summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
blob: 0243ebf5df3d3b02456f0e68368485be2049ff13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetLowering.h"
#include <iostream>
#include <set>
#include <cmath>
#include <algorithm>
using namespace llvm;

static bool isCommutativeBinOp(unsigned Opcode) {
  switch (Opcode) {
  case ISD::ADD:
  case ISD::MUL:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR: return true;
  default: return false; // FIXME: Need commutative info for user ops!
  }
}

static bool isAssociativeBinOp(unsigned Opcode) {
  switch (Opcode) {
  case ISD::ADD:
  case ISD::MUL:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR: return true;
  default: return false; // FIXME: Need associative info for user ops!
  }
}

static unsigned ExactLog2(uint64_t Val) {
  unsigned Count = 0;
  while (Val != 1) {
    Val >>= 1;
    ++Count;
  }
  return Count;
}

// isInvertibleForFree - Return true if there is no cost to emitting the logical
// inverse of this node.
static bool isInvertibleForFree(SDOperand N) {
  if (isa<ConstantSDNode>(N.Val)) return true;
  if (isa<SetCCSDNode>(N.Val) && N.Val->hasOneUse())
    return true;
  return false;  
}


/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
  // To perform this operation, we just need to swap the L and G bits of the
  // operation.
  unsigned OldL = (Operation >> 2) & 1;
  unsigned OldG = (Operation >> 1) & 1;
  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
                       (OldL << 1) |       // New G bit
                       (OldG << 2));        // New L bit.
}

/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
  unsigned Operation = Op;
  if (isInteger)
    Operation ^= 7;   // Flip L, G, E bits, but not U.
  else
    Operation ^= 15;  // Flip all of the condition bits.
  if (Operation > ISD::SETTRUE2)
    Operation &= ~8;     // Don't let N and U bits get set.
  return ISD::CondCode(Operation);
}


/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison.  Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
  switch (Opcode) {
  default: assert(0 && "Illegal integer setcc operation!");
  case ISD::SETEQ:
  case ISD::SETNE: return 0;
  case ISD::SETLT:
  case ISD::SETLE:
  case ISD::SETGT:
  case ISD::SETGE: return 1;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE: return 2;
  }
}

/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
                                       bool isInteger) {
  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    // Cannot fold a signed integer setcc with an unsigned integer setcc.
    return ISD::SETCC_INVALID;
  
  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
  
  // If the N and U bits get set then the resultant comparison DOES suddenly
  // care about orderedness, and is true when ordered.
  if (Op > ISD::SETTRUE2)
    Op &= ~16;     // Clear the N bit.
  return ISD::CondCode(Op);
}

/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
                                        bool isInteger) {
  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    // Cannot fold a signed setcc with an unsigned setcc.
    return ISD::SETCC_INVALID; 

  // Combine all of the condition bits.
  return ISD::CondCode(Op1 & Op2);
}

const TargetMachine &SelectionDAG::getTarget() const {
  return TLI.getTargetMachine();
}


/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG, including nodes (like loads) that have uses of their token
/// chain but no other uses and no side effect.  If a node is passed in as an
/// argument, it is used as the seed for node deletion.
void SelectionDAG::RemoveDeadNodes(SDNode *N) {
  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());

  // Create a dummy node (which is not added to allnodes), that adds a reference
  // to the root node, preventing it from being deleted.
  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());

  DeleteNodeIfDead(N, &AllNodeSet);

 Restart:
  unsigned NumNodes = AllNodeSet.size();
  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
       I != E; ++I) {
    // Try to delete this node.
    DeleteNodeIfDead(*I, &AllNodeSet);

    // If we actually deleted any nodes, do not use invalid iterators in
    // AllNodeSet.
    if (AllNodeSet.size() != NumNodes)
      goto Restart;
  }

  // Restore AllNodes.
  if (AllNodes.size() != NumNodes)
    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());

  // If the root changed (e.g. it was a dead load, update the root).
  setRoot(DummyNode->getOperand(0));

  // Now that we are done with the dummy node, delete it.
  DummyNode->getOperand(0).Val->removeUser(DummyNode);
  delete DummyNode;
}

void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
  if (!N->use_empty())
    return;

  // Okay, we really are going to delete this node.  First take this out of the
  // appropriate CSE map.
  switch (N->getOpcode()) {
  case ISD::Constant:
    Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
                                   N->getValueType(0)));
    break;
  case ISD::ConstantFP: {
    union {
      double DV;
      uint64_t IV;
    };
    DV = cast<ConstantFPSDNode>(N)->getValue();
    ConstantFPs.erase(std::make_pair(IV, N->getValueType(0)));
    break;
  }
  case ISD::GlobalAddress:
    GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
    break;
  case ISD::FrameIndex:
    FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
    break;
  case ISD::ConstantPool:
    ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->getIndex());
    break;
  case ISD::BasicBlock:
    BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
    break;
  case ISD::ExternalSymbol:
    ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
    break;

  case ISD::LOAD:
    Loads.erase(std::make_pair(N->getOperand(1),
                               std::make_pair(N->getOperand(0),
                                              N->getValueType(0))));
    break;
  case ISD::SETCC:
    SetCCs.erase(std::make_pair(std::make_pair(N->getOperand(0),
                                               N->getOperand(1)),
                                std::make_pair(
                                     cast<SetCCSDNode>(N)->getCondition(),
                                     N->getValueType(0))));
    break;
  case ISD::TRUNCSTORE:
  case ISD::SIGN_EXTEND_INREG:
  case ISD::ZERO_EXTEND_INREG:
  case ISD::FP_ROUND_INREG:
  case ISD::EXTLOAD:
  case ISD::SEXTLOAD:
  case ISD::ZEXTLOAD: {
    EVTStruct NN;
    NN.Opcode = N->getOpcode();
    NN.VT = N->getValueType(0);
    NN.EVT = cast<MVTSDNode>(N)->getExtraValueType();
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
      NN.Ops.push_back(N->getOperand(i));
    MVTSDNodes.erase(NN);
    break;
  }
  default:
    if (N->getNumOperands() == 1)
      UnaryOps.erase(std::make_pair(N->getOpcode(),
                                    std::make_pair(N->getOperand(0),
                                                   N->getValueType(0))));
    else if (N->getNumOperands() == 2)
      BinaryOps.erase(std::make_pair(N->getOpcode(),
                                     std::make_pair(N->getOperand(0),
                                                    N->getOperand(1))));
    break;
  }

  // Next, brutally remove the operand list.
  while (!N->Operands.empty()) {
    SDNode *O = N->Operands.back().Val;
    N->Operands.pop_back();
    O->removeUser(N);

    // Now that we removed this operand, see if there are no uses of it left.
    DeleteNodeIfDead(O, NodeSet);
  }
  
  // Remove the node from the nodes set and delete it.
  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
  AllNodeSet.erase(N);

  // Now that the node is gone, check to see if any of the operands of this node
  // are dead now.
  delete N;
}


SelectionDAG::~SelectionDAG() {
  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
    delete AllNodes[i];
}

SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
  // Mask out any bits that are not valid for this constant.
  if (VT != MVT::i64)
    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
  
  SDNode *&N = Constants[std::make_pair(Val, VT)];
  if (N) return SDOperand(N, 0);
  N = new ConstantSDNode(Val, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
  if (VT == MVT::f32)
    Val = (float)Val;  // Mask out extra precision.

  // Do the map lookup using the actual bit pattern for the floating point
  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
  // we don't have issues with SNANs.
  union {
    double DV;
    uint64_t IV;
  };
  
  DV = Val;

  SDNode *&N = ConstantFPs[std::make_pair(IV, VT)];
  if (N) return SDOperand(N, 0);
  N = new ConstantFPSDNode(Val, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}



SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
                                         MVT::ValueType VT) {
  SDNode *&N = GlobalValues[GV];
  if (N) return SDOperand(N, 0);
  N = new GlobalAddressSDNode(GV,VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
  SDNode *&N = FrameIndices[FI];
  if (N) return SDOperand(N, 0);
  N = new FrameIndexSDNode(FI, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getConstantPool(unsigned CPIdx, MVT::ValueType VT) {
  SDNode *N = ConstantPoolIndices[CPIdx];
  if (N) return SDOperand(N, 0);
  N = new ConstantPoolSDNode(CPIdx, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
  SDNode *&N = BBNodes[MBB];
  if (N) return SDOperand(N, 0);
  N = new BasicBlockSDNode(MBB);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
  SDNode *&N = ExternalSymbols[Sym];
  if (N) return SDOperand(N, 0);
  N = new ExternalSymbolSDNode(Sym, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getSetCC(ISD::CondCode Cond, MVT::ValueType VT,
                                 SDOperand N1, SDOperand N2) {
  // These setcc operations always fold.
  switch (Cond) {
  default: break;
  case ISD::SETFALSE:
  case ISD::SETFALSE2: return getConstant(0, VT);
  case ISD::SETTRUE:
  case ISD::SETTRUE2:  return getConstant(1, VT);
  }

  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
    uint64_t C2 = N2C->getValue();
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
      uint64_t C1 = N1C->getValue();
      
      // Sign extend the operands if required
      if (ISD::isSignedIntSetCC(Cond)) {
        C1 = N1C->getSignExtended();
        C2 = N2C->getSignExtended();
      }

      switch (Cond) {
      default: assert(0 && "Unknown integer setcc!");
      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
      case ISD::SETNE:  return getConstant(C1 != C2, VT);
      case ISD::SETULT: return getConstant(C1 <  C2, VT);
      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
      case ISD::SETULE: return getConstant(C1 <= C2, VT);
      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
      }
    } else {
      uint64_t MinVal, MaxVal;
      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
      if (ISD::isSignedIntSetCC(Cond)) {
        MinVal = 1ULL << (OperandBitSize-1);
        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
          MaxVal = ~0ULL >> (65-OperandBitSize);
        else
          MaxVal = 0;
      } else {
        MinVal = 0;
        MaxVal = ~0ULL >> (64-OperandBitSize);
      }

      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
        --C2;                                          // X >= C1 --> X > (C1-1)
        Cond = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
        N2 = getConstant(C2, N2.getValueType());
        N2C = cast<ConstantSDNode>(N2.Val);
      }

      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
        ++C2;                                          // X <= C1 --> X < (C1+1)
        Cond = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
        N2 = getConstant(C2, N2.getValueType());
        N2C = cast<ConstantSDNode>(N2.Val);
      }
      
      // If we have setult X, 1, turn it into seteq X, 0
      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
        return getSetCC(ISD::SETEQ, VT, N1,
                        getConstant(MinVal, N1.getValueType()));
      // If we have setult X, 1, turn it into seteq X, 0
      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
        return getSetCC(ISD::SETEQ, VT, N1,
                        getConstant(MaxVal, N1.getValueType()));

      // If we have "setcc X, C1", check to see if we can shrink the immediate
      // by changing cc.

      // SETUGT X, SINTMAX  -> SETLT X, 0
      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
          C2 == (~0ULL >> (65-OperandBitSize)))
        return getSetCC(ISD::SETLT, VT, N1, getConstant(0, N2.getValueType()));

      // FIXME: Implement the rest of these.

    }
  } else if (isa<ConstantSDNode>(N1.Val)) {
      // Ensure that the constant occurs on the RHS.
    return getSetCC(ISD::getSetCCSwappedOperands(Cond), VT, N2, N1);
  }

  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
      double C1 = N1C->getValue(), C2 = N2C->getValue();
      
      switch (Cond) {
      default: break; // FIXME: Implement the rest of these!
      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
      case ISD::SETNE:  return getConstant(C1 != C2, VT);
      case ISD::SETLT:  return getConstant(C1 < C2, VT);
      case ISD::SETGT:  return getConstant(C1 > C2, VT);
      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
      }
    } else {
      // Ensure that the constant occurs on the RHS.
      Cond = ISD::getSetCCSwappedOperands(Cond);
      std::swap(N1, N2);
    }

  if (N1 == N2) {
    // We can always fold X == Y for integer setcc's.
    if (MVT::isInteger(N1.getValueType()))
      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
    unsigned UOF = ISD::getUnorderedFlavor(Cond);
    if (UOF == 2)   // FP operators that are undefined on NaNs.
      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
    if (UOF == ISD::isTrueWhenEqual(Cond))
      return getConstant(UOF, VT);
    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
    // if it is not already.
    Cond = UOF == 0 ? ISD::SETUO : ISD::SETO;
  }

  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
      MVT::isInteger(N1.getValueType())) {
    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
        N1.getOpcode() == ISD::XOR) {
      // Simplify (X+Y) == (X+Z) -->  Y == Z
      if (N1.getOpcode() == N2.getOpcode()) {
        if (N1.getOperand(0) == N2.getOperand(0))
          return getSetCC(Cond, VT, N1.getOperand(1), N2.getOperand(1));
        if (N1.getOperand(1) == N2.getOperand(1))
          return getSetCC(Cond, VT, N1.getOperand(0), N2.getOperand(0));
        if (isCommutativeBinOp(N1.getOpcode())) {
          // If X op Y == Y op X, try other combinations.
          if (N1.getOperand(0) == N2.getOperand(1))
            return getSetCC(Cond, VT, N1.getOperand(1), N2.getOperand(0));
          if (N1.getOperand(1) == N2.getOperand(0))
            return getSetCC(Cond, VT, N1.getOperand(1), N2.getOperand(1));
        }
      }

      // FIXME: move this stuff to the DAG Combiner when it exists!
      
      // Simplify (X+Z) == X -->  Z == 0
      if (N1.getOperand(0) == N2)
        return getSetCC(Cond, VT, N1.getOperand(1),
                        getConstant(0, N1.getValueType()));
      if (N1.getOperand(1) == N2) {
        if (isCommutativeBinOp(N1.getOpcode()))
          return getSetCC(Cond, VT, N1.getOperand(0),
                          getConstant(0, N1.getValueType()));
        else {
          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
          // (Z-X) == X  --> Z == X<<1
          return getSetCC(Cond, VT, N1.getOperand(0),
                          getNode(ISD::SHL, N2.getValueType(), 
                                  N2, getConstant(1, TLI.getShiftAmountTy())));
        }
      }
    }

    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
        N2.getOpcode() == ISD::XOR) {
      // Simplify  X == (X+Z) -->  Z == 0
      if (N2.getOperand(0) == N1)
        return getSetCC(Cond, VT, N2.getOperand(1),
                        getConstant(0, N2.getValueType()));
      else if (N2.getOperand(1) == N1)
        return getSetCC(Cond, VT, N2.getOperand(0),
                        getConstant(0, N2.getValueType()));
    }
  }

  SetCCSDNode *&N = SetCCs[std::make_pair(std::make_pair(N1, N2),
                                          std::make_pair(Cond, VT))];
  if (N) return SDOperand(N, 0);
  N = new SetCCSDNode(Cond, N1, N2);
  N->setValueTypes(VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}



/// getNode - Gets or creates the specified node.
///
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
  SDNode *N = new SDNode(Opcode, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand Operand) {
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
    uint64_t Val = C->getValue();
    switch (Opcode) {
    default: break;
    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
    case ISD::TRUNCATE:    return getConstant(Val, VT);
    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
    }
  }

  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
    switch (Opcode) {
    case ISD::FNEG:
      return getConstantFP(-C->getValue(), VT);
    case ISD::FP_ROUND:
    case ISD::FP_EXTEND:
      return getConstantFP(C->getValue(), VT);
    case ISD::FP_TO_SINT:
      return getConstant((int64_t)C->getValue(), VT);
    case ISD::FP_TO_UINT:
      return getConstant((uint64_t)C->getValue(), VT);
    }

  unsigned OpOpcode = Operand.Val->getOpcode();
  switch (Opcode) {
  case ISD::TokenFactor:
    return Operand;         // Factor of one node?  No factor.
  case ISD::SIGN_EXTEND:
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
    break;
  case ISD::ZERO_EXTEND:
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
    break;
  case ISD::TRUNCATE:
    if (Operand.getValueType() == VT) return Operand;   // noop truncate
    if (OpOpcode == ISD::TRUNCATE)
      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) {
      // If the source is smaller than the dest, we still need an extend.
      if (Operand.Val->getOperand(0).getValueType() < VT)
        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
      else if (Operand.Val->getOperand(0).getValueType() > VT)
        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
      else
        return Operand.Val->getOperand(0);
    }
    break;
  case ISD::FNEG:
    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
                     Operand.Val->getOperand(0));
    if (OpOpcode == ISD::FNEG)  // --X -> X
      return Operand.Val->getOperand(0);
    break;
  case ISD::FABS:
    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
    break;
  }

  SDNode *&N = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
  if (N) return SDOperand(N, 0);
  N = new SDNode(Opcode, Operand);
  N->setValueTypes(VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand N1, SDOperand N2) {
#ifndef NDEBUG
  switch (Opcode) {
  case ISD::TokenFactor:
    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
           N2.getValueType() == MVT::Other && "Invalid token factor!");
    break;
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::UDIV:
  case ISD::UREM:
    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
    // fall through
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::SDIV:
  case ISD::SREM:
    assert(N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    break;

  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
    assert(VT == N1.getValueType() &&
           "Shift operators return type must be the same as their first arg");
    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
           VT != MVT::i1 && "Shifts only work on integers");
    break;
  default: break;
  }
#endif

  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
  if (N1C) {
    if (N2C) {
      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
      switch (Opcode) {
      case ISD::ADD: return getConstant(C1 + C2, VT);
      case ISD::SUB: return getConstant(C1 - C2, VT);
      case ISD::MUL: return getConstant(C1 * C2, VT);
      case ISD::UDIV:
        if (C2) return getConstant(C1 / C2, VT);
        break;
      case ISD::UREM :
        if (C2) return getConstant(C1 % C2, VT);
        break;
      case ISD::SDIV :
        if (C2) return getConstant(N1C->getSignExtended() /
                                   N2C->getSignExtended(), VT);
        break;
      case ISD::SREM :
        if (C2) return getConstant(N1C->getSignExtended() %
                                   N2C->getSignExtended(), VT);
        break;
      case ISD::AND  : return getConstant(C1 & C2, VT);
      case ISD::OR   : return getConstant(C1 | C2, VT);
      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
      case ISD::SHL  : return getConstant(C1 << (int)C2, VT);
      case ISD::SRL  : return getConstant(C1 >> (unsigned)C2, VT);
      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
      default: break;
      }

    } else {      // Cannonicalize constant to RHS if commutative
      if (isCommutativeBinOp(Opcode)) {
        std::swap(N1C, N2C);
        std::swap(N1, N2);
      }
    }

    switch (Opcode) {
    default: break;
    case ISD::SHL:    // shl  0, X -> 0
      if (N1C->isNullValue()) return N1;
      break;
    case ISD::SRL:    // srl  0, X -> 0
      if (N1C->isNullValue()) return N1;
      break;
    case ISD::SRA:    // sra -1, X -> -1
      if (N1C->isAllOnesValue()) return N1;
      break;
    }
  }

  if (N2C) {
    uint64_t C2 = N2C->getValue();

    switch (Opcode) {
    case ISD::ADD:
      if (!C2) return N1;         // add X, 0 -> X
      break;
    case ISD::SUB:
      if (!C2) return N1;         // sub X, 0 -> X
      break;
    case ISD::MUL:
      if (!C2) return N2;         // mul X, 0 -> 0
      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);

      // FIXME: Move this to the DAG combiner when it exists.
      if ((C2 & C2-1) == 0) {
        SDOperand ShAmt = getConstant(ExactLog2(C2), TLI.getShiftAmountTy());
        return getNode(ISD::SHL, VT, N1, ShAmt);
      }
      break;

    case ISD::UDIV:
      // FIXME: Move this to the DAG combiner when it exists.
      if ((C2 & C2-1) == 0 && C2) {
        SDOperand ShAmt = getConstant(ExactLog2(C2), TLI.getShiftAmountTy());
        return getNode(ISD::SRL, VT, N1, ShAmt);
      }
      break;

    case ISD::SHL:
    case ISD::SRL:
      // If the shift amount is bigger than the size of the data, simplify.
      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
        if (TLI.getShiftAmountFlavor() == TargetLowering::Mask) {
          unsigned NewAmt =
            C2 & ((1 << MVT::getSizeInBits(N1.getValueType()))-1);
          return getNode(Opcode, VT, N1, getConstant(NewAmt,N2.getValueType()));
        } else if (TLI.getShiftAmountFlavor() == TargetLowering::Extend) {
          // Shifting all of the bits out?
          return getConstant(0, N1.getValueType());
        }
      }
      // FALL THROUGH.
    case ISD::SRA:
      if (C2 == 0) return N1;
      break;

    case ISD::AND:
      if (!C2) return N2;         // X and 0 -> 0
      if (N2C->isAllOnesValue())
	return N1;                // X and -1 -> X

      // FIXME: Should add a corresponding version of this for
      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
      // we don't have yet.

      // and (zero_extend_inreg x:16:32), 1 -> and x, 1
      if (N1.getOpcode() == ISD::ZERO_EXTEND_INREG ||
          N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
        // If we are masking out the part of our input that was extended, just
        // mask the input to the extension directly.
        unsigned ExtendBits =
          MVT::getSizeInBits(cast<MVTSDNode>(N1)->getExtraValueType());
        if ((C2 & (~0ULL << ExtendBits)) == 0)
          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
      }
      break;
    case ISD::OR:
      if (!C2)return N1;          // X or 0 -> X
      if (N2C->isAllOnesValue())
	return N2;                // X or -1 -> -1
      break;
    case ISD::XOR:
      if (!C2) return N1;        // X xor 0 -> X
      if (N2C->isAllOnesValue()) {
        if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(N1.Val)){
          // !(X op Y) -> (X !op Y)
          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
          return getSetCC(ISD::getSetCCInverse(SetCC->getCondition(),isInteger),
                          SetCC->getValueType(0),
                          SetCC->getOperand(0), SetCC->getOperand(1));
        } else if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
          SDNode *Op = N1.Val;
          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
            if (Op->getOpcode() == ISD::AND)
              return getNode(ISD::OR, VT, LHS, RHS);
            return getNode(ISD::AND, VT, LHS, RHS);
          }
        }
	// X xor -1 -> not(x)  ?
      }
      break;
    }

    // Reassociate ((X op C1) op C2) if possible.
    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
        return getNode(Opcode, VT, N1.Val->getOperand(0),
                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
  }

  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
  if (N1CFP)
    if (N2CFP) {
      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
      switch (Opcode) {
      case ISD::ADD: return getConstantFP(C1 + C2, VT);
      case ISD::SUB: return getConstantFP(C1 - C2, VT);
      case ISD::MUL: return getConstantFP(C1 * C2, VT);
      case ISD::SDIV:
        if (C2) return getConstantFP(C1 / C2, VT);
        break;
      case ISD::SREM :
        if (C2) return getConstantFP(fmod(C1, C2), VT);
        break;
      default: break;
      }

    } else {      // Cannonicalize constant to RHS if commutative
      if (isCommutativeBinOp(Opcode)) {
        std::swap(N1CFP, N2CFP);
        std::swap(N1, N2);
      }
    }

  // Finally, fold operations that do not require constants.
  switch (Opcode) {
  case ISD::TokenFactor:
    if (N1.getOpcode() == ISD::EntryToken)
      return N2;
    if (N2.getOpcode() == ISD::EntryToken)
      return N1;
    break;

  case ISD::AND:
  case ISD::OR:
    if (SetCCSDNode *LHS = dyn_cast<SetCCSDNode>(N1.Val))
      if (SetCCSDNode *RHS = dyn_cast<SetCCSDNode>(N2.Val)) {
        SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
        SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
        ISD::CondCode Op2 = RHS->getCondition();

        // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
        if (LL == RR && LR == RL) {
          Op2 = ISD::getSetCCSwappedOperands(Op2);
          goto MatchedBackwards;
        }
      
        if (LL == RL && LR == RR) {
        MatchedBackwards:
          ISD::CondCode Result;
          bool isInteger = MVT::isInteger(LL.getValueType());
          if (Opcode == ISD::OR)
            Result = ISD::getSetCCOrOperation(LHS->getCondition(), Op2,
                                              isInteger);
          else
            Result = ISD::getSetCCAndOperation(LHS->getCondition(), Op2,
                                               isInteger);
          if (Result != ISD::SETCC_INVALID)
            return getSetCC(Result, LHS->getValueType(0), LL, LR);
        }
      }
    break;
  case ISD::XOR:
    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
    break;
  case ISD::ADD:
    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
    break;
  case ISD::SUB:
    if (N1.getOpcode() == ISD::ADD) {
      if (N1.Val->getOperand(0) == N2)
        return N1.Val->getOperand(1);         // (A+B)-A == B
      if (N1.Val->getOperand(1) == N2)
        return N1.Val->getOperand(0);         // (A+B)-B == A
    }
    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
    break;
  }

  SDNode *&N = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
  if (N) return SDOperand(N, 0);
  N = new SDNode(Opcode, N1, N2);
  N->setValueTypes(VT);

  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
                                SDOperand Chain, SDOperand Ptr) {
  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
  if (N) return SDOperand(N, 0);
  N = new SDNode(ISD::LOAD, Chain, Ptr);

  // Loads have a token chain.
  N->setValueTypes(VT, MVT::Other);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}


SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand N1, SDOperand N2, SDOperand N3) {
  // Perform various simplifications.
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
  switch (Opcode) {
  case ISD::SELECT:
    if (N1C)
      if (N1C->getValue())
        return N2;             // select true, X, Y -> X
      else 
        return N3;             // select false, X, Y -> Y

    if (N2 == N3) return N2;   // select C, X, X -> X

    if (VT == MVT::i1) {  // Boolean SELECT
      if (N2C) {
        if (N3C) {
          if (N2C->getValue()) // select C, 1, 0 -> C
            return N1;
          return getNode(ISD::XOR, VT, N1, N3); // select C, 0, 1 -> ~C
        }

        if (N2C->getValue())   // select C, 1, X -> C | X
          return getNode(ISD::OR, VT, N1, N3);
        else                   // select C, 0, X -> ~C & X
          return getNode(ISD::AND, VT,
                         getNode(ISD::XOR, N1.getValueType(), N1,
                                 getConstant(1, N1.getValueType())), N3);
      } else if (N3C) {
        if (N3C->getValue())   // select C, X, 1 -> ~C | X
          return getNode(ISD::OR, VT,
                         getNode(ISD::XOR, N1.getValueType(), N1,
                                 getConstant(1, N1.getValueType())), N2);
        else                   // select C, X, 0 -> C & X
          return getNode(ISD::AND, VT, N1, N2);
      }
    }

    // If this is a selectcc, check to see if we can simplify the result.
    if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(N1)) {
      if (ConstantFPSDNode *CFP =
          dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
        if (CFP->getValue() == 0.0) {   // Allow either -0.0 or 0.0
          // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
          if ((SetCC->getCondition() == ISD::SETGE ||
               SetCC->getCondition() == ISD::SETGT) &&
              N2 == SetCC->getOperand(0) && N3.getOpcode() == ISD::FNEG &&
              N3.getOperand(0) == N2)
            return getNode(ISD::FABS, VT, N2);

          // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
          if ((SetCC->getCondition() == ISD::SETLT ||
               SetCC->getCondition() == ISD::SETLE) &&
              N3 == SetCC->getOperand(0) && N2.getOpcode() == ISD::FNEG &&
              N2.getOperand(0) == N3)
            return getNode(ISD::FABS, VT, N3);
        }

    }
    break;
  case ISD::BRCOND:
    if (N2C)
      if (N2C->getValue()) // Unconditional branch
        return getNode(ISD::BR, MVT::Other, N1, N3);
      else
        return N1;         // Never-taken branch
    break;
  }

  SDNode *N = new SDNode(Opcode, N1, N2, N3);
  switch (Opcode) {
  default: 
    N->setValueTypes(VT);
    break;
  case ISD::DYNAMIC_STACKALLOC: // DYNAMIC_STACKALLOC produces pointer and chain
    N->setValueTypes(VT, MVT::Other);
    break;

  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:
  case ISD::SHL_PARTS: {
    std::vector<MVT::ValueType> V(N->getNumOperands()-1, VT);
    N->setValueTypes(V);
    break;
  }
  }

  // FIXME: memoize NODES
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                std::vector<SDOperand> &Children) {
  switch (Children.size()) {
  case 0: return getNode(Opcode, VT);
  case 1: return getNode(Opcode, VT, Children[0]);
  case 2: return getNode(Opcode, VT, Children[0], Children[1]);
  case 3: return getNode(Opcode, VT, Children[0], Children[1], Children[2]);
  default: break;
  }

  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Children[1].Val);
  switch (Opcode) {
  default: break;
  case ISD::BRCONDTWOWAY:
    if (N1C)
      if (N1C->getValue()) // Unconditional branch to true dest.
        return getNode(ISD::BR, MVT::Other, Children[0], Children[2]);
      else                 // Unconditional branch to false dest.
        return getNode(ISD::BR, MVT::Other, Children[0], Children[3]);
    break;
  }

  // FIXME: MEMOIZE!!
  SDNode *N = new SDNode(Opcode, Children);
  if (Opcode != ISD::ADD_PARTS && Opcode != ISD::SUB_PARTS) {
    N->setValueTypes(VT);
  } else {
    std::vector<MVT::ValueType> V(N->getNumOperands()/2, VT);
    N->setValueTypes(V);
  }
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,SDOperand N1,
                                MVT::ValueType EVT) {

  switch (Opcode) {
  default: assert(0 && "Bad opcode for this accessor!");
  case ISD::FP_ROUND_INREG:
    assert(VT == N1.getValueType() && "Not an inreg round!");
    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
           "Cannot FP_ROUND_INREG integer types");
    if (EVT == VT) return N1;  // Not actually rounding
    assert(EVT < VT && "Not rounding down!");

    if (isa<ConstantFPSDNode>(N1))
      return getNode(ISD::FP_EXTEND, VT, getNode(ISD::FP_ROUND, EVT, N1));
    break;
  case ISD::ZERO_EXTEND_INREG:
  case ISD::SIGN_EXTEND_INREG:
    assert(VT == N1.getValueType() && "Not an inreg extend!");
    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
           "Cannot *_EXTEND_INREG FP types");
    if (EVT == VT) return N1;  // Not actually extending
    assert(EVT < VT && "Not extending!");

    // Extending a constant?  Just return the constant.
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
      SDOperand Tmp = getNode(ISD::TRUNCATE, EVT, N1);
      if (Opcode == ISD::ZERO_EXTEND_INREG)
        return getNode(ISD::ZERO_EXTEND, VT, Tmp);
      else
        return getNode(ISD::SIGN_EXTEND, VT, Tmp);
    }

    // If we are sign extending an extension, use the original source.
    if (N1.getOpcode() == ISD::ZERO_EXTEND_INREG ||
        N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
      if (N1.getOpcode() == Opcode &&
          cast<MVTSDNode>(N1)->getExtraValueType() <= EVT)
        return N1;
    }

    // If we are (zero|sign) extending a [zs]extload, return just the load.
    if ((N1.getOpcode() == ISD::ZEXTLOAD && Opcode == ISD::ZERO_EXTEND_INREG) ||
        (N1.getOpcode() == ISD::SEXTLOAD && Opcode == ISD::SIGN_EXTEND_INREG))
      if (cast<MVTSDNode>(N1)->getExtraValueType() <= EVT)
        return N1;

    // If we are extending the result of a setcc, and we already know the
    // contents of the top bits, eliminate the extension.
    if (N1.getOpcode() == ISD::SETCC)
      switch (TLI.getSetCCResultContents()) {
      case TargetLowering::UndefinedSetCCResult: break;
      case TargetLowering::ZeroOrOneSetCCResult:
        if (Opcode == ISD::ZERO_EXTEND_INREG) return N1;
        break;
      case TargetLowering::ZeroOrNegativeOneSetCCResult:
        if (Opcode == ISD::SIGN_EXTEND_INREG) return N1;
        break;
      }

    // If we are sign extending the result of an (and X, C) operation, and we
    // know the extended bits are zeros already, don't do the extend.
    if (N1.getOpcode() == ISD::AND)
      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
        uint64_t Mask = N1C->getValue();
        unsigned NumBits = MVT::getSizeInBits(EVT);
        if (Opcode == ISD::ZERO_EXTEND_INREG) {
          if ((Mask & (~0ULL << NumBits)) == 0)
            return N1;
          else
            return getNode(ISD::AND, VT, N1.getOperand(0),
                           getConstant(Mask & (~0ULL >> (64-NumBits)), VT));
        } else {
          assert(Opcode == ISD::SIGN_EXTEND_INREG);
          if ((Mask & (~0ULL << (NumBits-1))) == 0)
            return N1;
        }
      }
    break;
  }

  EVTStruct NN;
  NN.Opcode = Opcode;
  NN.VT = VT;
  NN.EVT = EVT;
  NN.Ops.push_back(N1);

  SDNode *&N = MVTSDNodes[NN];
  if (N) return SDOperand(N, 0);
  N = new MVTSDNode(Opcode, VT, N1, EVT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,SDOperand N1,
                                SDOperand N2, MVT::ValueType EVT) {
  switch (Opcode) {
  default:  assert(0 && "Bad opcode for this accessor!");
  case ISD::EXTLOAD:
  case ISD::SEXTLOAD:
  case ISD::ZEXTLOAD:
    // If they are asking for an extending loat from/to the same thing, return a
    // normal load.
    if (VT == EVT)
      return getNode(ISD::LOAD, VT, N1, N2);
    assert(EVT < VT && "Should only be an extending load, not truncating!");
    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(VT)) && 
           "Cannot sign/zero extend a FP load!");
    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
           "Cannot convert from FP to Int or Int -> FP!");
    break;
  }

  EVTStruct NN;
  NN.Opcode = Opcode;
  NN.VT = VT;
  NN.EVT = EVT;
  NN.Ops.push_back(N1);
  NN.Ops.push_back(N2);

  SDNode *&N = MVTSDNodes[NN];
  if (N) return SDOperand(N, 0);
  N = new MVTSDNode(Opcode, VT, MVT::Other, N1, N2, EVT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,SDOperand N1,
                                SDOperand N2, SDOperand N3, MVT::ValueType EVT) {
  switch (Opcode) {
  default:  assert(0 && "Bad opcode for this accessor!");
  case ISD::TRUNCSTORE:
#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
    // If this is a truncating store of a constant, convert to the desired type
    // and store it instead.
    if (isa<Constant>(N1)) {
      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
      if (isa<Constant>(Op))
        N1 = Op;      
    }
    // Also for ConstantFP?
#endif
    if (N1.getValueType() == EVT)       // Normal store?
      return getNode(ISD::STORE, VT, N1, N2, N3);
    assert(N2.getValueType() > EVT && "Not a truncation?");
    assert(MVT::isInteger(N2.getValueType()) == MVT::isInteger(EVT) &&
           "Can't do FP-INT conversion!");
    break;
  }

  EVTStruct NN;
  NN.Opcode = Opcode;
  NN.VT = VT;
  NN.EVT = EVT;
  NN.Ops.push_back(N1);
  NN.Ops.push_back(N2);
  NN.Ops.push_back(N3);

  SDNode *&N = MVTSDNodes[NN];
  if (N) return SDOperand(N, 0);
  N = new MVTSDNode(Opcode, VT, N1, N2, N3, EVT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}


/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value.  This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
  assert(Value < getNumValues() && "Bad value!");

  // If there is only one value, this is easy.
  if (getNumValues() == 1)
    return use_size() == NUses;
  if (Uses.size() < NUses) return false;

  SDOperand TheValue(this, Value);

  std::set<SDNode*> UsersHandled;

  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
       UI != E; ++UI) {
    SDNode *User = *UI;
    if (User->getNumOperands() == 1 ||
        UsersHandled.insert(User).second)     // First time we've seen this?
      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
        if (User->getOperand(i) == TheValue) {
          if (NUses == 0)
            return false;   // too many uses
          --NUses;
        }
  }

  // Found exactly the right number of uses?
  return NUses == 0;
}


const char *SDNode::getOperationName() const {
  switch (getOpcode()) {
  default: return "<<Unknown>>";
  case ISD::PCMARKER:      return "PCMarker";
  case ISD::EntryToken:    return "EntryToken";
  case ISD::TokenFactor:   return "TokenFactor";
  case ISD::Constant:      return "Constant";
  case ISD::ConstantFP:    return "ConstantFP";
  case ISD::GlobalAddress: return "GlobalAddress";
  case ISD::FrameIndex:    return "FrameIndex";
  case ISD::BasicBlock:    return "BasicBlock";
  case ISD::ExternalSymbol: return "ExternalSymbol";
  case ISD::ConstantPool:  return "ConstantPoolIndex";
  case ISD::CopyToReg:     return "CopyToReg";
  case ISD::CopyFromReg:   return "CopyFromReg";
  case ISD::ImplicitDef:   return "ImplicitDef";
  case ISD::UNDEF:         return "undef";

  // Unary operators
  case ISD::FABS:   return "fabs";
  case ISD::FNEG:   return "fneg";

  // Binary operators
  case ISD::ADD:    return "add";
  case ISD::SUB:    return "sub";
  case ISD::MUL:    return "mul";
  case ISD::MULHU:  return "mulhu";
  case ISD::MULHS:  return "mulhs";
  case ISD::SDIV:   return "sdiv";
  case ISD::UDIV:   return "udiv";
  case ISD::SREM:   return "srem";
  case ISD::UREM:   return "urem";
  case ISD::AND:    return "and";
  case ISD::OR:     return "or";
  case ISD::XOR:    return "xor";
  case ISD::SHL:    return "shl";
  case ISD::SRA:    return "sra";
  case ISD::SRL:    return "srl";

  case ISD::SELECT: return "select";
  case ISD::ADD_PARTS:   return "add_parts";
  case ISD::SUB_PARTS:   return "sub_parts";
  case ISD::SHL_PARTS:   return "shl_parts";
  case ISD::SRA_PARTS:   return "sra_parts";
  case ISD::SRL_PARTS:   return "srl_parts";

    // Conversion operators.
  case ISD::SIGN_EXTEND: return "sign_extend";
  case ISD::ZERO_EXTEND: return "zero_extend";
  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
  case ISD::ZERO_EXTEND_INREG: return "zero_extend_inreg";
  case ISD::TRUNCATE:    return "truncate";
  case ISD::FP_ROUND:    return "fp_round";
  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
  case ISD::FP_EXTEND:   return "fp_extend";

  case ISD::SINT_TO_FP:  return "sint_to_fp";
  case ISD::UINT_TO_FP:  return "uint_to_fp";
  case ISD::FP_TO_SINT:  return "fp_to_sint";
  case ISD::FP_TO_UINT:  return "fp_to_uint";

    // Control flow instructions
  case ISD::BR:      return "br";
  case ISD::BRCOND:  return "brcond";
  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
  case ISD::RET:     return "ret";
  case ISD::CALL:    return "call";
  case ISD::ADJCALLSTACKDOWN:  return "adjcallstackdown";
  case ISD::ADJCALLSTACKUP:    return "adjcallstackup";

    // Other operators
  case ISD::LOAD:    return "load";
  case ISD::STORE:   return "store";
  case ISD::EXTLOAD:    return "extload";
  case ISD::SEXTLOAD:   return "sextload";
  case ISD::ZEXTLOAD:   return "zextload";
  case ISD::TRUNCSTORE: return "truncstore";

  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
  case ISD::EXTRACT_ELEMENT: return "extract_element";
  case ISD::BUILD_PAIR: return "build_pair";
  case ISD::MEMSET:  return "memset";
  case ISD::MEMCPY:  return "memcpy";
  case ISD::MEMMOVE: return "memmove";

  case ISD::SETCC:
    const SetCCSDNode *SetCC = cast<SetCCSDNode>(this);
    switch (SetCC->getCondition()) {
    default: assert(0 && "Unknown setcc condition!");
    case ISD::SETOEQ:  return "setcc:setoeq";
    case ISD::SETOGT:  return "setcc:setogt";
    case ISD::SETOGE:  return "setcc:setoge";
    case ISD::SETOLT:  return "setcc:setolt";
    case ISD::SETOLE:  return "setcc:setole";
    case ISD::SETONE:  return "setcc:setone";
      
    case ISD::SETO:    return "setcc:seto"; 
    case ISD::SETUO:   return "setcc:setuo";
    case ISD::SETUEQ:  return "setcc:setue";
    case ISD::SETUGT:  return "setcc:setugt";
    case ISD::SETUGE:  return "setcc:setuge";
    case ISD::SETULT:  return "setcc:setult";
    case ISD::SETULE:  return "setcc:setule";
    case ISD::SETUNE:  return "setcc:setune";
      
    case ISD::SETEQ:   return "setcc:seteq";
    case ISD::SETGT:   return "setcc:setgt";
    case ISD::SETGE:   return "setcc:setge";
    case ISD::SETLT:   return "setcc:setlt";
    case ISD::SETLE:   return "setcc:setle";
    case ISD::SETNE:   return "setcc:setne";
    }
  }
}

void SDNode::dump() const {
  std::cerr << (void*)this << ": ";

  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
    if (i) std::cerr << ",";
    if (getValueType(i) == MVT::Other)
      std::cerr << "ch";
    else
      std::cerr << MVT::getValueTypeString(getValueType(i));
  }
  std::cerr << " = " << getOperationName();

  std::cerr << " ";
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    if (i) std::cerr << ", ";
    std::cerr << (void*)getOperand(i).Val;
    if (unsigned RN = getOperand(i).ResNo)
      std::cerr << ":" << RN;
  }

  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
    std::cerr << "<" << CSDN->getValue() << ">";
  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
    std::cerr << "<" << CSDN->getValue() << ">";
  } else if (const GlobalAddressSDNode *GADN = 
             dyn_cast<GlobalAddressSDNode>(this)) {
    std::cerr << "<";
    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
  } else if (const FrameIndexSDNode *FIDN =
	     dyn_cast<FrameIndexSDNode>(this)) {
    std::cerr << "<" << FIDN->getIndex() << ">";
  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
    std::cerr << "<" << CP->getIndex() << ">";
  } else if (const BasicBlockSDNode *BBDN = 
	     dyn_cast<BasicBlockSDNode>(this)) {
    std::cerr << "<";
    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
    if (LBB)
      std::cerr << LBB->getName() << " ";
    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
  } else if (const RegSDNode *C2V = dyn_cast<RegSDNode>(this)) {
    std::cerr << "<reg #" << C2V->getReg() << ">";
  } else if (const ExternalSymbolSDNode *ES =
             dyn_cast<ExternalSymbolSDNode>(this)) {
    std::cerr << "'" << ES->getSymbol() << "'";
  } else if (const MVTSDNode *M = dyn_cast<MVTSDNode>(this)) {
    std::cerr << " - Ty = " << MVT::getValueTypeString(M->getExtraValueType());
  }
}

static void DumpNodes(SDNode *N, unsigned indent) {
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    if (N->getOperand(i).Val->hasOneUse())
      DumpNodes(N->getOperand(i).Val, indent+2);
    else
      std::cerr << "\n" << std::string(indent+2, ' ')
                << (void*)N->getOperand(i).Val << ": <multiple use>";
    

  std::cerr << "\n" << std::string(indent, ' ');
  N->dump();
}

void SelectionDAG::dump() const {
  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
  std::vector<SDNode*> Nodes(AllNodes);
  std::sort(Nodes.begin(), Nodes.end());

  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
      DumpNodes(Nodes[i], 2);
  }

  DumpNodes(getRoot().Val, 2);

  std::cerr << "\n\n";
}