summaryrefslogtreecommitdiff
path: root/include/llvm/Instructions.h
blob: 6f7b76f567fe97ae8ebfc9e0bbcb3cc711902551 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class.  This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INSTRUCTIONS_H
#define LLVM_INSTRUCTIONS_H

#include "llvm/Instruction.h"
#include "llvm/InstrTypes.h"

namespace llvm {

class BasicBlock;
class ConstantInt;
class PointerType;

//===----------------------------------------------------------------------===//
//                             AllocationInst Class
//===----------------------------------------------------------------------===//

/// AllocationInst - This class is the common base class of MallocInst and
/// AllocaInst.
///
class AllocationInst : public UnaryInstruction {
protected:
  AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, 
                 const std::string &Name = "", Instruction *InsertBefore = 0);
  AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, 
                 const std::string &Name, BasicBlock *InsertAtEnd);

public:

  /// isArrayAllocation - Return true if there is an allocation size parameter
  /// to the allocation instruction that is not 1.
  ///
  bool isArrayAllocation() const;

  /// getArraySize - Get the number of element allocated, for a simple
  /// allocation of a single element, this will return a constant 1 value.
  ///
  inline const Value *getArraySize() const { return getOperand(0); }
  inline Value *getArraySize() { return getOperand(0); }

  /// getType - Overload to return most specific pointer type
  ///
  inline const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType()); 
  }

  /// getAllocatedType - Return the type that is being allocated by the
  /// instruction.
  ///
  const Type *getAllocatedType() const;

  virtual Instruction *clone() const = 0;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const AllocationInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Malloc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                MallocInst Class
//===----------------------------------------------------------------------===//

/// MallocInst - an instruction to allocated memory on the heap
///
class MallocInst : public AllocationInst {
  MallocInst(const MallocInst &MI);
public:
  explicit MallocInst(const Type *Ty, Value *ArraySize = 0,
                      const std::string &Name = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Malloc, Name, InsertBefore) {}
  MallocInst(const Type *Ty, Value *ArraySize, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Malloc, Name, InsertAtEnd) {}

  virtual MallocInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const MallocInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Malloc);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                AllocaInst Class
//===----------------------------------------------------------------------===//

/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public AllocationInst {
  AllocaInst(const AllocaInst &);
public:
  explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
                      const std::string &Name = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Alloca, Name, InsertBefore) {}
  AllocaInst(const Type *Ty, Value *ArraySize, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Alloca, Name, InsertAtEnd) {}

  virtual AllocaInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const AllocaInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Alloca);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                 FreeInst Class
//===----------------------------------------------------------------------===//

/// FreeInst - an instruction to deallocate memory
///
class FreeInst : public UnaryInstruction {
  void AssertOK();
public:
  explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0);
  FreeInst(Value *Ptr, BasicBlock *InsertAfter);

  virtual FreeInst *clone() const;

  virtual bool mayWriteToMemory() const { return true; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FreeInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Free);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                LoadInst Class
//===----------------------------------------------------------------------===//

/// LoadInst - an instruction for reading from memory.  This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction {
  LoadInst(const LoadInst &LI)
    : UnaryInstruction(LI.getType(), Load, LI.getOperand(0)) {
    setVolatile(LI.isVolatile());
    
#ifndef NDEBUG
    AssertOK();
#endif
  }
  void AssertOK();
public:
  LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBefore);
  LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAtEnd);
  LoadInst(Value *Ptr, const std::string &Name = "", bool isVolatile = false,
           Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
           BasicBlock *InsertAtEnd);

  /// isVolatile - Return true if this is a load from a volatile memory
  /// location.
  ///
  bool isVolatile() const { return SubclassData; }

  /// setVolatile - Specify whether this is a volatile load or not.
  ///
  void setVolatile(bool V) { SubclassData = V; }

  virtual LoadInst *clone() const;

  virtual bool mayWriteToMemory() const { return isVolatile(); }

  Value *getPointerOperand() { return getOperand(0); }
  const Value *getPointerOperand() const { return getOperand(0); }
  static unsigned getPointerOperandIndex() { return 0U; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const LoadInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Load;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                StoreInst Class
//===----------------------------------------------------------------------===//

/// StoreInst - an instruction for storing to memory 
///
class StoreInst : public Instruction {
  Use Ops[2];
  StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store, Ops, 2) {
    Ops[0].init(SI.Ops[0], this);
    Ops[1].init(SI.Ops[1], this);
    setVolatile(SI.isVolatile());
#ifndef NDEBUG
    AssertOK();
#endif
  }
  void AssertOK();
public:
  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
            Instruction *InsertBefore = 0);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);


  /// isVolatile - Return true if this is a load from a volatile memory
  /// location.
  ///
  bool isVolatile() const { return SubclassData; }

  /// setVolatile - Specify whether this is a volatile load or not.
  ///
  void setVolatile(bool V) { SubclassData = V; }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const { 
    assert(i < 2 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 2 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 2; }


  virtual StoreInst *clone() const;

  virtual bool mayWriteToMemory() const { return true; }

  Value *getPointerOperand() { return getOperand(1); }
  const Value *getPointerOperand() const { return getOperand(1); }
  static unsigned getPointerOperandIndex() { return 1U; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const StoreInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Store;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                             GetElementPtrInst Class
//===----------------------------------------------------------------------===//

/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
  GetElementPtrInst(const GetElementPtrInst &GEPI)
    : Instruction(reinterpret_cast<const Type*>(GEPI.getType()), GetElementPtr,
                  0, GEPI.getNumOperands()) {
    Use *OL = OperandList = new Use[NumOperands];
    Use *GEPIOL = GEPI.OperandList;
    for (unsigned i = 0, E = NumOperands; i != E; ++i)
      OL[i].init(GEPIOL[i], this);
  }
  void init(Value *Ptr, const std::vector<Value*> &Idx);
  void init(Value *Ptr, Value *Idx0, Value *Idx1);
public:
  /// Constructors - Create a getelementptr instruction with a base pointer an
  /// list of indices.  The first ctor can optionally insert before an existing
  /// instruction, the second appends the new instruction to the specified
  /// BasicBlock.
  GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
                    const std::string &Name = "", Instruction *InsertBefore =0);
  GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
                    const std::string &Name, BasicBlock *InsertAtEnd);

  /// Constructors - These two constructors are convenience methods because two
  /// index getelementptr instructions are so common.
  GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
                    const std::string &Name = "", Instruction *InsertBefore =0);
  GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
                    const std::string &Name, BasicBlock *InsertAtEnd);
  ~GetElementPtrInst();

  virtual GetElementPtrInst *clone() const;
  
  // getType - Overload to return most specific pointer type...
  inline const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  /// getIndexedType - Returns the type of the element that would be loaded with
  /// a load instruction with the specified parameters.
  ///
  /// A null type is returned if the indices are invalid for the specified 
  /// pointer type.
  ///
  static const Type *getIndexedType(const Type *Ptr, 
                                    const std::vector<Value*> &Indices,
                                    bool AllowStructLeaf = false);
  static const Type *getIndexedType(const Type *Ptr, Value *Idx0, Value *Idx1,
                                    bool AllowStructLeaf = false);
  
  inline op_iterator       idx_begin()       { return op_begin()+1; }
  inline const_op_iterator idx_begin() const { return op_begin()+1; }
  inline op_iterator       idx_end()         { return op_end(); }
  inline const_op_iterator idx_end()   const { return op_end(); }

  Value *getPointerOperand() {
    return getOperand(0);
  }
  const Value *getPointerOperand() const {
    return getOperand(0);
  }
  static unsigned getPointerOperandIndex() {
    return 0U;                      // get index for modifying correct operand
  }

  inline unsigned getNumIndices() const {  // Note: always non-negative
    return getNumOperands() - 1;
  }
  
  inline bool hasIndices() const {
    return getNumOperands() > 1;
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const GetElementPtrInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::GetElementPtr);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                            SetCondInst Class
//===----------------------------------------------------------------------===//

/// SetCondInst class - Represent a setCC operator, where CC is eq, ne, lt, gt,
/// le, or ge.
///
class SetCondInst : public BinaryOperator {
public:
  SetCondInst(BinaryOps Opcode, Value *LHS, Value *RHS,
              const std::string &Name = "", Instruction *InsertBefore = 0);
  SetCondInst(BinaryOps Opcode, Value *LHS, Value *RHS,
              const std::string &Name, BasicBlock *InsertAtEnd);

  /// getInverseCondition - Return the inverse of the current condition opcode.
  /// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
  ///
  BinaryOps getInverseCondition() const {
    return getInverseCondition(getOpcode());
  }

  /// getInverseCondition - Static version that you can use without an
  /// instruction available.
  ///
  static BinaryOps getInverseCondition(BinaryOps Opcode);

  /// getSwappedCondition - Return the condition opcode that would be the result
  /// of exchanging the two operands of the setcc instruction without changing
  /// the result produced.  Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
  ///
  BinaryOps getSwappedCondition() const {
    return getSwappedCondition(getOpcode());
  }

  /// getSwappedCondition - Static version that you can use without an
  /// instruction available.
  ///
  static BinaryOps getSwappedCondition(BinaryOps Opcode);


  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SetCondInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == SetEQ || I->getOpcode() == SetNE ||
           I->getOpcode() == SetLE || I->getOpcode() == SetGE ||
           I->getOpcode() == SetLT || I->getOpcode() == SetGT;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 CastInst Class
//===----------------------------------------------------------------------===//

/// CastInst - This class represents a cast from Operand[0] to the type of
/// the instruction (i->getType()).
///
class CastInst : public UnaryInstruction {
  CastInst(const CastInst &CI) 
    : UnaryInstruction(CI.getType(), Cast, CI.getOperand(0)) {
  }
public:
  CastInst(Value *S, const Type *Ty, const std::string &Name = "",
           Instruction *InsertBefore = 0)
    : UnaryInstruction(Ty, Cast, S, Name, InsertBefore) {
  }
  CastInst(Value *S, const Type *Ty, const std::string &Name,
           BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, Cast, S, Name, InsertAtEnd) {
  }

  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CastInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Cast;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                 CallInst Class
//===----------------------------------------------------------------------===//

/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention.
///
class CallInst : public Instruction {
  CallInst(const CallInst &CI);
  void init(Value *Func, const std::vector<Value*> &Params);
  void init(Value *Func, Value *Actual1, Value *Actual2);
  void init(Value *Func, Value *Actual);
  void init(Value *Func);

public:
  CallInst(Value *F, const std::vector<Value*> &Par,
           const std::string &Name = "", Instruction *InsertBefore = 0);
  CallInst(Value *F, const std::vector<Value*> &Par,
           const std::string &Name, BasicBlock *InsertAtEnd);

  // Alternate CallInst ctors w/ two actuals, w/ one actual and no
  // actuals, respectively.
  CallInst(Value *F, Value *Actual1, Value *Actual2,
           const std::string& Name = "", Instruction *InsertBefore = 0);
  CallInst(Value *F, Value *Actual1, Value *Actual2,
           const std::string& Name, BasicBlock *InsertAtEnd);
  CallInst(Value *F, Value *Actual, const std::string& Name = "",
           Instruction *InsertBefore = 0);
  CallInst(Value *F, Value *Actual, const std::string& Name,
           BasicBlock *InsertAtEnd);
  explicit CallInst(Value *F, const std::string &Name = "", 
                    Instruction *InsertBefore = 0);
  explicit CallInst(Value *F, const std::string &Name, 
                    BasicBlock *InsertAtEnd);
  ~CallInst();

  virtual CallInst *clone() const;
  bool mayWriteToMemory() const { return true; }

  /// getCalledFunction - Return the function being called by this instruction
  /// if it is a direct call.  If it is a call through a function pointer,
  /// return null.
  Function *getCalledFunction() const {
    return (Function*)dyn_cast<Function>(getOperand(0));
  }

  // getCalledValue - Get a pointer to a method that is invoked by this inst.
  inline const Value *getCalledValue() const { return getOperand(0); }
  inline       Value *getCalledValue()       { return getOperand(0); }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CallInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Call; 
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                 ShiftInst Class
//===----------------------------------------------------------------------===//

/// ShiftInst - This class represents left and right shift instructions.
///
class ShiftInst : public Instruction {
  Use Ops[2];
  ShiftInst(const ShiftInst &SI)
    : Instruction(SI.getType(), SI.getOpcode(), Ops, 2) {
    Ops[0].init(SI.Ops[0], this);
    Ops[1].init(SI.Ops[1], this);
  }
  void init(OtherOps Opcode, Value *S, Value *SA) {
    assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");
    Ops[0].init(S, this);
    Ops[1].init(SA, this);
  }

public:
  ShiftInst(OtherOps Opcode, Value *S, Value *SA, const std::string &Name = "",
            Instruction *InsertBefore = 0)
    : Instruction(S->getType(), Opcode, Ops, 2, Name, InsertBefore) {
    init(Opcode, S, SA);
  }
  ShiftInst(OtherOps Opcode, Value *S, Value *SA, const std::string &Name,
            BasicBlock *InsertAtEnd)
    : Instruction(S->getType(), Opcode, Ops, 2, Name, InsertAtEnd) {
    init(Opcode, S, SA);
  }

  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 2 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 2 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 2; }

  virtual ShiftInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ShiftInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Shr) | 
           (I->getOpcode() == Instruction::Shl);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               SelectInst Class
//===----------------------------------------------------------------------===//

/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
  Use Ops[3];

  void init(Value *C, Value *S1, Value *S2) {
    Ops[0].init(C, this);
    Ops[1].init(S1, this);
    Ops[2].init(S2, this);
  }

  SelectInst(const SelectInst &SI)
    : Instruction(SI.getType(), SI.getOpcode(), Ops, 3) {
    init(SI.Ops[0], SI.Ops[1], SI.Ops[2]);
  }
public:
  SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name = "",
             Instruction *InsertBefore = 0)
    : Instruction(S1->getType(), Instruction::Select, Ops, 3,
                  Name, InsertBefore) {
    init(C, S1, S2);
  }
  SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : Instruction(S1->getType(), Instruction::Select, Ops, 3,
                  Name, InsertAtEnd) {
    init(C, S1, S2);
  }

  Value *getCondition() const { return Ops[0]; }
  Value *getTrueValue() const { return Ops[1]; }
  Value *getFalseValue() const { return Ops[2]; }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 3 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 3 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 3; }

  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  virtual SelectInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SelectInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Select;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                VANextInst Class
//===----------------------------------------------------------------------===//

/// VANextInst - This class represents the va_next llvm instruction, which
/// advances a vararg list passed an argument of the specified type, returning
/// the resultant list.
///
class VANextInst : public UnaryInstruction {
  PATypeHolder ArgTy;
  VANextInst(const VANextInst &VAN)
    : UnaryInstruction(VAN.getType(), VANext, VAN.getOperand(0)),
      ArgTy(VAN.getArgType()) {
  }

public:
  VANextInst(Value *List, const Type *Ty, const std::string &Name = "",
             Instruction *InsertBefore = 0)
    : UnaryInstruction(List->getType(), VANext, List, Name, InsertBefore),
      ArgTy(Ty) {
  }
  VANextInst(Value *List, const Type *Ty, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : UnaryInstruction(List->getType(), VANext, List, Name, InsertAtEnd),
      ArgTy(Ty) {
  }

  const Type *getArgType() const { return ArgTy; }

  virtual VANextInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VANextInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == VANext;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                VAArgInst Class
//===----------------------------------------------------------------------===//

/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list.
///
class VAArgInst : public UnaryInstruction {
  VAArgInst(const VAArgInst &VAA)
    : UnaryInstruction(VAA.getType(), VAArg, VAA.getOperand(0)) {}
public:
  VAArgInst(Value *List, const Type *Ty, const std::string &Name = "",
             Instruction *InsertBefore = 0)
    : UnaryInstruction(Ty, VAArg, List, Name, InsertBefore) {
  }
  VAArgInst(Value *List, const Type *Ty, const std::string &Name,
            BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, VAArg, List, Name, InsertAtEnd) {
  }

  virtual VAArgInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VAArgInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == VAArg;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               PHINode Class
//===----------------------------------------------------------------------===//

// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
  /// ReservedSpace - The number of operands actually allocated.  NumOperands is
  /// the number actually in use.
  unsigned ReservedSpace;
  PHINode(const PHINode &PN);
public:
  PHINode(const Type *Ty, const std::string &Name = "",
          Instruction *InsertBefore = 0)
    : Instruction(Ty, Instruction::PHI, 0, 0, Name, InsertBefore),
      ReservedSpace(0) {
  }

  PHINode(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd)
    : Instruction(Ty, Instruction::PHI, 0, 0, Name, InsertAtEnd),
      ReservedSpace(0) {
  }

  ~PHINode();

  /// reserveOperandSpace - This method can be used to avoid repeated
  /// reallocation of PHI operand lists by reserving space for the correct
  /// number of operands before adding them.  Unlike normal vector reserves,
  /// this method can also be used to trim the operand space.
  void reserveOperandSpace(unsigned NumValues) {
    resizeOperands(NumValues*2);
  }

  virtual PHINode *clone() const;

  /// getNumIncomingValues - Return the number of incoming edges
  ///
  unsigned getNumIncomingValues() const { return getNumOperands()/2; }

  /// getIncomingValue - Return incoming value #x
  ///
  Value *getIncomingValue(unsigned i) const {
    assert(i*2 < getNumOperands() && "Invalid value number!");
    return getOperand(i*2);
  }
  void setIncomingValue(unsigned i, Value *V) {
    assert(i*2 < getNumOperands() && "Invalid value number!");
    setOperand(i*2, V);
  }
  unsigned getOperandNumForIncomingValue(unsigned i) {
    return i*2;
  }

  /// getIncomingBlock - Return incoming basic block #x
  ///
  BasicBlock *getIncomingBlock(unsigned i) const { 
    return reinterpret_cast<BasicBlock*>(getOperand(i*2+1));
  }
  void setIncomingBlock(unsigned i, BasicBlock *BB) {
    setOperand(i*2+1, reinterpret_cast<Value*>(BB));
  }
  unsigned getOperandNumForIncomingBlock(unsigned i) {
    return i*2+1;
  }

  /// addIncoming - Add an incoming value to the end of the PHI list
  ///
  void addIncoming(Value *V, BasicBlock *BB) {
    assert(getType() == V->getType() &&
           "All operands to PHI node must be the same type as the PHI node!");
    unsigned OpNo = NumOperands;
    if (OpNo+2 > ReservedSpace)
      resizeOperands(0);  // Get more space!
    // Initialize some new operands.
    NumOperands = OpNo+2;
    OperandList[OpNo].init(V, this);
    OperandList[OpNo+1].init(reinterpret_cast<Value*>(BB), this);
  }
  
  /// removeIncomingValue - Remove an incoming value.  This is useful if a
  /// predecessor basic block is deleted.  The value removed is returned.
  ///
  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
  /// is true), the PHI node is destroyed and any uses of it are replaced with
  /// dummy values.  The only time there should be zero incoming values to a PHI
  /// node is when the block is dead, so this strategy is sound.
  ///
  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);

  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty =true){
    int Idx = getBasicBlockIndex(BB);
    assert(Idx >= 0 && "Invalid basic block argument to remove!");
    return removeIncomingValue(Idx, DeletePHIIfEmpty);
  }

  /// getBasicBlockIndex - Return the first index of the specified basic 
  /// block in the value list for this PHI.  Returns -1 if no instance.
  ///
  int getBasicBlockIndex(const BasicBlock *BB) const {
    Use *OL = OperandList;
    for (unsigned i = 0, e = getNumOperands(); i != e; i += 2) 
      if (OL[i+1] == reinterpret_cast<const Value*>(BB)) return i/2;
    return -1;
  }

  Value *getIncomingValueForBlock(const BasicBlock *BB) const {
    return getIncomingValue(getBasicBlockIndex(BB));
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PHINode *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::PHI; 
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
 private:
  void resizeOperands(unsigned NumOperands);
};

//===----------------------------------------------------------------------===//
//                               ReturnInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function.  Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
  Use RetVal;  // Possibly null retval.
  ReturnInst(const ReturnInst &RI) : TerminatorInst(Instruction::Ret, &RetVal,
                                                    RI.getNumOperands()) {
    if (RI.getNumOperands())
      RetVal.init(RI.RetVal, this);
  }

  void init(Value *RetVal);

public:
  // ReturnInst constructors:
  // ReturnInst()                  - 'ret void' instruction
  // ReturnInst(    null)          - 'ret void' instruction
  // ReturnInst(Value* X)          - 'ret X'    instruction
  // ReturnInst(    null, Inst *)  - 'ret void' instruction, insert before I
  // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
  // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of BB
  // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of BB
  //
  // NOTE: If the Value* passed is of type void then the constructor behaves as
  // if it was passed NULL.
  ReturnInst(Value *retVal = 0, Instruction *InsertBefore = 0)
    : TerminatorInst(Instruction::Ret, &RetVal, 0, InsertBefore) {
    init(retVal);
  }
  ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
    : TerminatorInst(Instruction::Ret, &RetVal, 0, InsertAtEnd) {
    init(retVal);
  }
  ReturnInst(BasicBlock *InsertAtEnd)
    : TerminatorInst(Instruction::Ret, &RetVal, 0, InsertAtEnd) {
  }

  virtual ReturnInst *clone() const;

  // Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < getNumOperands() && "getOperand() out of range!");
    return RetVal;
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < getNumOperands() && "setOperand() out of range!");
    RetVal = Val;
  }

  Value *getReturnValue() const { return RetVal; }

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ReturnInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Ret);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
 private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                               BranchInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
  /// Ops list - Branches are strange.  The operands are ordered:
  ///  TrueDest, FalseDest, Cond.  This makes some accessors faster because
  /// they don't have to check for cond/uncond branchness.
  Use Ops[3];
  BranchInst(const BranchInst &BI);
  void AssertOK();
public:
  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
  // BranchInst(BB *B)                           - 'br B'
  // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
  // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
  // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
  // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
  BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0)
    : TerminatorInst(Instruction::Br, Ops, 1, InsertBefore) {
    assert(IfTrue != 0 && "Branch destination may not be null!");
    Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
  }
  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
             Instruction *InsertBefore = 0)
    : TerminatorInst(Instruction::Br, Ops, 3, InsertBefore) {
    Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
    Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
    Ops[2].init(Cond, this);
#ifndef NDEBUG
    AssertOK();
#endif
  }

  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
    : TerminatorInst(Instruction::Br, Ops, 1, InsertAtEnd) {
    assert(IfTrue != 0 && "Branch destination may not be null!");
    Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
  }

  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
             BasicBlock *InsertAtEnd)
    : TerminatorInst(Instruction::Br, Ops, 3, InsertAtEnd) {
    Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
    Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
    Ops[2].init(Cond, this);
#ifndef NDEBUG
    AssertOK();
#endif
  }


  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < getNumOperands() && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < getNumOperands() && "setOperand() out of range!");
    Ops[i] = Val;
  }

  virtual BranchInst *clone() const;

  inline bool isUnconditional() const { return getNumOperands() == 1; }
  inline bool isConditional()   const { return getNumOperands() == 3; }

  inline Value *getCondition() const {
    assert(isConditional() && "Cannot get condition of an uncond branch!");
    return getOperand(2);
  }

  void setCondition(Value *V) {
    assert(isConditional() && "Cannot set condition of unconditional branch!");
    setOperand(2, V);
  }

  // setUnconditionalDest - Change the current branch to an unconditional branch
  // targeting the specified block.
  // FIXME: Eliminate this ugly method.
  void setUnconditionalDest(BasicBlock *Dest) {
    if (isConditional()) {  // Convert this to an uncond branch.
      NumOperands = 1;
      Ops[1].set(0);
      Ops[2].set(0);
    }
    setOperand(0, reinterpret_cast<Value*>(Dest));
  }

  unsigned getNumSuccessors() const { return 1+isConditional(); }

  BasicBlock *getSuccessor(unsigned i) const {
    assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
    return (i == 0) ? cast<BasicBlock>(getOperand(0)) : 
                      cast<BasicBlock>(getOperand(1));
  }

  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
    setOperand(idx, reinterpret_cast<Value*>(NewSucc));
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BranchInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Br);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                               SwitchInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst {
  unsigned ReservedSpace;
  // Operand[0]    = Value to switch on
  // Operand[1]    = Default basic block destination
  // Operand[2n  ] = Value to match
  // Operand[2n+1] = BasicBlock to go to on match
  SwitchInst(const SwitchInst &RI);
  void init(Value *Value, BasicBlock *Default, unsigned NumCases);
  void resizeOperands(unsigned No);
public:
  /// SwitchInst ctor - Create a new switch instruction, specifying a value to
  /// switch on and a default destination.  The number of additional cases can
  /// be specified here to make memory allocation more efficient.  This
  /// constructor can also autoinsert before another instruction.
  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
             Instruction *InsertBefore = 0) 
    : TerminatorInst(Instruction::Switch, 0, 0, InsertBefore) {
    init(Value, Default, NumCases);
  }

  /// SwitchInst ctor - Create a new switch instruction, specifying a value to
  /// switch on and a default destination.  The number of additional cases can
  /// be specified here to make memory allocation more efficient.  This
  /// constructor also autoinserts at the end of the specified BasicBlock.
  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
             BasicBlock *InsertAtEnd) 
    : TerminatorInst(Instruction::Switch, 0, 0, InsertAtEnd) {
    init(Value, Default, NumCases);
  }
  ~SwitchInst();


  // Accessor Methods for Switch stmt
  inline Value *getCondition() const { return getOperand(0); }
  void setCondition(Value *V) { setOperand(0, V); }

  inline BasicBlock *getDefaultDest() const {
    return cast<BasicBlock>(getOperand(1));
  }

  /// getNumCases - return the number of 'cases' in this switch instruction.
  /// Note that case #0 is always the default case.
  unsigned getNumCases() const {
    return getNumOperands()/2;
  }

  /// getCaseValue - Return the specified case value.  Note that case #0, the
  /// default destination, does not have a case value.
  ConstantInt *getCaseValue(unsigned i) {
    assert(i && i < getNumCases() && "Illegal case value to get!");
    return getSuccessorValue(i);
  }

  /// getCaseValue - Return the specified case value.  Note that case #0, the
  /// default destination, does not have a case value.
  const ConstantInt *getCaseValue(unsigned i) const {
    assert(i && i < getNumCases() && "Illegal case value to get!");
    return getSuccessorValue(i);
  }

  /// findCaseValue - Search all of the case values for the specified constant.
  /// If it is explicitly handled, return the case number of it, otherwise
  /// return 0 to indicate that it is handled by the default handler.
  unsigned findCaseValue(const ConstantInt *C) const {
    for (unsigned i = 1, e = getNumCases(); i != e; ++i)
      if (getCaseValue(i) == C)
        return i;
    return 0;
  }

  /// addCase - Add an entry to the switch instruction...
  ///
  void addCase(ConstantInt *OnVal, BasicBlock *Dest);

  /// removeCase - This method removes the specified successor from the switch
  /// instruction.  Note that this cannot be used to remove the default
  /// destination (successor #0).
  ///
  void removeCase(unsigned idx);

  virtual SwitchInst *clone() const;

  unsigned getNumSuccessors() const { return getNumOperands()/2; }
  BasicBlock *getSuccessor(unsigned idx) const {
    assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
    return cast<BasicBlock>(getOperand(idx*2+1));
  }
  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
    setOperand(idx*2+1, reinterpret_cast<Value*>(NewSucc));
  }

  // getSuccessorValue - Return the value associated with the specified
  // successor.
  inline ConstantInt *getSuccessorValue(unsigned idx) const {
    assert(idx < getNumSuccessors() && "Successor # out of range!");
    return (ConstantInt*)getOperand(idx*2);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SwitchInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Switch;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                               InvokeInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// InvokeInst - Invoke instruction
///
class InvokeInst : public TerminatorInst {
  InvokeInst(const InvokeInst &BI);
  void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
            const std::vector<Value*> &Params);
public:
  InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
             const std::vector<Value*> &Params, const std::string &Name = "",
             Instruction *InsertBefore = 0);
  InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
             const std::vector<Value*> &Params, const std::string &Name,
             BasicBlock *InsertAtEnd);
  ~InvokeInst();

  virtual InvokeInst *clone() const;

  bool mayWriteToMemory() const { return true; }

  /// getCalledFunction - Return the function called, or null if this is an
  /// indirect function invocation.
  ///
  Function *getCalledFunction() const {
    return dyn_cast<Function>(getOperand(0));
  }

  // getCalledValue - Get a pointer to a function that is invoked by this inst.
  inline Value *getCalledValue() const { return getOperand(0); }

  // get*Dest - Return the destination basic blocks...
  BasicBlock *getNormalDest() const {
    return cast<BasicBlock>(getOperand(1));
  }
  BasicBlock *getUnwindDest() const {
    return cast<BasicBlock>(getOperand(2));
  }
  void setNormalDest(BasicBlock *B) {
    setOperand(1, reinterpret_cast<Value*>(B));
  }

  void setUnwindDest(BasicBlock *B) {
    setOperand(2, reinterpret_cast<Value*>(B));
  }

  inline BasicBlock *getSuccessor(unsigned i) const {
    assert(i < 2 && "Successor # out of range for invoke!");
    return i == 0 ? getNormalDest() : getUnwindDest();
  }

  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < 2 && "Successor # out of range for invoke!");
    setOperand(idx+1, reinterpret_cast<Value*>(NewSucc));
  }

  unsigned getNumSuccessors() const { return 2; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InvokeInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Invoke);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};


//===----------------------------------------------------------------------===//
//                              UnwindInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// UnwindInst - Immediately exit the current function, unwinding the stack
/// until an invoke instruction is found.
///
class UnwindInst : public TerminatorInst {
public:
  UnwindInst(Instruction *InsertBefore = 0)
    : TerminatorInst(Instruction::Unwind, 0, 0, InsertBefore) {
  }
  UnwindInst(BasicBlock *InsertAtEnd)
    : TerminatorInst(Instruction::Unwind, 0, 0, InsertAtEnd) {
  }

  virtual UnwindInst *clone() const;

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnwindInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Unwind;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                           UnreachableInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// UnreachableInst - This function has undefined behavior.  In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public TerminatorInst {
public:
  UnreachableInst(Instruction *InsertBefore = 0)
    : TerminatorInst(Instruction::Unreachable, 0, 0, InsertBefore) {
  }
  UnreachableInst(BasicBlock *InsertAtEnd)
    : TerminatorInst(Instruction::Unreachable, 0, 0, InsertAtEnd) {
  }

  virtual UnreachableInst *clone() const;

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnreachableInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Unreachable;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

} // End llvm namespace

#endif