summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveRangeEdit.cpp
blob: 891eaab1a597ff7d5334f6b9b02b5d4763364da8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"

using namespace llvm;

STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");

void LiveRangeEdit::Delegate::anchor() { }

LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
  if (VRM) {
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
  }
  LiveInterval &LI = LIS.createEmptyInterval(VReg);
  return LI;
}

unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
  if (VRM) {
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
  }
  return VReg;
}

bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
                                          const MachineInstr *DefMI,
                                          AliasAnalysis *aa) {
  assert(DefMI && "Missing instruction");
  ScannedRemattable = true;
  if (!TII.isTriviallyReMaterializable(DefMI, aa))
    return false;
  Remattable.insert(VNI);
  return true;
}

void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
  for (LiveInterval::vni_iterator I = getParent().vni_begin(),
       E = getParent().vni_end(); I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
    if (!DefMI)
      continue;
    checkRematerializable(VNI, DefMI, aa);
  }
  ScannedRemattable = true;
}

bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
  if (!ScannedRemattable)
    scanRemattable(aa);
  return !Remattable.empty();
}

/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
                                       SlotIndex OrigIdx,
                                       SlotIndex UseIdx) const {
  OrigIdx = OrigIdx.getRegSlot(true);
  UseIdx = UseIdx.getRegSlot(true);
  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = OrigMI->getOperand(i);
    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
      continue;

    // We can't remat physreg uses, unless it is a constant.
    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
      if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
        continue;
      return false;
    }

    LiveInterval &li = LIS.getInterval(MO.getReg());
    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
    if (!OVNI)
      continue;

    // Don't allow rematerialization immediately after the original def.
    // It would be incorrect if OrigMI redefines the register.
    // See PR14098.
    if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
      return false;

    if (OVNI != li.getVNInfoAt(UseIdx))
      return false;
  }
  return true;
}

bool LiveRangeEdit::canRematerializeAt(Remat &RM,
                                       SlotIndex UseIdx,
                                       bool cheapAsAMove) {
  assert(ScannedRemattable && "Call anyRematerializable first");

  // Use scanRemattable info.
  if (!Remattable.count(RM.ParentVNI))
    return false;

  // No defining instruction provided.
  SlotIndex DefIdx;
  if (RM.OrigMI)
    DefIdx = LIS.getInstructionIndex(RM.OrigMI);
  else {
    DefIdx = RM.ParentVNI->def;
    RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
    assert(RM.OrigMI && "No defining instruction for remattable value");
  }

  // If only cheap remats were requested, bail out early.
  if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
    return false;

  // Verify that all used registers are available with the same values.
  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
    return false;

  return true;
}

SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator MI,
                                         unsigned DestReg,
                                         const Remat &RM,
                                         const TargetRegisterInfo &tri,
                                         bool Late) {
  assert(RM.OrigMI && "Invalid remat");
  TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
  Rematted.insert(RM.ParentVNI);
  return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
           .getRegSlot();
}

void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
    LIS.removeInterval(Reg);
}

bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
                               SmallVectorImpl<MachineInstr*> &Dead) {
  MachineInstr *DefMI = 0, *UseMI = 0;

  // Check that there is a single def and a single use.
  for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
    MachineInstr *MI = MO.getParent();
    if (MO.isDef()) {
      if (DefMI && DefMI != MI)
        return false;
      if (!MI->canFoldAsLoad())
        return false;
      DefMI = MI;
    } else if (!MO.isUndef()) {
      if (UseMI && UseMI != MI)
        return false;
      // FIXME: Targets don't know how to fold subreg uses.
      if (MO.getSubReg())
        return false;
      UseMI = MI;
    }
  }
  if (!DefMI || !UseMI)
    return false;

  // Since we're moving the DefMI load, make sure we're not extending any live
  // ranges.
  if (!allUsesAvailableAt(DefMI,
                          LIS.getInstructionIndex(DefMI),
                          LIS.getInstructionIndex(UseMI)))
    return false;

  // We also need to make sure it is safe to move the load.
  // Assume there are stores between DefMI and UseMI.
  bool SawStore = true;
  if (!DefMI->isSafeToMove(&TII, 0, SawStore))
    return false;

  DEBUG(dbgs() << "Try to fold single def: " << *DefMI
               << "       into single use: " << *UseMI);

  SmallVector<unsigned, 8> Ops;
  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
    return false;

  MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
  if (!FoldMI)
    return false;
  DEBUG(dbgs() << "                folded: " << *FoldMI);
  LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
  UseMI->eraseFromParent();
  DefMI->addRegisterDead(LI->reg, 0);
  Dead.push_back(DefMI);
  ++NumDCEFoldedLoads;
  return true;
}

/// Find all live intervals that need to shrink, then remove the instruction.
void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
  assert(MI->allDefsAreDead() && "Def isn't really dead");
  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();

  // Never delete a bundled instruction.
  if (MI->isBundled()) {
    return;
  }
  // Never delete inline asm.
  if (MI->isInlineAsm()) {
    DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    return;
  }

  // Use the same criteria as DeadMachineInstructionElim.
  bool SawStore = false;
  if (!MI->isSafeToMove(&TII, 0, SawStore)) {
    DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    return;
  }

  DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);

  // Collect virtual registers to be erased after MI is gone.
  SmallVector<unsigned, 8> RegsToErase;
  bool ReadsPhysRegs = false;

  // Check for live intervals that may shrink
  for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    if (!MOI->isReg())
      continue;
    unsigned Reg = MOI->getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
      // Check if MI reads any unreserved physregs.
      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
        ReadsPhysRegs = true;
      else if (MOI->isDef()) {
        for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
             Units.isValid(); ++Units) {
          if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
            if (VNInfo *VNI = LR->getVNInfoAt(Idx))
              LR->removeValNo(VNI);
          }
        }
      }
      continue;
    }
    LiveInterval &LI = LIS.getInterval(Reg);

    // Shrink read registers, unless it is likely to be expensive and
    // unlikely to change anything. We typically don't want to shrink the
    // PIC base register that has lots of uses everywhere.
    // Always shrink COPY uses that probably come from live range splitting.
    if (MI->readsVirtualRegister(Reg) &&
        (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
         LI.Query(Idx).isKill()))
      ToShrink.insert(&LI);

    // Remove defined value.
    if (MOI->isDef()) {
      if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
        if (TheDelegate)
          TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
        LI.removeValNo(VNI);
        if (LI.empty())
          RegsToErase.push_back(Reg);
      }
    }
  }

  // Currently, we don't support DCE of physreg live ranges. If MI reads
  // any unreserved physregs, don't erase the instruction, but turn it into
  // a KILL instead. This way, the physreg live ranges don't end up
  // dangling.
  // FIXME: It would be better to have something like shrinkToUses() for
  // physregs. That could potentially enable more DCE and it would free up
  // the physreg. It would not happen often, though.
  if (ReadsPhysRegs) {
    MI->setDesc(TII.get(TargetOpcode::KILL));
    // Remove all operands that aren't physregs.
    for (unsigned i = MI->getNumOperands(); i; --i) {
      const MachineOperand &MO = MI->getOperand(i-1);
      if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
        continue;
      MI->RemoveOperand(i-1);
    }
    DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
  } else {
    if (TheDelegate)
      TheDelegate->LRE_WillEraseInstruction(MI);
    LIS.RemoveMachineInstrFromMaps(MI);
    MI->eraseFromParent();
    ++NumDCEDeleted;
  }

  // Erase any virtregs that are now empty and unused. There may be <undef>
  // uses around. Keep the empty live range in that case.
  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    unsigned Reg = RegsToErase[i];
    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
      ToShrink.remove(&LIS.getInterval(Reg));
      eraseVirtReg(Reg);
    }
  }
}

void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
                                      ArrayRef<unsigned> RegsBeingSpilled) {
  ToShrinkSet ToShrink;

  for (;;) {
    // Erase all dead defs.
    while (!Dead.empty())
      eliminateDeadDef(Dead.pop_back_val(), ToShrink);

    if (ToShrink.empty())
      break;

    // Shrink just one live interval. Then delete new dead defs.
    LiveInterval *LI = ToShrink.back();
    ToShrink.pop_back();
    if (foldAsLoad(LI, Dead))
      continue;
    if (TheDelegate)
      TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
    if (!LIS.shrinkToUses(LI, &Dead))
      continue;

    // Don't create new intervals for a register being spilled.
    // The new intervals would have to be spilled anyway so its not worth it.
    // Also they currently aren't spilled so creating them and not spilling
    // them results in incorrect code.
    bool BeingSpilled = false;
    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
      if (LI->reg == RegsBeingSpilled[i]) {
        BeingSpilled = true;
        break;
      }
    }

    if (BeingSpilled) continue;

    // LI may have been separated, create new intervals.
    LI->RenumberValues();
    ConnectedVNInfoEqClasses ConEQ(LIS);
    unsigned NumComp = ConEQ.Classify(LI);
    if (NumComp <= 1)
      continue;
    ++NumFracRanges;
    bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
    DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
    SmallVector<LiveInterval*, 8> Dups(1, LI);
    for (unsigned i = 1; i != NumComp; ++i) {
      Dups.push_back(&createEmptyIntervalFrom(LI->reg));
      // If LI is an original interval that hasn't been split yet, make the new
      // intervals their own originals instead of referring to LI. The original
      // interval must contain all the split products, and LI doesn't.
      if (IsOriginal)
        VRM->setIsSplitFromReg(Dups.back()->reg, 0);
      if (TheDelegate)
        TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
    }
    ConEQ.Distribute(&Dups[0], MRI);
    DEBUG({
      for (unsigned i = 0; i != NumComp; ++i)
        dbgs() << '\t' << *Dups[i] << '\n';
    });
  }
}

// Keep track of new virtual registers created via
// MachineRegisterInfo::createVirtualRegister.
void
LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
{
  if (VRM)
    VRM->grow();

  NewRegs.push_back(VReg);
}

void
LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
                                        const MachineLoopInfo &Loops,
                                        const MachineBlockFrequencyInfo &MBFI) {
  VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
  for (unsigned I = 0, Size = size(); I < Size; ++I) {
    LiveInterval &LI = LIS.getInterval(get(I));
    if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
      DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
                   << MRI.getRegClass(LI.reg)->getName() << '\n');
    VRAI.calculateSpillWeightAndHint(LI);
  }
}