DestColor = getRegColor(DestReg);

  if (PHIColor && DestColor == PHIColor) {
    LiveInterval &DestLI = LI->getInterval(DestReg);

    // Set the phi-def flag for the VN at this PHI.
    SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
    VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getRegSlot());
    assert(DestVNI);
  
    // Prior to PHI elimination, the live ranges of PHIs begin at their defining
    // instruction. After PHI elimination, PHI instructions are replaced by VNs
    // with the phi-def flag set, and the live ranges of these VNs start at the
    // beginning of the basic block.
    SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
    DestVNI->def = MBBStartIndex;
    DestLI.addRange(LiveRange(MBBStartIndex,
                              PHIIndex.getRegSlot(),
                              DestVNI));
    return;
  }

  const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
  unsigned CopyReg = MRI->createVirtualRegister(RC);

  MachineInstr *CopyInstr = BuildMI(*MBB,
                                    MBB->SkipPHIsAndLabels(MBB->begin()),
                                    PHI->getDebugLoc(),
                                    TII->get(TargetOpcode::COPY),
                                    DestReg).addReg(CopyReg);
  LI->InsertMachineInstrInMaps(CopyInstr);
  PHI->getOperand(0).setReg(CopyReg);
  ++NumDestCopiesInserted;

  // Add the region from the beginning of MBB to the copy instruction to
  // CopyReg's live interval, and give the VNInfo the phidef flag.
  LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
  SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
  SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
  VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
                                        LI->getVNInfoAllocator());
  CopyLI.addRange(LiveRange(MBBStartIndex,
                            DestCopyIndex.getRegSlot(),
                            CopyVNI));

  // Adjust DestReg's live interval to adjust for its new definition at
  // CopyInstr.
  LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
  SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
  DestLI.removeRange(PHIIndex.getRegSlot(), DestCopyIndex.getRegSlot());

  VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
  assert(DestVNI);
  DestVNI->def = DestCopyIndex.getRegSlot();

  InsertedDestCopies[CopyReg] = CopyInstr;
}

void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
  if (Reg == NewReg)
    return;

  LiveInterval &OldLI = LI->getInterval(Reg);
  LiveInterval &NewLI = LI->getInterval(NewReg);

  // Merge the live ranges of the two registers.
  DenseMap<VNInfo*, VNInfo*> VNMap;
  for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
       LRI != LRE; ++LRI) {
    LiveRange OldLR = *LRI;
    VNInfo *OldVN = OldLR.valno;

    VNInfo *&NewVN = VNMap[OldVN];
    if (!NewVN) {
      NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
      VNMap[OldVN] = NewVN;
    }

    LiveRange LR(OldLR.start, OldLR.end, NewVN);
    NewLI.addRange(LR);
  }

  // Remove the LiveInterval for the register being renamed and replace all
  // of its defs and uses with the new register.
  LI->removeInterval(Reg);
  MRI->replaceRegWith(Reg, NewReg);
}