summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SimpleRegisterCoalescing.cpp
blob: c03933944f8d376ace0c06393f7281541d0fb8c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple register coalescing pass that attempts to
// aggressively coalesce every register copy that it can.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regcoalescing"
#include "SimpleRegisterCoalescing.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

STATISTIC(numJoins    , "Number of interval joins performed");
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
STATISTIC(numAborts   , "Number of times interval joining aborted");

char SimpleRegisterCoalescing::ID = 0;
namespace {
  static cl::opt<bool>
  EnableJoining("join-liveintervals",
                cl::desc("Coalesce copies (default=true)"),
                cl::init(true));

  static cl::opt<bool>
  NewHeuristic("new-coalescer-heuristic",
                cl::desc("Use new coalescer heuristic"),
                cl::init(false));

  static cl::opt<bool>
  ReMatSpillWeight("tweak-remat-spill-weight",
                   cl::desc("Tweak spill weight of re-materializable intervals"),
                   cl::init(true));

  RegisterPass<SimpleRegisterCoalescing> 
  X("simple-register-coalescing", "Simple Register Coalescing");

  // Declare that we implement the RegisterCoalescer interface
  RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
}

const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo();

void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addPreserved<LiveIntervals>();
  AU.addPreservedID(PHIEliminationID);
  AU.addPreservedID(TwoAddressInstructionPassID);
  AU.addRequired<LiveVariables>();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy.  For example:
///
///  A3 = B0
///    ...
///  B1 = A3      <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
                                         MachineInstr *CopyMI) {
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));

  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  VNInfo *BValNo = BLR->valno;
  
  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
  // can't process it.
  if (!BValNo->reg) return false;
  assert(BValNo->def == CopyIdx &&
         "Copy doesn't define the value?");
  
  // AValNo is the value number in A that defines the copy, A0 in the example.
  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
  VNInfo *AValNo = AValLR->valno;
  
  // If AValNo is defined as a copy from IntB, we can potentially process this.
  
  // Get the instruction that defines this value number.
  unsigned SrcReg = AValNo->reg;
  if (!SrcReg) return false;  // Not defined by a copy.
    
  // If the value number is not defined by a copy instruction, ignore it.
    
  // If the source register comes from an interval other than IntB, we can't
  // handle this.
  if (rep(SrcReg) != IntB.reg) return false;
  
  // Get the LiveRange in IntB that this value number starts with.
  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
  
  // Make sure that the end of the live range is inside the same block as
  // CopyMI.
  MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
  if (!ValLREndInst || 
      ValLREndInst->getParent() != CopyMI->getParent()) return false;

  // Okay, we now know that ValLR ends in the same block that the CopyMI
  // live-range starts.  If there are no intervening live ranges between them in
  // IntB, we can merge them.
  if (ValLR+1 != BLR) return false;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (MRegisterInfo::isPhysicalRegister(IntB.reg) &&
      *mri_->getSubRegisters(IntB.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  }
  
  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
  
  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
  // We are about to delete CopyMI, so need to remove it as the 'instruction
  // that defines this value #'. Update the the valnum with the new defining
  // instruction #.
  BValNo->def = FillerStart;
  BValNo->reg = 0;
  
  // Okay, we can merge them.  We need to insert a new liverange:
  // [ValLR.end, BLR.begin) of either value number, then we merge the
  // two value numbers.
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));

  // If the IntB live range is assigned to a physical register, and if that
  // physreg has aliases, 
  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) {
      LiveInterval &AliasLI = li_->getInterval(*AS);
      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
              AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
    }
  }

  // Okay, merge "B1" into the same value number as "B0".
  if (BValNo != ValLR->valno)
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
  DOUT << "   result = "; IntB.print(DOUT, mri_);
  DOUT << "\n";

  // If the source instruction was killing the source register before the
  // merge, unset the isKill marker given the live range has been extended.
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
  if (UIdx != -1)
    ValLREndInst->getOperand(UIdx).unsetIsKill();
  
  ++numPeep;
  return true;
}

/// AddSubRegIdxPairs - Recursively mark all the registers represented by the
/// specified register as sub-registers. The recursion level is expected to be
/// shallow.
void SimpleRegisterCoalescing::AddSubRegIdxPairs(unsigned Reg, unsigned SubIdx) {
  std::vector<unsigned> &JoinedRegs = r2rRevMap_[Reg];
  for (unsigned i = 0, e = JoinedRegs.size(); i != e; ++i) {
    SubRegIdxes.push_back(std::make_pair(JoinedRegs[i], SubIdx));
    AddSubRegIdxPairs(JoinedRegs[i], SubIdx);
  }
}

/// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
///
bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
                                              unsigned DstReg) {
  MachineBasicBlock *MBB = CopyMI->getParent();
  const MachineLoop *L = loopInfo->getLoopFor(MBB);
  if (!L)
    return false;
  if (MBB != L->getLoopLatch())
    return false;

  DstReg = rep(DstReg);
  LiveInterval &LI = li_->getInterval(DstReg);
  unsigned DefIdx = li_->getInstructionIndex(CopyMI);
  LiveInterval::const_iterator DstLR =
    LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
  if (DstLR == LI.end())
    return false;
  unsigned KillIdx = li_->getInstructionIndex(&MBB->back()) + InstrSlots::NUM-1;
  if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0] == KillIdx)
    return true;
  return false;
}

/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI.  This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
/// things get coalesced, then it returns true by reference in 'Again'.
bool SimpleRegisterCoalescing::JoinCopy(CopyRec TheCopy, bool &Again) {
  MachineInstr *CopyMI = TheCopy.MI;

  Again = false;
  if (JoinedCopies.count(CopyMI))
    return false; // Already done.

  DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;

  // Get representative registers.
  unsigned SrcReg = TheCopy.SrcReg;
  unsigned DstReg = TheCopy.DstReg;
  unsigned repSrcReg = rep(SrcReg);
  unsigned repDstReg = rep(DstReg);
  
  // If they are already joined we continue.
  if (repSrcReg == repDstReg) {
    DOUT << "\tCopy already coalesced.\n";
    return false;  // Not coalescable.
  }
  
  bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg);
  bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg);

  // If they are both physical registers, we cannot join them.
  if (SrcIsPhys && DstIsPhys) {
    DOUT << "\tCan not coalesce physregs.\n";
    return false;  // Not coalescable.
  }
  
  // We only join virtual registers with allocatable physical registers.
  if (SrcIsPhys && !allocatableRegs_[repSrcReg]) {
    DOUT << "\tSrc reg is unallocatable physreg.\n";
    return false;  // Not coalescable.
  }
  if (DstIsPhys && !allocatableRegs_[repDstReg]) {
    DOUT << "\tDst reg is unallocatable physreg.\n";
    return false;  // Not coalescable.
  }

  bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
  unsigned RealDstReg = 0;
  if (isExtSubReg) {
    unsigned SubIdx = CopyMI->getOperand(2).getImm();
    if (SrcIsPhys)
      // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
      // coalesced with AX.
      repSrcReg = mri_->getSubReg(repSrcReg, SubIdx);
    else if (DstIsPhys) {
      // If this is a extract_subreg where dst is a physical register, e.g.
      // cl = EXTRACT_SUBREG reg1024, 1
      // then create and update the actual physical register allocated to RHS.
      const TargetRegisterClass *RC=mf_->getSSARegMap()->getRegClass(repSrcReg);
      for (const unsigned *SRs = mri_->getSuperRegisters(repDstReg);
           unsigned SR = *SRs; ++SRs) {
        if (repDstReg == mri_->getSubReg(SR, SubIdx) &&
            RC->contains(SR)) {
          RealDstReg = SR;
          break;
        }
      }
      assert(RealDstReg && "Invalid extra_subreg instruction!");

      // For this type of EXTRACT_SUBREG, conservatively
      // check if the live interval of the source register interfere with the
      // actual super physical register we are trying to coalesce with.
      LiveInterval &RHS = li_->getInterval(repSrcReg);
      if (li_->hasInterval(RealDstReg) &&
          RHS.overlaps(li_->getInterval(RealDstReg))) {
        DOUT << "Interfere with register ";
        DEBUG(li_->getInterval(RealDstReg).print(DOUT, mri_));
        return false; // Not coalescable
      }
      for (const unsigned* SR = mri_->getSubRegisters(RealDstReg); *SR; ++SR)
        if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
          DOUT << "Interfere with sub-register ";
          DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
          return false; // Not coalescable
        }
    } else {
      unsigned SrcSize= li_->getInterval(repSrcReg).getSize() / InstrSlots::NUM;
      unsigned DstSize= li_->getInterval(repDstReg).getSize() / InstrSlots::NUM;
      const TargetRegisterClass *RC=mf_->getSSARegMap()->getRegClass(repDstReg);
      unsigned Threshold = allocatableRCRegs_[RC].count();
      // Be conservative. If both sides are virtual registers, do not coalesce
      // if this will cause a high use density interval to target a smaller set
      // of registers.
      if (DstSize > Threshold || SrcSize > Threshold) {
        LiveVariables::VarInfo &svi = lv_->getVarInfo(repSrcReg);
        LiveVariables::VarInfo &dvi = lv_->getVarInfo(repDstReg);
        if ((float)dvi.NumUses / DstSize < (float)svi.NumUses / SrcSize) {
          Again = true;  // May be possible to coalesce later.
          return false;
        }
      }
    }
  } else if (differingRegisterClasses(repSrcReg, repDstReg)) {
    // If they are not of the same register class, we cannot join them.
    DOUT << "\tSrc/Dest are different register classes.\n";
    // Allow the coalescer to try again in case either side gets coalesced to
    // a physical register that's compatible with the other side. e.g.
    // r1024 = MOV32to32_ r1025
    // but later r1024 is assigned EAX then r1025 may be coalesced with EAX.
    Again = true;  // May be possible to coalesce later.
    return false;
  }
  
  LiveInterval &SrcInt = li_->getInterval(repSrcReg);
  LiveInterval &DstInt = li_->getInterval(repDstReg);
  assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg &&
         "Register mapping is horribly broken!");

  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
  DOUT << " and "; DstInt.print(DOUT, mri_);
  DOUT << ": ";

  // Check if it is necessary to propagate "isDead" property before intervals
  // are joined.
  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
  bool isDead = mopd->isDead();
  bool isShorten = false;
  unsigned SrcStart = 0, RemoveStart = 0;
  unsigned SrcEnd = 0, RemoveEnd = 0;
  if (isDead) {
    unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
    LiveInterval::iterator SrcLR =
      SrcInt.FindLiveRangeContaining(li_->getUseIndex(CopyIdx));
    RemoveStart = SrcStart = SrcLR->start;
    RemoveEnd   = SrcEnd   = SrcLR->end;
    // The instruction which defines the src is only truly dead if there are
    // no intermediate uses and there isn't a use beyond the copy.
    // FIXME: find the last use, mark is kill and shorten the live range.
    if (SrcEnd > li_->getDefIndex(CopyIdx)) {
      isDead = false;
    } else {
      MachineOperand *MOU;
      MachineInstr *LastUse= lastRegisterUse(SrcStart, CopyIdx, repSrcReg, MOU);
      if (LastUse) {
        // Shorten the liveinterval to the end of last use.
        MOU->setIsKill();
        isDead = false;
        isShorten = true;
        RemoveStart = li_->getDefIndex(li_->getInstructionIndex(LastUse));
        RemoveEnd   = SrcEnd;
      } else {
        MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart);
        if (SrcMI) {
          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
          if (mops)
            // A dead def should have a single cycle interval.
            ++RemoveStart;
        }
      }
    }
  }

  // We need to be careful about coalescing a source physical register with a
  // virtual register. Once the coalescing is done, it cannot be broken and
  // these are not spillable! If the destination interval uses are far away,
  // think twice about coalescing them!
  if (!mopd->isDead() && (SrcIsPhys || DstIsPhys) && !isExtSubReg) {
    LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
    unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
    unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
    const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
    unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
    if (TheCopy.isBackEdge)
      Threshold *= 2; // Favors back edge copies.

    // If the virtual register live interval is long but it has low use desity,
    // do not join them, instead mark the physical register as its allocation
    // preference.
    unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
    LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
    if (Length > Threshold &&
        (((float)vi.NumUses / Length) < (1.0 / Threshold))) {
      JoinVInt.preference = JoinPReg;
      ++numAborts;
      DOUT << "\tMay tie down a physical register, abort!\n";
      Again = true;  // May be possible to coalesce later.
      return false;
    }
  }

  // Okay, attempt to join these two intervals.  On failure, this returns false.
  // Otherwise, if one of the intervals being joined is a physreg, this method
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
  // been modified, so we can use this information below to update aliases.
  bool Swapped = false;
  if (JoinIntervals(DstInt, SrcInt, Swapped)) {
    if (isDead) {
      // Result of the copy is dead. Propagate this property.
      if (SrcStart == 0) {
        assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
               "Live-in must be a physical register!");
        // Live-in to the function but dead. Remove it from entry live-in set.
        // JoinIntervals may end up swapping the two intervals.
        mf_->begin()->removeLiveIn(repSrcReg);
      } else {
        MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart);
        if (SrcMI) {
          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
          if (mops)
            mops->setIsDead();
        }
      }
    }

    if (isShorten || isDead) {
      // Shorten the destination live interval.
      if (Swapped)
        SrcInt.removeRange(RemoveStart, RemoveEnd);
    }
  } else {
    // Coalescing failed.
    
    // If we can eliminate the copy without merging the live ranges, do so now.
    if (!isExtSubReg && AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI)) {
      JoinedCopies.insert(CopyMI);
      return true;
    }

    // Otherwise, we are unable to join the intervals.
    DOUT << "Interference!\n";
    Again = true;  // May be possible to coalesce later.
    return false;
  }

  LiveInterval *ResSrcInt = &SrcInt;
  LiveInterval *ResDstInt = &DstInt;
  if (Swapped) {
    std::swap(repSrcReg, repDstReg);
    std::swap(ResSrcInt, ResDstInt);
  }
  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
         "LiveInterval::join didn't work right!");
                               
  // If we're about to merge live ranges into a physical register live range,
  // we have to update any aliased register's live ranges to indicate that they
  // have clobbered values for this range.
  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
    // Unset unnecessary kills.
    if (!ResDstInt->containsOneValue()) {
      for (LiveInterval::Ranges::const_iterator I = ResSrcInt->begin(),
             E = ResSrcInt->end(); I != E; ++I)
        unsetRegisterKills(I->start, I->end, repDstReg);
    }

    // If this is a extract_subreg where dst is a physical register, e.g.
    // cl = EXTRACT_SUBREG reg1024, 1
    // then create and update the actual physical register allocated to RHS.
    if (RealDstReg) {
      LiveInterval &RealDstInt = li_->getOrCreateInterval(RealDstReg);
      SmallSet<const VNInfo*, 4> CopiedValNos;
      for (LiveInterval::Ranges::const_iterator I = ResSrcInt->ranges.begin(),
             E = ResSrcInt->ranges.end(); I != E; ++I) {
        LiveInterval::const_iterator DstLR =
          ResDstInt->FindLiveRangeContaining(I->start);
        assert(DstLR != ResDstInt->end() && "Invalid joined interval!");
        const VNInfo *DstValNo = DstLR->valno;
        if (CopiedValNos.insert(DstValNo)) {
          VNInfo *ValNo = RealDstInt.getNextValue(DstValNo->def, DstValNo->reg,
                                                  li_->getVNInfoAllocator());
          ValNo->hasPHIKill = DstValNo->hasPHIKill;
          RealDstInt.addKills(ValNo, DstValNo->kills);
          RealDstInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo);
        }
      }
      repDstReg = RealDstReg;
    }

    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
      li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
                                                 li_->getVNInfoAllocator());
  } else {
    // Merge use info if the destination is a virtual register.
    LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
    LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
    dVI.NumUses += sVI.NumUses;
  }

  // Remember these liveintervals have been joined.
  JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
  if (MRegisterInfo::isVirtualRegister(repDstReg))
    JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);

  if (isExtSubReg && !SrcIsPhys && !DstIsPhys) {
    if (!Swapped) {
      // Make sure we allocate the larger super-register.
      ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
      std::swap(repSrcReg, repDstReg);
      std::swap(ResSrcInt, ResDstInt);
    }
    unsigned SubIdx = CopyMI->getOperand(2).getImm();
    SubRegIdxes.push_back(std::make_pair(repSrcReg, SubIdx));
    AddSubRegIdxPairs(repSrcReg, SubIdx);
  }

  if (NewHeuristic) {
    for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
           e = ResSrcInt->vni_end(); i != e; ++i) {
      const VNInfo *vni = *i;
      if (vni->def && vni->def != ~1U && vni->def != ~0U) {
        MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
        unsigned SrcReg, DstReg;
        if (CopyMI && tii_->isMoveInstr(*CopyMI, SrcReg, DstReg) &&
            JoinedCopies.count(CopyMI) == 0) {
          unsigned LoopDepth = loopInfo->getLoopDepth(CopyMI->getParent());
          JoinQueue->push(CopyRec(CopyMI, SrcReg, DstReg, LoopDepth,
                                  isBackEdgeCopy(CopyMI, DstReg)));
        }
      }
    }
  }

  DOUT << "\n\t\tJoined.  Result = "; ResDstInt->print(DOUT, mri_);
  DOUT << "\n";

  // repSrcReg is guarateed to be the register whose live interval that is
  // being merged.
  li_->removeInterval(repSrcReg);
  r2rMap_[repSrcReg] = repDstReg;
  r2rRevMap_[repDstReg].push_back(repSrcReg);

  // Finally, delete the copy instruction.
  JoinedCopies.insert(CopyMI);
  ++numPeep;
  ++numJoins;
  return true;
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments) {
  unsigned VN = VNI->id;

  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");

  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
  if (I == ThisFromOther.end()) {
    NewVNInfo.push_back(VNI);
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  VNInfo *OtherValNo = I->second;

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
  
  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments);
  return ThisValNoAssignments[VN] = UltimateVN;
}

static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
  return std::find(V.begin(), V.end(), Val) != V.end();
}

/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval.  This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
  assert(RHS.containsOneValue());
  
  // Some number (potentially more than one) value numbers in the current
  // interval may be defined as copies from the RHS.  Scan the overlapping
  // portions of the LHS and RHS, keeping track of this and looking for
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
  // cannot coalesce.
  
  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
  
  if (LHSIt->start < RHSIt->start) {
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
    if (LHSIt != LHS.begin()) --LHSIt;
  } else if (RHSIt->start < LHSIt->start) {
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
    if (RHSIt != RHS.begin()) --RHSIt;
  }
  
  SmallVector<VNInfo*, 8> EliminatedLHSVals;
  
  while (1) {
    // Determine if these live intervals overlap.
    bool Overlaps = false;
    if (LHSIt->start <= RHSIt->start)
      Overlaps = LHSIt->end > RHSIt->start;
    else
      Overlaps = RHSIt->end > LHSIt->start;
    
    // If the live intervals overlap, there are two interesting cases: if the
    // LHS interval is defined by a copy from the RHS, it's ok and we record
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
    // coalesce these live ranges and we bail out.
    if (Overlaps) {
      // If we haven't already recorded that this value # is safe, check it.
      if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
        // Copy from the RHS?
        unsigned SrcReg = LHSIt->valno->reg;
        if (rep(SrcReg) != RHS.reg)
          return false;    // Nope, bail out.
        
        EliminatedLHSVals.push_back(LHSIt->valno);
      }
      
      // We know this entire LHS live range is okay, so skip it now.
      if (++LHSIt == LHSEnd) break;
      continue;
    }
    
    if (LHSIt->end < RHSIt->end) {
      if (++LHSIt == LHSEnd) break;
    } else {
      // One interesting case to check here.  It's possible that we have
      // something like "X3 = Y" which defines a new value number in the LHS,
      // and is the last use of this liverange of the RHS.  In this case, we
      // want to notice this copy (so that it gets coalesced away) even though
      // the live ranges don't actually overlap.
      if (LHSIt->start == RHSIt->end) {
        if (InVector(LHSIt->valno, EliminatedLHSVals)) {
          // We already know that this value number is going to be merged in
          // if coalescing succeeds.  Just skip the liverange.
          if (++LHSIt == LHSEnd) break;
        } else {
          // Otherwise, if this is a copy from the RHS, mark it as being merged
          // in.
          if (rep(LHSIt->valno->reg) == RHS.reg) {
            EliminatedLHSVals.push_back(LHSIt->valno);

            // We know this entire LHS live range is okay, so skip it now.
            if (++LHSIt == LHSEnd) break;
          }
        }
      }
      
      if (++RHSIt == RHSEnd) break;
    }
  }
  
  // If we got here, we know that the coalescing will be successful and that
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
  // the most common case is that EliminatedLHSVals has a single number, we
  // optimize for it: if there is more than one value, we merge them all into
  // the lowest numbered one, then handle the interval as if we were merging
  // with one value number.
  VNInfo *LHSValNo;
  if (EliminatedLHSVals.size() > 1) {
    // Loop through all the equal value numbers merging them into the smallest
    // one.
    VNInfo *Smallest = EliminatedLHSVals[0];
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
      if (EliminatedLHSVals[i]->id < Smallest->id) {
        // Merge the current notion of the smallest into the smaller one.
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
        Smallest = EliminatedLHSVals[i];
      } else {
        // Merge into the smallest.
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
      }
    }
    LHSValNo = Smallest;
  } else {
    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
    LHSValNo = EliminatedLHSVals[0];
  }
  
  // Okay, now that there is a single LHS value number that we're merging the
  // RHS into, update the value number info for the LHS to indicate that the
  // value number is defined where the RHS value number was.
  const VNInfo *VNI = RHS.getValNumInfo(0);
  LHSValNo->def = VNI->def;
  LHSValNo->reg = VNI->reg;
  
  // Okay, the final step is to loop over the RHS live intervals, adding them to
  // the LHS.
  LHSValNo->hasPHIKill |= VNI->hasPHIKill;
  LHS.addKills(LHSValNo, VNI->kills);
  LHS.MergeRangesInAsValue(RHS, LHSValNo);
  LHS.weight += RHS.weight;
  if (RHS.preference && !LHS.preference)
    LHS.preference = RHS.preference;
  
  return true;
}

/// JoinIntervals - Attempt to join these two intervals.  On failure, this
/// returns false.  Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it.  The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS,
                                             LiveInterval &RHS, bool &Swapped) {
  // Compute the final value assignment, assuming that the live ranges can be
  // coalesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
  SmallVector<VNInfo*, 16> NewVNInfo;
                          
  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (MRegisterInfo::isPhysicalRegister(LHS.reg) &&
      *mri_->getSubRegisters(LHS.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) &&
             *mri_->getSubRegisters(RHS.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  }
                          
  // Compute ultimate value numbers for the LHS and RHS values.
  if (RHS.containsOneValue()) {
    // Copies from a liveinterval with a single value are simple to handle and
    // very common, handle the special case here.  This is important, because
    // often RHS is small and LHS is large (e.g. a physreg).
    
    // Find out if the RHS is defined as a copy from some value in the LHS.
    int RHSVal0DefinedFromLHS = -1;
    int RHSValID = -1;
    VNInfo *RHSValNoInfo = NULL;
    VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
    unsigned RHSSrcReg = RHSValNoInfo0->reg;
    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
      // If RHS is not defined as a copy from the LHS, we can use simpler and
      // faster checks to see if the live ranges are coalescable.  This joiner
      // can't swap the LHS/RHS intervals though.
      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
        return SimpleJoin(LHS, RHS);
      } else {
        RHSValNoInfo = RHSValNoInfo0;
      }
    } else {
      // It was defined as a copy from the LHS, find out what value # it is.
      RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
      RHSValID = RHSValNoInfo->id;
      RHSVal0DefinedFromLHS = RHSValID;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.resize(LHS.getNumValNums(), NULL);
    
    // Okay, *all* of the values in LHS that are defined as a copy from RHS
    // should now get updated.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (unsigned LHSSrcReg = VNI->reg) {
        if (rep(LHSSrcReg) != RHS.reg) {
          // If this is not a copy from the RHS, its value number will be
          // unmodified by the coalescing.
          NewVNInfo[VN] = VNI;
          LHSValNoAssignments[VN] = VN;
        } else if (RHSValID == -1) {
          // Otherwise, it is a copy from the RHS, and we don't already have a
          // value# for it.  Keep the current value number, but remember it.
          LHSValNoAssignments[VN] = RHSValID = VN;
          NewVNInfo[VN] = RHSValNoInfo;
          LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
        } else {
          // Otherwise, use the specified value #.
          LHSValNoAssignments[VN] = RHSValID;
          if (VN == (unsigned)RHSValID) {  // Else this val# is dead.
            NewVNInfo[VN] = RHSValNoInfo;
            LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
          }
        }
      } else {
        NewVNInfo[VN] = VNI;
        LHSValNoAssignments[VN] = VN;
      }
    }
    
    assert(RHSValID != -1 && "Didn't find value #?");
    RHSValNoAssignments[0] = RHSValID;
    if (RHSVal0DefinedFromLHS != -1) {
      // This path doesn't go through ComputeUltimateVN so just set
      // it to anything.
      RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
    }
  } else {
    // Loop over the value numbers of the LHS, seeing if any are defined from
    // the RHS.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned ValSrcReg = VNI->reg;
      if (VNI->def == ~1U ||ValSrcReg == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the LHS interval.  If the src is
      // from the RHS interval, we can use its value #.
      if (rep(ValSrcReg) != RHS.reg)
        continue;
      
      // Figure out the value # from the RHS.
      LHSValsDefinedFromRHS[VNI] = RHS.getLiveRangeContaining(VNI->def-1)->valno;
    }
    
    // Loop over the value numbers of the RHS, seeing if any are defined from
    // the LHS.
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned ValSrcReg = VNI->reg;
      if (VNI->def == ~1U || ValSrcReg == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the RHS interval.  If the src is
      // from the LHS interval, we can use its value #.
      if (rep(ValSrcReg) != LHS.reg)
        continue;
      
      // Figure out the value # from the LHS.
      RHSValsDefinedFromLHS[VNI]= LHS.getLiveRangeContaining(VNI->def-1)->valno;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
    
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) 
        continue;
      ComputeUltimateVN(VNI, NewVNInfo,
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
                        LHSValNoAssignments, RHSValNoAssignments);
    }
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
        continue;
      // If this value number isn't a copy from the LHS, it's a new number.
      if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
        NewVNInfo.push_back(VNI);
        RHSValNoAssignments[VN] = NewVNInfo.size()-1;
        continue;
      }
      
      ComputeUltimateVN(VNI, NewVNInfo,
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
                        RHSValNoAssignments, LHSValNoAssignments);
    }
  }
  
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
  // interval lists to see if these intervals are coalescable.
  LiveInterval::const_iterator I = LHS.begin();
  LiveInterval::const_iterator IE = LHS.end();
  LiveInterval::const_iterator J = RHS.begin();
  LiveInterval::const_iterator JE = RHS.end();
  
  // Skip ahead until the first place of potential sharing.
  if (I->start < J->start) {
    I = std::upper_bound(I, IE, J->start);
    if (I != LHS.begin()) --I;
  } else if (J->start < I->start) {
    J = std::upper_bound(J, JE, I->start);
    if (J != RHS.begin()) --J;
  }
  
  while (1) {
    // Determine if these two live ranges overlap.
    bool Overlaps;
    if (I->start < J->start) {
      Overlaps = I->end > J->start;
    } else {
      Overlaps = J->end > I->start;
    }

    // If so, check value # info to determine if they are really different.
    if (Overlaps) {
      // If the live range overlap will map to the same value number in the
      // result liverange, we can still coalesce them.  If not, we can't.
      if (LHSValNoAssignments[I->valno->id] !=
          RHSValNoAssignments[J->valno->id])
        return false;
    }
    
    if (I->end < J->end) {
      ++I;
      if (I == IE) break;
    } else {
      ++J;
      if (J == JE) break;
    }
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned LHSValID = LHSValNoAssignments[VNI->id];
    LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
    NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
    RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned RHSValID = RHSValNoAssignments[VNI->id];
    LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
    NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
    LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
  }

  // If we get here, we know that we can coalesce the live ranges.  Ask the
  // intervals to coalesce themselves now.
  if ((RHS.ranges.size() > LHS.ranges.size() &&
      MRegisterInfo::isVirtualRegister(LHS.reg)) ||
      MRegisterInfo::isPhysicalRegister(RHS.reg)) {
    RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
    Swapped = true;
  } else {
    LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
    Swapped = false;
  }
  return true;
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      if (LHS.first > RHS.first) return true;   // Deeper loops first
      return LHS.first == RHS.first &&
        LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

/// getRepIntervalSize - Returns the size of the interval that represents the
/// specified register.
template<class SF>
unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
  return Rc->getRepIntervalSize(Reg);
}

/// CopyRecSort::operator - Join priority queue sorting function.
///
bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
  // Inner loops first.
  if (left.LoopDepth > right.LoopDepth)
    return false;
  else if (left.LoopDepth == right.LoopDepth) {
    if (left.isBackEdge && !right.isBackEdge)
      return false;
    else if (left.isBackEdge == right.isBackEdge) {
      // Join virtuals to physical registers first.
      bool LDstIsPhys = MRegisterInfo::isPhysicalRegister(left.DstReg);
      bool LSrcIsPhys = MRegisterInfo::isPhysicalRegister(left.SrcReg);
      bool LIsPhys = LDstIsPhys || LSrcIsPhys;
      bool RDstIsPhys = MRegisterInfo::isPhysicalRegister(right.DstReg);
      bool RSrcIsPhys = MRegisterInfo::isPhysicalRegister(right.SrcReg);
      bool RIsPhys = RDstIsPhys || RSrcIsPhys;
      if (LIsPhys && !RIsPhys)
        return false;
      else if (LIsPhys == RIsPhys) {
        // Join shorter intervals first.
        unsigned LSize = 0;
        unsigned RSize = 0;
        if (LIsPhys) {
          LSize =  LDstIsPhys ? 0 : JPQ->getRepIntervalSize(left.DstReg);
          LSize += LSrcIsPhys ? 0 : JPQ->getRepIntervalSize(left.SrcReg);
          RSize =  RDstIsPhys ? 0 : JPQ->getRepIntervalSize(right.DstReg);
          RSize += RSrcIsPhys ? 0 : JPQ->getRepIntervalSize(right.SrcReg);
        } else {
          LSize =  std::min(JPQ->getRepIntervalSize(left.DstReg),
                            JPQ->getRepIntervalSize(left.SrcReg));
          RSize =  std::min(JPQ->getRepIntervalSize(right.DstReg),
                            JPQ->getRepIntervalSize(right.SrcReg));
        }
        if (LSize < RSize)
          return false;
      }
    }
  }
  return true;
}

void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
                                               std::vector<CopyRec> &TryAgain) {
  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";

  std::vector<CopyRec> VirtCopies;
  std::vector<CopyRec> PhysCopies;
  unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E;) {
    MachineInstr *Inst = MII++;
    
    // If this isn't a copy nor a extract_subreg, we can't join intervals.
    unsigned SrcReg, DstReg;
    if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(1).getReg();
    } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg))
      continue;

    unsigned repSrcReg = rep(SrcReg);
    unsigned repDstReg = rep(DstReg);
    bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg);
    bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg);
    if (NewHeuristic) {
      JoinQueue->push(CopyRec(Inst, SrcReg, DstReg, LoopDepth,
                              isBackEdgeCopy(Inst, DstReg)));
    } else {
      if (SrcIsPhys || DstIsPhys)
        PhysCopies.push_back(CopyRec(Inst, SrcReg, DstReg, 0, false));
      else
        VirtCopies.push_back(CopyRec(Inst, SrcReg, DstReg, 0, false));
    }
  }

  if (NewHeuristic)
    return;

  // Try coalescing physical register + virtual register first.
  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = PhysCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = VirtCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
}

void SimpleRegisterCoalescing::joinIntervals() {
  DOUT << "********** JOINING INTERVALS ***********\n";

  if (NewHeuristic)
    JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);

  JoinedLIs.resize(li_->getNumIntervals());
  JoinedLIs.reset();

  std::vector<CopyRec> TryAgainList;
  if (loopInfo->begin() == loopInfo->end()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      CopyCoalesceInMBB(I, TryAgainList);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.

    // Join intervals in the function prolog first. We want to join physical
    // registers with virtual registers before the intervals got too long.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
      MachineBasicBlock *MBB = I;
      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
    }

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
  }
  
  // Joining intervals can allow other intervals to be joined.  Iteratively join
  // until we make no progress.
  if (NewHeuristic) {
    SmallVector<CopyRec, 16> TryAgain;
    bool ProgressMade = true;
    while (ProgressMade) {
      ProgressMade = false;
      while (!JoinQueue->empty()) {
        CopyRec R = JoinQueue->pop();
        bool Again = false;
        bool Success = JoinCopy(R, Again);
        if (Success)
          ProgressMade = true;
        else if (Again)
          TryAgain.push_back(R);
      }

      if (ProgressMade) {
        while (!TryAgain.empty()) {
          JoinQueue->push(TryAgain.back());
          TryAgain.pop_back();
        }
      }
    }
  } else {
    bool ProgressMade = true;
    while (ProgressMade) {
      ProgressMade = false;

      for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
        CopyRec &TheCopy = TryAgainList[i];
        if (TheCopy.MI) {
          bool Again = false;
          bool Success = JoinCopy(TheCopy, Again);
          if (Success || !Again) {
            TheCopy.MI = 0;   // Mark this one as done.
            ProgressMade = true;
          }
        }
      }
    }
  }

  // Some live range has been lengthened due to colaescing, eliminate the
  // unnecessary kills.
  int RegNum = JoinedLIs.find_first();
  while (RegNum != -1) {
    unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
    unsigned repReg = rep(Reg);
    LiveInterval &LI = li_->getInterval(repReg);
    LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
    for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = svi.Kills[i];
      // Suppose vr1 = op vr2, x
      // and vr1 and vr2 are coalesced. vr2 should still be marked kill
      // unless it is a two-address operand.
      if (li_->isRemoved(Kill) || hasRegisterDef(Kill, repReg))
        continue;
      if (LI.liveAt(li_->getInstructionIndex(Kill) + InstrSlots::NUM))
        unsetRegisterKill(Kill, repReg);
    }
    RegNum = JoinedLIs.find_next(RegNum);
  }

  if (NewHeuristic)
    delete JoinQueue;
  
  DOUT << "*** Register mapping ***\n";
  for (unsigned i = 0, e = r2rMap_.size(); i != e; ++i)
    if (r2rMap_[i]) {
      DOUT << "  reg " << i << " -> ";
      DEBUG(printRegName(r2rMap_[i]));
      DOUT << "\n";
    }
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
                                                        unsigned RegB) const {

  // Get the register classes for the first reg.
  if (MRegisterInfo::isPhysicalRegister(RegA)) {
    assert(MRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
  if (MRegisterInfo::isVirtualRegister(RegB))
    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
  else
    return !RegClass->contains(RegB);
}

/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End. It also returns the use operand by reference. It
/// returns NULL if there are no uses.
MachineInstr *
SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg,
                               MachineOperand *&MOU) {
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
  int s = Start;
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while ((e - InstrSlots::NUM) >= s && !MI) {
      e -= InstrSlots::NUM;
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return NULL;

    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isRegister() && MO.isUse() && MO.getReg() &&
          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
        MOU = &MO;
        return MI;
      }
    }

    e -= InstrSlots::NUM;
  }

  return NULL;
}


/// findDefOperand - Returns the MachineOperand that is a def of the specific
/// register. It returns NULL if the def is not found.
MachineOperand *SimpleRegisterCoalescing::findDefOperand(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isRegister() && MO.isDef() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      return &MO;
  }
  return NULL;
}

/// unsetRegisterKill - Unset IsKill property of all uses of specific register
/// of the specific instruction.
void SimpleRegisterCoalescing::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isRegister() && MO.isKill() && MO.getReg() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      MO.unsetIsKill();
  }
}

/// unsetRegisterKills - Unset IsKill property of all uses of specific register
/// between cycles Start and End.
void SimpleRegisterCoalescing::unsetRegisterKills(unsigned Start, unsigned End,
                                       unsigned Reg) {
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
  int s = Start;
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while ((e - InstrSlots::NUM) >= s && !MI) {
      e -= InstrSlots::NUM;
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return;

    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isRegister() && MO.isKill() && MO.getReg() &&
          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
        MO.unsetIsKill();
      }
    }

    e -= InstrSlots::NUM;
  }
}

/// hasRegisterDef - True if the instruction defines the specific register.
///
bool SimpleRegisterCoalescing::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isRegister() && MO.isDef() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      return true;
  }
  return false;
}

void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
  if (MRegisterInfo::isPhysicalRegister(reg))
    cerr << mri_->getName(reg);
  else
    cerr << "%reg" << reg;
}

void SimpleRegisterCoalescing::releaseMemory() {
  for (unsigned i = 0, e = r2rMap_.size(); i != e; ++i)
    r2rRevMap_[i].clear();
  r2rRevMap_.clear();
  r2rMap_.clear();
  JoinedLIs.clear();
  SubRegIdxes.clear();
  JoinedCopies.clear();
}

static bool isZeroLengthInterval(LiveInterval *li) {
  for (LiveInterval::Ranges::const_iterator
         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
      return false;
  return true;
}

bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  li_ = &getAnalysis<LiveIntervals>();
  lv_ = &getAnalysis<LiveVariables>();
  loopInfo = &getAnalysis<MachineLoopInfo>();

  DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
       << "********** Function: "
       << ((Value*)mf_->getFunction())->getName() << '\n';

  allocatableRegs_ = mri_->getAllocatableSet(fn);
  for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(),
         E = mri_->regclass_end(); I != E; ++I)
    allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I)));

  SSARegMap *RegMap = mf_->getSSARegMap();
  r2rMap_.grow(RegMap->getLastVirtReg());
  r2rRevMap_.grow(RegMap->getLastVirtReg());

  // Join (coalesce) intervals if requested.
  IndexedMap<unsigned, VirtReg2IndexFunctor> RegSubIdxMap;
  if (EnableJoining) {
    joinIntervals();
    DOUT << "********** INTERVALS POST JOINING **********\n";
    for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
      I->second.print(DOUT, mri_);
      DOUT << "\n";
    }

    // Delete all coalesced copies.
    for (SmallPtrSet<MachineInstr*,32>::iterator I = JoinedCopies.begin(),
           E = JoinedCopies.end(); I != E; ++I) {
      li_->RemoveMachineInstrFromMaps(*I);
      (*I)->eraseFromParent();
    }

    // Transfer sub-registers info to SSARegMap now that coalescing information
    // is complete.
    RegSubIdxMap.grow(mf_->getSSARegMap()->getLastVirtReg()+1);
    while (!SubRegIdxes.empty()) {
      std::pair<unsigned, unsigned> RI = SubRegIdxes.back();
      SubRegIdxes.pop_back();
      RegSubIdxMap[RI.first] = RI.second;
    }
  }

  // perform a final pass over the instructions and compute spill
  // weights, coalesce virtual registers and remove identity moves.
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    unsigned loopDepth = loopInfo->getLoopDepth(mbb);

    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      // if the move will be an identity move delete it
      unsigned srcReg, dstReg, RegRep;
      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
          (RegRep = rep(srcReg)) == rep(dstReg)) {
        // remove from def list
        LiveInterval &RegInt = li_->getOrCreateInterval(RegRep);
        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
        // If def of this move instruction is dead, remove its live range from
        // the dstination register's live interval.
        if (MO->isDead()) {
          unsigned MoveIdx = li_->getDefIndex(li_->getInstructionIndex(mii));
          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
          RegInt.removeRange(MLR->start, MoveIdx+1);
          if (RegInt.empty())
            li_->removeInterval(RegRep);
        }
        li_->RemoveMachineInstrFromMaps(mii);
        mii = mbbi->erase(mii);
        ++numPeep;
      } else {
        SmallSet<unsigned, 4> UniqueUses;
        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
          const MachineOperand &mop = mii->getOperand(i);
          if (mop.isRegister() && mop.getReg() &&
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
            // replace register with representative register
            unsigned OrigReg = mop.getReg();
            unsigned reg = rep(OrigReg);
            unsigned SubIdx = RegSubIdxMap[OrigReg];
            if (SubIdx && MRegisterInfo::isPhysicalRegister(reg))
              mii->getOperand(i).setReg(mri_->getSubReg(reg, SubIdx));
            else {
              mii->getOperand(i).setReg(reg);
              mii->getOperand(i).setSubReg(SubIdx);
            }

            // Multiple uses of reg by the same instruction. It should not
            // contribute to spill weight again.
            if (UniqueUses.count(reg) != 0)
              continue;
            LiveInterval &RegInt = li_->getInterval(reg);
            RegInt.weight +=
              li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
            UniqueUses.insert(reg);
          }
        }
        ++mii;
      }
    }
  }

  for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
    LiveInterval &LI = I->second;
    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
      // If the live interval length is essentially zero, i.e. in every live
      // range the use follows def immediately, it doesn't make sense to spill
      // it and hope it will be easier to allocate for this li.
      if (isZeroLengthInterval(&LI))
        LI.weight = HUGE_VALF;
      else {
        bool isLoad = false;
        if (ReMatSpillWeight && li_->isReMaterializable(LI, isLoad)) {
          // If all of the definitions of the interval are re-materializable,
          // it is a preferred candidate for spilling. If non of the defs are
          // loads, then it's potentially very cheap to re-materialize.
          // FIXME: this gets much more complicated once we support non-trivial
          // re-materialization.
          if (isLoad)
            LI.weight *= 0.9F;
          else
            LI.weight *= 0.5F;
        }
      }

      // Slightly prefer live interval that has been assigned a preferred reg.
      if (LI.preference)
        LI.weight *= 1.01F;

      // Divide the weight of the interval by its size.  This encourages 
      // spilling of intervals that are large and have few uses, and
      // discourages spilling of small intervals with many uses.
      LI.weight /= LI.getSize();
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
   li_->print(O, m);
}

RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
  return new SimpleRegisterCoalescing();
}

// Make sure that anything that uses RegisterCoalescer pulls in this file...
DEFINING_FILE_FOR(SimpleRegisterCoalescing)