summaryrefslogtreecommitdiff
path: root/include/llvm/Type.h
blob: 5ffcec6e56f3fd9b954aac0c27290a99407a71bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class.  For more "Type" type
// stuff, look in DerivedTypes.h.
//
// Note that instances of the Type class are immutable: once they are created,
// they are never changed.  Also note that only one instance of a particular 
// type is ever created.  Thus seeing if two types are equal is a matter of 
// doing a trivial pointer comparison.
//
// Types, once allocated, are never free'd, unless they are an abstract type
// that is resolved to a more concrete type.
//
// Opaque types are simple derived types with no state.  There may be many
// different Opaque type objects floating around, but two are only considered
// identical if they are pointer equals of each other.  This allows us to have 
// two opaque types that end up resolving to different concrete types later.
//
// Opaque types are also kinda weird and scary and different because they have
// to keep a list of uses of the type.  When, through linking, parsing, or
// bytecode reading, they become resolved, they need to find and update all
// users of the unknown type, causing them to reference a new, more concrete
// type.  Opaque types are deleted when their use list dwindles to zero users.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TYPE_H
#define LLVM_TYPE_H

#include "AbstractTypeUser.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include <vector>

namespace llvm {

class ArrayType;
class DerivedType;
class FunctionType;
class OpaqueType;
class PointerType;
class StructType;
class PackedType;

class Type {
public:
  ///===-------------------------------------------------------------------===//
  /// Definitions of all of the base types for the Type system.  Based on this
  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
  /// Note: If you add an element to this, you need to add an element to the 
  /// Type::getPrimitiveType function, or else things will break!
  ///
  enum TypeID {
    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
    LabelTyID     ,                     // 12   : Labels... 

    // Derived types... see DerivedTypes.h file...
    // Make sure FirstDerivedTyID stays up to date!!!
    FunctionTyID  , StructTyID,         // Functions... Structs...
    ArrayTyID     , PointerTyID,        // Array... pointer...
    OpaqueTyID,                         // Opaque type instances...
    PackedTyID,                         // SIMD 'packed' format... 
    //...

    NumTypeIDs,                         // Must remain as last defined ID
    LastPrimitiveTyID = LabelTyID,
    FirstDerivedTyID = FunctionTyID
  };

private:
  TypeID   ID : 8;    // The current base type of this type.
  bool     Abstract;  // True if type contains an OpaqueType

  /// RefCount - This counts the number of PATypeHolders that are pointing to
  /// this type.  When this number falls to zero, if the type is abstract and
  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
  /// derived types.
  ///
  mutable unsigned RefCount;

  const Type *getForwardedTypeInternal() const;
protected:
  Type(const std::string& Name, TypeID id);
  virtual ~Type() {}

  /// Types can become nonabstract later, if they are refined.
  ///
  inline void setAbstract(bool Val) { Abstract = Val; }

  // PromoteAbstractToConcrete - This is an internal method used to calculate
  // change "Abstract" from true to false when types are refined.
  void PromoteAbstractToConcrete();

  unsigned getRefCount() const { return RefCount; }

  /// ForwardType - This field is used to implement the union find scheme for
  /// abstract types.  When types are refined to other types, this field is set
  /// to the more refined type.  Only abstract types can be forwarded.
  mutable const Type *ForwardType;

  /// ContainedTys - The list of types contained by this one.  For example, this
  /// includes the arguments of a function type, the elements of the structure,
  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
  /// class wastes some space for types that do not contain anything (such as
  /// primitive types).  However, keeping it here allows the subtype_* members
  /// to be implemented MUCH more efficiently, and dynamically very few types do
  /// not contain any elements (most are derived).
  std::vector<PATypeHandle> ContainedTys;

public:
  void print(std::ostream &O) const;

  /// @brief Debugging support: print to stderr
  void dump() const;

  //===--------------------------------------------------------------------===//
  // Property accessors for dealing with types... Some of these virtual methods
  // are defined in private classes defined in Type.cpp for primitive types.
  //

  /// getTypeID - Return the type id for the type.  This will return one
  /// of the TypeID enum elements defined above.
  ///
  inline TypeID getTypeID() const { return ID; }

  /// getDescription - Return the string representation of the type...
  const std::string &getDescription() const;

  /// isSigned - Return whether an integral numeric type is signed.  This is
  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
  /// Float and Double.
  ///
  bool isSigned() const {
    return ID == SByteTyID || ID == ShortTyID || 
           ID == IntTyID || ID == LongTyID; 
  }
  
  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
  /// the complement of isSigned... nonnumeric types return false as they do
  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
  /// ULongTy
  /// 
  bool isUnsigned() const {
    return ID == UByteTyID || ID == UShortTyID || 
           ID == UIntTyID || ID == ULongTyID; 
  }

  /// isInteger - Equivalent to isSigned() || isUnsigned()
  ///
  bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; }

  /// isIntegral - Returns true if this is an integral type, which is either
  /// BoolTy or one of the Integer types.
  ///
  bool isIntegral() const { return isInteger() || this == BoolTy; }

  /// isFloatingPoint - Return true if this is one of the two floating point
  /// types
  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }

  /// isAbstract - True if the type is either an Opaque type, or is a derived
  /// type that includes an opaque type somewhere in it.  
  ///
  inline bool isAbstract() const { return Abstract; }

  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
  ///
  bool isLosslesslyConvertibleTo(const Type *Ty) const;


  /// Here are some useful little methods to query what type derived types are
  /// Note that all other types can just compare to see if this == Type::xxxTy;
  ///
  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }

  /// isFirstClassType - Return true if the value is holdable in a register.
  ///
  inline bool isFirstClassType() const {
    return (ID != VoidTyID && ID <= LastPrimitiveTyID) || 
            ID == PointerTyID || ID == PackedTyID;
  }

  /// isSized - Return true if it makes sense to take the size of this type.  To
  /// get the actual size for a particular target, it is reasonable to use the
  /// TargetData subsystem to do this.
  ///
  bool isSized() const {
    // If it's a primitive, it is always sized.
    if (ID >= BoolTyID && ID <= DoubleTyID || ID == PointerTyID)
      return true;
    // If it is not something that can have a size (e.g. a function or label),
    // it doesn't have a size.
    if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID)
      return false;
    // If it is something that can have a size and it's concrete, it definitely
    // has a size, otherwise we have to try harder to decide.
    return !isAbstract() || isSizedDerivedType();
  }

  /// getPrimitiveSize - Return the basic size of this type if it is a primitive
  /// type.  These are fixed by LLVM and are not target dependent.  This will
  /// return zero if the type does not have a size or is not a primitive type.
  ///
  unsigned getPrimitiveSize() const;

  /// getUnsignedVersion - If this is an integer type, return the unsigned
  /// variant of this type.  For example int -> uint.
  const Type *getUnsignedVersion() const;

  /// getSignedVersion - If this is an integer type, return the signed variant
  /// of this type.  For example uint -> int.
  const Type *getSignedVersion() const;

  /// getForwaredType - Return the type that this type has been resolved to if
  /// it has been resolved to anything.  This is used to implement the
  /// union-find algorithm for type resolution, and shouldn't be used by general
  /// purpose clients.
  const Type *getForwardedType() const {
    if (!ForwardType) return 0;
    return getForwardedTypeInternal();
  }

  //===--------------------------------------------------------------------===//
  // Type Iteration support
  //
  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
  subtype_iterator subtype_end() const { return ContainedTys.end(); }

  /// getContainedType - This method is used to implement the type iterator
  /// (defined a the end of the file).  For derived types, this returns the
  /// types 'contained' in the derived type.
  ///
  const Type *getContainedType(unsigned i) const {
    assert(i < ContainedTys.size() && "Index out of range!");
    return ContainedTys[i];
  }

  /// getNumContainedTypes - Return the number of types in the derived type.
  ///
  typedef std::vector<PATypeHandle>::size_type size_type;
  size_type getNumContainedTypes() const { return ContainedTys.size(); }

  //===--------------------------------------------------------------------===//
  // Static members exported by the Type class itself.  Useful for getting
  // instances of Type.
  //

  /// getPrimitiveType - Return a type based on an identifier.
  static const Type *getPrimitiveType(TypeID IDNumber);

  //===--------------------------------------------------------------------===//
  // These are the builtin types that are always available...
  //
  static Type *VoidTy , *BoolTy;
  static Type *SByteTy, *UByteTy,
              *ShortTy, *UShortTy,
              *IntTy  , *UIntTy, 
              *LongTy , *ULongTy;
  static Type *FloatTy, *DoubleTy;

  static Type* LabelTy;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Type *T) { return true; }

#include "llvm/Type.def"

  // Virtual methods used by callbacks below.  These should only be implemented
  // in the DerivedType class.
  virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
    abort(); // Only on derived types!
  }
  virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
    abort(); // Only on derived types!
  }

  void addRef() const {
    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
    ++RefCount;
  }
  
  void dropRef() const {
    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
    assert(RefCount && "No objects are currently referencing this object!");

    // If this is the last PATypeHolder using this object, and there are no
    // PATypeHandles using it, the type is dead, delete it now.
    if (--RefCount == 0)
      RefCountIsZero();
  }

  /// clearAllTypeMaps - This method frees all internal memory used by the
  /// type subsystem, which can be used in environments where this memory is
  /// otherwise reported as a leak.
  static void clearAllTypeMaps();

private:
  /// isSizedDerivedType - Derived types like structures and arrays are sized
  /// iff all of the members of the type are sized as well.  Since asking for
  /// their size is relatively uncommon, move this operation out of line.
  bool isSizedDerivedType() const;

  virtual void RefCountIsZero() const {
    abort(); // only on derived types!
  }

};

//===----------------------------------------------------------------------===//
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
// These are defined here because they MUST be inlined, yet are dependent on 
// the definition of the Type class.  Of course Type derives from Value, which
// contains an AbstractTypeUser instance, so there is no good way to factor out
// the code.  Hence this bit of uglyness.
//
// In the long term, Type should not derive from Value, allowing
// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
// nastyness entirely.
//
inline void PATypeHandle::addUser() {
  assert(Ty && "Type Handle has a null type!");
  if (Ty->isAbstract())
    Ty->addAbstractTypeUser(User);
}
inline void PATypeHandle::removeUser() {
  if (Ty->isAbstract())
    Ty->removeAbstractTypeUser(User);
}

inline void PATypeHandle::removeUserFromConcrete() {
  if (!Ty->isAbstract())
    Ty->removeAbstractTypeUser(User);
}

// Define inline methods for PATypeHolder...

inline void PATypeHolder::addRef() {
  if (Ty->isAbstract())
    Ty->addRef();
}

inline void PATypeHolder::dropRef() {
  if (Ty->isAbstract())
    Ty->dropRef();
}

/// get - This implements the forwarding part of the union-find algorithm for
/// abstract types.  Before every access to the Type*, we check to see if the
/// type we are pointing to is forwarding to a new type.  If so, we drop our
/// reference to the type.
///
inline Type* PATypeHolder::get() const {
  const Type *NewTy = Ty->getForwardedType();
  if (!NewTy) return const_cast<Type*>(Ty);
  return *const_cast<PATypeHolder*>(this) = NewTy;
}



//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a type as a 
// graph of sub types...

template <> struct GraphTraits<Type*> {
  typedef Type NodeType;
  typedef Type::subtype_iterator ChildIteratorType;

  static inline NodeType *getEntryNode(Type *T) { return T; }
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return N->subtype_begin(); 
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return N->subtype_end();
  }
};

template <> struct GraphTraits<const Type*> {
  typedef const Type NodeType;
  typedef Type::subtype_iterator ChildIteratorType;

  static inline NodeType *getEntryNode(const Type *T) { return T; }
  static inline ChildIteratorType child_begin(NodeType *N) { 
    return N->subtype_begin(); 
  }
  static inline ChildIteratorType child_end(NodeType *N) { 
    return N->subtype_end();
  }
};

template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) { 
  return Ty.getTypeID() == Type::PointerTyID;
}

std::ostream &operator<<(std::ostream &OS, const Type &T);

} // End llvm namespace

#endif